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Abstract

Self-supervised speech representations can hugely benefit down-
stream speech technologies, yet the properties that make them
useful are still poorly understood. Two candidate properties
related to the geometry of the representation space have been
hypothesized to correlate well with downstream tasks: (1) the
degree of orthogonality between the subspaces spanned by the
speaker centroids and phone centroids, and (2) the isotropy of
the space, i.e., the degree to which all dimensions are effectively
utilized. To study them, we introduce a new measure, Cumula-
tive Residual Variance (CRV), which can be used to assess both
properties. Using linear classifiers for speaker and phone ID to
probe the representations of six different self-supervised models
and two untrained baselines, we ask whether either orthogonality
or isotropy correlate with linear probing accuracy. We find that
both measures correlate with phonetic probing accuracy, though
our results on isotropy are more nuanced.

Index Terms: model analysis, representational geometry

1. Introduction

Self-supervised speech representations have made a huge im-
pact on downstream speech technologies, yet the properties that
make their representations useful are still poorly understood.
Benchmarks indicate that both phone and speaker labels are, to a
large degree, linearly separable in the representations of popular
recent models [1], and beyond this, a number of studies have
compared the extent to which these labels are recoverable from
the representations of different models [1,2] or across different
layers of the same model [3,4]. However, these analyses say
little about how such information is represented, beyond just
assessing the linear separability of classes. Here, we address this
question using a geometric approach—an approach that is widely
used for analyzing self-supervised models of text (e.g., [S—10])
as well as high-dimensional brain imaging data (e.g., [11-13]),
but has received only a little attention in the speech technology
community [14-17].

To assist our analysis, we develop a new measure for ana-
lyzing high-dimensional distributions, the Cumulative Residual
Variance (CRV). When applied to datasets X and Y embedded
in the same high dimensional space, the CRV of X with respect
to Y, denoted X \Y, provides a quantitative measure of the de-
gree to which the principal components of Y are orthogonal to
those of X. Meanwhile, X\ X is a measure of the isotropy of
X —the degree to which X effectively utilizes all dimensions of
the embedding space, i.e., has uniform covariance [18].

Using this measure, we draw on two previous lines of work
that suggest potentially fruitful analyses. First, we build on a
recent study which analyzed LSTM models trained using two
different loss functions and demonstrated that speaker and pho-

netic information were represented in orthogonal subspaces [17].
The CRV measure allows us to better quantify orthogonality, and
we use it to analyze several additional models with a variety of
architectures, loss functions, and training data. In experiments
on English LibriSpeech, we show that, unlike randomly initial-
ized (untrained) models, all trained models have a high degree
of orthogonality between the speaker and phonetic subspaces.
In addition, for all six trained models, the accuracy of a phone
classifier trained on the model representations is significantly
correlated with the CRV between the two subspaces.

Next, we explore whether and how the isotropy of the repre-
sentational space might predict phone or speaker classification
accuracy. It has been argued in the NLP literature that higher
isotropy is desirable in an embedding space (e.g., [6, 9] and
see review in [19]). However, we did not find strong evidence
for this hypothesis: when we computed the isotropy and phone
(or speaker) classification accuracy for different layers of each
model, we found a statistically significant correlation in only
two out of six trained models. On the other hand, we did find a
strong and consistent correlation between phone classification
accuracy and the isotropy of the phone class centroids. This sug-
gests that having evenly distributed centroids is more important
for classification accuracy in these models than having evenly
distributed frame representations.

2. Isotropy and orthogonality

In NLP, most researchers have argued that representations with
greater isotropy are desirable [6,9,10,20]; but see [21]. However,
Rudman er al. [18] noted that the measures of “isotropy”” used
in much of that work do not match its mathematical definition—
that is, the extent to which the covariance matrix is proportional
to the identity matrix. They introduced (and demonstrated the
correctness of) a new measure called IsoScore, and later used it
to show that isotropy is in fact negatively correlated with task
performance in several BERT models [19]. Meanwhile, we
know of only one study of isotropy in models of speech [22],
which found a strong positive correlation between IsoScore and
word discrimination performance in supervised acoustic word
embedding models. Here, we explore whether isotropy can
predict either phone or speaker classification performance in
self-supervised representations.

As noted above, IsoScore [18] is one way to measure
isotropy. IsoScore ranges from O (minimally isotropic) to 1
(maximally isotropic), and can be interpreted as the approximate
proportion of the dimensions that are uniformly utilized. Com-
puting the IsoScore for a point cloud X C R starts by applying
PCA, then finding the Euclidean distance between the length-
normalized vector of eigenvalues A (the diagonal of the covari-
ance matrix) and the diagonal of the identity matrix in R%. This
distance is then normalized and rescaled to fall between 0 and 1.
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Figure 1: Evaluating orthogonality as cosine similarities between principal components (a-c) versus using residual variance (d). Isotropy

can be evaluated with self residual variance (e).

While IsoScore has properties that can be desirable (e.g., it
allows direct comparisons between spaces of different dimension-
ality on the same 0-1 scale), it is not the only possible measure of
isotropy. For example, Del Giudice [23] discusses estimators of
“Effective Dimensionality” which normalize A to create a proba-
bility distribution, then calculate its entropy to measure deviance
from uniformity, and return a value interpreted as the number
(rather than proportion) of dimensions uniformly utilized.

Apart from isotropy, orthogonality is also a desirable prop-
erty when learning representations, since encoding different
kinds of information in orthogonal dimensions or subspaces
would allow them to be easily disentangled. In fact, there have
been attempts in representation learning to enforce such orthogo-
nality to enable disentanglement [24,25]. There is also evidence
that human brains encode different aspects of the same item in
orthogonal coding axes, thereby minimizing interference and
maximizing robustness [26,27]. However, [17] (henceforth, Liu
et al.) is the only work we know of to explore orthogonality in
either supervised or unsupervised speech models. We describe
their method, and how we build on it, in more detail below.

3. Measuring orthogonality

Before evaluating the orthogonality between speaker and pho-
netic encoding, we first follow Liu ef al. in identifying speaker
directions and phonetic directions. Phonetic directions are found
by aggregating the frame-level representations for each of the 39
phones (based on forced alignment) to obtain their centroids, and
then applying principal component analysis to the centroids. The
39 principal components found represent the phonetic directions,
along which the variance between the centroids is maximized.
The same method is used to obtain speaker directions using the
speakers in the dataset.

Our next step diverges from Liu et al.’s: while they looked
at the cosine similarities between the phonetic and speaker direc-
tions (§3.1), we propose a new measure that quantifies orthogo-
nality with a single numerical value (§3.2).

3.1. Cosine similarity between principal directions

For each pair of a speaker and a phonetic direction, Liu et al.
computed the degree of orthogonality by taking the absolute
value of their cosine similarity, with 0 being perfectly orthogonal
and 1 being perfectly aligned. Figs. 1a-c present the pairwise sim-
ilarity for representations extracted from (a) the second LSTM
layer of the same CPC-big model used by Liu et al. (from [28]);
(b) the same layer of a randomly initialized CPC model that has
not been trained, and (c) log Mel features. Confirming Liu et
al.’s results, Fig. 1a shows very low similarities between any
pair of phonetic and speaker directions, indicating the two types
of information are largely encoded orthogonally.

While the similarity matrix gives some indication of the
relationship between the directions encoding speaker and pho-

netic information, it can be difficult to summarize with a single
number: we need to consider the degree of alignment between
every pair of directions in order to fully capture the degree of or-
thogonality between speaker and phonetic encoding. In addition,
alignment between principal directions with large eigenvalues
means overall lower orthogonality than alignment between prin-
cipal directions with small eigenvalues, but the matrix does not
reflect the amounts of variance in each principal direction.

3.2. Cumulative Residual Variance (CRYV)

We propose Cumulative Residual Variance (CRV) as a quan-
titative measure of orthogonality between datasets X and Y
embedded in R?. CRV satisfies the two desiderata mentioned
above: (1) it captures the interaction between every pair of prin-
cipal directions and (2) it weights the contribution from each
principal direction in proportion to its relative explained variance.
Here, we set X and Y to be the speaker and phone centroids (or
vice versa), so the number of data points nx and ny is less than
the dimensionality d, and each dataset only spans a subspace of
RR¢. However, this need not be true in general; for example CRV
could be applied to the sets of frame-level representations from
two different speakers or two different phones.

In short, the CRV of Y with respect to X, written as Y\ X,
evaluates how much variance is preserved in Y as the principal
directions of X are collapsed one by one.! As in Liu ef al.,
“collapsing” a direction v from a dataset Y refers to the operation
of projecting Y onto the subspace orthogonal to v, i.e. Y’ =
Y — (Yv)v". Collapsing v affects any principal direction of ¥
that is not orthogonal to v, which addresses the first desideratum.
We evaluate the effect of the collapsing operation by computing
the residual variance in Y’, as given by PCA. The larger the
residual variance Y’ has, the more orthogonal Y is to v.

The residual variances computed in this way can be plotted
as in Fig. 1d, where for any given z-axis value, its y value is
the proportion of variance remaining in Y after collapsing the
minimum number of top principal directions of X such that at
least x proportion of X’s variance has been removed. CRV is
then computed from this plot as the area under the curve (AUC),
to yield a single numerical value. In this way, the effect of col-
lapsing each direction is weighted by the variance explained by
that direction, hence CRV also satisfies our second desideratum.

In Fig. 1d, we plot residual variance of the phone centroids
with respect to the explained variance in the speaker centroids
for representations from a trained and an untrained CPC? as well
as for log Mel features. We can see that the relative magnitude of
the AUC is CPC, followed by log Mel and untrained CPC. While
the strong orthogonality in the trained CPC is consistent with

"Note that CRV is an asymmetrical distance measure. Like KL
divergence, it could be symmetrised as X \Y + Y\ X, if desired.

2Though CPC is a loss function, with a slight abuse, we refer to a
randomly initialized CPC-big in [28] as untrained CPC.



Fig. 1a, the relative degree of orthogonality between log Mel
and untrained CPC is less salient from Fig. 1b-c. There are more
dark spots in Fig. 1c, indicating more pairs of aligned speaker
and phonetic directions in log Mel, but this should have less
effect on overall orthogonality as compared to the top left corner
of Fig. 1b, which shows that the first two speaker and phonetic
directions of the untrained CPC are very strongly aligned. This
is properly reflected in Fig. 1d.

3.3. Evaluating isotropy with Self-CRV

A byproduct of CRYV is self-CRV, or Y\ Y, which evaluates the
degree of isotropy of Y in R%. If Y is highly anisotropic, its vari-
ance will be concentrated around a few directions. This results
in a residual variance curve with a small AUC, as illustrated in
Fig. 1e for untrained CPC.

Self-CRV is closely related to IsoScore, both being functions
of the eigenvalues of the dataset. However, IsoScore measures
isotropy as a percentage of representation dimensions, whereas
self-CRV accounts for the absolute number of isotropic dimen-
sions and is comparable across models with different dimensions
as long as the number of data points in Y is smaller than the
dimensionality of all models (as in our subspace analyses). After
multiplying IsoScore by model dimension, we found a Spear-
man’s rank correlation of 1 between it and self-CRV.

4. Experimental Setup

Models In addition to CPC-big, we measured orthogonality
and isotropy in five pre-trained Transformer-based English self-
supervised speech models: HUuBERT (base-1s960) [29], wav2vec
2.0 (base-960h) [30], WavLM (base) [31], WavLM+ (base-
plus) [31], and Data2Vec (base-960h) [32]. Apart from the
architecture, CPC-big differs from the Transformer-based mod-
els in its dimensionality (512 vs. 768), number of layers (5 CNN
followed by 4 LSTM vs. 7 CNN followed by 12 Transformer
blocks), frame rate (10ms vs. 20ms) and amount of training data
(6k hr vs. 960 hr for all others except WavLM+, which used
96k hr). To determine the degree of orthogonality and isotropy
in these models before training, we also tested representations
extracted from a HuBERT model and a CPC-big model with
just random initialization and no training. Since the Transformer
models we tested have mostly the same architecture and are dis-
tinguished by the training methods and objective, the untrained
HuBERT is representative of the other Transformer models. Fi-
nally, 40-dimensional log Mel features are used as a baseline.

Dataset We perform our analysis on the dev-clean subset of
LibriSpeech [33], which matches the language (English) and
genre (read speech) of the pre-trained models and was also used
in Liu ef al.’> Dev-clean contains 40 speakers, each contributing
at least eight minutes of speech. We used half of dev-clean
for training classifiers and half for testing, with different splits
depending on the scenario, as described below.

Probing classifiers Our analysis focuses on speaker infor-
mation and phonetic information, due to their influence on a
variety of downstream speech tasks. We train logistic regression
classifiers to predict the speaker (or phone) label based on a sin-
gle representation frame. In previous work, frames are typically
pooled across phones [4,34] or utterances (for speaker ID) [1];
but like Liu et al. we use individual frames, so we can analyze
how both types of information sit in the same set of embeddings.

3We hope in future to examine how much these results generalize,
by extending the analyses to other genres and languages, either using
different pre-trained models or by testing these models on other data.

For speaker classification, we obtain speaker labels from
the LibriSpeech metadata and train the probing classifier on a
random half of each speaker’s utterances, using the other half for
testing. For phone classification, we obtain the phone labels from
forced alignments with Kaldi. We evaluated phone accuracy in
two ways: shared speakers (as in Liu et al.), where the same
speakers appear in both training and test, and the more standard
across-speaker, where we trained on data from a random half
of the speakers and tested on the other half. In practice, the
measures are very strongly correlated and don’t differ much, so
in this paper we only report across-speaker phone accuracy.

Computing CRY, IsoScore, and correlations We computed
CRYV and IsoScore for each layer of each model by first encoding
the utterances from LibriSpeech dev-clean to obtain the represen-
tations. We then computed the phone and speaker centroids and
CRYV values as described in §3. In particular, Ph\Spk measures
the orthogonality of the phone and speaker subspaces, and Ph\Ph
and Spk\ Spk measure the isotropy of the phone and speaker sub-
spaces, respectively. We computed the IsoScore using a random
sample of 250,000 frames. Finally, for correlations between clas-
sifier accuracy and CRV or IsoScore, we computed Spearman
(rank) correlation, since it is less sensitive to outliers and we
have no reason to believe that correlations will be linear.

5. Results and Discussion
5.1. Layerwise Classification Accuracy

Fig. 2 (Ist column) shows the results of our probing classifiers
for phones (top) and speakers (bottom), across all layers of
each model*. For phones, our findings align closely with those
of [3,4,34], despite analyzing frame-wise rather than pooling the
representations for each phone token. That is, for wav2vec2 (and
data2vec) the highest probing accuracies are in the late middle
layers, while for HuBERT-family models (HuBERT, WavLM,
WavLM+), accuracy remains high through the final layers.

To the best of our knowledge, previous studies have only
reported speaker probing accuracy across all the layers of Hu-
BERT [35]. Extending the layerwise analysis of speaker infor-
mation to the other widely-used SSL models, we find far more
variation here than with phone accuracy, perhaps because all of
these models, despite being self-supervised, are designed with
ASR in mind. We see especially poor linear separability in the
later layers of wav2vec2 and data2vec, where speaker accuracy
is even worse than the randomly initialized ones. We speculate
that the rising pattern of speaker accuracy in the randomly ini-
tialized models may be because the model incorporates more
context in later layers, allowing the model to effectively average
features over the whole utterance.

5.2. Geometry of the phone and speaker subspaces

Layer-wise CRV and self-CRV results for all models are shown
in Fig. 2, columns 2 and 3. Like the CPC model studied by Liu
et al., all trained Transformer models have high Ph\Spk orthogo-
nality. Interestingly, untrained HuBERT (unlike untrained CPC)
also reaches a somewhat high Ph\Spk value in the final layers,
although still lower than the trained models. The trained mod-
els also show high isotropy in the phone and speaker centroids
(Ph\Ph and Spk\Spk), though as with probing accuracy, the
difference between trained and untrained models is much more

“Due to space constraints, not all results can be displayed in the
paper. The complete spreadsheet of our results, and the code for
computing CRV can be found at https://github.com/uililo/
cumulative-residual-variance.
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striking for the phonetic measure, suggesting that model train-
ing reorganizes the representational geometry of the phonetic
information more than the speaker information.

‘We then computed rank correlations p between each of the
four CRV measures and the speaker or phone accuracies. The
most striking correlation is between Ph\Ph and phone accuracy,
as shown in Figs. 3a (all models) and 3b (trained models only).
Pooling all datapoints together, p = 0.94, and the trained models
individually each have p from 0.69 to 0.9 (all values p < 0.05).
In contrast, we only found statistically significant correlations
between Spk\Spk and speaker accuracy (Fig. 3c) in wav2vec2
and data2vec, and no significant correlation when pooling the
results from all trained models.

For the orthogonality measures, we found significant corre-
lations between Ph\Spk and phone accuracy (Fig. 3d) in each
of the trained models (p = 0.54-0.78 for Transformer models,
1.0 for CPC), as well as in the pooled data (p = 0.54), although
the correlations are weaker than for Ph\Ph. Correlations be-
tween Spk'\Ph and speaker accuracy are even weaker, reaching
significance on the pooled data, but not for any individual model.

Altogether, our results suport Liu et al.’s claim that orthogo-
nality between the phonetic and speaker subspace is relevant for
extracting phonetic information, but also suggest that isotropy
of the phonetic space may be even more critical. It is less clear
why the geometry of speaker information is less correlated to
speaker classification, and to what extent this result is due to
model training that is implicitly focused on ASR performance.

5.3. Isotropy of the frame representation space

Finally, we evaluated the isotropy of frame representations
(rather than the centroids). For this, we used IsoScore, which
(1) has a rank correlation of 1 with self-CRV as isotropy mea-
sures of speaker or phone centroids, and (2) is easier to compute
than self-CRV when applied to a large number of representa-
tions. The IsoScore values were low, ranging from 0.18 to near 0

across models and layers, similar to the range found by Rudman
et al. [18] for contextualized word embedding models. Also,
the IsoScore values for untrained HuBERT were comparable to
those of the trained models. We find a statistically significant
(p < 0.05) positive correlation with phone probing accuracy in
HuBERT and WavLM, and when pooling results from all trained
models; but for speaker probing accuracy we found negative
correlations in the same two models, and no significant pooled
correlation. These mixed results suggest that isotropy of the
representation space itself is not necessarily a good predictor of
model performance, especially if different tasks are considered.

6. Conclusion

This paper introduced the Cumulative Residual Variance as
a new way to analyze the representational geometry of high-
dimensional spaces, and used CRV and IsoScore to examine
whether orthogonality or isotropy can predict phone or speaker
probing accuracy in self-supervised speech models. We did not
find strong evidence that isotropy of the frame representations
is meaningful, but we did show that phone probing accuracy
is correlated with the degree of orthogonality between the sub-
spaces defined by the phone and speaker centroids, and even
more strongly with the isotropy of the phone centroids them-
selves. These findings suggest that geometric analyses may be
a productive route for future study, particularly if they can be
more closely connected to theoretical analyses such as those
of [13]. For instance, [13] highlights the relevance of four differ-
ent geometric properties, including the distance between class
centroids (related to our subspace isotropy measure) as well as
the isotropy of the individual class manifolds (i.e., phones or
speakers). We hope that our work may inspire further exploration
of these connections.
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