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Abstract

The main motivation for developing context-
sensitive lemmatizers is to improve perfor-
mance on unseen and ambiguous words. Yet
previous systems have not carefully evaluated
whether the use of context actually helps in
these cases. We introduce Lematus, a lemma-
tizer based on a standard encoder-decoder ar-
chitecture, which incorporates character-level
sentence context. We evaluate its lemmatiza-
tion accuracy across 20 languages in both a
full data setting and a lower-resource setting
with 10k training examples in each language.
In both settings, we show that including con-
text significantly improves results against a
context-free version of the model. Context
helps more for ambiguous words than for un-
seen words, though the latter have a greater
effect on overall performance differences be-
tween languages. We also compare to three
previous context-sensitive lemmatization sys-
tems, which all use pre-extracted edit trees
as well as hand-selected features and/or addi-
tional sources of information such as tagged
training data. Without using any of these,
our context-sensitive model outperforms the
best competitor system (Lemming) in the full-
data setting, and performs on par in the lower-
resource setting.

1 Introduction

Lemmatization is the process of determining the
dictionary form of a word (e.g. swim) given one of
its inflected variants (e.g. swims, swimming, swam,
swum). Data-driven lemmatizers face two main
challenges: first, to generalize beyond the training
data in order to lemmatize unseen words; and sec-
ond, to disambiguate ambiguous wordforms from
their sentence context. In Latvian, for example, the
wordform “ceļu” is ambiguous when considered
in isolation: it could be an inflected variant of the
verb “celt” (to lift) or the nouns “celis” (knee) or
“ceļš” (road); without context, the lemmatizer can
only guess.

By definition, sentence context (or latent infor-
mation derived from it, such as the target word’s
morphosyntactic tags) is needed in order to cor-
rectly lemmatize ambiguous forms such as the
example above. Previous researchers have also
assumed that context should help in lemmatiz-
ing unseen words (Chrupała, 2006; Müller et al.,
2015)—i.e., that the context contains useful fea-
tures above and beyond those in the wordform it-
self. Nevertheless, we are not aware of any previ-
ous work that has attempted to quantify how much
(or even whether) context actually helps in both of
these cases. Several previous papers on context-
sensitive lemmatization have reported results on
unseen words (Chrupała, 2006; Chrupała et al.,
2008; Müller et al., 2015; Chakrabarty et al., 2017),
and some have compared versions of their systems
that use context in different ways (Müller et al.,
2015; Chakrabarty et al., 2017), but there are few if
any direct comparisons between context-sensitive
and context-free systems, nor have results been
reported on ambiguous forms.

This paper presents Lematus—a system that
adapts the neural machine translation framework
of Sennrich et al. (2017) to learn context sensitive
lemmatization using an encoder-decoder model.
Context is represented simply using the character
contexts of each form to be lemmatized, mean-
ing that our system requires fewer training re-
sources than previous systems: only a corpus with
its lemmatized forms, without the need for POS
tags (Chrupała et al., 2008; Müller et al., 2015) or
word embeddings trained on a much larger corpus
(Chakrabarty et al., 2017). We evaluate Lematus
on data from 20 typologically varied languages,
both using the full training data from the Universal
Dependencies project (Nivre et al., 2017), as well
as a lower-resource scenario with only 10k training
tokens per language. We compare results to three
previous systems and to a context-free version of
our own system, including results on both unseen



and ambiguous words. We also examine the extent
to which the rate of unseen and ambiguous words in
a language can predict lemmatization performance.

On average across the 20 languages, the context-
sensitive version of Lematus achieves significantly
higher lemmatization accuracy than its context-free
counterpart in both the low-resource and full-data
settings. It also outperforms the best competitor
system (Lemming; Müller et al. 2015) in the full-
data setting, and does as well as Lemming in the
low-resource setting. Thus, even without explicitly
training on or predicting POS tags, Lematus seems
able to implicitly learn similar information from
the raw character context.

Analysis of our full-data results shows that in-
cluding context in the model improves its accuracy
more on ambiguous words (from 88.8% to 92.4%
on average) than on unseen words (from 83.6% to
84.3% on average). This suggests that, to the ex-
tent that unseen words can be correctly lemmatized
at all, the wordform itself provides much of the
information needed to do so, and Lematus effec-
tively exploits that information—indeed, Lematus
without context outperforms all previous context-
sensitive models on lemmatizing unseen words.

Finally, our cross-linguistic analysis indicates
that the proportions of unseen words and ambigu-
ous words in a language are anti-correlated. Alto-
gether, then, our results suggest that context-free
neural lemmatization is surprisingly effective, and
may be a reasonable option if the language con-
tains many unseen words but few ambiguous ones.
Context is likely to help in most languages, but the
main boost is for languages with higher ambiguity.

2 Background and Baseline Systems

Early work on context-sensitive lemmatization fo-
cused on disambiguation: given a set of analyses
produced by a hand-built morphological analyzer
(typically including both lemmas and morphosyn-
tactic tags), choose the best one in context (Oflazer
and Kuruöz, 1994; Ezeiza et al., 1998; Hakkani-Tür
et al., 2002). Here, we focus on systems learning to
generate the lemmas and tags without a pre-existing
analyzer (Erjavec and Džeroski, 2004; Chrupała,
2006). The three systems we use as baselines fol-
low Chrupała (2006) in treating the task as a classi-
fication problem, where the system learns to choose
which of a set of edit scripts or edit trees (previ-
ously induced from the aligned wordform-lemma
pairs) should be applied to transform each word-

form into the correct lemma.
Two of our baselines, Morfette1 (Chrupała et al.,

2008) and Lemming2 (Müller et al., 2015), learn
from morphologically annotated corpora to jointly
tag each word and lemmatize it by choosing an
edit script. Morfette consists of two log-linear
classifiers—one for lemmatization and one for
tagging—which are combined using beam search
to find the best sequence of lemma-tag pairs for
all words in the input sentence. Lemming (which
proves to be the strongest baseline) also consists of
two log-linear components (a classifier for lemma-
tization and a sequence model for tagging), which
are combined either using a pipeline (first tag, then
lemmatize) or through joint inference. The lemma-
tization model uses a variety of features from the
edit trees, alignments, orthography of the lemma,
and morphosyntactic tags.

In experiments on six languages, Müller et al.
(2015) showed that the joint Lemming model
worked better than the pipelined model, and that
adding morphosyntactic features helped. They
also demonstrated improvements over an earlier
context-free baseline model (Jiampojamarn et al.,
2008). However, they did not evaluate on ambigu-
ous forms, nor directly compare context-sensitive
and context-free versions of their own model.

Our third baseline, Ch-20173 (Chakrabarty et al.,
2017) uses a neural network rather than a log-linear
model, but still treats lemmatization as a classifi-
cation task to choose the correct edit tree. (Like
our model, Ch-2017 does not perform morpholog-
ical tagging.) The model composes syntactic and
semantic information using two successive bidi-
rectional GRU networks. The first bidirectional
GRU network is similar to the character to word
model by Ling et al. (2015) and learns syntactic in-
formation. The semantic information comes from
word embeddings pre-trained on much larger cor-
pora. The second GRU uses a composition of the
semantic and syntactic embeddings for the edit tree
classification task.

Rather than treating lemmatization as classifi-
cation, our own model is inspired by recent work
on morphological reinflection. As defined by two
recent Shared Tasks (Cotterell et al., 2016, 2017),
a morphological reinflection system gets as input

1https://sites.google.com/site/
morfetteweb/

2http://cistern.cis.lmu.de/lemming
3https://github.com/onkarpandit00786/

neural-lemmatizer

https://sites.google.com/site/morfetteweb/
https://sites.google.com/site/morfetteweb/
http://cistern.cis.lmu.de/lemming
https://github.com/onkarpandit00786/neural-lemmatizer
https://github.com/onkarpandit00786/neural-lemmatizer


some inflected wordform (and possibly its mor-
phosyntactic tags) along with a set of target tags.
The system must produce the correct inflected form
for the target tags. In the 2016 SIGMORPHON
Shared Task, various neural sequence-to-sequence
models gave the best results (Aharoni et al., 2016;
Kann and Schütze, 2016; Östling, 2016). We
base our work closely on one of these (Kann and
Schütze, 2016), which also won one of the 2017
tasks (Bergmanis et al., 2017). Our lemmatization
task can be viewed as a specific type of reinflection,
but instead of assuming that tags are given in the
input (or that the system simply has to guess the
tags from the wordform itself, as in some of the
Shared Tasks), we investigate whether the informa-
tion available from the tags can instead be inferred
from sentence context.

3 Model Description

Our model is based on the network architecture
proposed by Sennrich et al. (2017), which imple-
ments an attentional encoder-decoder architecture
similar to that of Bahdanau et al. (2015). Namely,
our model is a deep attentional encoder-decoder
with a 2-layer bidirectional encoder with a gated
recurrent unit (GRU) (Cho et al., 2014) and a 2-
layer decoder with a conditional GRU (Sennrich
et al., 2017) in the first layer followed by a GRU in
the second layer. For more architectural details see
(Sennrich et al., 2017).

A default implementation of this architecture is
available in the Nematus toolkit,4 which we used
as our starting point. However, Sennrich et al.
(2017) used their model for machine translation,
while we work on lemmatization. Since our task
is closer to the problem of morphological reinflec-
tion described above, we changed some of the de-
fault model parameters to follow those used in sys-
tems that performed well in the 2016 and 2017
SIGMORPHON Shared Tasks (Kann and Schütze,
2016; Bergmanis et al., 2017). Specifically, we
reduced the number of hidden units to 100 and the
encoder and decoder embedding size to 300.

The input sequence is a space-separated char-
acter representation of a word in its N -character
left and right sentence context. For example, with
N = 15, the Latvian word ceļu (the genitive plural

4https://github.com/EdinburghNLP/
nematus

of the noun ceļš, meaning road) could be input as:

s a k a <s> p a š v a l d ı̄ b u

<lc> c e ļ u <rc>

u n <s> i e l u <s> r e ǵ i s t r

where <s>, <lc>, <rc> stand for word boundary,
left and right context markers respectively. The
target output is a sequence of characters forming
the lemma of the word: c e ļ š

4 Datasets

We contend that the difficulty of the lemmatiza-
tion task largely depends on three factors: mor-
phological productivity, lexical ambiguity and mor-
phological regularity. One aim of our work is to
investigate the extent to which it is possible to pre-
dict lemmatization performance for a particular
language by operationalizing and measuring these
properties. Therefore in this section we provide
statistics and some analysis of the datasets used
in our experiments. We use the standard splits of
the Universal Dependency Treebank (UDT) v2.05

(Nivre et al., 2017) datasets for 20 languages: Ara-
bic, Basque, Croatian, Dutch6, Estonian, Finnish,
German, Greek, Hindi, Hungarian, Italian, Latvian,
Polish, Portuguese, Romanian, Russian, Slovak,
Slovene, Turkish and Urdu. See Figure 1 for train-
ing and development data sizes.

Because the amount of training data varies
widely between languages, we perform some of
our language analysis (and later, system evalua-
tion) on a subset of the data, where we use only the
first 10k tokens in each language for training. The
10k setting provides a clearer comparison between
languages in terms of their productivity, ambigu-
ity, and regularity, and also gives a sense of how
much training data is needed to achieve good per-
formance.

One of the main purposes of data-driven lemma-
tization is to handle unseen words at test time, yet
languages with differing morphological productiv-
ity will have very different proportions of unseen
words. Figure 2 shows the percentage of tokens
in the development sets of each language that are
not seen in training. Two conditions are given: the
full training/development sets, and train/dev sets
that are controlled in size across languages. For

5UTD v2.0 datasets are archived at http://hdl.
handle.net/11234/1-1983

6We use UDT v2.1 dataset for Dutch due to inconsistencies
in v2.0.

https://github.com/EdinburghNLP/nematus
https://github.com/EdinburghNLP/nematus
http://hdl.handle.net/11234/1-1983
http://hdl.handle.net/11234/1-1983


Figure 1: Training and development set sizes for
each language, in thousands.

Figure 2: Percent of tokens unseen in training. Dev
(yellow): within full development sets with respect
to the full training sets. Dev 3k (green): within the
first 3k tokens of development sets with respect to
the first 10k tokens of training sets.

the languages with large data sets, the percentage
of unseen words is (unsurprisingly) higher when
training data is reduced to 10k. However, these
differences are often small compared to the differ-
ences between languages, suggesting that produc-
tivity is likely to affect lemmatization performance
as much as training data size.

Lexical ambiguity is the other major motivation
for context-sensitive lemmatization. To quantify
how frequently lemmatizers have to rely on context,
Figure 3 shows the percentage of ambiguous to-
kens in each language, in either the full or reduced
training sets. We define ambiguity empirically: am-
biguous tokens are wordforms occurring with more
than one lemma within the training set.

Overall, the level of measured ambiguity tends
to be lower than the proportion of unseen tokens.
Many of the languages with high productivity (e.g.,
Russian, Slovak, Slovene, Turkish) have low levels
of ambiguity, while others (Arabic, Urdu) trend
the opposite way. Indeed, across all 20 languages,

Figure 3: Percent of ambiguous tokens within the
first 10k tokens of training sets and full training
sets. Ambiguous tokens are word forms occurring
with more than one lemma in the training set.

the levels of productivity and ambiguity are nega-
tively correlated, with a rank correlation of -0.57
after controlling for training data size.7 This is
not surprising, since given a set of morphosyntac-
tic functions, they must either be expressed using
distinct forms (leading to higher productivity) or
non-distinct forms (leading to higher ambiguity).

The final characteristic that we would expect to
make some languages easier than others is mor-
phological regularity, but it is unclear how to mea-
sure this property directly without an in-depth un-
derstanding of the morphophonological rules of a
language. Nevertheless, the presence of many ir-
regular forms, or other phenomena such as vowel
harmony or spelling changes, complicates lemma-
tization and will likely affect accuracy.

5 Experimental Setup

Training Parameters8 We use a mini batch size
of 60 and a maximum sequence length of 75.
For training we use stochastic gradient descent,
Adadelta (Zeiler, 2012), with a gradient clipping
threshold of 1.0, recurrent Bayesian dropout proba-
bility 0.2 (Gal and Ghahramani, 2016) and weight
normalization (Salimans and Kingma, 2016). We
use early stopping with patience 10 (Prechelt,
1998). We use the first 10 epochs as a burn-in pe-
riod, after which at the end of every second epoch

7That is, the correlation is computed between the values
in Figure 2 Dev 3k (unseen words wrt the first 10k training
tokens for each language) and Figure 3 Train 10k (ambiguous
words in the first 10k training tokens for each language). The
correlation is significantly different from zero with p < 0.01.

8Training parameters were tunned/verified on the standard
splits of UDT training and development sets for Spanish and
Catalan, therefore the results on these languages are not in-
cluded in our evaluation.



we evaluate the current model’s lemmatization ex-
act match accuracy on the development set and
keep this model if it performs better than the previ-
ous best model. When making predictions we use
beam-search decoding with a beam of size 12.

Baselines To train models we use the default set-
tings for Morfette and Lemming. Ch-2017 requires
word embeddings, for which we use fastText9 (Bo-
janowski et al., 2017). For Ch-2017 we set the num-
ber of training epochs to 100 and implement early
stopping with patience 10.10 We leave the remain-
ing model parameters as suggested by Chakrabarty
et al. (2017).

We also use a lookup-based baseline (Baseline).
For words that have been observed in training, it
outputs the most frequent lemma (or the first ob-
served lemma, if the options are equally frequent).
For unseen words it outputs the wordform itself as
the hypothesized lemma.

Context Representation We aim to use a con-
text representation that works well across multiple
languages, rather than to tune the context individu-
ally to each language. In preliminary experiments,
we explored several different context representa-
tions: words, sub-word units, and N surrounding
characters, for different values of N . These ex-
periments were carried out on only six languages.
Three of these (Latvian, Polish and Turkish) were
also used in our main experiments, while three
(Bulgarian, Hebrew, and Persian) were not, due to
problems getting all the baseline systems to run on
those languages.

For the word level context representation
(Words), we use all words in the left and the right
sentence contexts. For the character level con-
text representations (N-Ch) we experiment with
N = 0, 5, 10, 15, 20, or 25 characters of left and
right contexts. For the sub-word unit context repre-
sentation, we use byte pair encoding (BPE) (Gage,
1994), which has shown good results for neural ma-
chine translation (Sennrich et al., 2016). BPE is a
data compression algorithm that iteratively replaces
the most frequent pair of symbols (here, characters)
in a sequence with a single new symbol. BPE has

9https://github.com/facebookresearch/
fastText/blob/master/pretrained-vectors.
md

10We do so because it is unclear what stopping criterion
was used by Chakrabarty et al. (2017) Their suggested default
for the number of training epochs is 6, yet the values used in
their experiments vary from 15 for Hindi to 80 for Bengali.

a single parameter—the number of merge opera-
tions. Suitable values for this parameter depend
on the application and vary from 10k in language
modeling (Vania and Lopez, 2017) to 50k in ma-
chine translation (Sennrich et al., 2016). We aim
to use BPE to extract a few salient and frequently
occurring strings, such as affixes, therefore we set
the number of BPE merge operations to 500. We
use BPE-encoded left and right sentence contexts
that amount up to 20 characters of the original text.

Since we hoped to use context to help with am-
biguous words, we looked specifically at ambigu-
ous word performance in choosing the best context
representation.11 Table 1 summarizes Lematus’
performance on ambiguous tokens using different
sentence context representations. There is no con-
text representation that works best for all six lan-
guages, but the 20-Ch system seems to work rea-
sonably well in all cases, and the best on average.
We therefore use the 20-Ch context in our main
experiments.

Note that this choice was based on a relatively
small number of experiments and it is quite possi-
ble that further tuning the BPE parameter, or the
number of BPE units or words of context (or tuning
separately for each language) could lead to better
overall results.

Evaluation To evaluate models, we use test and
development set lemmatization exact match accu-
racy. When calculating lemmatization accuracy we
ignore casing of the tokens and ommit punctuation
tokens and those tokens that contain digits or any
of the following characters: @+. /.

6 Results and Discussion

Results on Complete Datasets Development set
accuracies for all languages and systems in the full
data setting are provided in Figure 4a, with results
on unseen and ambiguous words in Figures 4b and
4c. Overall, Lematus 20-Ch outperforms the previ-
ous systems, Morfette, Lemming and Ch-2017, on
20, 15 and 20 languages respectively. In addition,
Figure 4 makes it clear that the major benefit of all
the systems over the baseline is for unseen words:
in fact, for ambiguous words, the baseline even out-
performs some of the systems in a few languages.
Comparing the two versions of Lematus, we can
see that Lematus 20-Ch does consistently better

11The percentage of ambiguous tokens in the training sets
of Bulgarian, Hebrew and Persian are 8.4%, 16.6% and 7.6%
respectively; for the other languages, see Figure 3.

https://github.com/facebookresearch/fastText/blob/master/pretrained-vectors.md
https://github.com/facebookresearch/fastText/blob/master/pretrained-vectors.md
https://github.com/facebookresearch/fastText/blob/master/pretrained-vectors.md


Baseline 0-Ch 5-Ch 10-Ch 15-Ch 20-Ch 25-Ch BPE Words
Bulgarian 81.1 83.0 79.7 88.9 88.2 89.2 88.5 89.2 84.2
Hebrew 95.3 95.0 82.5 84.9 86.0 86.3 85.4 84.4 75.5
Latvian 73.8 76.6 70.1 73.2 73.9 74.8 71.1 71.6 66.2
Persian 94.4 92.5 90.5 91.5 91.0 92.5 92.5 93.0 88.0
Polish 90.6 91.7 84.0 84.0 93.0 93.6 83.5 85.6 83.0
Turkish 78.6 80.9 75.9 77.9 85.5 85.9 79.3 75.9 73.8
Average 85.6 86.6 80.5 83.4 86.3 87.1 83.4 83.3 78.5

Table 1: Lemmatization exact match accuracy on ambiguous tokens of dev sets, for baseline and for
Lematus using various context representations: N characters, Byte Pair Encoding units, or words.

Dev Test 10k:Dev 10k:Test
All Unseen Ambig SeenUA All All All

Baseline 85.8 39.6 88.0 99.2∗†‡ 86.1 74.4 74.4
Morfette 92.9 75.7 91.4 98.9 93.1 86.8 86.5
Lemming 94.1 81.4 92.4† 98.8 94.1 87.5 87.3
Ch-2017 90.8 75.0 90.7 96.2 89.8 80.2 79.0
Lematus 0-Ch 94.3 83.6∗ 88.8 98.9 94.2 87.1 86.6
Lematus 20-Ch 95.0∗† 84.3∗† 92.4† 98.8 94.9∗† 88.4† 87.8†

Table 2: Lemmatization exact match accuracy, averaged across all 20 languages. In the full training
scenario (first five columns) results are given for All, Unseen, Ambiguous, and Seen Unambiguous tokens.
(Note that ambiguity is empirical: is a type seen with more than one lemma in training?) We compare
Lematus with/without context (20-Ch/0-Ch), the most frequent lemma baseline, and three previous
systems. The numerically highest score in each column is bold; ∗, †, and ‡ indicate statistically significant
improvements over Lemming, Lematus 0-Ch and 20-Ch, respectively (all p < 0.05; see text for details).

on ambiguous tokens than Lematus 0-Ch, whereas
their performance on unseen tokens (and thus, over-
all) is much more similar. In fact, on unseen words,
Lematus 0-Ch outperforms the context-sensitive
baselines Morfette, Lemming and Ch-2017 on 18,
12 and 17 languages respectively. These results sug-
gest that a good context-free model can do surpris-
ingly well on unseen words, and the added model
complexity and annotation requirements of earlier
context-sensitive models are not always justified.

As further evidence of these claims, we sum-
marize in Table 2 each system’s average perfor-
mance over all languages for both the development
and test sets. In addition to performance break-
down into unseen and ambiguous words we also
report each system’s performance on tokens that
were both seen and unambiguous in training. No
system achieves 100% accuracy on seen unam-
biguous tokens—even the lookup baseline achieves
only 99%, indicating that about 1% of tokens that
appeared unambiguous in training occur with a
previously unseen lemma in the development set.
In principle, context-based systems could outper-
form the baseline on these words, but in practice

none of them do. Indeed, switching to a dictio-
nary lookup baseline for seen unambiguous words
would slightly improve the performance of all mod-
els (though it would not change the overall ranking
of the systems).

We tested for statistically significant differences
between the results of Lemming (the numerically
best-performing competitor system) and our two
systems (Lematus 0-Ch and Lematus 20-Ch) us-
ing a Monte Carlo method: for each comparison
(say, between 0-Ch and 20-Ch on unseen words),
we generated 10000 random samples, where each
sample randomly swapped the two systems’ results
for each language with probability .5. We then ob-
tained a p-value by computing the proportion of
samples for which the difference in average results
was at least as large as the difference observed in
our experiments.

Because the results of 0-Ch and 20-Ch are highly
correlated across languages, all differences be-
tween these systems, except for results on seen
unambiguous tokens, are significant (p < 0.01 for
dev set All, p < 0.05 for Unseen, p < 0.001 for
Ambig, and p < 0.01 for test set All; p > 0.1 for



(a) All tokens. Models were trained on full training sets.

(b) Unseen tokens. Models were trained on full training sets.

(c) Ambiguous tokens. Models were trained on full training sets.

(d) All tokens. Models were trained on the first 10K of the training sets.

Figure 4: Lemmatization exact match accuracy on development sets for each language.



Figure 5: Lemmatization accuracy of Lematus 20-Ch on all dev set tokens vs percent of unseen tokens
(left) or percent of ambiguous tokens (middle); accuracy on unseen tokens vs training set size (right).

dev set SeenUA). Lemming does as well as Lema-
tus 20-Ch on ambiguous and SeenUA words, but
its accuracy on unseen words is lower (p < 0.001),
leading to worse performance overall (p < 0.01
on both dev and test). Interestingly, even Lema-
tus 0-Ch does better than Lemming on unseen
words (p < 0.02), and performs on par overall
(p = 0.28). So, although including context clearly
can help (compare Lematus 20-Ch vs 0-Ch), and
Lemming exploits this advantage for ambiguous
words, a good context-free model can still do very
well. Overall, our models do as well or better than
the earlier ones, without the added model complex-
ity and annotation requirements. On the other hand,
although our context-sensitive model does improve
somewhat over its context-free counterpart, there
is still some way to go, since average performance
on unseen and ambiguous words is still 84% and
92% respectively.

Results on 10k Datasets Figure 4d shows the
results on all tokens for each language in the 10k
training setting, with averages in Table 2. On aver-
age, limiting training data to the first 10k examples
resulted in an 82% reduction of training sets, and
we see an average drop in test set performance of
5.6-6.8 percentage points for all systems except
Ch-2017, which drops by about 10 percent. When
comparing the 0-Ch and 20-Ch versions of Lema-
tus we found the same pattern of significances as
in the full data setting (p < 0.01), however the
two best systems (Lematus 20-Ch and Lemming)
are statistically equivalent on the test sets, as are
Lemming and Lematus 0-Ch.

Patterns Across Languages In Section 4, we hy-
pothesized that the success of data-driven lemma-
tization depends on a language’s productivity, am-
biguity, and regularity. We now explore the extent
to which our results support this hypothesis. First,

we examine the correlation between the overall per-
formance of our best system on each language and
the percentage of unseen (Figure 5, left) or am-
biguous words (Figure 5, middle) in that language.
As expected, there is a strong negative correlation
between the percentage of unseen words and the
accuracy of Lematus 20-Ch: the rank correlation
is R = −0.73 (p < 0.001; we use rank correla-
tion because it is less sensitive to outliers than is
linear correlation, and the plot clearly shows sev-
eral outliers.) In contrast to our original prediction,
however, Lematus 20-Ch is actually more accurate
for languages with greater ambiguity (R = 0.44,
p = 0.05). The most likely explanation is that am-
biguity is negatively correlated with productivity.
Since there tend to be more unseen than ambiguous
words, and since accuracy is typically lower for
unseen than ambiguous words, higher ambiguity
(which implies fewer unseen words) can actually
lead to higher overall accuracy.

Our earlier results also suggested that the main
benefit of Lematus 20-Ch over Lematus 0-Ch is for
ambiguous words. To confirm this, we looked at the
extent to which the difference in performance be-
tween the two systems correlates with the percent-
age of unseen or ambiguous words in a language.
As expected, this analysis suggests that including
context in the model helps more for languages with
more ambiguity (R = 0.67, p < 0.001). In con-
trast, Lematus 20-Ch provides less benefit over
Lematus 0-Ch for the languages with more unseen
words (R = −0.75, p < 0.0001). Again, we as-
sume the latter result is due to the negative correla-
tion between ambiguity and productivity.

So far, our results and analysis show a clear rela-
tionship between productivity and ambiguity, and
also suggest that using context for lemmatization
may be unnecessary (or at least less beneficial) for
languages with many unseen words but low am-



biguity. However, there are remaining differences
between languages that are more difficult to explain.
For example, one might expect that for languages
with more training data, the system would learn
better generalizations and lemmatization accuracy
on unseen words would be higher. However, Figure
5 (right), which plots accuracy on unseen words in
each language as a function of training data size,
illustrates that there is no significant correlation
between the two variables (R = 0.32, p = 0.16).
In some languages (e.g., Hungarian, in the top left)
Lematus performs very well on unseen words even
with little training data, while in others (e.g., Ara-
bic, along the bottom) it performs poorly despite
relatively large training data. We assume that reg-
ularity (and perhaps the nonconcatenative nature
of Arabic) must be playing an important role here,
but we leave for future work the question of how
to operationalize and measure regularity in order
to further test this hypothesis.

7 Conclusion

We presented Lematus, a simple sequence-to-
sequence neural model for lemmatization that uses
character-level context. On average across 20 lan-
guages, we showed that even without using context,
this model performs as well or better than three
previous systems that treated lemmatization as an
edit tree classification problem and required POS
tags (Chrupała et al., 2008; Müller et al., 2015) or
word embeddings trained on a much larger corpus
(Chakrabarty et al., 2017). We also showed that
with both larger and smaller training datasets, in-
cluding context boosts performance further by im-
proving accuracy on both unseen and (especially)
ambiguous words.

Finally, our analysis suggests that lemmatization
accuracy tends to be higher for languages with low
productivity (as measured by the proportion of un-
seen words at test time), but more surprisingly also
for languages with high ambiguity—perhaps be-
cause high ambiguity is also associated with low
productivity. We also found that the amount of
training data available for each language is not a
good predictor of performance on unseen words,
suggesting that morphological regularity or other
language-specific characteristics are playing an im-
portant role. Understanding the causes of these
differences is likely to be important for further im-
proving neural lemmatization.
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