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In this document, we outline the definition of an adaptor grammar and the generative process of our model
(Section 1). This allows us to define a joint distribution over adapted grammars and observations (Section 2).

Uncovering the latent variables of the model (grammars and productions) requires posterior inference. We
use online hybrid variational inference, which requires three components: positing a variational distribution
(Section 3), deriving the mean-field updates (Section 4), and then adapting those updates into the online
setting (Section 5).

Section 6 serves as a reference to review all of the notation used in this document.

1 Definition of Adaptor Grammar
An adaptor grammar is defined by a tupleA = 〈G,M,a, b,α〉, containing

1. a grammar—G = 〈W,N,R, S〉—defined by a set of terminals W , a set of nonterminals N , productions
R, and start symbol S ∈ N ;

2. a set of adapted nonterminal M ⊆ N ; and

3. Pitman-Yor parameters ac, bc and symmetric Dirichlet parameter αc (specific to each nonterminal c).

1.1 Generative Process: Adapting nonterminals to Create a Distribution over Trees
This section reviews the distribution over trees produced by adaptor grammars. This distribution is defined
for each nonterminal c in two parts; first, the unadapted distribution Gc and the adapted distribution Hc. If
a nonterminal is unadapted these are the same. We will first describe the unadapted distribution; however,
because this is a recursive process, it will depend on the adapted distributions over other non-terminals. We
will define these later.

Each nonterminal c induces a distribution over trees parametrized by the PCFG,1

Gc ≡
∑

c→β∈Rc

θa→βTREEDISTc (Hb1 , Hb2 , . . .) ; (1)

where TREEDISTc () is a distribution over the subtrees rooted at nonterminal c,

TREEDISTc (Hb1 , Hb2 , . . . ,Hbn)

 a

t1 . . . tn

 =

n∏
i=1

Hbn(tn), (2)

which states that for unadapted rules, each element of the right hand side of the rule is expanded independently.
Adapted rules relax this independence assumption via Bayesian nonparametric. For the nonterminals that

are adapted, in addition to the PCFG, for each symbol a in the set of adapted nonterminalsM , we have a

1In the case of a terminal b ∈ W , Gb will be a distribution that puts all of its mass on the unit tree labeled as the terminal b.



set of weights

π′c,k ∼Beta(1− bc, ac + kbc) (3)

πc,k ≡π′c,k
k−1∏
l=1

(1− π′c,l) (4)

which assign probability mass to a countably infinite set of atoms k = 1, . . .∞,

zc,k ∼ Gc; (5)

which are subtrees rooted at a. Together, these define a new distribution over yields for a nonterminal,

Hc(·) ≡
∞∑
i

πc,iδzc,i(·), (6)

where δ is a Dirac delta that is one if the argument matches the atom, zero otherwise. This nonparametric
distribution defines the distribution over yields for that nonterminal.

1.2 A Distribution Over Observed Sentences
We assume that the above model produces sentences. We have D observations, where observations d =
1, . . . D come from:

td ∼ HS , (7)

where S is the designated start state. The trees td are latent, but we do observe the terminals associated with
each sentence, xd.

However, writing a tree as td obscures the internal structure of this recursive object, so we will need to be
able to recover the productions that created the tree. Thus, we will use M(td) to encode the multiset of all of
the adapted productions that generated the tree and N(td) to denote the multiset of non-adapted productions
that generated the tree.

2 Joint Likelihood
Given a set of sentences X and a grammar G, the joint probability of a collection of parses T , PCFG
probabilities θ, and adapted grammarH is

p(X,T ,π,θ |a, b,α) =
∏
c∈N

p(θc |α)︸ ︷︷ ︸
PCFG Dirichlet prior

·
∏
c∈M

∞∏
i=1

p(πc,i | ac, bc) · p(zc,i |Gc)︸ ︷︷ ︸
adapted stick breaking process


·
∏
d∈D

p(xd, td |θ,π,Z)︸ ︷︷ ︸
parse trees

(8)

The probability of an observed string and a tree from an adaptor grammar is based on the productions used
to form the tree td, both adapted productions c⇒ z(a,i) ∈M(td) and unadapted productions b→ β ∈ N(td),

p(xd, td |θ,π,Z) =
∏
c⇒zc,i

π
|c⇒zc,i∈M(td)|
c⇒zc,i

∏
b→β

θ
|b→β∈N(td)|
b→β I [YIELD (td) = xd] . (9)

Similarly, the probability of observing an atom zc,i from nonterminal c is

p(zc,i |Gc) =
∏

d⇒zd,j

π
|d⇒zd,j∈M(zc,i)|
d⇒zd,j

∏
b→β

θ
|b→β∈N(zc,i)|
b→β (10)



3 Variational Distribution

Our goal is to apply variational inference to the problem of uncovering the latent variables of the adaptor
grammar problem.

After positing a variational distribution, this will induce a variational objective, which is a lower bound
of the likelihood. We optimize this objective to obtain a distribution over the latent variables that will
approximate the true posterior.

We posit a mean-field variational distribution that breaks the dependencies by assuming the following
variational distribution q on the variables.

1. π′c,i is drawn from a variational Beta distribution π′c,i ∼ Beta(ν1c , ν
2
c ) Atom weights are deterministically

defined by πc,i = π′c,i
∏i
j=1(1− π′c,j).

2. This distribution is truncated, so that π′c,K ≡ 1 for some index Kc. This implies that πc,i is zero beyond
index K.

3. Because the distribution is truncated, we keep a set of adapted yields, which we call the truncated
nonterminal grammar (TNG). For an adapted nonterminal, TNGc represents a finite subset of zc,
the trees weighted by the variational distribution. The size of TNGc is Kc, a user-defined truncation
parameter (larger Kc results in a higher-fidelity variational approximation).

4. θc, the multinomial over a nonterminal’s unadapted rules, is governed by a variational Dirichlet distribu-
tion θc ∼ Dir(γc).

5. We assume that the set of all trees that can produce a sentence can be modeled as a multinomial
distribution. Thus, a tree td can be associated with a multinomial distribution φd(td) for the entire tree.

Given these distributions for each of the latent variables, we assume a mean-field distribution

q(π,θ,T |γ,ν) =
∏
c∈N

q(θc|γc)
∏
c∈M

∞∏
i=1

q(πc,i|ν1c,i, ν2c,i)
|D|∏
d

q(td,i|φd,i) (11)

4 Inference

The evidence lower bound (ELBO) of the model is2

L(π,θ,T ,D) =
∑

c∈N\M

Eq [log p(θc |αc)]︸ ︷︷ ︸
PCFG rules

+
∑
c∈M

∞∑
i=1

Eq
[
log p(π′c,i | ac, bc)

]︸ ︷︷ ︸
PY stick

+
∑
c∈M

∞∑
i=1

Eq [log p(zc,i |π,θ)]︸ ︷︷ ︸
PY atoms

+
∑
d∈D

Eq [log p(xd, td |π,θ)]︸ ︷︷ ︸
Observations

+
∑
c∈M

Hq [q(θc)] +
∑
c∈M

∞∑
i=1

Hq

[
q(π′c,i)

]
︸ ︷︷ ︸

Entropy Terms

(12)

In this section, we further expand both the likelihood terms and the entropy terms to create a full objective
function. Next, we derive coordinate-ascent updates for each of the variables in the objective that will
optimize the objective function.

2For the sake of clarity, we have omitted the hyperparameters, which would make the complete expression L(π,θ,T ,D;a, b,α)



Utility Expectations Many of the expectations involve well-known log expectations of exponential family
distributions. We state them here without explicit derivation.

Eq[log π′c,i] =Ψ
(
ν1c,i

)
−Ψ

(
ν1c,i + ν2c,i

)
(13)

Eq[log(1− π′c,i)] =Ψ
(
ν2c,i

)
−Ψ

(
ν1c,i + ν2c,i

)
(14)

Eq [log πc,i] =
i−1∑
j=1

Eq[log(1− π′c,j)] + Eq[log π′c,i] (15)

=
i−1∑
j=1

(
Ψ
(
ν2c,j

)
−Ψ

(
ν1c,j + ν2c,j

) )
+ Ψ

(
ν1c,i

)
−Ψ

(
ν1c,i + ν2c,i

)
4.1 Expanding Expectations
PCFG Rule Each nonterminal has a distribution over rules θc; the ELBO term associated with this
multinomial is

Eq [log p(θc|αc)] = log Γ
(∑

c→β∈Rc
αc→β

)
−

∑
c→β∈Rc

log Γ (αc→β)

+
∑

c→β∈Rc

(αc→β − 1)Eq [log θc→β] , (16)

which can be further expanded using the expectation of a Dirichlet,

Eq [log θc→β] = Ψ (γc→β)−Ψ
(∑

c→β′∈Rc
γc→β′

)
(17)

PY Stick The Pitman-Yor distribution has two components, a weighting over atoms and the atoms them-
selves. The ELBO term corresponding to the distribution over atom weights, π, is

Eq
[
log p(π′c,i | ac, bc)

]
= log Γ (1− bc + ac + ibc)− log Γ (1− bc)− log Γ (ac + ibc)

− bcEq
[
log π′c,i

]
+ (ac + ibc − 1)Eq

[
log(1− π′c,i)

]
(18)

PY Atoms The atoms weighted by the Pitman-Yor distribution appear (Equation 10) in the ELBO term

Eq [log p(zc,i|π,θ)] =
∑

b→β∈N(zc,i)

g(b→ β, zc,i)Eq [log θb→β]

+
∑

b⇒zb,k∈M(zc,i)

f(b⇒ zb,k, zc,i)Eq [log πb,k] . (19)

Observations Finally, observed trees are described by both adapted and unadapted rules (Equation 9)
which contribute to the ELBO,

Eq [log p(xd, td |θ,π,Z)] =
∑
b⇒zb,k

Eq [log p(πb,k)] +
∑
b→β

Eq [log p(θb→β)] (20)

Entropy Terms Entropy terms for Dirichlet distribution

Hq [θc |γc] =− log Γ
(∑

c→β∈Rc
γc→β

)
+

∑
c→β∈Rc

log Γ (γc→β)

−
∑

c→β∈Rc

(γc→β − 1)Eq [log θc→β] (21)



Entropy term for Pitman-Yor process

Hq

[
π′c,i | νc,i

]
=− log Γ

(
ν1c,i + ν2c,i

)
+ log Γ

(
ν1c,i

)
+ log Γ

(
ν2c,i

)
− (ν1c,i − 1)Eq

[
log π′c,i

]
− (ν2c,i − 1)Eq

[
log(1− π′c,i)

]
(22)

4.2 Update for φ
Our distribution over trees for an observation is governed by a multinomial variational parameter φ. The
coordinate ascent should update this equation based on the expectation of the other variational parameters
excluding φd (we denote this expectation using E¬φd [·])

log φd,i =E¬φd [log p(xd, td,i)] + CONST
φd,i ∝exp {E¬φd [log p(xd, td,i)]}

=exp {E¬φd [log p(td,i|xd) + log p(xd)]}
∝exp {E¬φd [log p(td|xd)]} . (23)

Instead of explicitly computing this expectation, we use the hybrid-MCMC approach (Mimno et al., 2012)
to sample from exp{E−Td,i [log p(T |D)]} to obtain a sparse estimate of this expectation. We approximate
the above equation by sampling from the distribution over trees given a yield (Johnson et al., 2006).

We can create a PCFG that approximates an adaptor grammar(Cohen, 2011). This PCFG has a set of
productions

R′ = R ∪c∈N (A→ YIELD (x) : x ∈ xc) (24)

weighted by

log θ′c→β =

{
Eq [log πi] , if TNGc(i) = β

Eq [log πKc ] + Eq [log θc,β] , otherwise

and then build a collection of sampled trees Sd ≡ sd,1, . . . , sd,k. We then approximate our variational
distribution over trees as:

φd(t) =


|sd ∈ Sd : sd = t|

|Sd|
t ∈ Sd

0 otherwise
(25)

4.3 Total Counts
A sampled tree sd,k has three types of productions, whose overall prevalence in the corpus we will represent
using counts f (adapted rules), g (unadapted rules), h (potentially adapted):

• f is the expected number of productions that are represented within the TNG. It sums over all trees,
weighting the count of the productions in a tree by the probability of the tree under the variational
distribution,

fd(c⇒ zc,i) =
∑
t

φd,t |c⇒ zc,i : c⇒ zc,i ∈MTNGc
(t)|︸ ︷︷ ︸

Count of production in tree td,t

(26)

• g is the expected number of productions used by the base distribution

gd(b→ β) =
∑
t

φd,t|b→ β : b→ β ∈ NR(t)| (27)

• Finally, there is a third set of productions that could be adapted, but are not because they are not
represented in our TNG. These are subtrees not in TNGc rooted at an adapted nonterminal c,

hd(c⇒ zc,i) =
∑
t

φd,t|c⇒ zc,i : c⇒ zc,i ∈M¬TNGc
(t)|, (28)

where ¬TNGc represents subtrees rooted at a not present in the TNG and M¬TNGc
(t) represents the

multi-set of subtrees rooted at a not present in the TNGc but that appeared in tree derivation t.



4.4 Batch Updates for Global Parameters

For reference, we give the closed-form updates for the variational distributions for the nonterminal productions
γ and for the stick breaking weights ν; these rely on optimizingLwith respect to a single variational parameter,
replacing that variational distribution with its update. While we will not use them for our algorithm, we write
them here for comparison with previous variational inference algorithms (Cohen et al., 2010; Cohen, 2011)
and for comparison against the online updates, which are discussed in the next section, Section 5.

4.4.1 Optimize γ
The update for the variational parameter governing the probability over unadapted rules is

γc→β = αc→β︸ ︷︷ ︸
prior

+
∑
d∈D

gd(c→ β)︸ ︷︷ ︸
rules in data

+
∑
b∈M

Kb∑
i=1

|c→ β : c→ β ∈ N(zb,i)|︸ ︷︷ ︸
rules in adapted rules

. (29)

4.4.2 Optimize ν
The update for the variational parameter governing the stick-breaking weight for the i-th atom associated
with nonterminal a is

ν1c,i =
∑
b∈M

Kb∑
k=1

|c⇒ zc,i : c⇒ zc,i ∈M(zb,k)|︸ ︷︷ ︸
Adapted rules of nonterminal c used in b’s rules

+
∑
d∈D

fd(c⇒ zc,i)− bc + 1︸ ︷︷ ︸
Adapted rules in corpus

(30)

ν2c,i =
∑
b∈M

Kb∑
k=1

Kc∑
j=1

|c⇒ zc,j : c⇒ zc,j ∈M(zb,k)| (31)

+
∑
d∈D

Kc∑
j=1

fd(c⇒ zc,j) + ac + ibc. (32)

5 Online Inference

Instead of processing all of the data B in a single batch, we will instead break our data into minibatches Be.
We will consistently use the superscript e to denote the current epoch of data we have observed. Each epoch
e processes a minibatch and creates a set of candidate parses, creating the variational distribution φ over the
possible interpretation of parses. The statistics from these parses then determine the global parameter updates
after each minibatch.

The remainder of this section details some of the steps referenced in the algorithm.

5.1 Online Parameter Updates

We use the incremental EM method (Neal & Hinton, 1998). We accumulate sufficient statistics, and update
the variational parameters γ, φ, ν. We denote f̃e and g̃e as the accumulated count of f and g values at iteration
e,

f̃e(c⇒ zc,i) = (1− ε)f̃e−1(c⇒ zc,i) + ε
∑
d

fd(c⇒ zc,i)

g̃e(b→ β) = (1− ε)g̃e−1(b→ β) + ε
∑
d

gd(b→ β) (33)

where ε is a scaling parameter between 0 to 1. In this paper, we choose it as

ε = (τ + e)−κ (34)



where τ is a user defined inertia, e is the epoch counter and κ is scaling rate. So that in the online case, the
update for epoch e is,

γc→β = αc→β + g̃e(c→ β) +
∑
b∈M

Kb∑
i=1

n(c→ β, zb,i). (35)

ν1c,i =
∑
b∈M

Kb∑
k=1

n(c⇒ zc,i, zb,k) + f̃e(c⇒ zc,i)− bc + 1 (36)

ν2c,i =
∑
b∈M

Kb∑
k=1

Kc∑
j=1

n(c⇒ zc,j , zb,k) +

Kc∑
j=1

f̃e(c⇒ zc,j) + ac + ibc. (37)

5.2 Refining TNG

After processing a minibatch of sentences (creating expected counts f, g, h), we must update our truncation
set TNG. The process of updating the truncation set occurs in two stages: adding rules and reordering rules.

Adding Rules We add potentially adapted nonterminals after each minibatch. For a nonterminal c, we sort
productions by the candidate count h and then add all of those productions to the TNGc. After adding rules to
TNGc, the production counts (Equations 26, 27, and 28), e.g. counts previously associated with a candidate
production (h) could now be associated with an adapted production (f ).

Reordering Rules After every U minibatches we prune our TNG. After adding new rules seen in this
minibatch (which happens after every minibatch), we sort the TNG by the number of times the rules have
been seen and remove all but the top Kc rules.

6 Notation List
This section serves as a reference for all of the notation used in this document.

PCFG Notation

• N all the nonterminals

• M all the adapted nonterminals

• a ∈N a nonterminal node

• a ∈M an adapted nonterminal

• a→ β: a PCFG rule.

• R: all grammar rules.

• Rc: the subset of grammar rules with LHS a

• θc: the multinomial distribution over unadapted rules with LHS a

• αc: the Dirichlet distribution prior parameter over θc

Adaptor Grammar Notation

• π′c,i: the i-th draw from Beta distribution used in a stick breaking process for Pitman-Yor process.

• πc,i: the weight assigned to the i-th stick in a stick breaking process, also known as the probability
assigned to the i-th possible tree of the adapted nonterminal c.

• zc: the set of all possible trees rooted at an adapted nonterminal c. The i-th tree zc,i will have a
corresponding stick breaking weight πc,i.

• c ⇒ zc,i: the adapted rule associated to the i-th stick in the stick breaking process associated with
nonterminal c.



Data Notation

• td the tree generate the dth string in the dataset.

• NR(t) the multi-set (may contain duplicates) of unadapted productions used in tree t; the set of
productions from the original grammar rules R.

• MZ(t) the multi-set (may contain duplicates) of adapted productions used in tree t; the set of productions
encoded by some atom in Z

• xd ∈X the observation associated with the dth sentence.

Variational Distribution

• q(π | ν), a variational Beta for each stick weight for each nonterminal

• q(θc | γc): a variational Dirichlet for each multinomial distribution over rules for a nonterminal

• q(td |φ): a multinomial over the possible parse trees of a sentence

• TNGc: The truncated nonterminal grammar, keeping a set of the sentences we can expand from nonter-
minal c

• Sd ≡ {sd,1, . . . sd,k}: The set of parses we use to approximate φ

Expected Production Counts

• fd(c⇒ zc,i): The expected number of adapted rule i from nonterminal a in document d

• gd(c→ β): The expected number of unadapted rule from nonterminal b in document d

• hd(c⇒ zc,i): The expected number of candidate adapted rules from nonterminal c in document d

Online Update Parameters

• e: index of an epoch

• Xe: a minibatch of documents, the input to an epoch

• εe = (τ + e)κ the scaling parameter for epoch e

• τ : inertia

• κ: scaling rate

• U : reordering delay, how many epochs pass before sorting and truncating the TNG
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