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Abstract

We describe an algorithm that learns two-layer residual units using rectified linear unit (ReLU)
activation: suppose the input x is from a distribution with support space Rd and the ground-
truth generative model is a residual unit of this type, given by y = B∗

[
(A∗x)+ + x

]
, where

ground-truth network parameters A∗ ∈ Rd×d represent a full-rank matrix with nonnegative
entries andB∗ ∈ Rm×d is full-rank withm ≥ d and for c ∈ Rd, [c+]i = max{0, ci}. We design
layer-wise objectives as functionals whose analytic minimizers express the exact ground-truth
network in terms of its parameters and nonlinearities. Following this objective landscape,
learning residual units from finite samples can be formulated using convex optimization of a
nonparametric function: for each layer, we first formulate the corresponding empirical risk
minimization (ERM) as a positive semi-definite quadratic program (QP), then we show the
solution space of the QP can be equivalently determined by a set of linear inequalities, which
can then be efficiently solved by linear programming (LP). We further prove the strong
statistical consistency of our algorithm, and demonstrate its robustness and sample efficiency
through experimental results on synthetic data and a set of benchmark regression datasets.1

1 Introduction

Neural networks have achieved remarkable success in various fields such as computer vision (LeCun et al.,
1998; Krizhevsky et al., 2012; He et al., 2016a) and natural language processing (Kim, 2014; Sutskever et al.,
2014). This success is largely due to the strong expressive power of neural networks (Bengio & Delalleau,
2011), where nonlinear activation units, such as rectified linear units (ReLU; Nair & Hinton 2010) and
hyperbolic tangents (tanh) play a vital role to ensure the large learning capacity of the networks (Maas
et al., 2013). However, the nonlinearity of neural networks makes them significantly more difficult to train
than linear models (Livni et al., 2014). Therefore, with the development of neural network applications,
finding efficient algorithms with provable properties to train such nontrivial neural networks has become an
important and a relatively new goal.

∗Work done mostly at University of Edinburgh.
1Our code is available at https://github.com/uuzeeex/relu-resunit-learning.
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Residual networks, or ResNets (He et al., 2016a), are a class of deep neural networks that
adopt skip connections to feed values between nonadjacent layers, where skipped layers may
contain nonlinearities in between. Without loss of expressivity, ResNets avoid the vanishing
gradient problem by directly passing gradient information from previous layers to current layers
where otherwise gradients might vanish without skipping. In practice, ResNets have shown
strong learning efficiency in several tasks, e.g. achieving at least 93% test accuracy on CIFAR-10
classification, lowering single-crop error to 20.1% on the 1000-class ImageNet dataset (Russakovsky
et al., 2015; He et al., 2016b; Allen-Zhu & Li, 2019).

Common ResNets are often aggregated by many repeated shallow networks, where each network
acts as a minimal unit with this kind of skip propagation, named a residual unit (He et al., 2016b).
Given the flexibility and simplicity of residual units, much theoretical work has been devoted to studying
them and developing training algorithms for them in a way that sidesteps from the standard backpropagation
regime and provides guarantees on the quality of estimation (see Section 1.1). In this paper, we propose
algorithms that learn a general class of single-skip two-layer residual units with ReLU activation as shown
on the right by the equation: y = B

[
(Ax)+ + x

]
, where for a scalar c, c+ = max{0, c} (for a vector, this

maximization is applied coordinate-wise), x is a random vector as the network input with support space
Rd, and A ∈ Rd×d with nonnegative entries and B ∈ Rm×d are weight matrices of layer 1 and layer 2,
respectively.

Compared to previous work (Ge et al., 2019; 2018; Zhang et al., 2019; Wu et al., 2019; Tian, 2017; Du
et al., 2018; Brutzkus & Globerson, 2017; Soltanolkotabi, 2017; Li & Yuan, 2017; Zhong et al., 2017), the
introduction of residual connections simplifies the recovery of the network parameters by removing the
permutation and scaling invariance. However, the naive mean square error minimization used in estimating
the parameters remains nonconvex. Unlike most previous work, we do not assume a specific input distribution
nor that the distribution is symmetric (Ge et al., 2019; Du & Goel, 2018).

We show that under regularity conditions on the weights of the residual unit, the problem of learning the ReLU
unit can be formulated through quadratic programming (QP). We use nonparametric estimation (Guntuboyina
& Sen, 2018) to estimate the ReLU function values in the networks. We further rewrite our constructed
quadratic programs to linear programs (LPs). The LP formulation is simpler to optimize and has the same
solution space as the QP for the network parameters.

1.1 Related Work

The study of two-layer ReLU networks (and two-layer networks in general, with one hidden layer) has received
much attention in recent years because of the balance they present between their practical and theoretical
properties. On one hand, two-layer networks represent non-convex learning problems and embody many
of the same difficulties that we have with several layers. On the other hand, they are simple enough to
study from a theoretical perspective. Arora et al. (2014) recover a multi-layer generative network with
sparse connections and Livni et al. (2014) study the learning of multi-layer neural networks with polynomial
activation. Goel et al. (2018) learns a one-layer convolution network with a perceptron-like rule. They prove
the correctness of an iterative algorithm for exact recovery of the target network. Rabusseau et al. (2019)
describe a spectral algorithm for two-layer linear networks. Recent work has connected optimization and
two-layer network learning (Ergen & Pilanci, 2021a; Sahiner et al., 2021; Ergen & Pilanci, 2021b; Pilanci &
Ergen, 2020; Mishkin et al., 2022) and has shown how to optimize networks layer by layer (Belilovsky et al.,
2019) or their relationship to linear classification (Yang et al., 2021). Arjevani & Field (2021) study the
symmetries that two-layer ReLU networks present.

For learning a one-layer ReLU network, Wu et al. (2019) optimize the norm and direction of neural network
weight vectors separately, and Zhang et al. (2019) use gradient descent with a specific initialization. For
learning a two-layer ReLU network, Ge et al. (2018) redesign the optimization landscape such that it is more
amenable to theoretical analysis and Ge et al. (2019) use a moment-based method for estimating a neural
network (Janzamin et al., 2015). Many others have studied ReLU networks in various settings (Tian, 2017;
Du et al., 2018; Brutzkus & Globerson, 2017; Soltanolkotabi, 2017; Li & Yuan, 2017; Zhong et al., 2017; Goel
& Klivans, 2019).
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The study of ReLU networks with two hidden layers has also been gaining attention (Goel & Klivans, 2019;
Allen-Zhu et al., 2019), with a focus on Probably Approximately Correct (PAC) learning (Valiant, 1984). In
relation to our work, Allen-Zhu & Li (2019) examined the PAC-learnable function of a specific three-layer
neural network with residual connections. Their work differs from ours in two aspects. First, their learnable
functions include a smaller (in comparison to the student network) three-layer residual network. Second, the
assumptions they make on their three-layer model are rather different than ours.

In relation to nonparametric estimation, Guntuboyina & Sen (2018) treat the final output of a shape-restricted
regressor as a parameter, placing some restrictions on the type of function that can be estimated (such as
convexity). They provide solutions for estimation with isotonic regression (Brunk, 1955; Ayer et al., 1955; van
Eeden, 1956), convex regression (Seijo & Sen, 2011), shape-restricted additive models (Meyer, 2013; Chen &
Samworth, 2016) and shape-restricted single index models (Kakade et al., 2011; Kuchibhotla et al., 2021).

1.2 Main Results

We design quadratic objective functionals with a linear bounded feasible domain that take network parameters
and activation functions as variables to estimate the ground-truth network parameters and nonlinearities.
The values of the objectives are moments over the input distribution.

In Theorems 4.1 and 5.1, we show that if a ground-truth residual unit has nondegenerate weights in both
layers and nonnegative weights in layer 1, then there are quadratic functionals (see Eqs. (2) and (6)) with a
domain defined by linear constraints whose minimizers a) are unique, and are the exact ground-truth, or
b) are not unique, but can be adjusted to the exact ground-truth by a process of rescaling (see Theorem 5.2).

The minimizers above use moments of the input distribution. In practice, exact moments from the underlying
distribution are not available. To address that, we use empirical risk minimization (ERM) of the moment-
valued objectives by generated samples. With functions as variables in moment-valued objectives being
optimized nonparametrically, the empirical objectives become quadratic functions with linear constraints
(quadratic program; QP).

We further show the convexity of our QP which guarantees its solution in polynomial time w.r.t. sample size
and dimension. With the available QP solution, our learning algorithm is strongly consistent (Theorem 6.3).2
We show that if samples are generated by a ground-truth residual unit that has nondegenerate weights in
both layers and nonnegative weights in layer 1, then our algorithm learns a network closer to the exact
ground-truth (in Frobenius norm) as sample size grows.

Roadmap: Assume A and B are student network weights of layer 1 and 2. We first give a warm-up vanilla
linear regression approach only knowing A is in Rd×d and B is in Rm×d (Section 3). We then move to the
details of our nonparametric learning for layer 2 (Section 4), and similarly, layer 1 (Section 5). We formalize
the quadratic functional minimization result above, showing how nonparametric learning allows us to select
the values of A and B from reduced spaces that are seeded by A∗ and B∗, under which we can use linear
regression (LR) effectively compared to vanilla LR. In Section 6, we describe the strong consistency of our
methods for respective layers, formalizing the consistency result using the continuous mapping theorem
(Mann & Wald, 1943). In Appendix I, we describe a sample complexity analysis of our algorithm. We further
discuss the multi-layer case in Appendix C.

2 Preliminaries

We describe the notations used in this paper, introduce the model and its underlying assumptions, and state
conditions which simplify the problem but which can be removed without loss of learnability.

Notation The ReLU residual units we use take a vector x ∈ Rd as input and return a vector y ∈ Rm. We
use A∗ ∈ Rd×d and B∗ ∈ Rm×d to denote the ground-truth network parameters for layer 1 and 2, respectively.
We use circumflex to denote predicted terms (e.g. an empirical objective function f̂ , estimated layer 1 weights

2By strong consistency, we are referring to almost sure convergence of the estimator to the true parameters, rather than
convergence in probability, which is a weaker type of probabilistic convergence.
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Â). We use n to denote the number of independently and identically distributed (i.i.d.) samples available
for the training algorithm, {x(i),y(i)} to denote the i-th sample drawn. For an integer k, We define [k] to
be {1, 2, . . . , k}, and e(j) as the standard basis vector with a 1 at position j. All scalar-based operators are
element wise in the case of vectors or matrices unless specified otherwise. For a matrix G and an index j,
G:,j denotes its jth column and Gj,: denotes its jth row. We use x and y to refer to the input and output
vectors, respectively, as random variables.

Linear Regression: Linear regression, or LR, in this paper refers to the problem of estimating L for
unbiased model y = Lx. In this case, estimation is done by minimizing the empirical risk R̂ (L) =
1

2n
∑
i∈[n]

∥∥Lx(i) − y(i)
∥∥2 – using linear least squares (LLS). Its solution has a closed form which we use as

given. We refer the reader to Hamilton (2020) for more information.

Models, Assumptions and Conditions Following previous work (Livni et al., 2014), we assume a given
neural network structure specifies a hypothesis class that contains all the networks conforming to this structure.
Learning such a class means using training samples to find a set of weights such that the neural networks
predictions generalize well to unseen samples, where both the training and the unseen samples are drawn
from an unobserved ground-truth distribution. In this paper, the hypothesis class is given by ReLU residual
units and we assume it has sufficient expressive power to fit the ground-truth model. More specifically, we
discuss the realizable case of learning, in which the ground-truth model is set to be a residual unit taken from
the hypothesis class with the form:

y = B∗
[
(A∗x)+ + x

]
, (1)

and is used to draw samples for learning. Unlike other multi-layer ReLU-affine models which do not apply
skip connections, we cannot permute the weight matrices of the residual unit and retain the same function
because of skip-adding x (it breaks symmetry). This helps us circumvent issues of identifiability,3 and allows
us to precisely estimate the ground-truth weight matrices A∗ and B∗.

Our general approach for residual unit layer 2 learns a scaled ground-truth weight matrix that also minimizes
the layer 2 objective. The existence of such scaled equivalence of our layer 2 approach comes from what is
defined below.
Definition 2.1 (component-wise scale transformation). A matrix A ∈ Rd×d is said to be a scale transforma-
tion w.r.t. the j-th component if (Aj,:)> = Aj,j · e(j).

Additionally, estimation is more complex when the layer 2 weight matrix B∗ is nonsquare. For simplicity of
our algorithm presentation for layer 2, we use Condition 2.1 in the following sections.4

Condition 2.1 (layer 2 objective minimizer unique). A∗ is not a scale transformation w.r.t. any components
and B∗ is a square matrix, i.e. m = d.

3 Warm-Up: Vanilla Linear Regression

Consider a ground-truth two-layer residual unit. If we assume that the inputs only contain vectors with
negative entries, i.e. x < 0, the effect of the ReLU function in the residual unit then disappears because of
the nonnegativity of A∗. The residual unit turns into linear model y = B∗x. Thus, direct LR on samples
with negative inputs can learn the exact ground-truth layer 2 parameter B∗ with at least d samples, when
formulating the LR as a solvable full-rank linear equation system.

On the contrary, if the inputs only contain vectors with positive entries, i.e. x > 0, all the neurons in the
hidden layer are then activated by the ReLU and the nonlinearity is eliminated. The residual unit in this
case turns into y = B∗ (A∗ + Id) x. Taking the value that left-multiplies x as a single weight matrix D∗,
this is also a linear model. Direct LR on at least d samples with positive inputs by the residual unit can
learn the exact D∗. Since we have the access to the exact B∗, solving for the exact A∗ can be accomplished
through solving a full-rank linear equation system B∗ · Ã = D∗, where the unique solution Ã = A∗ + Id.

3Here, we are referring to the ability to identify the true model parameters using infinite samples.
4In Appendix E, we show that estimation of B∗ remains possible without satisfying Condition 2.1.
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While simple, this vanilla LR approach requires a large number of redundant samples, since sampled inputs
usually have a small proportion of fully negative/positive vectors. Taking random input vectors i.i.d. with
respect to each entry as an example, the probability of sampling a vector with all negative entries is pd−,
where p− is the probability of sampling a negative vector entry, then the expected number of samples to
get one negative vector is 1/pd−. Denoting p+ similarly, 1/pd+ samples are expected for a positive vector. In
addition, each LR step in this approach requires d such samples respectively to make the linear equation
system full-rank, which implies the expected sample size to be d-exponential d ·

(
1/pd− + 1/pd+

)
. For other

common input distributions such as Gaussian, the proportions of fully negative/positive vectors in sampled
inputs are also expected to decrease exponentially as d grows, as high-dimensional Gaussian random vectors
are essentially concentrated uniformly in a sphere (Johnstone, 2007). Technical and experimental details
about sample size expectations and the vanilla LR algorithm are further discussed in Appendix D.

4 Nonparametric Learning: Layer 2

We present how we learn a residual unit layer 2 under Condition 2.1 (estimating B∗): We first design an
objective functional with the arguments being a matrix and a function. The objective uses expectation of
a loss over the true distribution generating the data and is uniquely minimized by [B∗]−1 and a rectifier
function (ReLU). We then formulate its ERM using nonparametric estimation as a standard convex QP,
further simplified as an LP that (in the noiseless case) has the same solution as the QP to learn layer 2.

4.1 Objective Design and Landscape

Consider the formulation of a residual unit as in Eq. (1). It is possible to rewrite the model as equation:
C∗y = (A∗x)+ + x, where the output of the hidden neuron with skip addition is on both sides of the
equation, and C∗B∗ = Id. We aim to estimate the inverse of B∗ by matrix variable C and the nonlinearity
x 7→ (A∗x)+ by a function variable h. The objective is formulated as risk functional by the L2 error between
values respectively computed by C and h,

G2 (C, h) = 1
2Ex

[
‖h (x) + x−Cy‖2

]
, (2)

where the estimator C ∈ Rd×m, the domain of h is the nonnegative5 continuous6 Rd → Rd≥0 function space,
written as C0

≥0 in shorthand. This objective is quadratic because the forward mapping x 7→ h(x) + x and
the backward mapping y 7→ Cy are both linear w.r.t. C and h, and the two are linearly combined in an L2

norm. The objective in Eq. (2) is minimized by the ground-truth, i.e. C∗ and x 7→ (A∗x)+, is one of its
minimizers. However, it is not simple to describe other variable values that minimize the objective if any
exist. We give that detail under Condition 2.1, the minimizer of G2 is unique, as the exact ground-truth in
the given domain.
Theorem 4.1 (objective minimizer, layer 2). Define G2(C, h) as Eq. (2), where C ∈ Rd×m, h ∈ C0

≥0. Then
under Condition 2.1, G2(C, h) reaches its zero minimum iff C = [B∗]−1 and h : x 7→ (A∗x)+.

Technical details are in Appendix F, where we use Lemma 4.2 (in Section 4.3) to prove a more general
theorem which does not require Condition 2.1 and is sufficient for Theorem 4.1. In the next subsection, we
construct the ERM of G2 and present our convex QP formulation.

4.2 ERM with Nonparametric Estimation is Convex QP

Consider the second layer objective (Eq. (2)) with nonnegative continuous function space as the domain of h.
We follow Vapnik (1991) and define its standard empirical risk functional:

Ĝ2(C, h) = 1
2n
∑
i∈[n]

∥∥∥h(x(i)) + x(i) −Cy(i)
∥∥∥2

. (3)

5Setting h as nonnegative ensures that a) only ReLU nonlinearity minimizes G2 (see Theorem 4.1), and b) h’s nonparametric
estimator is linearly constrained (explained in Section 4.2).

6If h is not a continuous function, only a null set of discontinuities is possible to make G2 reach zero as its minimum. Setting
h as continuous simplifies our theoretical results that still strictly support empirical discussion.
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The function variable h ∈ C0
≥0 can be optimized either parametrically or nonparametrically. If we parameterize

h, such nonlinearity w.r.t. its parameters would make Ĝ2 lose its quadratic form. Instead, we estimate h
nonparametrically: for each sample input x(i), we introduce variables ξ(i) that estimate mapped values by h.
This avoids introducing nonlinearity to the objective and keeps Ĝ2 quadratic. On the other hand, the domain
of h, i.e. nonnegative continuous function space, turns into a set of linear inequalities as constraints when
optimizing the learning objective nonparametrically. In this sense, learning the second layer of the residual
unit can be formulated as the following QP:

min
C,Ξ

ĜNPE
2 (C,Ξ) := 1

2n
∑
i∈[n]

∥∥∥ξ(i) + x(i) −Cy(i)
∥∥∥2
, s.t. ξ(i) ≥ 0, ∀ i ∈ [n], (4)

where Ξ = {ξ(i)}ni=1 is the nonparametric estimator of x 7→ (A∗x)+.

Nonparametric Estimation Validation: A solution to the ERM with nonparametric estimation, i.e. the
QP, is guaranteed to be sufficient for minimizing the standard empirical risk functional (Eq. (3)). More
specifically, assuming C and Ξ = {ξ(i)}ni=1 are a solution to layer 2 QP (Eq. (4)), we see now that C and
h ∈ C0

≥0 such that h(x(i)) = ξ(i) minimize the empirical risk functional Eq. (3). Conversely, a minimizer of
the standard empirical risk Eq. (3), C and h, corresponds to a solution to layer 2 QP as we set ξ(i) = h(x(i)).
Therefore, minimizing Ĝ2 and solving layer 2 QP are equivalent problems.

Convexity: The convexity of the QP: Eq. (4) is also guaranteed. First, its constraints are linear. Second, for
each sample with index i ∈ [n], the L2 norm wraps linearity w.r.t. C and ξ(i). Such formulation ensures the
quadratic coefficient matrix is positive semidefinite. Thus, with the sum of convex functions still being convex,
the QP objective (Eq. (4)) becomes convex. Even without the knowledge of how samples are generated, this
QP would be a convex program. Strict proofs are in Appendix G.

4.3 LP Simplification

Consider single-sample error written as g2 (C, h;x,y) = 1
2 ‖h (x) + x−Cy‖2. If there is a feasible C such

that Cy − x ≥ 0 holds for all x ∈ Rd, then C and h : x 7→ Cy − x always minimize g2 as zero, and thereby
minimize the layer 2 objective (Eq. (2)). Thus, we obtain a condition that is equivalent to G2 reaching the
minimum in Theorem 4.1 and avoids randomness (see Lemma 4.2).
Lemma 4.2. G2(C, h) reaches its zero minimum iff Cy−x ≥ 0 holds for any x ∈ Rd and its corresponding
residual unit output y, and h : x 7→ Cy − x.

The pointwise (for every x ∈ Rd) satisfaction of the inequality in Lemma 4.2 describes the solution space
for the minimization of G2. The sufficiency of satisfying this inequality to minimize G2 is directly obtained
by assigning h : x 7→ Cy − x where C complies with Cy − x ≥ 0 for all x in the support space Rd. The
necessity of satisfying this inequality comes from its contraposition: If a C violates the inequality, there must
be a non-null set of x that yield the violation due to the continuity of Cy − x. In this sense, the resulting
G2 value becomes nonzero.

Empirically speaking, we cannot solve an inequality that holds w.r.t. to every point in the support space
if we only observe finite samples. We can only estimate C by solving the inequality that holds w.r.t. each
sample. Following this, we formulate such estimation as to find a feasible point in the space defined by
a set of linear inequalities, each of which corresponds to a sample: Cy(i) − x(i) ≥ 0. Each point in the
feasibility defined by the inequalities has a one-to-one correspondence in the solution space to layer 2 QP
(Eq. (4)): C ↔ (C, {Cy(i) − x(i)}i∈[n]). The set of inequalities can be solved by a standard LP with a
constant objective and with constraints that are inequalities, i.e.

min
C

const, s.t. Cy(i) − x(i) ≥ 0, ∀ i ∈ [n]. (5)

With the one-to-one correspondences, LP: Eq. (5) and QP: Eq. (4) have identical solution spaces (feasible
regions) for layer 2. Moreover, LP: Eq. (5) is also a convex program.
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Algorithm 1 Learn a ReLU residual unit, layer 2.
1: Input: {(x(i),y(i))}ni=1, samples drawn by Eq. (1).
2: Output: B̂, Ξ̂, a layer 2 and x 7→ (A∗x)+ estimate.
3: Go to line 4 if QP, line 5 if LP.
4: Solve QP: Eq. (4) and obtain a ĜNPE

2 minimizer, denoted by Ĉ, Ξ̂. Go to line 6.
5: Solve LP: Eq. (5) and obtain a minimizer Ĉ, then assign ξ̂(i) ← Ĉy(i) − x(i).
6: return Ĉ−1, Ξ̂.

Algorithm 1 summarizes the layer 2 estimator: Simply solve the QP/LP7 and return the inverse of Ĉ as the
estimate of layer 2 weights and Ξ̂ as x 7→ (A∗x)+ estimate. Regardless of time complexity, QP and LP in
Algorithm 1 work equivalently since their solution spaces are equivalent to each other.

Our nonparametric learning directly finds a unique layer 2 estimate under Condition 2.1. In the general case
without Condition 2.1 (discussed in Appendix E), nonparametric learning essentially reduces the possible
values of B from Rm×d to a B∗ scale-equivalent matrix space, where LR uses sampled data much more
efficiently than vanilla LR on layer 2 (Section 3).

5 Nonparametric Learning: Layer 1

With layer 2 learned, the outputs of the hidden neurons become observable. The two-layer problem is
thereby reduced to single-layer. Consider a ground-truth single-layer model: h = (A∗x)+. To construct
a learning objective for this model, we rewrite the model as a nonlinearity plus a linear mapping by A∗:
h = (−A∗x)+ +A∗x, where on both sides of the equation is the output of layer 1, and the nonlinearity is
x 7→ (−A∗x)+. The objective of layer 1 is formulated as:

G1 (A, r) = 1
2Ex

[
‖r(x) +Ax− h‖2

]
, (6)

where A ∈ Rd×d is of the layer 1 weights estimator, the domain of r is also C0
≥0. The minimizer A of the

risk G1 falls into a matrix space such that for any matrix A in the space, each row of A is a scaled-down
version of the same row of A∗ without changing the direction (Theorem 5.1).
Theorem 5.1 (objective minimizer space, layer 1). Define G1(A, r) as Eq. (6), where A ∈ Rd×d, r ∈ C0

≥0.
Then G1(A, r) reaches its zero minimum iff for each j ∈ [d], Aj,: = kjA

∗
j,: where 0 ≤ kj ≤ 1, and

r : x 7→ (A∗x)+ − diag(k) ·A∗x.

The scale equivalence in the solution space is derived from a ReLU inequality: (x)+ ≥ kx where 0 ≤ k ≤ 1.
Let the j-th row of A be a scaled-down version of A∗, i.e. Aj,: = kjA

∗
j,: where 0 ≤ kj ≤ 1. According to the

inequality, we have
(
A∗j,:x

)+ ≥ kjA∗j,:x, which indicates (A∗x)+ ≥ diag(k) ·A∗x. Thus, r minimizing G1 in
Theorem 5.1 lies in feasibility C0

≥0 when A = diag(k) ·A∗.

Due to the existence of scale equivalence, we must compute the scale factor to obtain the ground-truth
weights A∗. The scale factor kj is sufficiently obtainable with (Aj,:x)+ and

(
A∗j,:x

)+ observable: Conditioned
on nonnegative ReLU input, we have a linear model Aj,:x = kjA

∗
j,:x where Aj,:x and A∗j,:x are observed.

Theorem 5.2 summarizes layer 1 scale factor property, allowing us to correct a minimizer of G1 to the
ground-truth weights A∗ by computing a scalar for each row.
Theorem 5.2 (scale factor, layer 1). Assume A is a minimizer of G1. Then for any j ∈ [d],
(Aj,:x)+

/
(
A∗j,:x

)+ is always equal to the scale factor kj given that (Aj,:x)+
> 0.

The elimination of randomness for G1 follows the same pattern as layer 2. If there is a feasible A such that
(A∗x)+ −Ax ≥ 0 holds for all x ∈ Rd, such A is a solution to our objective by Eq. (6). We can also have
the following proposition that avoids randomness.

7We use CVX (Grant & Boyd, 2014; 2008) that calls SDPT3 (Toh et al., 1999) (a free solver under GPLv3 license) and solves our
convex QP/LP in polynomial time. See Appendix B for technical details.
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Algorithm 2 Learn a ReLU residual unit, layer 1.
1: Input: {(x(i),h(i))}ni=1, layer 1 samples.
2: Output: Â, a layer 1 estimate.
3: Solve QP: Eq. (7) or LP: Eq. (8) and obtain a ĜNPE

1 minimizer, denoted by Â, Φ̂. {Φ̂ is no longer
needed.}

4: for all j ∈ [d] do
5: k̂j ← LR{h(i)

j , Âj,:x
(i)}

h
(i)
j
>0.

6: Âj,: ← Âj,:/k̂j . {Rescale Â.}
7: end for
8: return Â.

Lemma 5.3. G1(A, r) reaches its zero minimum iff h−Ax ≥ 0 holds for any x ∈ Rd and its corresponding
hidden output h, and r : x 7→ h−Ax.

We now turn into empirical discussion. Similar to layer 2, we formulate layer 1 QP by its empirical objective
with nonparametric estimation and linear constraints representing the nonnegativity of r:

min
A,Φ

ĜNPE
1 (A,Φ) := 1

2n
∑
i∈[n]

∥∥∥φ(i) +Ax(i) − h(i)
∥∥∥2
, s.t. φ(i) ≥ 0, ∀ i ∈ [n]. (7)

where Φ = {φ(i)}ni=1 is the function estimator of x 7→ (A∗x)+ − diag(k) ·A∗x where k refers to the scaling
equivalence. Similarly, the solution space of QP: Eq. (7) can be represented by a set of linear inequalities as
constraints of the following efficiently solvable LP

min
A

const, s.t. h(i) −Ax(i) ≥ 0, ∀ i ∈ [n]. (8)

Algorithm 2 describes how a layer 1 is learned: First, a G1 minimizer estimate Â is obtained by solving
the QP/LP. Then for the j-th row, the scale factor kj is estimated by running LR on h(i)

j and Âj,:x
(i) s.t.

h
(i)
j > 0 to correct Â, as Aj,:x = kjhj is an unbiased linear model given that hj > 0. By nonparametric

learning, the value space of A is reduced from Rd×d to {diag(k) ·A∗ | 0 ≤ kj ≤ 1}, where LR uses sampled
data much more efficiently than vanilla LR layer 1 (Section 3).

6 Full Algorithm and Analysis

The full algorithm concatenates Algorithms 1 and 2 in a layerwise fashion, with observations of input/output
samples from the ground-truth network and follows these steps: a) Estimates layer 2 and nonlinearity:
x 7→ (A∗x)+ by Algorithm 1. b) Estimates layer 1 by running Algorithm 2 on input samples and the
nonlinearity estimate. It has provable guarantees. For empirical analysis, we use Ĉn to denote the estimation
of C∗ from n random samples. Similar notation is applied to other estimations. First of all, our methods to
solve respective layers, Algorithms 1 and 2, are strongly consistent if any convex QPs/LPs involved can be
solved exactly.
Lemma 6.1 (layer 2 strong consistency). Under Condition 2.1, Ĉn

a.s.−−→ C∗ and B̂n
a.s.−−→ B∗, n→∞.

For Ĉn: In Appendix H, we prove its more general a.s. (almost sure) convergence without satisfying
Condition 2.1, where the solution space to layer 2 objective is a non-compact continuous set where all the
elements are scaling equivalences. We use Hausdorff distance (Rockafellar & Wets, 2009) as metric and prove
that the empirical solution space a.s. converges to the theoretical solution space. Then the more general
a.s. convergence holds with the strong consistency of layer 2 scale factor estimator where we use LR to
estimate the scale factors.

For B̂n: Using the continuous mapping theorem (Mann & Wald, 1943), we directly propagate the strong
consistency of C∗ estimator to its inverse B∗’s estimator.

8



Published in Transactions on Machine Learning Research (11/2022)

According to full algorithm description, layer 1 estimation uses Ĉny(i) − x(i) as the outputs where i ∈ [n].
Thus, the strong consistency of the hidden neuron estimator is also guaranteed by the continuous mapping
theorem. Following the proof sketch of the Ĉn a.s. convergence, we obtain the strong consistency of layer 1
estimator (See Lemma 6.2).
Lemma 6.2 (layer 1 strong consistency). Ân

a.s.−−→ A∗, n→∞.

By the continuous mapping theorem, the strong consistency of the full algorithm (Theorem 6.3), which
is commonly defined by a loss function that is continuous on network weights, is implied by the strong
consistency of network weights estimators (Lemmas 6.1 and 6.2). See Appendix H for proofs of strong
consistency discussions in this section.
Theorem 6.3 (strong consistency). Define L as L2 output loss. L(Ân, B̂n) a.s.−−→ 0, n→∞.

7 Experiments

In our experiments, we describe a first set of synthetic dataset experiments, that show that our algorithm
identifies the true parameters from which the data were generated (Section 7.1), and then a second set
of experiments that use our algorithm on standard real-world benchmark datasets (Section 7.2). In the
appendices we provide further experiments. For example, in Appendix J, we describe what happens when the
conditions required for the correctness of our algorithms are not satisfied.

7.1 Synthetic Data Experiments

We provide experimental analysis to demonstrate the effectiveness and robustness of our approach in
comparison to stochastic gradient descent (SGD) on L2 output loss: L(A,B) = 1

2Ex ‖ŷ− y‖2 , where we
parameterize the output prediction by ŷ = B

[
(Ax)+ + x

]
. Our proposed methods outperform SGD in terms

of sample efficiency and robustness to different network weights and noise strengths, which indicates a poor
optimization landscape of L2 output loss for ReLU residual units.

Setup: The ground-truth weights are generated through i.i.d. folded standard Gaussian8 and standard
Gaussian for layer 1 and 2 respectively, i.e. A∗ i.i.d.∼ |N | (0, 1), B∗ i.i.d.∼ N (0, 1). The input distribution is set
to be an i.i.d. zero mean Gaussian-uniform equal mixture N (−0.1, 1) – U (−0.9, 1.1). SGD is conducted on
mini-batch empirical losses of L(A,B) with batch size 32 for 256 epochs in each learning trial. We apply
time-based learning rate decay η = η0/ (1 + γ · T ) with initial rate η0 = 10−3 and decay rate γ = 10−5, where
T is the epoch number. The above hyperparameters are tuned to outperform other hyperparameters in
learning ReLU residual units in terms of output errors.

Evaluation: We use relative errors to measure the accuracy of our vector/matrix estimates: For a net-
work with weights A and B and its teacher network with weights A∗ and B∗, a) layer 1 error refers to
‖A−A∗‖ / ‖A∗‖, similar to layer 2. b) output error refers to Ê [‖ŷ− y‖ / ‖y‖] by test data. Due to the
equivalence between the solution spaces of our QP and LP without label noise, we choose LP in noiseless ex-
periments, referred to as “ours”. In addition, to reduce variance, the results of learning the same ground-truths
are computed as means across 16 trials.

Sample Efficiency: Consider Figure 1. It depicts the variation in the prediction errors (warmer color, larger
error) as a function of d (input dimension) and the number of samples the learning algorithm is using. We
compare SGD against our algorithm. We observe that our approach to the estimating the neural network is
more sample efficient. For SGD, the estimation is relatively easy with only up to 10 dimensions. As expected,
once the dimension grows, the sample size required for the same level of error as our method is larger. Still,
overall, our method is capable of learning robustly with small sample sizes and more efficiently than SGD
even for larger sample sizes.

Network Weight Robustness: This experiment aims to verify whether our method can learn a broader
class of residual units. In Table 1, we see our method shows a light-tailed distribution with nearly-zero means

8A folded Gaussian is the absolute value of a Gaussian, with p.d.f. p(|x|) where x ∼ N , denoted as |N |. We use folded
Gaussian to ensure layer 1 weights are nonnegative.
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Figure 1: Output errors by SGD and our
method for different dimensions and sample
sizes. For the same d, we fix the ground-truth net-
work as sample size grows.

Table 1: Means / Standard deviations of net-
work estimate errors for different network
weights. Values are computed from the process
of learning 128 different ground-truth networks with
d = 16. 512 training samples are drawn for each
learning trial.

Layer 1 Layer 2 Output
Mean Std Mean Std Mean Std

SGD 0.715 0.090 1.203 0.134 0.431 0.038
Ours 0.039 0.008 ≈ 0 ≈ 0 0.055 0.008
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Figure 2: Respective errors of layers 1 and 2 and outputs of different label noise strengths for
SGD, LP and QP. We fix the ground-truth weights with d = 10 and only the noise strength varies. 512
training samples are drawn for each learning trial.

and standard deviations for layers 1 and 2, and output errors across various ground-truth networks, whereas
SGD is less robust in the same context. Our method shows strong robustness to network weight changes,
indicating its applicability across the whole hypothesis class.

Noise Robustness: Figure 2 confirms the robustness of our methods when output noise exists. Samples
are generated by a ground-truth residual unit with output noise being i.i.d. zero-mean Gaussian in different
strengths (i.e. standard deviations). We try both QP and LP because in noisy setting the two approaches
are not equivalent w.r.t. the solution space.9 First, SGD always gives larger errors than our methods, even
though it is hardly affected by tuning the noise strength. For QP/LP, all the errors for layer 1, 2 and output
grow almost linearly as noise strength increases, indicating that both QP/LP learn the optima robustly when
output noise is present, where QP slightly outperforms LP.

Running Time Efficiency versus SGD In Figure 3, we compare the running time of our algorithm
against the running time of SGD for ground-truth networks sampled at random. The running time of
our algorithm is significantly lower, with an error level which is also significantly lower. Furthermore, this
is demonstrated across input dimensions, where the difference between the running time of SGD until
convergence and our algorithm’s running time increases as d increases. In addition, the running time of our
algorithm is fixed, and does not depend on the ground-truth network, while the running time of SGD varies
based on the network sampled.

Layer 2 Weights Condition Number Robustness Our algorithm depends on a matrix-inversion step
to obtain the estimated parameters. This affects the estimation of B∗. Due to this, we further investigate
the effect of the condition number of B∗ in the ground-truth parameters on the accuracy of estimation. For

9See Appendix A for noisy model discussion.
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Figure 3: Output errors against running time by SGD and our LP algorithm for different
dimensions of networks. For each dimension size of d = 8, d = 16 and d = 32, we report the learning
curves of SGD and the final output error of our LP algorithm against time used on 5 different ground-truth
networks. We used 512 training samples, drawn for learning each ground-truth network. SGD has different
epochs, while the LP algorithm runs once. (CPU specification: 2.8 GHz Quad-Core Intel Core i7.)
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Figure 4: Layer 2 errors against layer 2 ground-truth weight condition numbers for different
dimensions of networks by SGD and our LP algorithm. Each data point is the mean across learning
32 different ground-truth networks with the same pair of d and a condition number for B∗. The condition
number is denoted by κ(B∗). We used 512 training samples, drawn for learning each ground-truth network.

this experiment, to obtain ground-truth network parameters with different condition number, we follow the
procedure of Ge et al. (2019), and multiply a diagonal matrix with exponentially-dropping values on the
diagonal (λ−i for the i-th element) by two random orthonormal matrices, U and V>, on the left and on the
right respectively: B = U diag

(
λ−1, . . . , λ−d

)
V>.

In Figure 4, we compare the effect of the condition number of B∗ on SGD and on our algorithm. SGD turns
out to be quite sensitive to the condition number, especially for lower dimensions. Our algorithm, on the
other hand, is almost not affected by the condition number, with a final estimation error consistently close to
0, recovering the matrix B∗.

7.2 Experiments with Regression Benchmark Datasets

In this set of experiments, we test our algorithm and compare it against stochastic gradient descent for
four datasets: Housing (506 examples, 13 features), DeltaElevators (9,517 examples, 6 features),
DeltaAilerons (7,129 examples, 5 features), Ailerons (7,154 examples, 41 features), RedWine (1,599
examples, 11 features), WhiteWine (4,898 examples, 11 features) and Jigsaw (47,991 examples, 100
features). The first six datasets are standard benchmark datasets taken from Delve10 and the UCI Machine

10https://www.cs.toronto.edu/~delve/data/datasets.html

11

https://www.cs.toronto.edu/~delve/data/datasets.html


Published in Transactions on Machine Learning Research (11/2022)

Table 2: Results on regression benchmarks. We give RMSE on several datasets with our algorithm
(QP), backpropagation with SGD and backpropagation initialized with our algorithm estimates (SGD+QP).
Numbers after slash denote the (average) number of epochs required for backpropagation to converge.

Dataset Root Mean Squared Error
QP SGD SGD+QP

Housing 19.46 18.08 / 459 12.43 / 1379
DeltaElevators 0.00240 0.01360 / 8638 0.00209 / 843
DeltaAilerons 0.00030 0.00216 / 16555 0.00030 / 3
Ailerons 0.00070 0.00193 / 8039 0.00023 / 1047
RedWine 2.73 2.49 / 5270 1.48 / 5610
WhiteWine 2.99 2.59 / 8200 1.61 / 3129
Jigsaw 1.17 2.45 / 6731 0.92 / 2413

Learning Repository.11 The last dataset, Jigsaw, is bigger with its goal to use word FastText12 embeddings
of tweets to predict their level of toxicity. For this set of experiments, with all datasets, we use the MOSEK
solver with an academic license (ApS, 2019).

In all of our experiments, we report five-fold cross-validation results, where the first fold is used to tune the
hyperparameters, and the last fold is used as both a validation set for early stopping (first half) and to report
the results (second half). The models we use for backpropagation and our algorithm are identical, in the
form of Eq. (1). We report (the fold-average) Root Mean Square Error (RMSE), defined as the square-root
of the average of the squared deviations between the predicted value and the true value. Each fold is run
with five different random seeds to initialize the backpropagation algorithm (results are averaged).

To satisfy the constraint on the length of y, we duplicate the regression target multiple times, each time adding
Gaussian noise as large as 0.1 of the standard deviation of the regression target. More specifically, let y(i) be
the ith example in a dataset. Then, we create a new y∗,(i) ∈ Rd such that y∗,(i)j = (1 + 0.1ζi,j)y(i)

1+(j−1 mod d)
for j ≥ 2 (for i = 1, we add no noise, and just copy y(i)), where ζi,j are Gaussians with the mean being the
standard deviation of y over the dataset.

With backpropagation, we use SGD with a learning rate of 0.000001 and batch size of 500. We run
backpropagation until the mean squared error does not change between epochs within a fraction of 1/10000.
We experiment with two types of initializations for the backpropagation algorithm: one in which we initialize
all the weights randomly with a standard Gaussian distribution, and one in which we initialize it with
the result of our quadratic programming algorithm. It has recently been shown that initializing a ResNet
with positive values (or even just zero-one values) yields an improvement in estimating the network with
backpropagation Zhao et al. (2022), supporting our use of the nonnegativity constraint for the first layer.
An additional advantage of such an approach is that it removes the randomness that characterizes neural
network learning.

Table 2 gives the RMSE values, comparing our QP algorithm and the backpropagation algorithm. We note
that our algorithm is especially potent when used to initialize the backpropagation algorithm: not only then
it achieves lower RMSE on the test set, but it also does so in fewer iterations.

8 Conclusion

In this paper, we address the problem of learning a general class of two-layer residual units and propose an
algorithm based on landscape design and convex optimization: We demonstrate firstly that minimizers of our
objective functionals can express the exact ground-truth network. Then, we show that the corresponding ERM
with nonparametric function estimation can be solved using convex QP/LP, which indicates polynomial-time

11https://archive.ics.uci.edu/ml/index.php
12https://fasttext.cc/
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solvability w.r.t. sample size and dimension. Moreover, our algorithms that are used to estimate both layers
as well as the whole networks are strongly consistent, with very weak conditions on input distributions.

Limitations and Future Work The main limitation of our work is that the use of L2 loss with the QP
objective is not readily adaptable to other loss functions. Our preliminary experiments with classification
datasets demonstrate that while our algorithm behaves better than L2 backpropagation on such datasets,
using the log-loss is more effective for these datasets. We leave it as future work to generalize our QP to a
convex program with an arbitrary loss.

Our algorithm is not yet scalable for large datasets. We believe the learning algorithm could still be added to
the ML toolkit for problems at a smaller scale for which we need a predictor, problems where linear regression
is a good fit. Finally, we note that while we have nonnegativity constraints on the parameters (A), the class
of networks we learn is expressive. Previous work that has similar nonnegativity constraints includes binary
neural networks (Courbariaux et al., 2015) and others, without a 0/1 constraint (Chorowski & Zurada, 2014;
Hosseini-Asl et al., 2015). We leave it for future work to alleviate this constraint. Recently, Zhao et al. (2022)
showed that initializing ResNets with 0/1 weights is as effective for training as random initialization.
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Appendices

We include an outline of the appendices:

• Appendix A: A brief discussion of our learning algorithms in a noisy context, referring to the LP
slack variable technique that is used in our experiments with noise in the main paper. Also, this
section provides an insight to potential future direction of this work.

• Appendix B: A detailed explanation of the computational complexity and the methods through
which the QPs/LPs in this paper are solved.

• Appendix C: A preliminarily proposed general optimization formula for the extension of learning
multi-layer ResNets, to show the scalability of our algorithm.

• Appendix D: A formal result and an empirical validation of the example given in the main paper in
the context of the vanilla linear regression method (Section 3).

• Appendix E: A generalization of layer 2 learning to the case where Condition 2.1 is not satisfied.

• Appendix F: Proofs regarding the minimizers of the objective functions we use.

• Appendix G: Proofs that justify the convexity of our QPs.

• Appendix H: Proofs that show our estimation algorithm is strongly consistent.
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• Appendix I: A sample complexity justification of how our QP/LP approaches improves the exponential
convergence rate that the vanilla LR approach (Section 3) has.

• Appendix J: Experiments with negative entries in A and a demonstration of the practicalities of the
nonnegative entries assumption.

A Discussion: Noisy Model

Here, we discuss our learning methods in the noisy case. We introduce output noise to our model, namely

y = B∗
[
(A∗x)+ + x

]
+ z,

where the label noise z ∈ Rd is an i.i.d. random vector with respect to each component, satisfying E [z] = 0.
In addition z and x are statistically independent.

Taking layer 2 as an example, our original objective functional does not reach zero by substituting the
ground-truth: G2(C∗,x 7→ (A∗x)+) = Ez[‖C∗z‖2] = σ2 TrC∗C∗> where σ is the noise strength. However,
if layer 2 is well conditioned, the ground-truth will still assign a value close to zero to the objective. In
this sense, with G2’s continuity, the ground-truth can approximately minimize G2, which validates our QP
approach in terms of learning noisy residual units.

Our original LP (Eq. (5)) fails to give feasible solutions due to possible violation of the inequality C∗y−x ≥ 0,
since C∗y − x = (A∗x)+ +C∗z is not necessarily an entrywise nonnegative vector because the term C∗z
might have negative entries. So we introduce slack variables ζ(i) to soften the constraints:

min
C,Z

1
n

∑
i∈[n]

1> · ζ(i),

s.t. Cy(i) − x(i) ≥ −ζ(i), ζ(i) ≥ 0.

For a sample (x(i),y(i)) with noise z(i), if
(
A∗x(i))+ +C∗z(i) < 0, then its L1 norm would be added to the

objective. This method remedies violations to the inequality C∗y − x ≥ 0. With access to a sufficiently
large sample and with the “stability” assumption, our solution Ĉ would be close to C∗ since large deviations
seldom rise and their penalties are diluted in the objective.

B Discussion: Solving Convex Programs

The theoretical foundation of solving convex QP and LP has been driven to maturity in terms of computational
complexity (Kozlov et al., 1980; Murty, 1980) and convergence analysis (Jarre, 1990; Zhang et al., 1992).
The time complexity for a convex QP/LP is analyzed in terms of the number of scalar variables N and the
number of bits L in the input (Ye & Tse, 1989). For example, under Condition 2.1, N = d2 + nd for the QP
because the matrix variables have d2 scalars and the function estimators have nd scalars. Similarly we have
N = d2 for the noiseless LP and N = d2 + nd for the noisy LP. It is guaranteed that primal-dual interior
point methods can solve the convex QP/LP in a polynomial number of iterations O(

√
NL), where each

iteration costs at worst O(N2.5) arithmetic operations from the Cholesky decomposition for the needed matrix
inversion (Monteiro & Adler, 1989; Karmarkar, 1984). This indicates that our QPs/LPs are guaranteed to be
solvable in O(N3L) arithmetic operations, which is generally an O(poly(n,m, d, L)) complexity.

To solve convex QPs/LPs in this paper, we mostly use CVX, a commonly used package for specifying and
solving convex programs (Grant & Boyd, 2014; 2008). For both QPs and LPs, CVX calls a solver, SDPT3
(Toh et al., 1999), which is specified for semidefinite-quadratic-linear programming and applies interior-point
methods with the computational complexity mentioned above. Experimentally, SDPT3 indeed specifies and
solves our programs fast and makes our numerical results robust and stable.
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Algorithm 3 Learn a ReLU residual unit by LR.
1: Input: {(x(i),y(i))}ni=1, n samples drawn by Eq. (1).
2: Output: Â, B̂, estimated weight matrices.
3: B̂ ← LR{(x,y) ∈ {(x(i),y(i))}bn/2c

i=1 | x < 0}.
4: D̂ ← LR{(x,y) ∈ {(x(i),y(i))}ni=bn/2c+1 | x > 0}. {the estimation of B∗ (A∗ + Id)}
5: Solve full-rank linear equation system B̂ · Ã = D̂
6: return Ã− Id, B̂.

C Discussion: Extension to Multi-Layer Networks

In this appendix, we propose a generalized optimization formula of nonparametric learning of multi-layer
residual networks to show that our algorithm is scalable. Assume we have an L-layer network of the form

r0 = x

r` =
(
W ∗

`−1r`−1
)+ + r`−1, ` = 1, . . . , L− 1

y = W ∗
L−1rL−1.

We can scale the objective to use nonparametric variables {ξ(i)
` }l∈[L−1] to estimate every ReLU activation

(W ∗
` r`)

+ in this network. Generally, for the `-th ReLU we can have the outer layer objective

min
ξ

(i)
[`] ,V`

∥∥∥ξ(i)
` + · · ·+ ξ(i)

1 + x(i) − V`ĥ(i)
`

∥∥∥ , s.t. ξ(i)
[`] ≥ 0

where hat denotes estimated values and ĥ(i)
L−1 = y(i), and its corresponding inner layer objective

min
φ

(i)
`
,W`−1,ξ

(i)
`

∥∥∥φ(i)
` +W`−1

(
ξ̂

(i)
`−1 + · · ·+ ξ̂(i)

1 + x(i)
)
− ξ(i)

`

∥∥∥ , s.t. φ(i)
` ≥ 0, ξ(i)

` ≥ 0.

We can apply techniques, for example, tuning the combinations of those objectives with respect to the layers,
using a stage-wise optimization of the ξ auxiliary variables, or weighting these variables, to keep the convex
quadratic form and at the same time improve its optimization landscape. Specifically when L = 2, this
optimization problem becomes the two-layer ResNet learning discussed in the main paper.

D Vanilla Linear Regression: More Details

Algorithm 3 gives the full list of steps of learning two-layer residual units by LR, where we first split the
drawn samples into two halves for the respective two key steps, then for both halves we filter negative and
positive vectors, respectively. By running LR on both filtered sets we obtain an estimation of the ground-truth
network.

In the following sections, we formalize this intuition and describe the exponential sample complexity of this
approach under entry-wise i.i.d. setting as an example of the inefficiency of this method.
Theorem D.1 (exponential sample complexity, vanilla LR). Assume the input vectors are i.i.d. with respect
to each component. Then Algorithm 3 learns a neural network from a ground-truth residual unit with at least
O
(
d · 2d+1) expected number of samples.

Proof. For each j ∈ [d], let Pj be the marginal probability of xj being positive, i.e. Pj = P (xj > 0) > 0.
Thus, the probability that a sample is positive P (x > 0) =

∏
j∈[d] Pj . Then the expected number of sampling

trials to obtain d positive samples is d/
∏
j∈[d] Pj . Similarly, the expected number of sampling trials to obtain

d negative samples is d/
∏
j∈[d] [1− Pj − P (xj = 0)]. Let n be a random natural number s.t. with n samples
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Table 3: Learning success rate of vanilla LR on residual units with input x i.i.d.∼ N (0, 1). The
success rates shows an exponentially decreasing trend with the same number of samples. The sample sizes to
achieve close to the same rate grows exponentially as the number of dimensions grows linearly.

d
n 1e1 1e2 5e2 1e3 5e3 1e4 5e4 1e5

4 0.002 0.137 0.999 1 1 1 1 1

6 0 0 0.041 0.614 1 1 1 1

8 0 0 0 0 0.579 0.998 1 1

10 0 0 0 0 0 0.002 1 1

12 0 0 0 0 0 0 0.001 0.322

the network has learned. The expected number of samples that guarantees successful learning is the sum of
the two expectations

E[n] = d

{
1∏

j∈[d] Pj
+ 1∏

j∈[d] [1− Pj − P (xj = 0)]

}

≥ d

[
1∏

j∈[d] Pj
+ 1∏

j∈[d] (1− Pj)

]

≥ d · 2
∏
j∈[d]

1√
Pj (1− Pj)

≥ d · 2
∏
j∈[d]

1
(Pj + 1− Pj) /2

= d · 2d+1.

Thus E[n] ≥ O(d · 2d+1).

With an exponential sample complexity, the time complexity of the LR approach is thereby also exponential
because filtering through all the samples costs time with the same complexity as the number of samples,
even though the LR itself only costs polynomial time in the number of samples. To summarize, this vanilla
LR approach learns exact ground-truth residual units but with exponential complexity in terms of both
computational cost and sample size. While this approach to learning a residual unit such as ours is simple
and intuitive, we aim to improve on this approach, making full use of all samples available.

Experiments: Sample Efficiency We present the results of the vanilla LR in learning the residual units.
As discussed in Section 3, LR requires full-rank linear systems parameterized by samples to learn the exact
ground-truth parameters. However, with degenerate linear systems, LR is completely incapable of learning
the parameters. Therefore, there exists a hard threshold for the number of samples required by LR that
makes the linear equation system full-rank. With such a dichotomous constraint on LR learning, we take the
learning success rate among 1000 trials as the metric to evaluate the performance of LR with different sample
sizes and number of dimensions.

Table 3 shows the learning success rates with zero-mean Gaussian inputs. For each fixed number of dimensions,
it appears there is a hard threshold that switches the learnability of LR. The exponential sample complexity
is also reflected there as the number of dimensions grows linearly. Table 4 shows the rates with input mean
non-zero, where an overall decline in success rates happens. This observation is explainable because the
bottleneck of LR learning is the lower value found between the probability of sampling a positive and a
negative vector. A positive mean reduces the probability of the latter, and thereby increases the sample size
required.
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Table 4: Learning success rate of vanilla LR on residual units with input x i.i.d.∼ N (0.1, 1). With
the non-zero Gaussian mean, the success rates show an overall decline compared with the rates shown in
Table 3 for zero-mean Gaussian inputs.

d
n 1e1 1e2 5e2 1e3 5e3 1e4 5e4 1e5

4 0.001 0.122 0.996 1 1 1 1 1

6 0 0 0.030 0.346 1 1 1 1

8 0 0 0 0 0.116 0.792 1 1

10 0 0 0 0 0 0 0.619 1

12 0 0 0 0 0 0 0 0.001

E Generalization of Layer 2 Learning

In this appendix, we discuss how layer 2 is learned without satisfying Condition 2.1. We note that the fact
that A∗ is a scale transformation w.r.t. some components leads to scaling equivalence to our layer 2 objective
functional minimizers just as in layer 1. To be more specific, we give a general version of Theorem 4.1
that handles the case without Condition 2.1 and describes the scaling equivalence of G2 minimizers. See
Theorem E.1 for a formal description.

Theorem E.1 (objective minimizer space, layer 2, general). Let G2 be 1
2Ex

[
‖h (x) + x−Cy‖2

]
as a

functional, where C ∈ Rd×m, h ∈ C0
≥0. Then G2 (C, h) reaches its zero minimum iff CB∗ = diag(k) where

for each j ∈ [d],

a) 1
1+A∗

j,j
≤ kj ≤ 1, if A∗ is a scale transformation w.r.t. the j-th component.

b) kj = 1, if A∗ is not a scale transformation w.r.t. the j-th component.

As in layer 1, the scaling equivalence in layer 2 can also be obtained by assigning A∗ as a scale transformation
w.r.t. some component and using the properties of the ReLU nonlinearity. See Appendix F.1 for a detailed
explanation of Theorem E.1. To obtain the scale factors k and correct a scale-equivalent G2 minimizer C
to the ground-truth, we observe linear models parameterized by the scale factors, where for each j ∈ [d],
[Cy]j = kjxj given that xj < 0. See Theorem E.2 and its proof for justifications of the linear models that are
used to compute k.
Theorem E.2 (scale factor, layer 2, general). Assume C is a minimizer of G1 in the context of Theorem E.1.
Then for any j ∈ [d], the following three propositions are equivalent:

a) A∗ is a scale transformation w.r.t. the j-th component.
b) [Cy]j /xj is a constant cn

j given that xj < 0.
c) [Cy]j /xj is a constant cp

j given that xj > 0.

Additionally, if one of the above three propositions is true, then kj = cn
j .

Proof. For j ∈ [d], we first prove a) =⇒ b), c): From
(
A∗j,:

)> = A∗j,j · e(j) we have

[Cy]j
xj

=

[
kje

(j)]> [(A∗x)+ + x
]

xj

=
kj

[(
A∗j,:x

)+ + xj
]

xj
=
kj

[(
A∗j,jxj

)+ + xj
]

xj

=
{
kj , xj < 0
kj
(
A∗j,j + 1

)
, xj > 0

.
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Algorithm 4 Rescale a ĜNPE
2 minimizer.

1: Parameters: εtol > 0, LR objective tolerance.
2: Input: {(x(i),y(i))}ni=1, samples drawn by Eq. (1); Ĉ, a ĜNPE

2 minimizer.
3: Output: k̂, a layer 2 scale factor estimate.
4: for each j ∈ [d] do
5: k̂j ← LR

{
x

(i)
j ,
[
Ĉy(i)]

j

}
x

(i)
j
<0

.

6: if the LR objective optimal R̂j(k̂j) > εtol then
7: k̂j ← 1.
8: end if
9: end for
10: return k̂.

Algorithm 5 Learn a ReLU residual unit layer 2.
1: Input: {(x(i),y(i))}ni=1, samples drawn by Eq. (1).
2: Output: B̂, Ξ̂, a layer 2 and x 7→ (A∗x)+ estimate.
3: Go to line 4 if QP, line 5 if LP.
4: Solve QP: Eq. (4) and obtain a ĜNPE

2 minimizer, denoted by Ĉ, Ξ̂. Go to line 6.
5: Solve LP: Eq. (5) and obtain a minimizer Ĉ, then assign ξ̂(i) ← Ĉy(i) − x(i) for each i ∈ [n].
6: Run Algorithm 4 on {(x(i),y(i))}i∈[n], Ĉ and obtain k̂.
7: B̂ ← LR

{
diag−1(k̂) · Ĉy(i),y(i)

}
i∈[n]

.

8: ξ̂(i) ← diag−1(k)
[
ξ̂(i) + x(i)]− x(i) for each i ∈ [n]. {Correct Ξ̂ to the function estimation of (A∗x)+.}

9: return B̂, Ξ̂.

Then we prove ¬ a) =⇒ ¬ b), ¬ c): ¬ a) =⇒ ∃ j′ ∈ [d] and j′ 6= j s.t. A∗j,j′ 6= 0. Recall

[Cy]j
xj

=
kj

[(
A∗j,:x

)+ + xj
]

xj
.

The value of xj′ affects the value of [Cy]j /xj because A∗j,j′ 6= 0. In fact, from supp p(x) = Rd we have
supp p(xj′ | xj) = R, indicating that the value of [Cy]j /xj can never be kept as a constant when given both
xj < 0 and xj > 0 because xj′ can be any real number.

With the exact derivations above, we are able to obtain a left inverse of B∗, namely C, that satisfies
CB∗ = Id. Consider Eq. (1) left multiplied by B∗C

B∗Cy = y. (9)

Eq. (9) is also a noiseless unbiased linear model where Cy and y are observable, and thereby B∗ is computable
due to the easy solvability of its linearity.

Algorithm 5 describes how a residual unit second layer is learned without satisfying Condition 2.1: We
first solve the QP/LP and obtain a scaling equivalence to an estimated left inverse of B∗ and the function
estimate, namely Ĉ and Ξ̂. Then we compute the scale factor estimate k̂ by running Algorithm 4, where
for each component index j ∈ [d], we first use a tolerance parameter as a threshold to determine whether
ground-truth layer 1 is a scale transformation, and if so, we run LR to estimate the model [Cy]j = kjxj ,
otherwise the scale factor is directly assigned by 1. Upon correcting Ĉ and Ξ̂ by k̂, we obtain a layer 2
estimate B̂ by running LR to estimate the linear model Eq. (9). The strong consistency of our results in this
appendix is justified in Appendix H.
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F Exact Derivation of Objective Functional Minimizers

We give the exact derivation of the objective functional minimizers in the next two subsections. We begin
with layer 2 and continue to layer 1.

F.1 Layer 2

Lemma 4.2 is proved as follows.

Proof. “ ⇐= ”: Since h(x) = Cy − x ≥ 0, random vector h(x) + x − Cy is always a zero vector, which
implies G2(C, h) = 0. Hence “⇐= ” holds.

“ =⇒ ”: Since r.v. ‖h(x) + x−Cy‖2 ≥ 0 we have

G2(C, h) = 0 =⇒ λ
({
x ∈ Rd

∣∣∣ ‖h(x) + x−Cy‖2
> 0
})

= 0, (10)

where λ is the Lebesgue measure on Rd.

Proof by contradiction: Assume that ∃x′ ∈ Rd, ∃ i ∈ [d], s.t. (Cy′ − x′)i < 0, where y′ is the corresponding
network output. Let f(x) = (Cy − x)i which is continuous on Rd. Therefore for ε = −f(x′) > 0, ∃ δ > 0,
∀x ∈ B(x; δ) i.e. ‖x− x′‖ < δ,

|f(x)− f(x′)| < ε =⇒ 2f(x′) < f(x) < 0 =⇒ [x−Cy]i > 0
=⇒ [h(x) + x−Cy]i > 0 =⇒ ‖h(x) + x−Cy‖2

> 0.

Since λ (B(x; δ)) = πd/2

Γ (d/2 + 1)δ
d > 0 and B(x; δ) is a subset of the measured set in Eq. (10), we have a

contradiction. Thus Cy − x ≥ 0 holds in a pointwise manner in Rd, indicating
{
x ∈ Rd | h(x) 6= Cy − x

}
must be a null set. With h’s continuity, h must be x 7→ Cy − x. Therefore “ =⇒ ” holds.

Lemma F.1. Cy − x ≥ 0 holds for any x ∈ Rd and its corresponding output y only if CB∗ is a diagonal
matrix.

Proof. Let D = CB∗. We rewrite Cy − x ≥ 0 as

D
[
(A∗x)+ + x

]
− x ≥ 0. (11)

For further use, we substitute x by −x and the resulting inequality D
[
(−A∗x)+ − x

]
+ x ≥ 0 still holds.

Added by Eq. (11) we have
D
(∣∣A∗k,: · x∣∣)d×1 ≥ 0. (12)

Proof by contradiction: Assume D is not diagonal, then ∃ i 6= j, such that Di,j 6= 0. Consider the following
two cases:

a) Di,j > 0. We take the i-th row of Eq. (11) as follows
d∑
k=1

Di,k

[(
A∗k,: · x

)+ + xk

]
≥ xi.

Let x−j = 0 and xj < 0. Then
∑d
k=1 Di,k

[(
A∗k,: · x

)+
+ xk

]
= Di,j · xj < 0 =⇒ ⊥.

b) Di,j < 0. We take the i-th row of Eq. (12) as follows
d∑
k=1

Di,k

∣∣A∗k,: · x∣∣ ≥ 0.

Let x = (A∗)−1
v, where v = e(j). Then

∑d
k=1 Di,k

∣∣∣A∗k,: · x∣∣∣ = Di,j < 0 =⇒ ⊥.
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With Lemma 4.2 and Lemma F.1, we prove Theorem E.1 as follows.

Proof. With Lemma 4.2, we only need to prove ∀x ∈ Rd, Cy − x ≥ 0 ⇐⇒ CB∗ = diag(k).

“⇐= ”: We have

Cy − x = CB∗
[
(A∗x)+ + x

]
− x = diag(k)

[
(A∗x)+ + x

]
− x. (13)

For the i-th row of Eq. (13), consider the following two cases:

a) A∗i,: · x = Ai,ixi, i.e. A∗ is a scale transformation w.r.t. the i-th row. With 1
1+A∗

i,i
≤ ki ≤ 1 we have

[Cy − x]i = ki

[(
A∗i,ixi

)+ + xi

]
− xi = ki

(
A∗i,ixi

)+ + (ki − 1)xi.

For xi ≥ 0, [Cy − x]i =
(
kiA

∗
i,i + ki − 1

)
xi ≥ 0.

For xi < 0, [Cy − x]i = (ki − 1)xi ≥ 0.
b) A∗i,: · x 6= Ai,ixi. With ki = 1 we have

[Cy − x]i = ki

[(
A∗i,:x

)+ + xi

]
− xi =

(
A∗i,:x

)+ ≥ 0.

Hence “⇐= ” holds.

“ =⇒ ”: Let D = CB∗. With Lemma F.1, D is diagonal. Consider the following two cases:

a) A∗i,: · x = Ai,ixi. The i-th inequality can be written as

[Cy − x]i = Di,i

[(
A∗i,ixi

)+ + xi

]
− xi

= Di,i

(
A∗i,ixi

)+ + (Di,i − 1)xi ≥ 0. (14)

Proof by contradiction: we need to find x ∈ Rd which contradicts with Eq. (14) in the following
three cases:
a) If Di,i ≤ 0, then, xi > 0 =⇒ Di,i

(
A∗i,ixi

)+ + (Di,i − 1)xi < 0 =⇒ ⊥.
b) If Di,i > 1, then, xi < 0 =⇒ ⊥.
c) If 0 < Di,i <

1
1+A∗

i,i
, then ∃ a > 0, s.t. Di,i = 1

1+A∗
i,i

+a . Letting xi > 0, we have

Di,i

(
A∗i,ixi

)+ + (Di,i − 1)xi =
(
A∗i,ixi

)+

1 +A∗i,i + a
−
(
A∗i,i + a

)
xi

1 +A∗i,i + a
< 0 =⇒ ⊥.

Hence 1
1+A∗

i,i
≤ Di,i ≤ 1.

b) A∗i,: · x 6= Ai,ixi, i.e. ∃ j 6= i, s.t. A∗i,j > 0. The i-th inequality can be written as

[Cy − x]i = Di,i

[(
A∗i,:x

)+ + xi

]
− xi

= Di,i

(
A∗i,:x

)+ + (Di,i − 1)xi ≥ 0. (15)

Proof by contradiction: we need to find x ∈ Rd which contradicts with Eq. (15) in the following
three cases:
a) If Di,i ≤ 0, then, xi > 0 =⇒ Di,i

(
A∗i,:x

)+ + (Di,i − 1)xi < 0 =⇒ ⊥.
b) If Di,i > 1, then, xi < 0 ∧ x−i ≤ 0 =⇒ ⊥.
c) If 0 < Di,i < 1, then, xi > 0 ∧ xj ≤ −

A∗i,i

A∗
i,j
xi ∧ xk ≤ 0 =⇒ ⊥, where k 6= i, j.

Hence Di,i = 1.

Hence D = CB∗ = diag(k), and thereby “ =⇒ ” holds.
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F.2 Layer 1

The proof of Lemma 5.3 is similar to that of Lemma 4.2 because the two lemmas follow the same idea,
which is to link objective functional minimization with always-hold inequalities. With Lemma 5.3, we prove
Theorem 5.1 as follows.

Proof. With Lemma 5.3, we only need to prove ∀x ∈ Rd, (A∗x)+ −Ax ≥ 0 ⇐⇒ ∀ i ∈ [d],Ai,: = kiA
∗
i,:,

where 0 ≤ ki ≤ 1. This is equivalent to what it is for a single row, i.e. ∀x ∈ Rd,
(
a∗>x

)+
− a>x ≥ 0 ⇐⇒

a = ka∗, where 0 ≤ k ≤ 1.

“⇐= ”: The case where a∗ = 0 is clear. If a∗ is not a zero vector and a = ka∗, we have

a) If a∗>x ≥ 0,
(
a∗>x

)+
− a>x = a∗>x− ka∗>x = (1− k)a∗>x ≥ 0.

b) If a∗>x < 0,
(
a∗>x

)+
− a>x = −ka∗>x ≥ 0.

Hence “⇐= ” holds.

“ =⇒ ”: If a∗ = 0, a must be a zero vector, otherwise let x = a, then −a>x < 0 =⇒ ⊥. If a∗ is not a zero
vector, consider two cases below:

a) If a 6= ka∗ where k ≥ 0. Let x = ‖a∗‖
‖a‖ · a− a

∗, then x is not a zero vector, and

a∗>x = ‖a∗‖2 (cos θ − 1) < 0 ,
a>x = ‖a‖ ‖a∗‖ (1− cos θ) > 0

}
=⇒

(
a∗>x

)+
− a>x < 0 =⇒ ⊥

where θ denotes the angle between a and a∗.
b) If a = ka∗ where k > 1, then let x = a∗ we have(

a∗>x
)+
− a>x = (1− k) ‖a∗‖2

< 0 =⇒ ⊥.

Hence a = ka∗ where 0 ≤ k ≤ 1 if a∗ is not zero, and thereby “ =⇒ ” holds.

G QP Convexity

The LPs in the main paper are trivially convex. So in this appendix, we only justify the convexity of our QPs:
We first prove the convexity of single-sample objectives, then the convexity of the empirical objectives with
nonparametric estimation, i.e. ĜNPE

1 and ĜNPE
2 is obtained by the convexity of convex function summations.

Lemma G.1. Suppose f(u) = 1
2 ‖Tu− b‖

2 where u is a real matrix. Then f is convex w.r.t. u.

Lemma G.1 is easily obtained since the Hessian f ′′(T ) = T>T is positive semidefinite. In the following, we
demonstrate and justify the convexity of the QPs of both layers by rewriting their single-sample objectives
into the formulation of f and summing them without loss of convexity.
Theorem G.2. QP: Eq. (4), and QP: Eq. (7) are convex optimization problems.

Proof. First of all, constraints of both QPs are trivially linear and convex. Thus, we only need to justify the
convexity of the two empirical objectives, ĜNPE

1 and ĜNPE
2 (see Eqs. (4) and (7)). Consider the single-sample

version of ĜNPE
1 , namely gNPE

1 (A,φ;x,h) = 1
2 ‖φ+Ax− h‖2, which, in the formulation of f , can be

rewritten with

T =


x> 1

x> 1
. . . . . .

x> 1

 , u =


A>1,:
A>2,:
...

A>d,:
φ

 , b = h
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which guarantees the convexity of gNPE
1 w.r.t. A and φ by Lemma G.1. For gNPE

2 (C, ξ;x,y) =
1
2 ‖ξ + x−Cy‖2, we have

T =


−y> 1

−y> 1
. . . . . .

−y> 1

 , u =


C>1,:
C>2,:
...

C>m,:
ξ

 , b = −x

which guarantees the convexity of gNPE
2 w.r.t. C and ξ by Lemma G.1. Now we consider the summation.

Taking layer 1 as an example, by definition we have

ĜNPE
1 (A,Φ) =

∑
i∈[n]

gNPE
1 (A,φ(i);x(i),h(i)).

For each i ∈ [n], equivalently, we take Φ as a variable instead of φ(i) in gNPE
1 , but with only φ(i) ∈ Φ

determining the value of gNPE
1 . In this sense, gNPE

1 is convex w.r.t. A and Φ for each i ∈ [n]. Thus, the sum
ĜNPE

1 is convex w.r.t. A and Φ. Similarly, ĜNPE
2 is convex w.r.t. C and Ξ.

H Strong Consistency

In this appendix, we justify the strong consistency of our estimators for the residual unit layer 1/2 learning
and the whole network.

According to Theorem E.1 and Theorem 5.1, the solutions to our objective functionals are continuous sets. In
addition, we also present intermediate results in terms of continuous sets, e.g. possible left-inverse matrices for
B∗ in the results for layer 2. Thus, to analyze the consistency of our learning algorithm, we define distances
between sets, so that the convergence of sets can be well defined. Further point convergence results, i.e. layer
1/2 estimator strong consistency, are based on the set convergence we define.
Definition H.1 (deviation). Let A ⊆M and B ⊆M be two non-empty sets from a metric space (M, d). The
deviation of set A from the set B, denoted by D(A,B), is

D(A,B) = sup
a∈A

d(a,B) = sup
a∈A

inf
b∈B

d(a, b),

where sup and inf represent supremum and infimum, respectively.
Definition H.2 (Hausdorff distance). Let A ⊆M and B ⊆M be two non-empty sets from a metric space
(M, d). The Hausdorff distance between A and B, denoted by DH(A,B), is

DH(A,B) = max{D(A,B), D(B,A)}.

Remark. In the following, we use the Frobenius norm to define the distance between matrices, i.e. d(X,Y ) =
‖X − Y ‖F.

H.1 Layer 2

In this subsection, we prove the strong consistency of the layer 2 estimator.

H.1.1 Objective Minimizer Space Estimator

For simplicity of notation, we use Ŝn to denote our layer 2 QP/LP solution space by n random samples13 as
a random set

Ŝn := {C ∈ Rd×m : Cy(i) − x(i) ≥ 0, ∀ i ∈ [n]}, (16)
13Here, we take samples as random variables for empirical analysis.
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and S∗ to denote the value space of C in Lemma 4.2 which minimizes layer 2 objective functional

S∗ := {C ∈ Rd×m : Cy − x ≥ 0, ∀x ∈ Rd and its corresponding output y}.

For further use, we name P̂n as the set of n sampled inputs which define Ŝn, i.e. P̂n := {x(i)}i∈[n] where each
x(i) is the same random variable in Eq. (16). By the definitions above, we describe the strong consistency of
our QP/LP as Lemma H.1.

Lemma H.1 (QP/LP strong consistency, layer 2). DH(Ŝn,S∗)
a.s.−−→ 0 as n→∞.

Proof. First we prove thatDH(Ŝn,S∗)
p−→ 0 as n→∞. Recall Theorem E.1, Cy−x ≥ 0 only ifCB∗ = diag(k).

We inherit the notation as defining D = CB∗. Theorem E.1 is based on Lemma F.1, and we prove them by
raising points that show contradiction, i.e. violate the inequality that holds in a pointwise fashion:

a) In the proof of Lemma F.1, we use d points: −e(i), for i ∈ [d], to make∑d
k=1 Di,k

[(
A∗k,: · x

)+
+ xk

]
< xi, so that Di,j (i 6= j) cannot be positive; and another d points:

(A∗)−1e(i), to show
∑d
k=1 Di,k

∣∣∣A∗k,: · x∣∣∣ < 0, so that Di,j (i 6= j) cannot be negative. For each −e(i)

we use here, since the violations follow strict inequalities, we know there exists a neighborhood
of −e(i), Ni = N(−e(i)), such that ∀z ∈ Ni,

∑d
k=1 Di,k

[(
A∗k,: · z

)+
+ zk

]
< zi. We can similarly

find such neighborhood of each (A∗)−1e(i) that the strict inequality holds within the neighborhood
respectively. We index them as Nd+1 to N2d.

b) In the proof of Theorem E.1, we further construct d points: for each i ∈ [d], we take a point x such
that xi > 0 ∧ xj ≤ −

A∗i,i

A∗
i,j
xi ∧ xk ≤ 0, where k 6= i, j. This counterexample shows [Cy − x]i < 0, and

eliminates the possibility of 0 < Di,i < 1 when A∗i,: is not a scale transformation. We can similarly
find neighborhood of each point and index them as N2d+1 to N3d. Note that we omit some cases
in the proof of Theorem E.1, because the first 2d points are sufficient to use in those cases to show
contradiction.

In the sampling procedure, if we sample at least one point in each neighborhood Ni, Theorem E.1 assures the
solution we get Ĉn would lie in the true optimal set S∗. The probability that the sampling procedure “omits”
any of the neighborhoods is

P
(
P̂n
⋂

N1 = ∅ or P̂n
⋂

N2 = ∅ or . . . or P̂n
⋂

N3d = ∅
)
≤

3d∑
i=1

P
(
P̂n
⋂

Ni = ∅
)

≤ 3d[1− min
i∈[3d]

P (Ni)]n.
(17)

Since the measure on each neighborhood P (Ni) =
∫
x∈Ni

p(x) > 0,

P
(
P̂n
⋂

N1 = ∅ or P̂n
⋂

N2 = ∅ or . . . or P̂n
⋂

N3d = ∅
)
→ 0, as n→∞.

Here we obtain DH(Ŝn,S∗)
p−→ 0 as n→∞. Now we take the infinite sum over the both sides of Eq. (17)∑

n∈[∞]

P
(
P̂n
⋂

N1 = ∅ or P̂n
⋂

N2 = ∅ or . . . or P̂n
⋂

N3d = ∅
)

≤ 3d
∑
n∈[∞]

[
1− min

i∈[3d]
P (Ni)

]n
= 3d

[
1

mini∈[3d] P (Ni)
− 1
]
< +∞.

By the Borel-Cantelli lemma (Borel, 1909), DH(Ŝn,S∗)
a.s.−−→ 0 as n→∞.
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H.1.2 Scale Factor Estimator

To avoid ambiguity, we use nsf to denote the number of samples used in Algorithm 4. The samples pairs are
{(x(i),y(i))}nsf

i=1. Without loss of generality, the following discussion focuses on some fixed index j ∈ [d]. In
Algorithm 4, we plug in our estimator Ĉn and use LR to estimate kj given that x(i)

j < 0

knsf(Ĉn) = arg min
k

1
2nsf

∑
i∈[nsf]

∥∥∥[Ĉny(i)]j − kx(i)
j

∥∥∥2
=
∑
i∈[nsf] x

(i)
j [Ĉny(i)]j∑

i∈[nsf]

(
x(i)
j

)2 . (18)

We first give the strong consistency of layer 2 scale factor estimator for as nsf →∞, as described in Lemma H.2.
Lemma H.2 (scale factor estimator strong consistency, layer 2). Suppose A∗ is a scale transformation w.r.t.
the j-th component, and knsf(Ĉn) is the nsf-sample estimator of kj via LR: Eq. (18) given that x(i)

j < 0.
Define sets

Unsf,n := {knsf(C) : C ∈ Ŝn}, and U∗ :=
[

1
1 +A∗j,j

, 1
]
.

Then lim
nsf→∞

lim
n→∞

DH(Unsf,n,U∗)
a.s.== 0.

Proof. Following our notation, Theorem E.1 and Theorem E.2 ensure that if A∗ is a scale transformation
w.r.t. the j-th component, for any C belonging to the true optimal set S∗, knsf(C) ∈

[
1

1+A∗
j,j
, 1
]
. And the

“iff” statement strengthens that U∗ = {knsf(C) : C ∈ S∗} for any nsf ∈ Z+. Note that since S∗ ⊂ Ŝn, we have
U∗ ⊂ Unsf,n. We only need to prove D(Unsf,n,U∗)

a.s.−−→ 0 as n→∞.

∀ Ĉn ∈ Ŝn and ∀C ∈ S∗,

∣∣∣knsf(Ĉn)− knsf(C)
∣∣∣

= 1∑
i∈[nsf]

(
x(i)
j

)2

∣∣∣∣∣∣
∑
i∈[nsf]

x(i)
j

[
(e(j))>

(
Ĉn −C

)
B∗
[(
A∗x(i)

)+
+ x(i)

]]∣∣∣∣∣∣
≤ 1∑

i∈[nsf]

(
x(i)
j

)2

 ∑
i∈[nsf]

∣∣∣x(i)
j

∣∣∣ ∥∥∥(e(j))>
(
Ĉn −C

)
B∗
∥∥∥

2

(∥∥∥A∗x(i)
∥∥∥

2
+
∥∥∥x(i)

∥∥∥
2

)
≤ 1∑

i∈[nsf]

(
x(i)
j

)2

 ∑
i∈[nsf]

∣∣∣x(i)
j

∣∣∣ ∥∥∥Ĉn −C
∥∥∥

F
‖B∗‖F (‖A∗‖F + 1)

∥∥∥x(i)
∥∥∥

2



=

∑
i∈[nsf]

[∣∣∣x(i)
j

∣∣∣ ‖B∗‖F (‖A∗‖F + 1)
∥∥x(i)

∥∥
2

]
∑
i∈[nsf]

(
x(i)
j

)2

∥∥∥Ĉn −C
∥∥∥

F
.

Then,

sup
Ĉn∈Ŝn

inf
C∈S∗

∣∣∣knsf(Ĉn)− knsf(C)
∣∣∣

≤

∑
i∈[nsf]

[∣∣∣x(i)
j

∣∣∣ ‖B∗‖F (‖A∗‖F + 1)
∥∥x(i)

∥∥
2

]
∑
i∈[nsf]

(
x(i)
j

)2 sup
Ĉn∈Ŝn

inf
C∈S∗

∥∥∥Ĉn −C
∥∥∥

F
,
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which implies

D(Unsf,n,U) ≤

∑
i∈[nsf]

[∣∣∣x(i)
j

∣∣∣ ‖B∗‖F (‖A∗‖F + 1)
∥∥x(i)

∥∥
2

]
∑
i∈[nsf]

(
x(i)
j

)2 D(Ŝn,S∗). (19)

Take the nsf →∞ limit over both sides of Eq. (19). With the strong law of large numbers14 we have

lim
nsf→∞

D(Unsf,n,U) ≤
E
[∣∣∣x(i)

j

∣∣∣ ‖B∗‖F (‖A∗‖F + 1)
∥∥x(i)

∥∥
2

]
E
[
x(i)
j

]2 D(Ŝn,S∗), w.p. 1.

Since D(Ŝn,S∗)
a.s.−−→ 0 as n→∞, we have D(Unsf,n,U∗)

a.s.−−→ 0 as n→∞ then nsf →∞.

H.1.3 Layer 2 Weights Estimator

In Algorithm 5, we solve B via LR. Let ẑ(i) = diag−1(k̂) · Ĉny(i) ∈ Rd, where k̂ is obtained through
Algorithm 4 with input Ĉn. Assume we are using sample size of nw to do the LR. The optimization problem
is:

min
B

∑
i∈[nw]

∥∥∥y(i) −Bẑ(i)
∥∥∥2
. (20)

Now we present the strong consistency of layer 2 estimator, as described in Theorem H.3.
Theorem H.3 (strong consistency, layer 2). Suppose B̂nsf is the solution to Eq. (20). Then B̂nw

a.s.−−→ B∗ as
n, nsf, nw →∞.

Proof. Let β denote vecB (flattening B into a vector), then Bẑ(i) =
(
ẑ(i))> ⊗ Im. Here the operation ⊗

denotes the Kronecker product. Then we can define an equivalent optimization problem

min
β

1
2nw

∑
i∈[nw]

∥∥∥∥y(i) −
[(

ẑ(i)
)>
⊗ Im

]
β

∥∥∥∥2
.

Taking the derivatives of β, we obtain

− 2
∑
i∈[nw]

[[(
ẑ(i)
)>
⊗ Im

]>(
y(i) −

[(
ẑ(i)
)>
⊗ Im

]
β

)]
= 0.

Then the optimal solution β̂nw of this optimization can be written in closed form:

β̂nw =

 ∑
i∈[nw]

[(
ẑ(i)
)>
⊗ Im

]> [(
ẑ(i)
)>
⊗ Im

]−1 ∑
i∈[nw]

[(
ẑ(i)
)>
⊗ Im

]>
y(i)


=

 ∑
i∈[nw]

[
ẑ(i) ⊗ Im

] [(
ẑ(i)
)>
⊗ Im

]−1 ∑
i∈[nw]

[
ẑ(i) ⊗ Im

]
y(i)


=

 ∑
i∈[nw]

[
ẑ(i)

(
ẑ(i)
)>]

⊗ Im

−1 ∑
i∈[nw]

ẑ(i) ⊗ Im

y(i)


=

 ∑
i∈[nw]

ẑ(i)
(
ẑ(i)
)>⊗ Im

−1 ∑
i∈[nw]

ẑ(i) ⊗ Im

y(i)

 .

14Here we assume that the Kolmogorov’s strong law assumption on moments (Sen & Singer, 1994) is met as is commonly done
in similar analysis.
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We inherit the notation from the last two subsections. By Lemma H.1, d(Ĉn,S∗)
a.s.−−→ 0 as n→∞. Thus

∀ ε > 0, ∃N such that ∀n ≥ N , d(Ĉn,S∗) ≤ ε w.p. 1, i.e. ∃Cn ∈ S∗ s.t. d(Ĉn,Cn) ≤ ε w.p. 1. Then by
Lemma H.2, ∃K > 0, for ε that is small enough, ∃Nsf such that ∀nsf ≥ Nsf, we have

∣∣∣knsf(Ĉn)− knsf(Cn)
∣∣∣ ≤

Kε w.p.1. For simplicity, we omit the under-script nsf of knsf in the following discussion. In fact,

∣∣∣ẑ(i)
j − z(i)

j

∣∣∣ =
∣∣∣∣∣ 1
k(Ĉn)

(
e(i)
)>

Ĉny(i) − 1
k(Cn)

(
e(i)
)>
Cny(i)

∣∣∣∣∣
=
∣∣∣∣∣ 1
k(Ĉn)k(Cn)

[
k(Cn)

(
e(i)
)>

Ĉn − k(Ĉn)
(
e(i)
)>
Cn

]
y(i)

∣∣∣∣∣
≤

∣∣∣∣∣ 1
k(Ĉn)k(Cn)

∣∣∣∣∣
∣∣∣∣k(Cn)

(
e(i)
)>

Ĉny(i) − k(Cn)
(
e(i)
)>
Cny(i)

∣∣∣∣
+
∣∣∣∣∣ 1
k(Ĉn)k(Cn)

∣∣∣∣∣
∣∣∣∣k(Cn)

(
e(i)
)>
Cny(i) − k(Ĉn)

(
e(i)
)>
Cny(i)

∣∣∣∣
≤

(
1 +A∗j,j

)2

1−Kε
(
1 +A∗j,j

) (∥∥∥y(i)
∥∥∥∥∥∥Ĉn −Cn

∥∥∥
F

+
∣∣∣k(Ĉn)− k(Cn)

∣∣∣ ‖CnB∗‖F (‖A∗‖F + 1)
∥∥∥x(i)

∥∥∥)
≤

(
1 +A∗j,j

)2

1−Kε
(
1 +A∗j,j

) (∥∥∥y(i)
∥∥∥+ dK (‖A∗‖F + 1)

∥∥∥x(i)
∥∥∥) ε. (21)

Then,

∥∥∥∥ẑ(i)
(
ẑ(i)
)>
− z(i)

(
z(i)
)>∥∥∥∥

F

=
∥∥∥∥ẑ(i)

(
ẑ(i)
)>
− z(i)

(
ẑ(i)
)>

+ z(i)
(
ẑ(i)
)>
− z(i)

(
z(i)
)>∥∥∥∥

F

≤
∥∥∥∥[ẑ(i) − z(i)

] (
ẑ(i)
)>∥∥∥∥

F
+
∥∥∥∥z(i)

[(
ẑ(i)
)>
−
(
z(i)
)>]∥∥∥∥

F

≤
∥∥∥∥[ẑ(i) − z(i)

] [
ẑ(i) − z(i)

]>∥∥∥∥
F

+ 2
∥∥∥∥z(i)

[(
ẑ(i)
)>
−
(
z(i)
)>]∥∥∥∥

F

≤
∑
j∈[d]

(
ẑ(i)
j − z(i)

j

)2
+ 2

∥∥∥z(i)
∥∥∥ ∥∥∥ẑ(i) − z(i)

∥∥∥ .

It follows that
∥∥∥ẑ(i) (ẑ(i))> − z(i) (z(i))>∥∥∥

F
is also bounded by O(ε). With similar techniques we can prove

∥∥∥∥∥∥
∑
i∈[nw]

ẑ(i)
(
ẑ(i)
)>
−
∑
i∈[nw]

z(i)
(
z(i)
)>∥∥∥∥∥∥

F

≤ O(ε),

and

∥∥∥ẑ(i) ⊗ Im − z(i) ⊗ Im
∥∥∥

F
≤ O(ε).
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Denote
[∑

i∈[nw] z(i) (z(i))>] as P and
∑
i∈[nw] z(i) as Q. Substitute z(i) with ẑ(i) in the above expression

we have P̂ and Q̂. Hence,∥∥∥β̂nw − β∗
∥∥∥

F
=
∥∥∥∥[P̂ ⊗ Im]−1 ([

Q̂⊗ Im
]
y(i)
)
− [P ⊗ Im]−1

(
[Q⊗ Im] y(i)

)∥∥∥∥
F

≤
∥∥∥∥[P̂ ⊗ Im]−1 ([

Q̂⊗ Im
]
y(i)
)
−
[
P̂ ⊗ Im

]−1 (
[Q⊗ Im] y(i)

)∥∥∥∥
F

+
∥∥∥∥[P̂ ⊗ Im]−1 (

[Q⊗ Im] y(i)
)
− [P ⊗ Im]−1

(
[Q⊗ Im] y(i)

)∥∥∥∥
F

=
∥∥∥∥[P̂ ⊗ Im]−1

∥∥∥∥
F

∥∥∥[(Q̂−Q)⊗ Im]y(i)
∥∥∥

F
+
∥∥∥∥[P̂ ⊗ Im]−1

− [P ⊗ Im]−1
∥∥∥∥

F∥∥∥[Q⊗ Im] y(i)
∥∥∥

F
.

In the first part, by the triangle inequality,∥∥∥∥[P̂ ⊗ Im]−1
∥∥∥∥

F
≤
∥∥∥∥[P̂ ⊗ Im]−1

− [P ⊗ Im]−1
∥∥∥∥

F
+
∥∥∥[P ⊗ Im]−1

∥∥∥
F
.

So we only need to prove
∥∥∥∥[P̂ ⊗ Im]−1

− [P ⊗ Im]−1
∥∥∥∥

F
≤ O(ε) to claim

∥∥∥β̂nw − β∗
∥∥∥

F
≤ O(ε). Denote

P̂ − P = ∆P . From Eq. (21), we know every entry of ∆P ⊗ Im can be bounded by O(ε). By simple
calculation we have

(P + ∆P )−1 = P−1 − P−1∆PP−1 +O(ε2).

Then we have
P−1 − P̂−1 = P−1∆PP−1 +O(ε2) = O(ε).

H.2 Layer 1

In this subsection, we justify the strong consistency of layer 1 objective functional minimizer estimator in
detail, i.e. the layer 1 QP/LP solution space. We will omit the detailed proof of Algorithm 2 line 4 to 7 strong
consistency since it is similar to the proof of Lemma H.2. Additionally, we also omit the strong consistency of
the x 7→ (A∗x)+ function estimator because it can be directly obtained by Lemmas H.1 and H.2 and the
continuous mapping theorem.

We use a new optimization problem equivalent to the optimization of G1. Before that, we first define the
equivalence between two optimization problems as follows.
Definition H.3. Let opt1 and opt2 be two optimization problems, with f1, f2 as the respective objective
functions. Then opt1 and opt2 are said to be equivalent if given a feasible solution to opt1, namely x1, a
feasible solution to opt2 is uniquely corresponded, namely x2, such that f1(x1) = f2(x2), and vice versa.

The new optimization problem and its equivalence to the optimization of G1 is described in Lemma H.4.
Lemma H.4. The optimization of G1 (Eq. (6)) is equivalent to

min
A

f(A) = 1
2Ex

[∥∥∥(Ax− h)+
∥∥∥2
]
. (22)

Proof. To see this, suppose A1 is one optimal solution to Eq. (22), then we can construct r1(x) = (A1x−h)+

so that G1 (A1, r1) = f(A1) and the optimality implies

min
A, r

G1 (A, r) ≤ min
A

f(A).
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On the other hand, suppose (A2, r2) is an optimum of G1. Let r3(x) = (h − A2x)+, then ∀x ∈ Rd
and h be the corresponding hidden output, if [h − A2x]j ≥ 0, then [r3(x) + A2x − h]j = 0, otherwise
[r3(x) +A2x− h]2j = [A2x− h]2 ≤ [h2 (x) +A2x− h]2j since h2 is nonnegative. So we know that

min
A, r

G1(A, r) = G1(A2, r2) = G1(A2, r3) = f(A2).

From the optimality, we further have

min
A, r

G1(A, r) ≥ min
A

f(A).

From the simple calculation above, we can see that one optimal solution to Eq. (22) has a one-to-one
correspondence to an optimal solution to G1.

Similarly, the empirical version of the two problems are equivalent, which indicates their consistency in the
empirical estimation being equivalent. In the following, we justify the strong consistency of empirical Eq. (22)
instead of G1

min
A

f̂n (A) = 1
2n
∑
i∈[n]

∥∥∥∥(Ax(i) − h(i)
)+
∥∥∥∥2

.

Denote T∗ := {diag(k) ·A∗ | 0 ≤ kj ≤ 1, j ∈ [d]} as the true optimal solution set, and T̂n as the optimal
solution set corresponding to the n-sample problem. In the following, we justify four conditions in a row that
hold for f to derive the strong consistency of its optimal solution estimator.
Lemma H.5. Let T̂n′ be the layer 1 QP/LP solution space by n′ samples. Then there exists a compact set
C determined by A∗, namely C(A∗), s.t. T̂n′ ⊂ C(A∗) w.p. 1 as n→∞.

Proof. ∀l ∈ [d], let a∗ be the l-th row of A∗, and âl be the l-th row of Ân′ . We’d like first to prove that the
set

T̂ln′ = {al : al is the l-th row of A, where A ∈ T̂n′}

is compact w.p.1.

Suppose n′ > d, and among the n′ samples, we classify them into two folds. To avoid ambiguity, let u(i) be
the points such that (a∗)>u(i) > 0, i ∈ [q]; and v(j) be the points such that (a∗)>v(j) < 0, j ∈ [n− q]. From
the analysis of Theorem 5.1, we have (a∗)>u(i) ≥ â>u(i), ∀i ∈ [q] and â>v(j) ≤ 0, ∀j ∈ [n− q]. It follows
that we can rewrite T̂ln′ as a polyhedron

T̂ln′ = {a ∈ Rd : a>u(i) ≤ (a∗)>u(i),a>v(j) ≤ 0}.

We are going to show the polyhedron T̂ln′ is bounded by contradiction. If it is not bounded, then ∃d ∈ Rd,
d 6= 0 and ã ∈ T̂ln′ , such that ∀λ > 0, ã+ λd ∈ T̂ln′ . Then

(ã+ λd)> u(i) = ã>u(i) + λd>u(i) ≤ (a∗)> u(i) ⇐⇒ λd>u(i) ≤ (a∗)> u(i) − ã>u(i).

Similarly,
(ã+ λd)> v(i) = ã>v(j) + λd>v(j) ≤ 0.

From the definition, λ can be arbitrarily big, then d>u(i) ≤ 0, ∀i ∈ [q], and d>v(j) ≤ 0, ∀j ∈ [n− q].

Since we know span{u(i)} = Rd w.p. 1, then there ∃ some i∗ such that d>u(i∗) < 0, w.p. 1. (Otherwise if
d>u(i) = 0 for all i ∈ [q], then either span{u(i)} 6= Rd or d = 0.) Under our assumption that, T̂ln′ is not
bounded, we know the following system (w.r.t x) has a feasible solution w.p. 1[

−U
−V

]
x ≥ 0, x>u(i∗) < 0, (I)
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where every row of U and V is
(
u(i))> and

(
v(j))> respectively. By Farkas’ Lemma (Farkas, 1902), the

system
[−U>,−V >] · x = u(i∗), x ≥ 0 (II)

is not feasible (w.p. 1). We claim that u(i∗) lies in the conic hull of −v(j)’s w.p. 1. So that the second system
actually has a feasible solution and thus it raises the contradiction.

Denote the conic hull as

H =

t ∈ Rd : t =
∑

j∈[n−q]

λj

(
−v(j)

)
, λj ≥ 0 for ∀j ∈ [n− q]

 .

Now suppose u(i∗) /∈ H, by the supporting hyperplane theorem (Luenberger, 1997), ∃b ∈ Rd, b 6= 0, such
that b>u(i∗) ≤ b>t for ∀t ∈ H. Then by definition,

− v(j) ∈ {t : b>t ≤ b>u(i∗)}, for ∀j ∈ [n− q].

Denote the hyperplane J = {t : b>t ≤ b>u(i∗)}, then

P
(
u(i∗) /∈ H

)
≤ P

(
−v(j) ∈ J, for ∀j ∈ [n− q]

)
= P

(
−v(j) ∈ J

)n−q
.

Since we have in this case a geometric sequence, we know its infinite sum is bounded. By Borel-Cantelli
lemma (Borel, 1909), we conclude that u(i∗) ∈ H w.p. 1. Then system II is feasible w.p. 1. So that T̂ln′ is
compact w.p. 1.

Now we prove that there exists a compact set C(A∗), s.t. T̂n′ ⊂ C(A∗) w.p. 1 as n→∞. Similarly, we focus
on the analysis of one row. As discussed above, T̂ln′ is compact w.p. 1. Let Ŵ1

n′ be the set of all u(i) sampled
in estimating T̂n′ , and Ŵ2

n′ be the set of all v(j) sampled. Now for another set T̂n′′ , similarly define sample
point sets Ŵ1

n′′ and Ŵ2
n′′ . We claim that ∀u(i) ∈ Ŵ1

n′ , u(i) lies in the conic hull of Ŵ1
n′′ . Actually, this part

of the proof is very similar to the way we prove u(i∗) ∈ H w.p. 1, so we will omit it here.

∀a ∈ T̂n′′ , let x(1) and x(2) be two different points in Ŵ1
n′′ . Then a>(λ1x

(1)+λ2x
(2)) ≤ (a∗)>(λ1x

(1)+λ2x
(2))

for ∀λ1 ≥ 0 and λ2 ≥ 0. This simple calculation reveals a>u(i) ≤ (a∗)>u(i) for ∀u(i) ∈ Ŵ1
n′ (from the claim

we made). This implies that T̂n′′ ⊂ C(A∗) w.p. 1 as n→∞, too.

Lemma H.6. The minimizer space of f(A), i.e. T∗ = {diag(k) ·A∗ | 0 ≤ kj ≤ 1, j ∈ [d]}, is contained in
C(A∗).
Lemma H.7. f(A) is finite valued and continuous on C(A∗).

Lemmas H.6 and H.7 are easily obtained by the formulation of f (see Eq. (22)) and Lemma H.5.
Lemma H.8 (uniform a.s. convergence). f̂n(A) a.s.−−→ f(A) as n→∞, uniformly in A ∈ C(A∗).

Proof. Name single-sample objective g(x,A) = 1
2

∥∥∥(Ax− h)+
∥∥∥2

. The uniform a.s. convergence is guaranteed
by the uniform law of large numbers (Jennrich, 1969):

a) By Lemma H.5, C(A∗) is a compact set.
b) g is continuous w.r.t. A by its formulation and measurable over x at each A ∈ C(A∗).
c) In fact,

g(x,A) = 1
2

∥∥∥(Ax− h)+
∥∥∥2

≤ ‖Ax‖2 + ‖A∗x‖2

≤ (‖A‖F + ‖A∗‖F) ‖x‖2 .
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Since A ∈ C(A∗) is in a compact set,

g(x,A) ≤
[

sup
A∈C(A∗)

‖A‖F + ‖A∗‖F

]
‖x‖2 .

Thus the dominating function exists.15

By Lemmas H.5 to H.8, all of the conditions are satisfied in (Shapiro et al., 2014, Thm. 5.3). Thus, we have
the strong consistency of layer 1 objective optima estimator as described in Lemma H.9.
Lemma H.9 (QP/LP strong consistency, layer 1). DH(T̂n′ ,T∗)

a.s.−−→ 0 as n→∞.

Similar to Lemma H.2, we have the strong consistency of the layer 1 scale factor estimator as described in
Lemma H.10.
Lemma H.10 (scale factor estimator strong consistency, layer 1). Let kn′sf

(Ĉn) be the n′sf-sample estimator
of kj via LR: Algorithm 2 line 5. given that h(i)

j > 0. Define sets

Vn′sf,n
:= {kn′sf

(A) : A ∈ T̂n′}, and V∗ := [0, 1] .

Then lim
n′sf→∞

lim
n′→∞

DH(Vn′sf,n
′ ,V∗) a.s.== 0.

Remark. In case kj = 0, suppose the algorithm finds a solution over a continuous distribution with [0, 1] as
support and the probability that it finds a solution with scale factor 0 is 0.

With Theorem 5.2 and the continuous mapping theorem, the strong consistency of layer 1 estimation is
guaranteed.
Theorem H.11 (strong consistency, layer 1). Suppose Ân′ is scaled by k̂n′sf

. Then Ân′
a.s.−−→ A∗ as

n′, n′sf →∞.

By Theorems H.3 and H.11, Theorem 6.3 is guaranteed by the continuous mapping theorem.

I Sample Complexity Results

In this appendix, we begin with an intuition that justifies how our core QP/LP approaches eliminate the
exponential sample efficiency compared to the vanilla LR approach. In layer 2 learning, the optimization of
C is done to find a feasible point in the space determined by n inequalities each of which corresponds to a
sample. Taking the j-th row of the inequality, i.e. Cj,:y ≥ xj . Every time we get a new sample x(i), y(i) in,

• The inequality Cj,:y(i) ≥ x(i)
j eliminates the solution space of Cj,: by one of the spaces divided by

plane Cj,:y(i) = x
(i)
j . This property guarantees fast convergence speed at early phase since Cj,:’s

feasibility starts from Rd.

• In fact, when ReLU does not activate A∗x(i) at the j-th row, i.e. A∗j,:x(i) ≤ 0, the theoretical solution
of Cj,: that Cj,:B∗ = (0, . . . , 0, 1, 0, . . . , 0) (a 1 at index j) directly lies on the separating plane
Cj,:y

(i) = x
(i)
j :

Cj,:y
(i) = Cj,:B

∗
[(
A∗x(i)

)+
+ x(i)

]
= x

(i)
j .

This property remarkably speeds up further constraints on the solution space of Cj,: to the correct
estimate and is with high probability, since it directly depends on the sign of A∗x(i).

15Here, we assume E[‖x‖2] < +∞ as is commonly done in empirical analysis.
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With the vanilla LR approach mentioned in Section 3 all the dimensions need to have the correct sign at the
same time. This is the reason for the exponential complexity of this approach. Our main algorithm only
requires one dimension to get the correct sign for a single sample, which avoids the exponential sample size
expectation. The convergence speed is determined by the actual probability of each dimension not getting
activated by ReLU, and such probability is determined by specified input distribution.

Roadmap Our sample complexity results follow several intermediate results. We first demonstrate that
the constraints that define our optimization objective give a bounded polytope (Theorem I.2). This happens
with a high probability, given a set of samples. Once we have shown that, we then show that the optimization
problem constraints we use define a polytope with a small diameter with a high probability given a sufficient
number of samples, where the true network parameters exist. The boundnesses of the constraint polytope is
required for this result.

Details We follow the above intuitive explanation with a more rigorous analysis that describes the sample
complexity of recovering Cj,: for j ∈ [d].

Let us assume we have n samples of y(i), i ∈ [n]. We denote by F ∈ Rn×d such that Fij = −y(i)
j . We assume

n > d. We denote by Lj = E[x2
j ].

Condition I.1 (Haar condition on samples). F satisfies the Haar condition, i.e. that every submatrix of
size d× d is invertible, almost surely.

We will assume that Condition I.1 holds for the rest of the discussion. For a discussion of the Haar condition,
see Schmidt & Mattheiss (1977).

Fix j ∈ [d]. The first step in our process is to show that with high likelihood, the inequalities Cj,:y(i) ≥ x(i)
j

for i ∈ [n], or equivalently Cj,:(−y(i)) ≤ (−x(i)
j ), or equivalently FCj,: ≤ −x(:)

j define a bounded polytope
with high probability.

Schmidt & Mattheiss (1977) describe a necessary and sufficient condition for this set of inequalities, which
describe an intersection of half-spaces, to be bounded. More specifically, under Condition I.1, such an
intersection is unbounded if and only if the subspace spanned by the columns of F intersected with the
negative quadrant of Rn is non-empty.

This means that this halfspace intersection is unbounded if and only if there exists α ∈ Rd, α 6= 0, such that
Fi,:α ≤ 0 for i ∈ [n].

For a given α ∈ Rd, α 6= 0, let hα(y) = sgn(
∑d
i=1 αiyi) where sgn(z) for z ∈ R is 0 if z ≤ 0 and 1 otherwise.

Define:

P (α) = E[hα(y)],

Pn(α) = 1
n

n∑
i=1

hα(y(i)).

A well-known result of VC-theory (Vapnik, 1999), specialized to linear separators, states that:
Theorem I.1 (Vapnik 1999). For any t >

√
2/n, it holds that:

P

(
sup
α∈Rd

|Pn(α)− P (α)| ≥ t
)
≤ 4

(
2en
d+ 1

)(d+1)
exp(−nt2/8).

We continue with the assuming the following separability condition:
Condition I.2 (separability of y). There exists a > 0 such that for any α ∈ Rd, α 6= 0, P (α) > a.
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Theorem I.2 (unboundedness of halfspace intersection). Under Condition I.2 and Condition I.1, the halfspace
intersection defined by F for identifying Cj,: is bounded with probability

P (F defines unbounded intersection) ≤ 4
(

2en
d+ 1

)(d+1)
exp(−na2/8)

if n > max{2/a2, d}.

Proof. For any α ∈ Rd, α 6= 0, it holds that if Pm(α) = 0 then for all i ∈ [n], sgn(
∑d
j=1 αjy

(i)
j ) = 0. Each

such case means that for this specific α, we found a span of the columns of F such that its ith coordinate is
0, and as such, a case in which F is unbounded.

This means that if for all α ∈ Rd, it holds that Pn(α) > 0, then the n samples define a bounded halfspace
intersection.

In addition, if Pn(α) = 0, then

Pn(α)− P (α) = −P (α), (23)

therefore,

|Pn(α)− P (α)| = P (α).

Since a < P (α), it holds that if Eq. (23) holds then:

|Pn(α)− P (α)| > a.

Therefore,

P (F defines unbounded intersection) ≤ P
(
∃α 6= 0, Pn(α) = 0

)
≤ P

(
sup
α
|Pn(α)− P (α)| > a

)
≤ 4

(
2en
d+ 1

)(d+1)
exp(−na2/8),

where the last inequality is the result of Theorem I.1.

Theorem I.2 gives a well-behaving sample complexity for the n samples to define halfspace intersection that
is bounded, when solving for Cj,:. Note that the theorem does not depend on j, because the use of xj is not
necessary for the boundedness result of Schmidt & Mattheiss (1977).

We now further show that when the halfspace intersection is bounded, then the diameter r of the bounded
space is smaller (where diameter is defined as the maximal distance between any two points).

The diameter is bounded by the maximal distance between all pairs of vertices of the intersection (the
intersection is a bounded polytope). Let K ⊆ {v | F v ≤ −x(:)

j } be the set of these vertices. The size |K| is
bounded from above by O(nd/2) (by McMullen’s Upper Bound theorem; Toth et al. 2017).
Condition I.3 (equality saturation for vertices). For every v ∈ K, there are d equalities that are satisfied,
in the form of FI,:v = −x(I)

j , such that I ⊂ [n] and |I| = d.
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Condition I.4 (bounded input distribution). For every j ∈ [d], |xj | ≤ b for some b > 0.
Lemma I.3 (Hoeffding’s inequality). Let Z1, . . . Zn be n random variables such that Zi ∈ [ai, bi] almost
surely. Then, for all t > 0:

P

(
n∑
i=1

Zi −
n∑
i=1

E[Zi] ≥ t
)
≤ exp

(
− 2t2∑n

i=1(bi − ai)2

)
.

Lemma I.4. Assume Condition I.1, Condition I.3 and Condition I.4 are satisfied.

In addition, let σ∗ = E[σ] where σ is the smallest singular value of FI,: for I = {1, . . . , d}. Let ε >
√
db2

σ∗ν
,

where 0 ≤ ν = log(δ/4)
σ∗

+ 1 ≤ 1 for any 1 > δ > 0.

Define:

L (ε, d, σ∗, b, Lj , δ) = d

√
δ

4D2 exp
(

2((σ∗)2ν2ε2 − dLj)2

d2b2

)
.

For any set of samples (x(i),y(i)), i ∈ [n] such that the halfspace intersection is bounded, it holds that with
probability at least 1 − δ > 0 the diameter of the halfspace intersection is smaller than ε if the following
inequality is satisfied:

n ≥ L(ε, d, σ∗, b, δ) ≥ d.

Proof. The diameter of the intersection is not larger than the maximal distance between two pairs of vertices
||v − u||, u, v ∈ K. By Condition I.3, let I, J be the two subsets of integers such that |I| = |J | = d and

FI,:u = −x(I)
j ,

FJ,:v = −x(J)
j .

By the Haar assumption on F , the inverse of F exists, and it holds that:

||u− v|| = ||F−1
I,: x

(I)
j − F

−1
J,: x

(J)
j || ≤ ||F

−1
I,: ||

∗ · ||x(I)
j ||+ ||F−1

J,: ||
∗ · ||x(J)

j ||.

Consider ||F−1
I,: ||∗, the operator norm of F−1

I,: which equals 1/σI where σI is the smallest singular value of
FI,:. Similarly, we define σJ . Therefore:

||u− v|| ≤ ||x(I)
j ||/σI + ||x(J)

j ||/σJ .

The event that the diameter r is larger than ε can be bounded by (A(I, J) is the event σI ≥ c, σJ ≥ c for
some c):

P (r ≥ ε) ≤ p (r ≥ ε,A(I, J)) + P (σI ≤ c ∧ σJ ≤ c) .

In addition,

37



Published in Transactions on Machine Learning Research (11/2022)

P (r ≥ ε,A(I, J)) ≤ P
(

max
u,v∈K

||u− v|| ≥ ε,A(I, J)
)

≤ P
(

max
u,v
||x(I)

j ||/c+ ||x(J)
j ||/c ≥ ε

)
≤
∑
u,v∈K

P
(
||x(I)

j ||/c+ ||x(J)
j ||/c ≥ ε

)
,

We know that |K| ≤ D(nd/2) for some constant D (Toth et al., 2017), therefore P (r ≥ ε,A(I, J)) can be
further bounded by

D2nd · P
(
||x(I)

j ||/c+ ||x(J)
j ||/c ≥ ε

)
.

Since the distribution of x(I)
j and x(J)

j (and the singular values) is identical, P (r ≥ ε,A(I, J)) can be further
bounded by

2D2nd · P
(
||x(I)

j ||/c ≥ ε
)
, (24)

for any I, for example I = {1, . . . , d}.

We can use any value for c = E[σI ] · ν to be smaller than σI , and the inequality still holds. Therefore, Eq. (24)
can be further bounded by (assuming ν < 1):

2D2nd ·
(
P
(
||x(I)

j ||/E[σI ]ν ≥ ε
))

.

This can be further bounded by:

2D2nd ·
(
P
(
||x(I)

j ||
2 ≥ E[σI ]2ν2ε2

))
, (25)

where we also square the norm of x(I)
j (and its bounding term).

The term P (σI ≤ E[σI ] · ν ∧ σJ ≤ E[σJ ] · ν) for small ν is going to be close to 0, more specifically, it measures
the probability of the complement of the event A(I, J). This probability is at most twice the probability that
exp(−σI) ≥ exp(−ν · E[σI ]), which by Markov’s inequality is smaller than E [exp(−σI)] / exp(−ν · E[σI ]) ≤
exp(E [(ν − 1) · σI ]) = exp((ν − 1)σ∗) (by Jensen’s inequality). Therefore, the probability of the complement
of A(I, J) is bounded by:

P (σI ≤ νσ∗ ∧ σJ ≤ σ∗) ≤ 2 exp((ν − 1) · σ∗). (26)

Consider that ||x(I)
j ||2 is the sum of d i.i.d. samples x2

j . Under Condition I.4, we assume |x2
j | ≤ b. Therefore,

by Hoeffding’s inequality, we can get an upper bound on the probability term in Eq. (25) to hold:

P
(
||x(I)

j ||
2 − d · E[x2

j ] ≥ (σ∗)2ν2ε2 − d · E[x2
j ]
)
≤ exp

(
−2((σ∗)2ν2ε2 − d · E[x2

j ])2

db2

)
, (27)

remembering it is stated in the theorem that σ∗νε ≥
√
db2 and the fact that

√
db2 ≥

√
d · E[x2

j ] by
Condition I.4. Hence, E[σI ]2ν2ε2 − d · E[x2

j ] > 0, and the use of Hoeffding’s inequality is allowed.
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Let δ > 0, then taking Eq. (27) with the union bound constant from K and setting it to δ/2 we get:

2D2nd exp
(
−2((σ∗)2ν2ε2 − dLj)2

db2

)
≤ δ/2.

We can now get an upper bound on n:

n ≤ d

√
δ

4D2 exp
(

2((σ∗)2ν2ε2 − dLj)2

d2b2

)
= L(ε, d, σ∗, b, Lj , δ).

We want, in addition, the complement of A(I, J) to have probability at most δ/2, so therefore, we choose

ν = log(δ/4)
σ∗

+ 1 according to Eq. (26).

Noting that the diameter of the sphere gets smaller as n increases (because there are more halfspaces that
possibly intersect into a smaller space).

Note that Lemma I.4 requires δ ≥ exp(−σ∗) in its statement (this can be inferred from the relationship
between ν and δ). To have an arbitrary confidence 1− δ in the diameter being smaller than ε, we can run
the algorithm k times with an n as needed. The probability of all of them having diameter larger than ε is
smaller than δk.

Lemma I.4 describes under which condition we get a small error for Cj,: if we fix j. Using a union bound, we
bound the probability that for any j ∈ [d], the corresponding feasible halfspace intersection space is small.
This will require adding a factor of d to δ, and a factor of d to n. We overcome this by making sure that
the probability for each j having a diameter larger than ε is smaller than δ/d, and we use dn samples for a
choice of n satisfied by Lemma I.4. Using a union bound, we can show that the probability that for any j the
diameter is larger than ε is smaller than δ.

In addition, note that Lemma I.4 works only when we assume the halfspace intersection is bounded. This is
the case where we can use the diameter bound through the set of vertices. To take this into account, we also
use Theorem I.2. This leads to the following result regarding the sample complexity of our algorithm.
Theorem I.5 (sample complexity of learning ReLU two-layered networks (layer 2)). Assume Condition I.1,
Condition I.2, Condition I.3 and Condition I.4 are satisfied.

In addition, let σ∗ = E[σ] where σ is the smallest singular value of FI,: for I = {1, . . . , d}. Let ε >
√
db2

σ∗ν
,

where 0 ≤ ν = log(δ/8d)
σ∗

+ 1 ≤ 1 for any 1 > δ

2d > 0.

Define:

L∗(ε, d, σ∗, b, Lj , δ) = min
j

d

√
δ

8dD2 exp
(

2((σ∗)2ν2ε2 − dLj)2

d2b2

)
.

and define:

Lu(a, δ, d) =
(d+ 1) log 6 + log 4− log δ2

a2/8− 1/e .

For any set of samples (x(i),y(i)), i ∈ [n], it holds that with probability at least 1− δ > 0 the diameter of the
halfspace intersection is smaller than ε if the following inequalities hold:
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n ≥ d · L∗(ε, d, σ∗, b, δ),
L∗(ε, d, σ∗, b, δ) ≥ max

{
d, Lu(a, δ, d), 2/a2} .

Proof. Let U be the event that the diameter is larger than ε for any j ∈ [d]. Let V be the event that F
represents bounded space. The event U is the one we need to show has small probability.

By Theorem I.2, we know that if n ≥ Lu (a, δ, d) then F is unbounded with probability smaller than δ/2.
Therefore, P (V ) ≥ 1− δ/2.

From Lemma I.4 and the analysis before this theorem statement, we know that for n as required by this
theorem statement, any time F represents an bounded half-space intersection, the probability of the diameter
this intersection (for any j) being larger than ε is smaller than δ/2. Therefore, P (U | V ) ≤ δ/2.

Hence,

P (U) = P (U | V ) p (V ) + P (U | ¬V ) (1− P (V )) ≤ P (U | V ) + (1− P (V )) ≤ δ/2 + δ/2 = δ.

Table 5: Prediction errors (RMSE) as p (the fraction of nonnegative entries in A) increases (n = 512,
d = 16). Each set of rows describes an experiment with a different number of scale vector rows in A (s).

s Alg. p =0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

0
SGD 0.4353 0.4135 0.3844 0.3511 0.3364 0.3255 0.3310 0.3480 0.3792 0.4158 0.4417
LP 0.0923 0.0991 5.2210 18.3364 ∞ ∞ ∞ ∞ ∞ ∞ 55.4519
QP 0.0492 0.0583 0.5445 10.0328 ∞ ∞ ∞ ∞ ∞ ∞ 0.4129

2 SGD 0.4252 0.4058 0.3777 0.3510 0.3315 0.3216 0.3293 0.3447 0.3704 0.4060 0.4234
QP 0.0729 0.0819 0.5072 7.8984 9.8862 ∞ ∞ ∞ ∞ 5.8306 0.4297

4 SGD 0.4152 0.3962 0.3711 0.3423 0.3286 0.3213 0.3228 0.3382 0.3683 0.3944 0.4118
QP 0.0926 0.1070 0.4480 5.6844 ∞ ∞ ∞ ∞ ∞ 12.0391 ∞

8 SGD 0.3941 0.3823 0.3637 0.3410 0.3289 0.3248 0.3256 0.3428 0.3578 0.3743 0.3874
QP 0.1221 0.1527 0.2835 1.3792 8.4902 7.2903 7.4253 ∞ 5.9887 8.2727 0.5928

16 SGD 0.3820 0.3829 0.3827 0.3812 0.3825 0.3825 0.3827 0.3815 0.3831 0.3818 0.3827
QP 0.1810 0.1841 0.1853 0.1823 0.1833 0.1845 0.1823 0.1823 0.1825 0.1840 0.1803

J Nonnegativity of A and the Scale Transformation Condition

Throughout the paper, we assume that the first layer, the matrix A, has nonnegative entries. As we mention
before in Section 8 and Section 7.2, such restrictions on neural network weights have successfully been studied
before and shown to be effective in practice.

While the theory of our algorithm does require A to be nonnegative, we use this condition in a specific part
of the proof of Theorem E.1 in Appendix F.1. This theorem is only necessary to prove that the objective
functional for layer 2 achieves the correct estimate of the network. It is not necessary for proofs for layer 1 or
for the proofs of the transition from the layer objectives into the QP or LP formulation. In that sense, we can
aim to alleviate this nonnegativity condition quite in a modular way when addressing this issue. For example,
we could parametrize the number of negative entries in A and make more nuanced arguments (albeit more
complex) in the proofs in Appendix F.1.

This condition does not prevent us from running the algorithm as-is with negative entries in A. To test
our algorithm sensitivity to this assumption, we repeated the experiment in Section 7.1, with d = 16 and
n = 512, and checked what error the algorithm gives as a function of p ∈ {k/10 | k ∈ {0, . . . , 10}} – a
fraction of random entries that are set to be negative in A. To test the effect of Condition 2.1 (which is
alleviated in Appendix E), we also vary the number of rows that are a scaling vector (through parameter
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s ∈ {0, 2, 4, 8, 16}, which denotes the number of such rows in A). We repeated each experiment five times
with different parameters (and each experiment includes multiple executions with different samples). We
experimented both with the LP and the QP objectives for s = 0 and the QP objective for s > 0, and compared
them against the SGD algorithm.

The results are given in Table 5. When the assumption about nonnegative entries holds, both the QP
algorithm and the LP algorithm (for s = 0) give an error much lower than SGD. This holds even for a small
p > 0. However, as p increases, the results of LP and QP degrade quickly and then recover (for the QP)
when p = 1.0. This latter result could be due to the symmetry of our input distribution. we also note that in
general, the QP algorithm, as expected, is more robust to p > 0 than the LP algorithm. As we increase the
number of rows in A that are scale vectors, we see that our algorithm becomes much more robust to the
number of negative entries in the matrix A (with respect to ∞ entries). However, having scale vectors in A
does seem to make the learning problem more difficult for the QP algorithm.
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