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Abstract

Weighted logic programming, a generalization of bottom-up logic programming, is a well-

suited framework for specifying dynamic programming algorithms. In this setting, proofs

correspond to the algorithm’s output space, such as a path through a graph or a grammatical

derivation, and are given a real-valued score (often interpreted as a probability) that depends

on the real weights of the base axioms used in the proof. The desired output is a function

over all possible proofs, such as a sum of scores or an optimal score. We describe the

PRODUCT transformation, which can merge two weighted logic programs into a new one.

The resulting program optimizes a product of proof scores from the original programs,

constituting a scoring function known in machine learning as a “product of experts.” Through

the addition of intuitive constraining side conditions, we show that several important dynamic

programming algorithms can be derived by applying PRODUCT to weighted logic programs

corresponding to simpler weighted logic programs. In addition, we show how the computation

of Kullback–Leibler divergence, an information-theoretic measure, can be interpreted using

PRODUCT.

KEYWORDS: weighted logic programming, program transformations, natural language

processing

1 Introduction

Weighted logic programming is a technique that can be used to declaratively specify

dynamic programming algorithms in a number of fields such as natural language

processing (Manning and Schütze 1999) and computational biology (Durbin et al.

1998). Weighted logic programming is a generalization of bottom-up logic program-

ming where each proof is assigned a score (or weight) that is a function of the scores

of the axioms used in the proof. When these scores are interpreted as probabilities,

then the solution to a whole weighted logic program can be interpreted in terms of

probabilistic reasoning about unknowns, implying that the weighted logic program

implements probabilistic inference1.

1 The word inference has a distinct meaning in logic programming (e.g., “inference rule,” “valid
inference”), and so we will attempt to avoid confusion by using the probabilistic modifier whenever we
are talking about probabilistic reasoning about unknowns.
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Even though weighted logic programming is not limited to probabilistic inference,

it is worth detailing their relationship. Let I , A, and P be random variables, where

the values of I and A are known and the value of P is not known. Often there is a

correspondence where

• I corresponds to a conditional “input,” encoded as axioms, known to be true;

• A corresponds to a set of axioms known to be true; and

• P corresponds to a deductive proof of the goal theorem using the axioms.

In the setting of weighted logic programming, there may be many different proofs

of the goal given the set of axioms. We must therefore distinguish the weighted

logic program from the “world” we are reasoning about in which these many

different proofs of the goal correspond to different, mutually exclusive events, each

of which has some probability of occurring. Weighted logic programming implements

probabilistic inference over the value of the proof random variable P given the values

of A and I: the weighted logic program implies a probability distribution p(P | A, I),
and it can be used to compute different useful quantities related to the distribution.

Previous work on weighted logic programming has shown that certain families of

probabilistic models lend themselves extremely well to weighted logic programming

as an inference mechanism. In general, weighted logic programming deals with

probability distributions over objects with combinatorial structure—paths through

graphs, grammatical derivations, and sequence alignments—that are quite useful in

computer science applications.

In principle, one can think about combining such distributions with each other,

creating distributions over even more complex structures that are related. This

paper is about a natural extension to weighted logic programming as probabilistic

inference over structures: combining weighted logic programs to perform inference

over two or more structures. We describe a program transformation, PRODUCT, that

implements joint probabilistic inference via weighted logic programming over two

structured variables P1 and P2, when (a) each of the two separate structures can be

independently reasoned about using weighted logic programming and (b) the joint

model factors into a product of two distributions p(P1 | A1, I1) and p(P2 | A2, I2)
2.

As a program transformation on traditional logic programs, PRODUCT is not

novel; it has existed as a compiler transformation for over a decade (Pettorossi and

Proietti 1994; Pettorossi 1999). As a way of describing joint probabilistic inference

in weighted logic programming, the transformation has been intuitively exploited in

designing algorithms for specific applications but has not, to our knowledge, been

generalized. The contribution of this paper is a general, intuitive, formal setting for

dynamic programming algorithms that process two or more conceptually distinct

objects. Indeed, we show that many important dynamic programming algorithms

can be derived using simpler “factor” programs and the PRODUCT transformation

together with side conditions that capture the relationship between the structures.

2 In the language of probability, this means that P1 and P2 are conditionally independent given A1, A2,
I1, and I2.
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reachable(Q) :- initial(Q). (1)

reachable(Q) :- reachable(P), edge(P, Q). (2)

Fig. 1. A simple bottom-up logic program for graph reachability.

a b

c d

initial(a) = t
edge(a, c) = t
edge(a, d) = t
edge(b, b) = t
edge(c, a) = t

edge(c, d) = t
edge(d, b) = t
edge(d, c) = t
edge(d, d) = t

Fig. 2. A directed graph and the corresponding initial database.

The paper is organized as follows. In Section 2, we give an overview of weighted

logic programming. In Section 3, we describe products of experts, a concept

from machine learning that elucidates the kinds of probabilistic models amenable

to our framework. In Section 4, we describe the PRODUCT transformation. In

Section 5, we show how several well-known algorithms can be derived using the

PRODUCT transformation applied to simpler algorithms. Section 6 presents some

variations on the PRODUCT transformation. In Section 7, we show how to use the

PRODUCT transformation and a specially designed semiring to calculate important

information-theoretic quantities related to probability distributions over proofs.

2 Weighted logic programming

To motivate weighted logic programming, we begin with a logic program for single-

source connectivity on a directed graph, shown in Figure 1. In the usual bottom-

up interpretation of this program, an initial database (i.e., set of axioms) would

describe the edge relation and one (or more) starting vertices as axioms of the form

initial(a) for some a. Repeated forward inference can then be applied on the

rules in Figure 1 to find the least database closed under those rules. However, in

traditional logic programming, this program can only be understood as a program

calculating connectivity over a graph.

Weighted logic programming generalizes traditional logic programming. In tra-

ditional logic programming, a proof is a tree of valid (deductive) inferences from

axioms, and a valid atomic proposition is one that has at least one proof. In

weighted logic programming, we generalize this notion: axioms, proofs, and atomic

propositions are said to “have values” rather than just “be valid.” Traditional

logic programs can be understood as weighted logic programs with Boolean values:

axioms all have the value “true,” as do all valid propositions. The single-source

connectivity program would describe the graph in Figure 2 by assigning t as the

value of all the existing edges and the proposition initial(a).

2.1 Non-Boolean programs

With weighted logic programming, the axioms and propositions can be understood

as having non-Boolean values. In Figure 3, each axiom of the form edge(X, Y) is given



4 S. B. Cohen et al.

a b

c d
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initial(a) = 0
edge(a, c) = 4
edge(a, d) = 20
edge(b, b) = 8
edge(c, a) = 9

edge(c, d) = 15
edge(d, b) = 6
edge(d, c) = 16
edge(d, d) = 2

Fig. 3. A cost graph and the corresponding initial database.
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initial(a) = 1
edge(a, c) = 0.2
edge(a, d) = 0.8
edge(b, b) = 0.9
edge(c, a) = 0.6

edge(c, d) = 0.4
edge(d, b) = 0.2
edge(d, c) = 0.3
edge(d, d) = 0.5

Fig. 4. A probabilistic graph and the corresponding initial database. With stopping

probabilities made explicit, this would encode a Markov model.

a value corresponding to the cost associated with that edge in the graph, and the

axiom initial(a) is given the value 0. If we take the value or “score” of a proof to

be the sum of the values the axioms at its leaves and take the value of a proposition

to be the minimum score over all possible proofs, then the program from Figure 1

gives a declarative specification of the single-source shortest path problem. Multiple

uses of an axiom in a proof are meaningful: if a proof includes the edge(d, d) axiom

once, it corresponds to a single traversal of the loop from d to d and adds a cost of

2, and if a proof includes the axiom twice, it corresponds to two distinct traversals

and adds a cost of 4.

We replace the connectives :- (disjunction) and , (conjunction) with min= and +,

respectively, and interpret the weighted logic program over the nonnegative numbers.

With a specific execution model, the result is Dijkstra’s single-source shortest path

algorithm.

In addition to the cost-minimization interpretation in Figure 3, we can interpret

weights on edges as probabilities and restate the problem in terms of probability

maximization. In Figure 4, the outgoing edges from each vertex sum to at most 1.

If we assign the missing 0.1 probability from vertex b to a “stopping” event—either

implicitly or explicitly by modifying the axioms—then each vertex’s outgoing edges

sum to exactly 1 and the graph can be seen as a Markov model or probabilistic

finite-state network over which random walks are well defined. If we replace the

connectives :- (disjunction) and , (conjunction) with max = and ×, then the value

of reachable(X) for any X is the probability of the most likely path from a

to X. For instance, reachable(a) ends up with the value 1, and reachable(b)

ends up with value 0.16, corresponding to the path a → d → b, whose weight is

(value of initial(a) × value of edge(a, d) × value of edge(d, b)).

If we keep the initial database from Figure 4 but change our operators from max =

and × to += and ×, the result is a program for summing over the probabilities of all

distinct paths that start in a and lead to X, for each vertex X. This quantity is known
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reachable(Q) ⊕= initial(Q). (3)

reachable(Q) ⊕= reachable(P) ⊗ edge(P, Q). (4)

Fig. 5. The logic program from Figure 1, rewritten to emphasize that it is generalized to an

arbitrary semiring.

as the “path sum” (Tarjan 1981). The path sum for reachable(b), for instance, is

10—this is not a probability, but rather an infinite sum of probabilities of many

paths, some of which are prefixes of each other3.

These three related weighted logic programs are useful generalizations of the

reachability logic program in Figure 1. Figure 5 gives a generic representation of

all four algorithms in the Dyna language (Eisner et al. 2005). The key difference

among them is the semiring in which we interpret the weights. An algebraic semiring

consists of five elements 〈�,⊕,⊗, 0, 1〉, where � is a domain closed under ⊕ and ⊗,

⊕ is a binary, associative, commutative operator, ⊗ is a binary, associative operator

that distributes over ⊕, 0 ∈ � is the ⊕-identity, and 1 ∈ � is the ⊗-identity.

We require, following Goodman (1999), that the semirings we use be complete.

Complete semirings are semirings with the additional property that they are closed

under finite products and infinite sums—in our running example, this corresponds

to the idea that there may be infinitely many paths through a graph, all with finite

length. Complete semirings also have the property that infinite sums behave like

finite ones—they are associative and commutative, and the multiplicative operator

distributes over them.

In our running example, reachability uses the Boolean semiring 〈{t, f},∨,∧, f, t〉,
single-source shortest path uses 〈��0 ∪ {∞},min,+,∞, 0〉, the most-probable-path

variant uses 〈[0, 1],max,×, 0, 1〉, and the probabilistic path-sum variant uses the

so-called “real” semiring 〈��0 ∪ {∞},+,×, 0, 1〉.
Weighted logic programming was developed primarily within the computational

linguistics community. Building upon the observations of Shieber et al. (1995) and

Sikkel (1997) that many parsing algorithms for nondeterministic grammars could

be represented as deductive logic programs, Goodman (1999) showed that the

structure of the parsing algorithms was amenable to interpretation on a number of

semirings. McAllester (2002) additionally showed that this representation facilitates

reasoning about asymptotic complexity. Other developments include a connection

between weighted logic programs and hypergraphs (Klein and Manning 2004),

optimal A∗ search for maximizing programs (Felzenszwalb and McAllester 2007),

semiring-general agenda-based implementations (Eisner et al. 2005), improved k-best

3 Clearly, “10” is not a meaningful probability, but that is a result of the loop from b to b with
probability 0.9—in fact, one informal way of looking at the result is simply to observe that 10 =
1 + 0.9 + (0.9)2 + (0.9)3 + . . ., corresponding to proofs of reachable(b) that include edge(b, b) zero,
one, two, three, . . . times. If we added an axiom edge(b, final) with weight 0.1 representing the 10%
probability of stopping at any step in state b, then the path sum for reachable(final) would be
10 × 0.1 = 1, which is a reasonable probability that corresponds to the fact that a graph traversal can
be arbitrarily long but has a 100% chance of eventually reaching b and then stopping.
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algorithms (Huang and Chiang 2005), and program transformations to improve

efficiency (Eisner and Blatz 2007).

2.2 Formal definition

Eisner and Blatz (2007) describe the semantics of weighted logic programs in detail;

we summarize their discussion in this section and point the reader to that paper for

further detail. A weighted logic program is a set of Horn equations describing a set of

declarative, usually recursive equations over an abstract semiring. Horn equations,

which we will refer to by the shorter and more traditional term rules, take the form

consequent(U) ⊕= antecedent1(W1) ⊗ · · · ⊗ antecedentn(Wn).

Here, U and Wi are sequences of terms that include free variables. If the variables

in U are a subset of the variables in W1, . . . ,Wn for every rule, then the program is

range restricted or fully grounded.

We can also give rules side conditions. Side conditions are additional constraints

that are added to a rule to remove certain proofs from consideration. For example,

side conditions could allow us to modify rule (4) in Figure 5 to disallow self-loops

and only allow traversal of an edge when there was another edge in the opposite

direction:

reachable(Q) ⊕= reachable(P) ⊗ edge(P, Q) if edge(Q, P) ∧ Q �= P. (5)

Side conditions do not change the value of any individual proof; they only filter out

any proof that does not satisfy the side conditions. In this paper, we use mostly side

conditions that enforce equality between variables. For a more thorough treatment

of side conditions, see Goodman (1999) or Eisner and Blatz (2007).

A weighted logic program is specified on an arbitrary semiring and can be

interpreted in any semiring 〈�,⊕,⊗, 0, 1〉 as previously described. The meaning of

a weighted logic program is determined by the rules together with a set of fully

grounded axioms (or facts in the Prolog setting). Each axiom is assigned a value

from the set � that is interpreted as a weight or score.

A common idiom in weighted logic programming is to specify the query as a dis-

tinguished predicate goal that takes no arguments. A computationally uninteresting

(because there are no intermediate computation steps) but otherwise legitimate way

to present a weighted logic program is as a single rule of the form

goal ⊕= axiom1(W1) ⊗ · · · ⊗ axiomn(Wn).

In this degenerate case, each distinct way of satisfying the premises using axioms in

the database would correspond to a distinct proof of goal. The score of each proof

would be given by the semiring product of the scores of the axioms, and the value

of goal would be determined by the semiring sum of the scores of all the proofs.

In the general case, the value of the proposition/theorem goal is a semiring

sum over all of its proofs, starting from the axioms, where the value of any single

proof is the semiring product of the axioms involved. This is effectively encoded

using the inference rules as a sum of products of sums of products of . . . sums
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b c

d

00.2,

10.8,

11.0,

a

00.5,

10.3,

00.2,

initial(a) = 1
final(c) = 1
arc(a, b, 0) = 0.5
arc(a, b, 1) = 0.3
arc(a, d, 0) = 0.2
arc(b, c, 0) = 0.2
arc(b, c, 1) = 0.8
arc(d, c, 1) = 1.0

Fig. 6. A probabilistic FSA and the corresponding initial database.

of products, exploiting distributivity and shared substructure for efficiency. This

inherent notion of shared substructure means that weighted logic programming can

give straightforward declarative specifications for problems that are typically solved

by dynamic programming. The Dyna programming language implements a particular

dynamic programming strategy for implementing these declarative specifications

(Eisner et al. 2005), though the agenda algorithm that it implements may potentially

have significantly different behavior, in terms of time and space complexity, than

other dynamic programming algorithms that meet the same specification.

In many practical applications, as in our reachability example in Section 2.1,

values are interpreted as probabilities to be maximized or summed or costs to be

minimized.

3 Weighted logic programs and probabilistic reasoning

In this section, we will return focus to the probabilistic interpretation of weighted

logic programs that we first described in the Introduction. In Section 3.1, we will

describe in more detail how the results of weighted logic programs are interpreted

as probabilities—readers with a background in statistics and machine learning can

probably skip or skim this section. In Section 3.2, we will introduce the notion of a

product of experts that motivates the PRODUCT transformation.

Our running example for this section is a probabilistic finite-state automaton

(FSA) over the alphabet {0, 1}, shown in Figure 6. The most probable path through

the graph is the one that recognizes the string “01” by going through states a, b, and

c, and that the probability of this path is 0.4. Other than the labels on the edges,

this is the same setup used in the graph-reachability example from Figure 4. The

edge predicate from the previous section is now called arc and has been augmented

to carry a third argument representing an output character.

3.1 The probabilistic interpretation of weighted logic programming

Recall from the Introduction that, in the context of weighted logic programming,

we have random variables I , A, and P , where

• I corresponds to a set of conditional “input” axioms known to be true,

• A corresponds to a set of axioms known to be true, and

• P corresponds to a deductive proof of the goal theorem using the axioms.
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goal ⊕= path(Q) ⊗ final(Q). (6)

path(Q) ⊕= initial(Q). (7)

path(Q) ⊕= path(P) ⊗ arc(P, Q, A). (8)

Fig. 7. The weighted logic program for weighted FSA reachability.

goal ⊕= path(Q, I) ⊗ final(Q) ⊗ length(I). (9)

path(Q, 0) ⊕= initial(Q). (10)

path(Q, I) ⊕= path(P, I− 1) ⊗ arc(P, Q, A) ⊗ string(I, A). (11)

Fig. 8. The weighted logic program for weighted FSA recognition.

In this case, I corresponds to one of the various possible sentences recognized by

the FSA (i.e., 00, 01, 10, and 11); A corresponds to a particular directed graph with

weighted edges, encoded by a set of axioms; and P corresponds to an individual

proof/path through the graph. In Figure 7, which is the straightforward adaptation

of the reachability program in Figure 5 to labeled edges, the value of goal in the

most-probable-path semiring is maxproof p(P = proof , I = sentence | A = graph)—

the value of the most probable path emitting any possible sentence I .

In order to talk about the input sentences I , we first add a set of axioms

that describe I . If we are interested in the sentence “01,” we would add axioms

string(1, 0), string(2, 1), and length(2), whereas if we are interested in the sentence

“hey,” we would add axioms string(1, h), string(2, e), string(3, y), and length(3).

These axioms are all given the value 1 (the multiplicative unit of the semiring), and

so they could equivalently be treated as side conditions. With these new axioms,

we modify Figure 7 to obtain Figure 8, a weighted logic program that limits the

proofs/paths to the ones which represent recognition of the input string I4.

Now, Figure 8 interpreted over the most-probable-path semiring does allow us

to find the proof that, given the edge weights and a specific sentence, maximizes

p(P = proof | I = sentence, A = graph). It does not, however, give us p(P = proof |
I = sentence, A = graph), but rather p(P = proof , I = sentence | A = graph), the

joint probability of a path and a sentence given the weights on the edges.

Concretely, in our running example, there are five possible proofs of goal in

Figure 7 whose probabilities sum to 1, but there are only two parses that also

recognize the string “01,” which are a0b1c with weight 0.4 and a0d1c with weight

0.2—the route through b is twice as likely. The value of goal in Figure 8 interpreted

in the most-probable-path semiring would be 0.4 (the joint probability of obtaining

the proof a0b1c and of recognizing the string “01”) not 0.6 (the probability of the

proof a0b1c given the sentence “01”). In other words, we have p(P = a0b1c, I =

01 | A = Fig. 6) = 0.4, p(P = a0d1c, I = 01 | A = Fig. 6) = 0.2, p(P = a0b1c | I =

01, A = Fig. 6) = 0.6.

4 Rule (11) in this figure uses “I − 1” in a premise: we assume that our formalism includes natural
numbers that support increment/decrement operations, and our simple uses can be understood as
syntactic shorthand for either structured terms (z, s(z), etc.) or the use of primitive side conditions
such as inc(I, I′).
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The solution for correctly discovering the conditional probability lies in the fact

that the joint and conditional probabilities are related in the following way:

p(P | A, I) =
p(P , I | A)

p(I | A)
.

This, combined with the knowledge that the marginal probability p(I | A) is the result

of evaluating Figure 8 over the path-sum semiring (i.e., 〈��0∪{∞},+,×, 0, 1〉), allows

us to correctly calculate not only the most probable proof P of a given sentence

but also the probability of that proof given the sentence. The marginal probability

in our running example is 0.6, and 0.4/0.6 = 0.6, which is the desired result.

To restate this in a way that is more notationally consistent with other work in

machine learning, we first take the weighted axioms A as implicit. Then, instead of

proofs P , we talk about values y for a random variable Y drawn out of a domain

Y (the space of possible structures, which in our setting corresponds to the space

of possible proofs), and instead of inputs I , we talk about values x for a random

variable X drawn out of a domain X (the space of all possible inputs).

Then, to predict the most likely observed value for y, denoted ŷ, we have the

following formula:

ŷ = argmax
y∈Y

p(Y = y | X = x) = argmax
y∈Y

p(Y = y,X = x)

p(X = x)
. (12)

Because p(X = x) does not depend on y, if we only want to know ŷ it suffices to

find y that maximizes p(Y = y,X = x) (which was written as p(P = proof , I =

sentence | A = axioms) above). One way to do this is to execute a weighted logic

program in the most-probable-path semiring.

3.2 Products of experts

Of recent interest are probability models p that take a factored form, for example:

p(Y = y | X = x) ∝ p1(Y = y | X = x) × · · · × pn(Y = y | X = x), (13)

where ∝ signifies “proportional to” and suppresses the means by which the

probability distribution is renormalized to sum to 1. This kind of model is called

a product of experts (Hinton 2002). Intuitively, the probability of an event under p

can only be relatively large if “all the experts concur,” i.e., if the probability is large

under each of pi. Any single expert can make an event arbitrarily unlikely (even

impossible) by giving it very low probability, and the solution to equation (12) for

a product of experts model will be y ∈ Y (here, a proof) least objectionable to all

experts.

The attraction of such probability distributions is that they modularize com-

plex systems (Klein and Manning 2003; Liang et al. 2008). They can also offer

computational advantages when solving equation (12) (Chiang 2007). Further, the

expert factors can often be trained (i.e., estimated from data) separately, speeding

up expensive but powerful machine learning methods (Smith and Smith 2004; Smith

et al. 2005; Sutton and McCallum 2005; Cohen and Smith 2007).
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To the best of our knowledge, there has been no attempt to formalize the following

intuitive idea about products of experts: algorithms for reasoning about mutually

constrained product proof values should resemble the individual algorithms for each

of the two separate “factor” proofs’ values. Our formalization is intended to aid in

algorithm development as new kinds of complex random variables are coupled, with

a key practical advantage: the expert factors are known because they fundamentally

underlie the main algorithm. Indeed, we call our algorithms “products” because they

are derived from “factors,” analogous to the product of expert probability models

that are derived from factor expert probability models.

To relate this observation to the running example from this section, imagine we

created two copies of Figure 8 which operated over the same sentence (as described

by string and length predicates) but which had different predicates and axioms

goal1, path1, final1, initial1, and arc1 (and likewise goal2, path2, etc.). Consider

a combined goal predicate goal1•2 defined by the rule

goal1•2 ⊕= goal1 ⊗ goal2. (14)

Now we have two experts (goal1 and goal2), and we literally take the (semiring)

product of them, but this is still not quite the “product of experts,” because the

proofs of the goals are allowed to be independent. In other words, what we have is

the following:

p(Y1 = y1, Y2 = y2 | X = x) ∝ p1(Y1 = y1 | X = x) × p2(Y2 = y2 | X = x).

The PRODUCT transformation is a meaning-preserving transformation on weighted

logic programs that exposes the joint structure in such a way that—depending on

our domain-specific understanding of what it means for the two proofs y1 and y2

to match—allows us to add constraints that result in a weighted logic program that

forces the structures to match, as required by the specification in equation (13).

4 Products of weighted logic programs

In this section, we will motivate products of weighted logic programs in the context

of the running example of generalized graph reachability. We will then define

the PRODUCT transformation precisely and describe the process of specifying new

algorithms as constrained versions of product programs.

The PRODUCT transformation can be seen as an instance of the tupling program

transformation combined with an unfold/fold transformation (Pettorossi and Proietti

1994; Pettorossi 1999) that preserves the meaning of programs. However, we are

interested in this transformation not for reasons of efficiency, but because it has

the effect of exposing the shared structure of the two individual programs in such

a way that, by the manual addition of constraints, we can force the two original

programs to optimize over the same structures, thereby implementing optimization

over the product of experts as described in the previous section. The addition of

constraints requires an understanding of the problem at hand, as shown in Section

5 by presenting a number of examples.
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reachable1(Q1) ⊕= initial1(Q1). (15)

reachable1(Q1) ⊕= reachable1(P1) ⊗ edge1(P1, Q1). (16)

reachable2(Q2) ⊕= initial2(Q2). (17)

reachable2(Q2) ⊕= reachable2(P2) ⊗ edge2(P2, Q2). (18)

Fig. 9. Two identical experts for generalized graph reachability, duplicates of the program

in Figure 5.

reachable1•2(Q1, Q2) ⊕= initial1(Q1) ⊗ initial2(Q2). (19)

reachable1•2(Q1, Q2) ⊕= reachable2(P2) ⊗ edge2(P2, Q2) ⊗ initial1(Q1). (20)

reachable1•2(Q1, Q2) ⊕= reachable1(P1) ⊗ edge1(P1, Q1) ⊗ initial2(Q2). (21)

reachable1•2(Q1, Q2) ⊕= reachable1•2(P1, P2) ⊗ edge1(P1, Q1) ⊗ edge2(P2, Q2). (22)

Fig. 10. Four rules that, in addition to the rules in Figure 9, give the product of the two

experts defined by the reachable1 and reachable2 predicates.

4.1 The product of graph-reachability experts

Figure 9 defines two experts, copies of the graph-reachability program from Figure 5.

We are interested in a new predicate reachable1•2(Q1, Q2), which for any particular

Q1 and Q2 should be equal to the product of reachable1(Q1) and reachable2(Q2).

Just as we did in our thought experiment with goal1•2 in the previous section, we

could define the predicate by adding the following rule to the program in Figure 9:

reachable1•2(Q1, Q2) ⊕= reachable1(Q1) ⊗ reachable2(Q2).

This program is a bit simplistic; however, it merely describes calculating the experts

independently and then combining them at the end.

The predicate reachable1•2 can alternatively be calculated by adding the follow-

ing four rules to Figure 9:

reachable1•2(Q1, Q2) ⊕= initial1(Q1) ⊗ initial2(Q2),

reachable1•2(Q1, Q2) ⊕= initial1(Q1) ⊗ reachable2(P2) ⊗ edge2(P2, Q2),

reachable1•2(Q1, Q2) ⊕= reachable1(P1) ⊗ edge1(P1, Q1) ⊗ initial2(Q2),

reachable1•2(Q1, Q2) ⊕= reachable1(P1) ⊗ edge1(P1, Q1) ⊗
reachable2(P2) ⊗ edge2(P2, Q2).

This step is described as an unfold by Pettorossi (1999). This unfold can then

be followed by a fold: because reachable1•2(Q1, Q2) was defined above to be

the product of reachable1(Q1) and reachable2(Q2), we can replace each instance

of the two premises reachable1(Q1) and reachable2(Q2) with the single premise

reachable1•2(Q1, Q2).

The new rules that result from this replacement can be seen in Figure 10.

4.2 The PRODUCT transformation

The PRODUCT program transformation is shown in Figure 11. For each desired

product of experts, where one expert, the predicate p, is defined by n rules and the
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Input: A logic program P and a set S of pairs of predicates (p, q).
Output: A program P ′ that extends P, additionally computing the product predicate

p•q for every pair (p, q) ∈ S in the input.
1. P ′ ← P
2. for all pairs (p↪ q) in S do
3. for all rules in P, of the form p(W)⊕=A1 ⊗ · · · ⊗An do
4. for all rules in P, of the form q(X)⊕=B1 ⊗ · · · ⊗Bm do
5. let r ← [p•q(W,X)⊕=A1 ⊗ · · · ⊗An ⊗B1 ⊗ · · · ⊗Bm]
6. for all pairs (s(Y), t(Z)) of antecedents in r such that (s, t) ∈ S do
7. remove the antecedents s(Y) and t(Z) from r
8. insert the antecedent s•t(Y,Z) into r
9. end for

10. add r to P ′

11. end for
12. end for
13. end for
14. return P ′

Fig. 11. Algorithmic specification of the PRODUCT transformation.

other expert q by m rules, the transformation defines the product of experts for p•q
with n × m new rules, the cross product of inference rules from the first and second

experts. The value of a coupled proposition p•q in P′ will be equal to the semiring

product of p’s value and q’s value in P (or, equivalently, in P′).

Note that lines 6–8 are nondeterministic under certain circumstances, because if

the antecedent of the combined program is a(X) ⊗ a(Y) ⊗ b(Z) and the algorithm is

computing the product of a and b, then the resulting antecedent could be either

a•b(X, Z) ⊗ a(Y) or a•b(Y, Z) ⊗ a(X). This nondeterminism usually does not arise, and

when it does, as in Section 5.2, there is usually an obvious preference.

The PRODUCT transformation is essentially meaning preserving: if the program P′

is the result of the PRODUCT transformation on P, then the following is true:

• Any ground instance p(X) that is given a value in P is given the same value

in P′. This is immediately apparent because the program P′ is stratified: none

of the new rules are ever used to compute values of the form p(X), so their

value is identical to their value in P.

• Any ground instance p•q(X,Y) in P′ has the same value as p(X) ⊗ q(Y). This

is the result of the following theorem:

Theorem 1

Let P be a weighted logic program over a set of predicates R, and let S be a set

of pairs of predicates from P. Then after applying PRODUCT on (P,S), resulting in

a new program P′, for every (p, q) ∈ S, the value p•q(X,Y) in P′ is p(X) ⊗ q(Y).

Proof: By distributivity of the semiring, we know that p(X) ⊗ q(Y) is the sum:⊕
t,r

v(t) ⊗ v(r) where t and r range over proofs of p(X) and q(Y) respectively, with

their values being v(t) and v(r). This implies that we need to show that there is a

bijection between the set A of proofs for p•q(X,Y) in P′ and the set B of pairs
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of proofs for p(X) and q(Y) such that for every s ∈ A and (t, r) ∈ B, we have

v(s) = v(t) ⊗ v(r).

Using structural induction over the proofs, we first show that every pair of proofs

(t, r) ∈ B has a corresponding proof s ∈ A with the needed value. In the base case,

where the proofs t and r include a single step, the correspondence follows trivially.

Let (t, r) ∈ B. Without loss of generality, we will assume that both t and r contain

more than a single step in their proofs. In the last step of its proof, t used a rule of

the form

p(X) ⊕= a1(X1) ⊗ · · · ⊗ an(Xn) (23)

and r used a rule in its last step of the form

q(Y) ⊕= b1(Y1) ⊗ · · · ⊗ bm(Ym). (24)

Let ti be the subproofs of ai(Xi) and rj be the subproofs of bj(Yj). It follows that

PRODUCT creates from those two rules a single inference rule of the form:

p•q(X,Y) ⊕= c1(W1) ⊗ · · · ⊗ cp(Wp), (25)

where ci(Wi) is either ak(Yk) for some k, or bl(Yl) for some k, or ak•b�(Xk,Y�) for

some k, �.

We resolve each case as follows:

(1) If ci(Wi) = ak(Yk), then we set si = tk .

(2) If ci(Wi) = bk(Yk), then we set si = rk .

(3) If ci(Wi) = ak•b�(Xk,Y�), then according to the induction hypothesis, we have

a proof for ak•b�(Xk,Y�) such that its value is v(tk) ⊗ v(r�). We set si to be that

proof.

We have shown that there is a proof for each antecedent ci(Wi) in rule (25), and

therefore there is a proof of p•q(X,Y). Furthermore, the value of p•q(X,Y) is indeed

p(X) ⊗ q(Y), as concluded trivially from the induction steps.

The reverse direction for constructing the bijection is similar, again using structural

induction over proofs. �

4.3 From PRODUCT to a product of experts

The output of the PRODUCT transformation is a starting point for describing dynamic

programming algorithms that perform two actions—traversing a graph, scanning a

string, parsing a sentence—at the same time and in a coordinated fashion. Exactly

what “coordinated fashion” means depends on the problem, and answering that

question determines how the problem is constrained.

If we return to the running example of generalized graph reachability, the program

as written has eight rules, four from Figure 9 and four from Figure 10. Two

examples of constrained product programs are given in Figures 12–14. In the first

example in Figure 12, the only change is that all but two rules have been removed

from the program in Figures 9 and 10. Whereas in the original product program

reachable1•2(Q1, Q2) corresponded to the product of the weight of the best path
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reachable1•2(Q1, Q2) ⊕= initial1(Q1) ⊗ initial2(Q2). (26)

reachable1•2(Q1, Q2) ⊕= reachable1•2(P1, P2) ⊗ edge1(P1, Q1) ⊗ edge2(P2, Q2). (27)

Fig. 12. By removing all but these two rules from the product of experts in Figure 10, we

constrain both paths to have the same number of steps.

reachable1•2(Q1, Q2) ⊕= initial1(Q1) ⊗ initial2(Q2) if Q1 = Q2. (28)

reachable1•2(Q1, Q2) ⊕= reachable1•2(P1, P2) ⊗ edge1(P1, Q1) ⊗ edge2(P2, Q2) if Q1 = Q2.

Fig. 13. By further constraining the program in Figure 12 to demand that Q1 = Q2 at all

points, we constrain both paths to be identical.

reachable1•2(Q) ⊕= initial1(Q) ⊗ initial2(Q). (29)

reachable1•2(Q) ⊕= reachable1•2(P) ⊗ edge1(P, Q) ⊗ edge2(P, Q). (30)

Fig. 14. We can simplify Figure 13 by internalizing the side condition and giving

reachable1•2 only one argument.

from the initial state of graph one to Q1 and the weight of the best path from the

initial state of graph two to Q2, the new program computes the best paths from the

two origins to the two destinations with the additional requirement that the paths

be of the same length—the rules that were deleted allowed for the possibility of a

prefix on one path or the other.

If our intent is for the two paths to not only have the same length but visit

exactly the same sequence of vertices, then we can further constrain the program

to only define reachable1•2(Q1, Q2) where Q1 = Q2, as shown in Figure 13. After

adding this side condition, it is no longer necessary for reachable1•2 to have two

arguments that are always the same, so we can simply further as shown in Figure 14.

For simplicity’s sake, we will usually collapse arguments that have been forced by

equality constraints to agree.

The choice of paired predicates S is important for the final weighted logic

program that PRODUCT returns, and it also limits the way we can add constraints

to derive a new weighted logic program. Future research might consider a machine

learning setting for automatically deriving S from data, to minimize some cost (e.g.,

observed runtime). When PRODUCT is applied on two copies of the same weighted

logic program (concatenated together to a single program), a natural schema for

selecting paired predicates arises, in which we pair a predicate from one program

with the same predicate from the other program. This “natural” pairing leads to the

derivation of several useful, known algorithms, to which we turn in Section 5.

5 Examples

In this section, we give several examples of constructing weighted logic programs as

constrained products of simpler weighted logic programs.
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5.1 Finite-state algorithms

We have already encountered weighted finite-state automata (WFSAs) in Section 3.1.

Like WFSAs, weighted finite-state transducers (WFSTs) are a generalization of the

graph-reachability problem: in WFSAs, the edges are augmented with a symbol

and represented as arc(P, Q, A), whereas in WFSTs, the edges are augmented with

a pair of input-output symbols and represented as arc(P, Q, A, B). Weighted finite-

state machines are widely used in speech and language processing (Mohri 1997;

Pereira and Riley 1997). They are used to compactly encode many competing

string hypotheses, for example, in speech recognition, translation, and morphological

(word-structure) disambiguation. Many sequence labeling and segmentation methods

can also be seen as weighted finite-state models.

5.1.1 Weighted finite-state automata

Our starting point for WFSAs will be the weighted logic program for WFSAs

described in Figure 7, which is usually interpreted as a probabilistic automaton in

the most-probable-path semiring (i.e., 〈[0, 1],max,×, 0, 1〉). If the PRODUCT of that

algorithm with itself is taken, we can follow a series of steps similar to the ones

described in Section 4.3. First, we remove rules that would allow the two WFSAs to

consider different prefixes, and then we add a constraint to rule (33) that requires the

two paths’ symbols to be identical. The result is a WFSA describing the (weighted)

intersection of the two WFSAs. The intersection of two WFSAs is itself a WFSA,

though it is a WFSA where states are described by two terms—Q1 and Q2 in

path1•2(Q1, Q2)—instead of a single term.

Weighted intersection generalizes intersection and has a number of uses. For

instance, consider an FSA that is “probabilistic” but only accepts the single string

“01” because the transitions are all deterministic and have probability 1:

If we consider the program in Figure 15 with axioms describing the above FSA and

the probabilistic FSA given in Figure 6, then the resulting program is functionally

equivalent to the weighted logic program in Figure 8 describing a WFSA specialized

to a particular string. Alternatively, if we consider the program in Figure 15 with

axioms describing the probabilistic FSA in Figure 6 and the following single-state

probabilistic FSA, the result will be a probabilistic FSA biased toward edges with

the “1” symbol and against edges with the “0” symbol.

Both of the above examples can be understood as instances of the product of

experts pattern discussed in Section 3.2. In the first case, the additional expert

eliminates certain possibilities by assigning zero probability to them, and in the

second case, the additional expert merely modifies probabilities by preferring the

symbol “1” to the symbol “0.”
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goal1•2 ⊕= path1•2(Q1, Q1) ⊗ final1(Q2) ⊗ final2(Q2). (31)

path1•2(Q1, Q2) ⊕= initial1(Q1) ⊗ initial2(Q2). (32)

path1•2(Q1, Q2) ⊕= path1•2(P1, P2)⊗ arc1(P1, Q1, A1)⊗ arc2(P2, Q2, A2) if A1 = A2. (33)

Fig. 15. The constrained product of two of the WFSA experts described in Figure 7.

goal ⊕= path(Q) ⊗ final(Q). (34)

path(Q) ⊕= initial(Q). (35)

path(Q) ⊕= path(P) ⊗ arc(P, Q, A, B). (36)

Fig. 16. The weighted logic program describing WFSTs.

goal1•2 ⊕= path1•2(Q1, Q2) ⊗ final1(Q1) ⊗ final2(Q2). (37)

path1•2(Q1, Q2) ⊕= initial1(Q1) ⊗ initial2(Q2). (38)

path1•2(Q1, Q2) ⊕= path1•2(P1, P2) ⊗ arc1(P1, Q1, A1, B1) ⊗ arc2(P2, Q2, A2, B2) if B1 = A2.

Fig. 17. The composition of two WFSTs can be derived by constraining the product of two

WFSTs.

5.1.2 Weighted finite-state transducers

Suppose we take the PRODUCT transformation of the WFST recognition algorithm

in Figure 16 with itself and constrain the result by removing all but the three

interesting rules (as before) and requiring that B1 (the “output” along the first

edge) always be equal to A2 (the “input” along the second edge). The result is

shown in Figure 17; this is the recognition algorithm for the WFST resulting from

composition of two WFSTs. Composition permits small, understandable components

to be cascaded and optionally compiled, forming complex but efficient models of

string transduction (Pereira and Riley 1997).

5.2 Context-free parsing

Parsing natural languages is a difficult, central problem in computational linguistics

(Manning and Schütze 1999). Consider the sentence “Alice saw Bob with binoculars.”

One analysis (the most likely in the real world) is that Alice had the binoculars and

saw Bob through them. Another is that Bob had the binoculars and Alice saw the

binocular-endowed Bob. Figure 18 shows syntactic parses into noun phrases (NP),

verb phrases (VP), etc., corresponding to these two meanings. It also shows some of

the axioms that could be used to specify a context-free grammar (CFG) describing

English sentences in Chomsky normal form (Hopcroft and Ullman 1979)5. A proof

5 Chomsky normal form (CNF) means that the rules in the grammar are either binary with two
nonterminals or unary with a terminal. We do not allow ε rules, which in general are allowed in CNF
grammars.
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Alice   saw   Bob   with   binoculars

NPV P NP

PPVP
VP

NP

S

NPV P NP

PP

NP
VP

NP

S

NP → Alice unary(np, “Alice”)
NP → Bob unary(np, “Bob”)
P → with unary(p, “with”)
. . . . . .

. . . . . .

S → NP VP binary(s, np, vp)
VP → V NP binary(vp, v, np)
PP → P NP binary(pp, p, np)
NP → NP PP binary(np, np, pp)

Fig. 18. An ambiguous sentence that can be parsed two ways in English (left), some of

the Chomsky normal form rules for English grammar (center), and the corresponding

axioms (right). There would also need to be five axioms of the form string(1, “Alice”),

string(2, “saw”), etc.

goal1 ⊕= start1(S) ⊗ length(N) ⊗ c1(S, 0, N). (39)

c1(X, I− 1, I) ⊕= unary1(X, W) ⊗ string(I, W). (40)

c1(X, I, K) ⊕= binary1(X, Y, Z) ⊗ c1(Y, I, J) ⊗ c1(Z, J, K). (41)

Fig. 19. A weighted logic program for parsing weighted context-free grammars.

corresponds to a derivation of the given sentence in a context-free grammar, i.e., a

parse tree.

Shieber et al. (1995) show that parsing with CFGs can be formalized as a logic

program, and in Goodman (1999), this framework is extended to the weighted

case. If weights are interpreted as probabilities, then the 〈[0, 1],max,×, 0, 1〉 semiring

interpretation finds the probability of the parse with maximum probability and the

〈��0 ∪ {∞},+,×, 0, 1〉 semiring interpretation finds the total weight of all parse

trees (a measure of the “total grammatically” of a sentence). In Figure 19, we give

the specification of the weighted version of the Cocke-Kasami-Younger (CKY)

algorithm (Kasami 1965; Younger 1967; Cocke and Schwartz 1970), which is

a dynamic programming algorithm for parsing using a context-free grammar in

Chomsky normal form6.

Figure 19 suggestively has a subscript attached to all but the length and string

inputs. In our description of the product of experts framework in Section 3.2, the

axioms length and string correspond to the conditional input sentence I . The

unconstrained result of the PRODUCT transformation on the combination of the rules

in Figure 19 and a second copy that has “2” subscripts is given in Figure 20.

Under the most-probable-path probabilistic interpretation, the value of goal1•2 is

the probability of the given string being generated twice, once by each of the two

probabilistic grammars, in each case by the most probable tree in that grammar. By

constraining Figure 20, we get the more interesting program in Figure 21 that adds

the additional requirement that the two parse trees in the two different grammars

have the same structure. In particular, in all cases, the constraints I1 = I2, J1 = J2,

6 Strictly speaking, the CKY parsing algorithm corresponds to a näıve bottom-up evaluation strategy
for this program.
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goal1•2 ⊕= length(N1) ⊗ length(N2) ⊗ (42)

start1(S1) ⊗ start2(S2) ⊗ c1•2(S1, 0, N1, S2, 0, N2).

c1•2(X1, I1 − 1, I1, X2, I2 − 1, I2) ⊕= unary1(X1, W1) ⊗ string(I1, W1) ⊗ (43)

unary2(X2, W2) ⊗ string(I2, W2).

c1•2(X1, I1 − 1, I1, X2, I2, K2) ⊕= unary1(X1, W1) ⊗ string(I1, W1) ⊗ (44)

binary2(X2, Y2, Z2) ⊗ c2(Y2, I2, J2) ⊗ c2(Z2, J2, K2).

c1•2(X1, I1, K1, X2, I2 − 1, I2) ⊕= unary2(X2, W2) ⊗ string(I2, W2) ⊗ (45)

binary1(X1, Y1, Z1) ⊗ c1(Y1, I1, J1) ⊗ c1(Z1, J1, K1).

c1•2(X1, I1, K1, X2, I2, K2) ⊕= binary1(X1, Y1, Z1) ⊗ binary2(X2, Y2, Z2) ⊗ (46)

c1•2(Y1, I1, J1, Y2, I2, J2) ⊗ c1•2(Z1, J1, K1, Z2, K2, J2).

Fig. 20. The result of the PRODUCT transformation on two copies of Figure 19.

goal1•2 ⊕= length(N) ⊗ start1(S1) ⊗ start2(S2) ⊗ c1•2(S1, S2, 0, N) (47)

c1•2(X1, X2, I− 1, I) ⊕= unary1(X1, W) ⊗ unary2(X2, W) ⊗ string(I, W). (48)

c1•2(X1, X2, I, K) ⊕= binary1(X1, Y1, Z1) ⊗ binary2(X2, Y2, Z2) ⊗ (49)

c1•2(Y1, Y2, I, J) ⊗ c1•2(Z1, Z2, J, K).

Fig. 21. The program in Figure 20 constrained to require internally identical trees.

Alice   saw   Bob   with   binoculars

NPV P NP

PPVP
VP

NP

S

NP → Alice
P → with
S → NP VP
VP → V NP

Alice   saw   Bob   with   binoculars

Bobsaw with binoculars

withsaw
Alice

saw
saw

Alice → Alice
with → with
saw → Alice saw
saw → saw Bob

Alice   saw   Bob   with   binoculars

NP-BobV-saw P-with NP-binoculars

PP-withVP-saw

NP-Alice

S-saw

VP-saw

NP-Alice → Alice
P-with → with
S-saw → NP-Alice VP-saw
VP-saw → V-saw NP-Bob

Fig. 22. On the left, the grammar previously shown. In the middle, a context-free dependency

grammar, whose derivations can be seen as parse trees (above) or a set of dependencies

(below). On the right, a lexicalized grammar. Sample rules are given for each grammar.

K1 = K2, and N1 = N2 are added, so that instead of writing c1•2(X1, I1, J1, X2, I2, J2),

we just write c1•2(X1, X2, I, J).

5.2.1 Lexicalized CFG parsing

An interesting variant of the previous rule involves lexicalized grammars, which

are motivated in Figure 22. Instead of describing a grammar using nonterminals

denoting phrases (e.g., NP and VP), which is called a constituent-structure grammar,

we can define a (context-free) dependency grammar (Gaifman 1965) that encodes

the syntax of a sentence in terms of parent–child relationships between words. In

the case of the example of Figure 22, the arrows below the sentence in the middle
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establish “saw” as the root of the sentence; the word “saw” has three children

(arguments and modifiers), one of which is the word “with,” which in turn has the

child “binoculars.”

A simple kind of dependency grammar is a Chomsky normal form CFG where

the nonterminal set is equivalent to the set of terminal symbols (so that the terminal

“with” corresponds to a unique nonterminal with, and so on) and where all rules

have the form P → P C, P → C P, and W → w (where P is the “parent” word, C is

the “child” word that is dependent on the parent, and W is the nonterminal version

of terminal word w).

If we encode the constituent-structure grammar in the unary1 and binary1
relations and encode a dependency grammar in the unary2 and binary2 relations,

then the product is a lexicalized grammar, like the third example in Figure 22.

In particular, it describes a lexicalized context-free grammar with a product of

experts probability model (Klein and Manning 2003), because the weight given to

any production A-X → B-X C-Y is the semiring product of the weight given to

the production A → B C and the weight given to the dependency-based production

X → X Y. This was an important distinction for Klein and Manning—they were

interested in factored lexicalized grammars that Figure 21 can describe. These are

only a small (but interesting) subset of all possible lexicalized grammars. Standard

lexicalized CFGs assign weights directly to grammar productions of the form

A-X → B-X C-Y, not indirectly (as we do) by assigning weights to a constituent

structure and a dependency grammar. We will return to this point in Section 6.2

when we consider the “axiom generalization” pattern that allows us to describe

general lexicalized CKY parsing (Eisner 2000; Eisner and Satta 1999).

5.2.2 Nondeterminism and rule binarization

The result of the PRODUCT transformation shown in Figure 20 was the first time the

nondeterminism inherent in lines 6–8 of the description of the PRODUCT transforma-

tion (Figure 11) has come into play. Because there were two c1 premises and two

c2 premises, they could have been merged in more than one way. For example, the

following would have been a potential alternative to rule (46):

c1•2(X1, I1, K1, X2, I2, K2) ⊕= binary1(X1, Y1, Z1) ⊗ binary2(X2, Y2, Z2) ⊗ (50)

c1•2(Y1, I1, J1, Z2, K2, J2) ⊗ c1•2(Z1, J1, K1, Y2, I2, J2).

However, this would have broken the correspondence between I1 and I2 and

made it impossible to constrain the resulting program as we did. An alternative

to CKY is the binarized variant of CKY where rule (41) is split into two rules by

introducing a new, temporary predicate (rules (51) and (52)):

temp1(X, Y, J, K) ⊕= binary1(X, Y, Z) ⊗ c1(Z, J, K), (51)

c1(X, I, K) ⊕= c1(Y, I, J) ⊗ temp1(X, Y, J, K). (52)

In this variant, the nondeterministic choice in the PRODUCT transformation disap-

pears. The choice that we made in pairing was consistent with the choice that is

forced in the binarized CKY program.
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goal ⊕= targetlength(M) ⊗ predict(EM−1, EM, M + 1). (53)

predict(EJ−1, EJ, J + 1) ⊕= predict(EJ−2, EJ−1, J) ⊗ trigram(EJ−2, EJ−1, EJ). (54)

Fig. 23. A weighted logic program giving a trigram prediction model for a language, which

can be generalized to an n-gram model for any n.

5.3 Translation algorithms

Another example of two probabilistic models that play the role of experts arises in

translation of sentences from one natural language to another. We will summarize

how the PRODUCT transformation was applied to a simple form of phrase-to-phrase

translation (Koehn et al. 2003) by Lopez (2009).

Lopez (2009) suggested a deductive view of algorithms for machine translation,

similar to the view of parsing given by Shieber et al. (1995). Lopez used the

PRODUCT transformation to derive an algorithm for phrase translation from two

different factor programs, one which attempts to enforce fluency (a measure of the

grammaticality of a sentence) in the translated sentence and one which attempts to

enforce adequacy (a measure of how much of the meaning of an original sentence is

preserved in the translation.)

If fluency is a measure of the grammaticality of a sentence, then it would seem that

the CKY algorithm for parsing context-free grammars would be a candidate. While

such models have been used in translation (Charniak et al. 2003), Lopez’s example

uses a simpler notion of fluency based on an n-gram language model (Manning and

Schütze 1999, Chapter 6). An n-gram model assigns the probability of a sentence to

be the product of probabilities of each word following the (n − 1)-word sequence

immediately preceding it. As a concrete example, let us say that n = 3 (called a

“trigram” model) and work with the program in Figure 23. If we were estimating our

trigram model on the basis of the relative frequencies of sequences in Shakespeare’s

Othello, we would note that the phrase “if it” appears eight times in the text.

Three of these are from the sequence “if it be” and one is from the sequence

“if it prove,” so the axiom trigram(“if”, “it”, “be”) should have a probability

that is three times the probability given to trigram(“if”, “it”, “prove”). If we

then stared the program with the initial sentence fragment predict(“if”, “it”, 3),

we could derive predict(“it”, “be”, 4) with the aforementioned axiom and then

predict(“be”, “demanded”, 5) with the axiom trigram(“it”, “be”, “demanded”), a

sequence occurring once in the text. The result so far is a sequence “if it be

demanded” that does not appear in Othello, but which perhaps sounds like it could

(which is an informal way of describing the criterion for fluency).

The weighted logic program that Lopez uses to enforce adequacy is the “monotone

decoding” logic program presented in Figure 24. The program is slightly contrived in

order to interact with the PRODUCT transformation correctly. The atomic proposition

trans(I, Es) refers to a particular point, I, in the source-language string and a

list Es of unprocessed words in the target language7. Each deduction consumes

7 We use a standard syntactic shorthand for lists; “[]” can be read as the constant nil, and “E :: Es”
can be read as cons(E, Es).
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goal ⊕= sourcelength(N) ⊗ trans(N, []). (55)

trans(I′, Es) ⊕= trans(I, []) ⊗ phrase(I, I′, EJ :: Es). (56)

trans(I′, Es) ⊕= trans(I′, EJ :: Es). (57)

Fig. 24. A weighted logic program that describes monotone decoding—translating a phrase

at a time of the input language into the output language without reordering.

goal ⊕= sourcelength(N) ⊗ targetlength(M) ⊗ (58)

pr•tr(N, M, EM−1, EM, M + 1).

pr•tr(I′, J + 1, EJ−1, EJ, Es) ⊕= pr•tr(I, J, EJ−2, EJ−1, []) ⊗ (59)

trigram(EJ−2, EJ−1, EJ) ⊗ phrase(I, I′, EJ :: Es).

pr•tr(I′, J + 1, EJ−1, EJ, Es) ⊕= pr•tr(I′, J, EJ−2, EJ−1, EJ :: Es) ⊗ (60)

trigram(EJ−2, EJ−1, EJ).

Fig. 25. Phrase translation as the constrained product of Figures 23 and 24.

a single word (EJ) in the target language—indeed, this is the only function of

rule (57). When there are no words to remove, then either the entire source-language

string has been translated (rule (55)), or else progress can continue by translating

some chunk of the source-language sentence starting from position I and ending

at position I′ as the nonempty list of target-language words EJ :: Es and applying

rule (56). This translation of a sequence of the source-language words is captured

by the premise phrase(I, I′, Es), corresponding to the source subsequence from

position I to position I′ being translated as Es (a target-language phrase). The

meaning of phrase could be defined by a set of axioms or by a rule. In the latter

case, if we enumerate all the substrings Ds in the source-language sentence as axioms

substr(I, I′, Ds) and provide axioms ptranslate(Ds, Es) describing source-language

to target-language phrase translation, then phrase(I, I′, Es) may be defined by the

following rule:

phrase(I, I′, Es) ⊕= substr(I, I′, Ds) ⊗ ptranslate(Ds, Es). (61)

Note that substr might be provided as an axiom or derived from axioms encoding

the source sentence through another inference rule.

Figure 25 displays Lopez’s phrase translation program by constraining the product

of the n-gram model and monotone decoding programs. Lopez describes this for

any n, but for simplicity, we continue using a trigram model (n = 3). The combined

predicate simultaneously tracks a position in the source-language sentence I and

the target-language sentence J. The word EJ that was discarded at each step in

Figure 24 is given relevance by the trigram model. The combination of these two

programs uses the monotone decoding program’s capabilities to make sure that

the phrase-by-phrase meaning of the source-language string D1, . . . , DN is preserved

in the destination language string E1, . . . , EM (adequacy) while simultaneously using

the trigram model’s capabilities to ensure that the result is a plausible sentence in

the destination language (fluency).
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Our presentation of machine translation algorithms through the PRODUCT trans-

formation is simplistic. Lopez (2009) discusses more powerful translation algorithms

that permit, for example, reordering of phrases.

6 Variations on PRODUCT

Up to this point, we have viewed our use of the PRODUCT transformation as the one

that solves a problem of joint optimization: we take two logic programs that describe

structures (such as strings, paths, or trees), relate them to one another by adding

constraints, and then optimize over the two original structures simultaneously (one

instance of this is when we use weighted logic programming to describe a product

of experts.) This is a useful pattern, but it is not the only interesting use of the

fold/unfold transformation underlying the PRODUCT transformation. In this section,

we consider two other variants: in the first, we only optimize over one of the two

structures and fix the other one, and in the second, we take the output of PRODUCT as

describing not joint optimization over two simple structures but over one complex

structure.

6.1 Fixing one of the factor structures

The usual use of the PRODUCT transformation is to perform joint optimization on

two structures, but general side conditions can be used to take the additional step

of fixing one of the two structures and having the weighted logic program perform

optimization on the other structure, subject to constraints imposed through the

pairing.

In the setting where we consider weights to be probabilities, this is useful for

solving certain probabilistic inference problems. Using the path-sum semiring (i.e.,

〈��0 ∪ {∞},+,×, 0, 1〉), the result is a program calculating the marginalized quantity

p(x) =
∑

y p(x, y) (where x corresponds to one program’s proof and y to the other

program’s proof). This is a useful quantity in learning; for example, the expectation-

maximization algorithm (Dempster et al. 1977) for optimizing the marginalized

log likelihood of observed structures requires calculating sufficient statistics which

are based on marginal quantities. Using the most-probable-path semiring (i.e.,

〈[0, 1],max,×, 0, 1〉), the result is a program for solving argmaxy p(y | x)—that

is, for finding the most probable y given the fixed x.

The transformation of the constrained result of the PRODUCT transformation to

a program with one proof fixed is essentially mechanical. We consider the example

of lexicalized parsing from Figure 22. We take the constituent-structure parse as

the structure we want to fix in order to optimize over the possible matching

parses from the dependency grammar. The shape of the constituent-structure parse

tree can be represented by a series of new axioms that mirror the structure of

the c1(X, I, J) predicate defining the constituent-structure grammar: proof1(s, 0, 5),

proof1(np, 0, 1), proof1(vp, 1, 5), proof1(vp, 1, 3), proof1(pp, 3, 5), and so on.

Then, we take the constrained PRODUCT of CKY that we used to describe lexicalized

parsing (Figure 21), and wherever there was a conclusion derived from c1, we add
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path1•2(Q1, Q2) ⊕= initial1•2(Q1, Q2). (63)

path1•2(Q1, Q2) ⊕= path1•2(P1, P2) ⊗ arc1•2(P1, P2, Q1, Q2, A1, A2). (64)

Fig. 26. WFSTs as the product of two weighted finite-state machines.
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Fig. 27. A finite-state transducer that can be expressed as the PRODUCT of two finite-state

automata.

a matching side condition that references proof1. The critical rule (49) ends up

looking like this:

c1•2(X1, X2, I, K) ⊕= binary1(X1, Y1, Z1) ⊗ binary2(X2, Y2, Z2) ⊗ (62)

c1•2(Y1, Y2, I, J) ⊗ c1•2(Z1, Z2, J, K) if proof1(X1, I, K).

The effect of this additional constraint is to disqualify any proof that does not

match the constituent-structure grammar, which we have fixed and encoded as

proof1 axioms. The idea of partially constraining CFG derivations with some

bracketing structure was explored by Pereira and Schabes (1992).

6.2 Axiom generalization

Axiom generalization is another way of manipulating products of weighted logic

programs in such a way that reveals the simple structures underlying a complex

structure. Figure 26, which is intended to describe a WFST, is close to the weighted

logic program in Figure 15 that describes the intersection of two finite-state machines,

but there are two differences. First, we have not forced the two symbols to be the

same; instead, we wish to interpret A1 from the first expert as the transducer’s

input symbol and A2 as the transducer’s output symbol. Second, we have merged

initial1(Q1) ⊗ initial2(Q2) with the single product predicate initial1•2(Q1, Q2),

and likewise for arc. As a first approximation, we can just define arc1•2 (and,

similarly, initial1•2) by a single rule of this form:

arc1•2(P1, P2, Q1, Q2, A1, A2) ⊕= arc1(P1, Q1, A1) ⊗ arc2(P2, Q2, A2). (65)

An example is given in Figure 27. Two finite-state machines, one with two states (a

and b) and one with three states (x, y and z), are shown—we are working over the

Boolean semiring, so each arc in the figure corresponds to a true-valued arc axiom.

The PRODUCT of these two experts in the manner of Figure 26 is a single finite-state

transducer with six states.

However, we can only describe a certain subset of finite-state transducers as

the direct product of finite-state machines in this way. If we consider all possible

Boolean-valued finite-state transducers with two symbols and one state, we have 16
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goal1•2 ⊕= length(N) ⊗ start(S) ⊗ c1•2(S, W, 0, N). (66)

c1•2(X, W, I− 1, I) ⊕= unary1•2(X, W) ⊗ string(I, W). (67)

c1•2(X, W, I, K) ⊕= binary1•2(X, W, Y, W1, Z, W2) ⊗ c1•2(Y, W1, I, J)⊗c1•2(Z, W2, J, K). (68)

Fig. 28. A algorithm for CKY over a general lexicalized grammar derived from Figure 21 by

axiom generalization.

possible transducers, but only 10 can be “factored” as two independent finite-state

machines, such as these three:

Six others, like the NOT transducer that outputs 1 given the input 0 and outputs 0

given the input 1, cannot be represented as the product of two finite-state machines.

In many settings, limiting ourselves to the “factorable” finite-state transducers (or

lexicalized grammars) can have conceptual or computational advantages. When this

does not suffice, we can perform axiom generalization, which amounts to removing

the requirement of equation (65) that the value of atomic propositions of the form

arc1•2 be the product of an atomic proposition of the form arc1 and an atomic

proposition of the form arc2. If we directly define axioms of the form arc1•2, we

can describe transducers in their full generality.

This represents a new way of thinking about the PRODUCT transformation. Thus far,

we have considered the result of the PRODUCT transformation as a way of describing

programs that work over two different structures. Axiom generalization suggests

that we can consider the PRODUCT transformation as a way of taking two programs

that work over individual structures and deriving a new program that works over

a single more complicated structure that, in special cases, can be factored into two

different structures. This is particularly relevant in the area of lexicalized grammars

and parsing, where the general, more complicated structure is what came first, and

the factored models that we have considered thus far arose later as special cases.

6.2.1 Parsing algorithms and the PRODUCT transformation

Many parsing algorithms can be derived by using the PRODUCT transformation

as a way of deriving programs that do not neatly factor into two parts. Lex-

icalized parsing is a simple example; Figure 28 derives a lexicalized parser by

performing axiom generalization on Figure 21. The grammar production “P-with →
with” can be represented by including the axiom unary1•2(p, “with”), and the

binary production S-saw → NP-Alice VP-saw can be represented by the axiom

binary1•2(s, “saw”, np, “alice”, vp, “saw”).

Synchronous grammars are another instance in which the axiom generalization

view is interesting. A synchronous grammar can be thought of as parsing two

different sentences in two different languages with two different grammars, using a

single parse tree. For example, if X → YZ is a grammar production in one language

and A → BC is a grammar production in another language, then X-A → Y-B Z-C

is a possible grammar production in the synchronous grammar.
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goal ⊕= length(N) ⊗ start(S) ⊗ c(S, 0, N). (69)

c(X, I, I) ⊕= unary(X, ε) ⊗ pos(I). (70)

c(X, I− 1, I) ⊕= unary(X, W) ⊗ string(I, W). (71)

c(X, I, K) ⊕= binary(X, Y, Z) ⊗ c(Y, I, J) ⊗ c(Z, J, K). (72)

Fig. 29. A variant of CKY that handles grammar productions of the form X → ε.

goal1•2 ⊕= length1(M) ⊗ length2(N) ⊗ start1•2(S) ⊗ (73)

c1•2(S, 0, N, 0, M).

c1•2(X, I− 1, I, J, J) ⊕= unary1•2(X, W1, ε) ⊗ string1(I, W1) ⊗ pos2(J). (74)

c1•2(X, I, I, J− 1, J) ⊕= unary1•2(X, ε, W2) ⊗ pos1(I) ⊗ string2(J, W2). (75)

c1•2(X, I− 1, I, J− 1, J) ⊕= unary1•2(X, W1, W2) ⊗ string1(I, W1)⊗ string2(J, W2).(76)

c1•2(X1, I1, K1, I2, K2) ⊕= binary1•2(X, Y, Z) ⊗ (77)

c1•2(Y, I1, J1, I2, J2) ⊗ c1•2(Z, J1, K1, J2, K2).

Fig. 30. A simple transduction grammar derived from Figure 29.

A transduction grammar (Wu 1997) is a synchronous grammar that generates two

isomorphic derivations with a trivial alignment between the nodes of those two

derivations. We can describe a parser for a transduction grammar with the program

in Figure 30. Synchronous grammars need to be able to deal with situations in

which a word in one language does not appear in the matching sentence in the other

language; this is done by starting from the enriched CKY program in Figure 29

that can handle grammar productions of the form X → ε.

In practice, transduction grammars do a bad job of aligning two sentences in

different natural languages that are translations of each other, because it is often the

case that two parts of a pair of sentences need to be in opposite positions relative to

one another—in language one, the verb phrase might precede a prepositional phrase,

and in language two, the corresponding verb phrase might follow the corresponding

prepositional phrase. An inversion transduction grammar describes an alternate form

of grammar production, which Wu (1997) writes as X → 〈YZ〉. This grammar

production declares that if A1 and A2 simultaneously parse as Y in languages one

and two (respectively) and B1 and B2 simultaneously parse as Z in languages one

and two (respectively), then A1B1 and B2A2 simultaneously parse as Z.

Somewhat surprisingly, this inversion production rule can be described using the

alternate allowable way of merging the premises when the PRODUCT transformation

is performed on two copies of the CKY algorithm, as discussed in Section 5.2 (see

rule (50)). By adding this alternate form as given in Figure 31, we can describe

the algorithm for parsing with inversion transduction grammars described by Wu

(1997).

7 The entropy semiring and Kullback–Leibler divergence

An important construct in information theory and machine learning is the Kullback–

Leibler (KL) divergence (Kullback and Leibler 1951). KL divergence is a function
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c1•2(X1, I1, K1, I2, K2) ⊕= inversion1•2(X, Y, Z) ⊗ (78)

c1•2(Y, I1, J1, J2, K2) ⊗ c1•2(Z, J1, K1, I2, J2).

Fig. 31. By adding to Figure 30 the rule corresponding to the other way that the c1 and c2
antecedents may be merged in the PRODUCT transformation, we can describe an inversion

transduction grammar.

of two probability distributions over the same event space. It measures their

dissimilarity, though it is not, strictly speaking, a distance (it is not symmetric).

For two distributions p and q for random variable X ranging over events x ∈ X,

KL divergence is defined as

KL(p‖q) =
∑
x∈X

p(X = x) log
p(X = x)

q(X = x)
, (79)

=
∑
x∈X

p(X = x) log p(X = x)

︸ ︷︷ ︸
−H(p)

−
∑
x∈X

p(X = x) log q(X = x)

︸ ︷︷ ︸
CE(p‖q)

, (80)

where H(p) denotes the Shannon entropy of the distribution p (Shannon 1948), a

measure of uncertainty, and CE(p‖q) denotes the cross entropy between p and q8.

A full discussion of these information-theoretic quantities is out of scope for this

paper; we note that they are widely used in statistical machine learning (Koller

and Friedman 2009). In this section, we first show how the entropy of p(P ), with

P ranging over proofs of goal (the axioms corresponding to random variables A

and I are suppressed here, for clarity), can be calculated using a weighted logic

program, following Hwa (2004). We then describe a generalization of a result of

Cortes et al. (2006) to show how to use PRODUCT to produce a weighted logic

program for calculating the KL divergence between the two distributions induced

by the weighted logic programs.

7.1 Generalized entropy semiring

The domain of the generalized entropy semiring is (� ∪ {+∞,−∞})3. The multipli-

cation and addition operations are defined as follows:

〈x1, y1, z1〉 ⊕ 〈x2, y2, z2〉 = 〈x1 + x2, y1 + y2, z1 + z2〉, (81)

〈x1, y1, z1〉 ⊗ 〈x2, y2, z2〉 = 〈x1x2, x1y2 + x2y1, z1z2〉. (82)

These operations have the required closure, associativity, and commutativity

properties previously discussed for semirings. See Cortes et al. (2006) for a proof

that can be extended trivially to our generalized semiring.

8 In brief, the Shannon entropy of distribution p is the expected number of bits required to send a
message drawn according to p under an optimal coding scheme. Cross-entropy is the average number
of bits required to encode a message in the optimal coding scheme for q when messages are actually
distributed according to p. Hence, KL(p‖q) = CE(p‖q) − H(p) is the average number of extra bits
required when the true distribution of messages is p, but the coding scheme is based on q. Note that
KL(p‖p) = 0. If there is an event x ∈ X such that p(x) > 0 and q(x) = 0, then KL(p‖q) = +∞.
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Suppose we have a weighted logic program such that the path sum (in the

〈��0 ∪ {∞},+,×, 0, 1〉 semiring) is 1 (i.e., the value of the goal theorem is 1). If

we map the weights of all axioms in the original program to new values in the

generalized entropy semiring, we can use the new semiring to calculate the Shannon

entropy of the distribution over proofs of goal:

−
∑
proof

p(P = proof ) log p(P = proof ), (83)

where x ranges over proofs of goal. The mapping is simply w �→ 〈w,−w logw, 0〉.
(The third element of the semiring value is not needed here.) If we solve the new

weighted logic program and achieve value 〈w′, h′, 0〉 for the goal theorem, then

under the assumption that w′ = 1 (the value of goal in the original program in the

real semiring), h′ is the entropy of the distribution over the proof random variable

(given the axioms and goal). The formal result is given as a corollary in Section 7.2.

This semiring can be used, for example, with the CKY algorithm from Figure 19. It

makes the derivation of the tree entropy for context-free grammars (i.e., the entropy

over the context-free derivations for an ambiguous string) automatic and obviates

the design of a specific algorithm for computing the tree entropy for probabilistic

context-free grammars, as described in Hwa (2004). With the CKY algorithm, a

proof proof in equation (83) represents a derivation in the grammar. Similarly, a

weighted logic program describing a finite-state transducer (Figure 16) can be used

to compute the entropy of hidden sequences for hidden Markov models as described

by Hernando et al. (2005).

We now relax the assumption that the sum of all proof scores is 1. Suppose that

the value of the goal theorem in the generalized entropy semiring is (w′, h′, 0), with

w′ �= 1. In this case, h′ is not the entropy of a proper probability distribution. We

can renormalize the scores of the proofs, u(proof ), dividing by w′, treating them as

a proper conditional distribution (conditioning on the truth of the goal theorem);

then the entropy of this conditional distribution, u(proof )
w′ , is

−
∑
proof

u(proof )

w′ log
u(proof )

w′

=
1

w′

⎛
⎝−

∑
proof

u(proof )(log u(proof ) − logw′)

⎞
⎠

=
1

w′

⎛
⎝h′ + (logw′)

∑
proof

u(proof )

⎞
⎠ =

1

w′ (h
′ + w′ logw′) =

h′

w′ + logw′. (84)

Therefore, whenever we can use weighted logic programming (in the real semiring)

to calculate sums of proof scores, we can use the generalized entropy semiring to

find the Shannon entropy of the (possibly renormalized) distribution over proofs.

The renormalization uses w′ and h′, two quantities that are calculated directly when

we use the generalized entropy semiring.
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7.2 KL divergence between proof distributions and PRODUCT

Cortes et al. (2006) showed how to compute the KL divergence (also called relative

entropy) between two distributions over strings defined by probabilistic FSA, using

a construct similar to our generalized entropy semiring. We generalize that result

to KL divergence over two proof distributions p(P ) and q(P ) given by a weighted

logic program P. We assume in this discussion that the set of axioms with nonzero

weights is identical under p and q; the general setting where this does not hold is

correctly handled, using a log 0 = −∞ and 0 log a = 0 for all a > 0.

We abuse notation slightly and use p and q to denote the values of axioms,

theorems, and proofs in the real semiring weighted logic programs used to calculate

the sum of proof scores for goal under axioms weighted according to p and q. Let

Proofs(t) denote the set of logical proofs of a theorem t, and for x ∈ Proofs(t), let

p(t)—respectively, q(t)—denote the score of the proof x:

p(t) =
∑

x∈Proofs(t)

p(x), (85)

q(t) =
∑

x∈Proofs(t)

q(x). (86)

We seek the KL divergence

KL(p‖q) =
∑

x∈Proofs(goal)

p(x) log
p(x)

q(x)
. (87)

In order to accomplish this calculation, we will first map the weights of axioms

under p and q into the generalized entropy semiring as follows, for any axiom a:

〈p(a), q(a)〉 �→ 〈p(a), p(a) log q(a), q(a)〉. (88)

For a theorem t, let

R(t) =
∑

x∈Proofs(t)

p(x) log q(x). (89)

Theorem 2

Solving P in the generalized entropy semiring with weights defined as above results

in goal having value 〈p(goal), R(goal), q(goal)〉.

Proof: We will treat the weighted logic program as a set of equations with all

left-hand-side variables grounded. We will use uppercase to refer to free variables

(e.g., Z = 〈Z1, . . .〉) and lowercase to refer to grounded values (e.g., z = 〈z1, . . .〉). The

range of values that variables Z can get is denoted by Rng(Z). The weighted logic

program can be seen as a set of equations:

c(w) =
⊕

[c(w) ⊕= ai(w′ ,Z)⊗bi(w′′ ,Z)]∈P,w′⊆w,w′′⊆w

⊕
z∈Rng(Z)

ai(w
′, z) ⊗ bi(w

′′, z). (90)

(Note that any of w, w′, w′′, and z may be empty.)
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We now show that the value achieved for c(w) when solving in the semiring is

〈p(c(w)),
∑

x∈Proofs(c(w))

p(x) log q(x), q(c(w))〉, (91)

where Proofs(c(w)) denotes the set of proofs for c(w). We will show that the solution

of equations (90) is the value in equation (91) for c(w).

For the first and third coordinates, this equality follows naturally because of the

definition of the generalized entropy semiring: the first and third coordinates are

equivalent to the nonnegative real semiring used for summing over proof scores

under the two value assignments p and q, respectively.

Consider a particular ⊕-addend to the value of c(w),

ai(w
′, z) ⊗ bi(w

′′, z) (92)

= 〈p(ai(w′, z)), R(ai(w
′, z)), q(ai(w

′, z))〉
⊗ 〈p(bi(w′′, z)), R(bi(w

′′, z)), q(bi(w
′′, z))〉 (93)

=

〈p(ai(w′, z))p(bi(w′′, z)),

p(ai(w′, z))R(bi(w′′, z)) + p(bi(w′′, z))R(ai(w′, z)),

q(ai(w′, z)))q(bi(w′′, z)),

〉
(94)

Consider the second coordinate.

p(ai(w
′, z))R(bi(w

′′, z)) + p(bi(w
′′, z))R(ai(w

′, z)) (95)

=

⎛
⎝p(ai(w

′, z))
∑

x∈Proofs(bi(w′′ ,z))

p(x) log q(x)

⎞
⎠,

+

⎛
⎝p(bi(w

′′, z))
∑

x′∈Proofs(ai(w′ ,z))

p(x′) log q(x′)

⎞
⎠, (96)

=

⎛
⎝ ∑

x′∈Proofs(ai(w′ ,z))

p(x′)
∑

x∈Proofs(bi(w′′ ,z))

p(x) log q(x)

⎞
⎠

+

⎛
⎝ ∑

x∈Proofs(bi(w′′ ,z))

p(x)
∑

x′∈Proofs(ai(w′ ,z))

p(x′) log q(x′)

⎞
⎠, (97)

=
∑

x∈Proofs(bi(w′′ ,z))

∑
x′∈Proofs(ai(w′ ,z))

p(x)p(x′) log(q(x)q(x′)), (98)

Embedding the above in a ⊕-summation over z and a ⊕-summation over inference

rule instantiations gives a ⊕-summation over proofs of c(w),∑
x∈Proofs(c(w))

p(x) log q(x), (99)

which is R(c(w)) as desired. �
Denote by (p̄, R̄, q̄) the value for goal in the generalized entropy semiring as

discussed above, i.e., p̄ = p(goal), R̄ = R(goal), and q̄ = q(goal). If we wish to

renormalize p by p̄ and q by q̄ to give proper distributions over proofs of goal
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goal ⊕= path(P, Q) ⊗ final(Q). (103)

path(null, Q) ⊕= initial(Q). (104)

path(P′, Q) ⊕= path(P, P′) ⊗ biarc(P, P′, Q, A, B). (105)

Fig. 32. WFST where arriving at a certain state depends on the last two states. null serves

as a placeholder for the nonstate prior to the initial state.

(given axioms and goal), then

CE

(
1

p̄
p

∥∥∥∥ 1

q̄
q

)
=

R̄

p̄
− log q̄. (100)

Noting that −H(p) = CE(p‖p),

KL

(
1

p̄
p

∥∥∥∥ 1

q̄
q

)
= CE(p‖p) − CE(p‖q), (101)

we can solve for the KL divergence of two (possibly renormalized) distributions p

and q by using the above results. Alternatively, if the generalized KL divergence

between unnormalized distributions is preferred (O’Sullivan 1998), note that (in the

notation of the above)∑
x∈Proofs(goal)

(
p(x) log

p(x)

q(x)
− p(x) + q(x)

)
= R̄ − p̄ + q̄. (102)

Cortes et al. (2006) describe how to compute KL divergence between two proba-

bilistic finite-state automata with a single path per string (“unambiguous” automata).

The authors make use of finite-state intersection (discussed above in Section 5.1). This

suggests an analogous interpretation of the PRODUCT transformation for computing

KL divergence between two weighted logic programs.

Let P and Q be two instances of a weighted logic program, with possibly

different axiom weights. Assume we set the values of the axioms of P (ranging

over a) to be 〈p(a), 0, 1〉, and for Q, we set them to 〈1, log q(a), q(a)〉. If we take a

PRODUCT of P and Q, using the “natural” pairing, then we end up with a program that

computes 〈p(goal), R(goal), q(goal)〉 in the generalized entropy semiring, where R(·)
is specified in equation (89). These quantities can be used to compute KL divergence

as specified in equation (101). This is a direct result of Theorem 2.

7.3 KL divergence and projections

We can use PRODUCT to calculate KL divergence between proof distributions even

when P and Q are not two instances of the same program. We consider cases where

the proofs of P and Q have a shared semantics, that is, each proof of either P or Q
maps to an event in some “interpretation space.”

As an example, consider the weighted logic program in Figure 16 describing a

WFST. In a more general formulation, each state depends on the previous N states

visited rather than just the single most recent state. This modification is reflected in

Figure 32 for N = 2. The axiom biarc(P′, Q, P, A, B) is to be interpreted as “if the last

two states were Q and P′, transfer to state P while reading symbol A and emitting
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goal1•2 ⊕= path1•2(P, Q) ⊗ final1(Q) ⊗ final2(Q). (106)

path1•2(null, Q) ⊕= initial1(Q) ⊗ initial2(Q). (107)

path1•2(P
′, Q) ⊕= path1•2(P, P

′) ⊗ arc1(P
′, Q, A, B) ⊗ biarc2(P, P

′, Q, A, B) (108)

Fig. 33. The PRODUCT program of Figure 16 with Figure 32, with constraints that match

proofs according to states and emissions sequences.

the symbol B.” Since the two programs have different axioms, the spaces of their

respective proofs are different. However, both programs have identical semantics to

a proof: a proof (in either program) corresponds to a sequence of states that the

transducers go through together with the reading of a symbol and the emission of

another symbol.

Running PRODUCT on the WFST in Figure 16 (we call it P) and the WFST in

Figure 32 (we call it Q) with a particular pairing and constraints (such that the paths

are identical) yields the program in Figure 33. If we let the axioms a in P have the

values 〈p(a), 0, 1〉 and the axioms a in Q have the values 〈1, log q(a), q(a)〉, then the

resulting PRODUCT program in Figure 33, as implied by Theorem 2, calculates the KL

divergence between two distributions over the set of state paths: one which is defined

using a finite-state transducer with N = 1 and the other with N = 2.

We now generalize this idea for two different programs P and Q. We assume

that PRODUCT is applied in such a way that axioms from P are paired only with

axioms from Q, and vice versa. Further, each proof in the PRODUCT program must

decompose into exactly one proof in P and one proof in Q9. For a proof in the

PRODUCT program, y, we define πP(y) (πQ(y)) to be the projection of y to a proof in

P (Q). The “projection” of a proof is a separation of the proof that uses coupled

theorems and axioms into theorems and axioms of only one of the programs. For

example, projecting a proof y in the product program in Figure 33 yields two proofs:

πP(y) describes a sequence of transitions through the transducer with N = 1, and

πQ(y) describes a sequence of transitions through the transducer with N = 2; yet

both proofs correspond to the same sequence of states.

In the generalized entropy semiring, we set the values of the axioms of P to

be 〈p(a), 0, 1〉, and for Q, we set them to 〈1, log q(a), q(a)〉. The PRODUCT program

computes 〈p(goal1), R(goal1·2), q(goal2)〉. This time, the summation in R(goal1·2)

is over proofs that are implicitly paired:

R(goal1·2) =
∑

y∈Proofs(goal1·2)

p(πP(y)) log q(πQ(y)). (109)

The quantities p(goal1), R(goal1·2), and q(goal2) can be used as before to compute

the KL divergence between the distributions over the shared “interpretation space”

of the proofs in the two programs. This technique is only correct when interpretations

are in a one-to-one correspondence with the proofs in P and Q, and PRODUCT is

applied so that equivalently interpretable proofs in the two programs are paired.

9 Note that these constraints are satisfied in the case of two identical programs with the “natural”
pairing, as in Section 7.2.
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We note that in the general case, the problem of computing KL divergence between

two arbitrary distributions is hard. For example, with Markov networks, there are

restrictions, which resemble the restrictions we pose, of clique decomposition (Koller

and Friedman 2009).

8 Conclusion

We have described a framework for dynamic programming algorithms whose

solutions correspond to proof values in two constrained weighted logic programs.

Our framework includes a program transformation, PRODUCT, which combines the

two weighted logic programs that compute over two structures into a single weighted

logic program for a joint proof. Appropriate constraints, encoded intuitively as

variable unification or side conditions in the weighted logic program, are then added

manually. The framework naturally captures and permits generalization of many

existing algorithms. We have shown how variations on the program transformation

enable to include a larger set of algorithms as the result of the program transforma-

tion. We have concluded by showing how the program transformation can be used

to interpret the computation of KL divergence for two weighted logic programs,

which are defined over an identical interpretation space.
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