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1.1 Goals and Approach

The child learning language is faced with a daunting task: to learn to extract meaning
from an apparently meaningless stream of sound. In order to achieve this goal, a number of
problems must be solved. These range from segmenting individual words out of the acoustic
stream to understanding the relationship between syntax and meaning. The work presented
here rests on the assumption that these problems cannot be completely solved in isolation,
and that it is the interaction between different grammar components that leads to fully
successful acquisition of the whole system. Interaction is crucial because partial knowledge
of one part of the grammar can place constraints on the kinds of generalizations that can be
made in another part of the grammar. Additional constraints may be placed on the system
by the presence of a learning bias, the nature of which I investigate here.

Behavioral research is the usual method employed to study language acquisition. How-
ever, due to the complex interdependence of different components of language, it can be
difficult to determine exactly how each component contributes to the overall learning pro-
cess. Moreover, behavioral research is necessarily indirect – there is no way to directly
examine or manipulate the linguistic representations in a child’s mind. The approach taken
here, in which computer programs are used to model certain aspects of language acquisition,
contrasts with the behavioral approach in these respects. Computer programs can be de-
signed to study individual components of the acquisition process, and can be manipulated to
determine the effects of incorporating different sources of information and representational
assumptions.

Some researchers question the validity of computational modeling as a methodology for
investigating language acquisition in humans. Certainly, current computer processors are
fundamentally different from the human brain: far more powerful in some ways (memoriza-
tion of large data sets, precise mathematical computation), impoverished in others (sensory
input, world knowledge). Computers are nevertheless a useful tool for investigating certain
kinds of proposals regarding human learning, particularly those based on the statistical
properties of the input. The models I develop here are grounded in Bayesian statistics,
and can be thought of as “ideal observer” models, making optimal use of the information
presented to them. Examining the ways in which these models succeed or fail can tell us,
for example, what kinds of representations are learned by attending to certain types of
information. In turn, this may yield insight into whether such information is necessary or
sufficient for acquisition.

In this thesis, I focus on developing models for two particular tasks that the child
must master: word segmentation (identifying individual words from the speech stream)
and morphological analysis (identifying the smaller units of meaning within words). I also
explore the nature of any innate biases the child might bring to the acquisition process. Each
of these components of lexical acquisition has been studied before, both computationally and
behaviorally. My contribution is in developing a flexible unifying framework in which these
components can be studied both in isolation (as presented in this document) and together
(as pursued in ongoing work using methods sketched in the conclusion to this document).
This framework is based on existing statistical models and techniques, but represents the
first attempt to apply these methods to the acquisition of linguistic structure. The use of
this flexible framework places me in a unique position to examine a number of different
questions about the nature of lexical acquisition, including
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• What kinds of structures are considered by the learning mechanism?

• How much and what sort of evidence is necessary to produce generalizations?

• Are there innate constraints that are specific to language acquisition, or can language
be acquired successfully using only general learning biases?

• What kinds of interactions between linguistic components aid in learning?

The models developed here begin to address the first three of these questions, while the
kind of combined model proposed in the final chapter (which builds on the models used
here) will eventually allow me to investigate the fourth.

In developing the modeling framework to examine these questions, it was necessary to
decide which aspects of human language acquisition were most important to capture. Per-
haps the most striking feature of language acquisition is the fact that it takes place without
explicit tutoring or access to “correct” analyses. I therefore chose to focus on unsuper-

vised learning, where the input consists only of unannotated linguistic data. In particular,
I am interested in learning from corpora of naturalistic data consisting, when possible,
of utterances spoken by parents to their very young children. Ideally, my system would be
designed to learn from acoustic data. Due to the constraints of time and technology, most
of my input data instead takes the form of phonemically transcribed child-directed speech.
For one experiment, I use data from a corpus of newspaper text.

The final aspect of my research that sets it apart from most previous work is that each
learner I develop is based on an explicit probabilistic model. In particular, my learners
are grounded in Bayesian statistics, where models consist of two parts. The generative
model defines the probability of generating (or observing) a particular linguistic form given
a hypothesis about the nature of the grammar. The prior distribution over grammars
(which can be thought of as a description of the learning bias) defines the probability that
any particular grammar is correct, regardless of the observed data. By manipulating these
two parts of the model, I can explore the effects of using different sources of information
and prior assumptions for lexical acquisition. I describe this approach in more detail, and
discuss some of the specific questions I address, in the following chapter outline.

1.2 Thesis Outline

Chapter 2: Background In this chapter, I discuss the problem of language acquisition
as induction, or generalization from incomplete data. I review the two most commonly
held views on how humans solve the language induction problem, nativism and connection-
ism. I then present the Bayesian approach taken in this thesis and argue that it can be
more powerful and more informative than previous approaches. Following this theoretical
introduction, I discuss some of the mathematical and computational background related to
Bayesian learning that is useful for understanding my own work. In particular, I review
the use of maximum-likelihood estimation and maximum a posteriori estimation for unsu-
pervised learning. Both of these techniques focus on finding a single optimal hypothesis
to explain the observed data; I argue in favor of a different approach, where the goal is to
estimate a distribution over hypotheses. I explain the mathematics of this approach, and
discuss algorithms that can be used to sample from such a distribution.
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Chapter 3: The Two-Stage Modeling Framework This chapter introduces the mod-
eling framework that will be used to develop the models in the remainder of the thesis. In
this framework, models are specified using a generator, which generates lexical items, and an
adaptor, which generates frequencies for those lexical items. I show that, with appropriate
choices for the generator and adaptor, two-stage models are nonparametric (allowing the
number of inferred parameters to grow with the size of the data) and produce a power-law
distribution on word frequencies. I describe one particular adaptor with these properties,
the Chinese restaurant process, and explain its connection to the Dirichlet process, a model
used in nonparametric Bayesian statistics. I also discuss the Pitman-Yor process, a gener-
alization of the Chinese restaurant process that can also be used as a two-stage adaptor.

Chapter 4: Morphology In this chapter, I apply the two-stage framework to morpho-
logical acquisition and address the question of whether corpus statistics or lexicon statistics
are more useful for this task. I review the literature relevant to this question as well as
previous computational work on morphological acquisition. I then explain my own novel
approach, which uses a two-stage model with a morpheme-based lexicon generator and a
Pitman-Yor adaptor. Depending on the parameters chosen for the Pitman-Yor process, the
model (whose input is a text corpus) infers morphology from statistical patterns found in
the corpus, the set of lexical items in the corpus, or some in-between point. The results of
my experiments indicate that morphological information is learned better from types than
from tokens. The use of the generator-adaptor framework provides a mathematically princi-
pled way to learn from types when the input consists of tokens, and to combine type-based
and token-based learning (as outlined in Chapter 6).

Chapter 5: Word Segmentation This chapter describes the application of the two-
stage language modeling framework to the problem of word segmentation and investigates
the importance of context for this task. Previous model-based computational work and
stimuli used in behavioral experiments have typically assumed that word probabilities are
independent of context. After reviewing this work, I develop a two-stage model for word
segmentation that also incorporates this assumption. I show that this model under-segments
the data, and argue that previous results to the contrary were due to constraints imposed
by the search algorithms used rather than to the underlying models. I then describe how
to extend the two-stage model to account for sequential dependencies between words, and
provide results showing that the extended model outperforms the original model as well as
all previously published results on the corpus in question.

Chapter 6: Conclusion In the conclusion to this document, I return to the goals set
out in the introduction and review how the modeling framework presented here is useful in
addressing them. I summarize the specific results achieved in the previous chapters using
separate models of morphology and word segmentation. I then discuss how those individual
models can be combined in future work to create an integrated model for simultaneous
acquisition of morphology and word segmentation. I present several additional avenues for
future research and conclude.
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2.1 The problem of language acquisition

At its heart, language acquisition is a problem of induction – the creation of an internal
representation of language that allows the learner to generalize beyond the observed lin-
guistic input, interpreting and producing novel linguistic forms. Starting in the first few
months of life, children are already beginning to group together certain acoustically distinct
waveforms into the categories linguists refer to as phonemes (Jusczyk, 1997). From there,
they go on to tasks such as recognizing particular sequences of sounds as words, identifying
morphological structure within known words, and applying this knowledge to novel words.
Although they may initially make some incorrect generalizations (e.g. I bringed my lunch),
eventually they master all the complexity of adult language, from phonology to pragmatics.
It may take many years for a child to achieve adult-like proficiency with language, but the
bulk of the work seems to be accomplished by the age of 7 or 8.

How do children accomplish this feat? In this section, I review two standard theoretical
explanations, nativism and empiricism. I then discuss the Bayesian learning approach I
have adopted in this work, and argue that it is both more flexible theoretically and more
informative experimentally than the others.

2.1.1 Nativism

The apparent difficulty of the problem of language induction is central to nativist theories
of acquisition. These theories assume that general learning mechanisms simply are not
powerful enough to allow children to make sense of the linguistic input they receive. The
reasoning behind this point of view (now referred to as the “argument from the poverty of
the stimulus”) was originally put forth by Chomsky (Chomsky, 1965):

It seems clear that many children acquire first or second languages quite suc-
cessfully even though no special care is taken to teach them and no special
attention is given to their progress. It also seems apparent that much of the
actual speech observed consists of fragments and deviant expressions of a va-
riety of sorts. Thus it seems that a child must have the ability to “invent” a
generative grammar that defines well-formedness and assigns interpretations to
sentences even though the primary linguistic data that he uses as a basis for
this act of theory construction may, from the point of view of the theory he
constructs, be deficient in various respects.

In other words, Chomsky believes that because children are not explicitly taught language,
and because their linguistic input is noisy, they must not be learning language entirely
from the input, but rather “inventing” it in some sense. Many nativists have bolstered
this claim by citing Gold’s Theorem (Gold, 1967) as evidence that language is unlearnable
even in the absence of noise1. Obviously, each child does not invent his or her own unique
language; rather, Chomsky proposes the existence of an innate endowment (known as Uni-
versal Grammar) that places strong constraints on the kinds of grammars that children can
conceivably acquire. Together with these constraints comes a special-purpose “Language

1Gold’s Theorem states that, after observing n strings from a language L belonging to some infinite class
of languages C, it is impossible for any learner to identify with certainty which language in C is being
presented (regardless of the number n). Critics have pointed out many weaknesses in using this theorem
to make claims about human language acquisition; for a discussion see Johnson (2004).
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Acquisition Device” (LAD) that enables children to move beyond their impoverished input
in acquiring adult language (Chomsky, 1965; Crain, 1991).

In principle, the idea of nativism is agnostic regarding the nature of Universal Grammar,
the LAD, and the final state of the grammar. In practice, nativists generally assume
that linguistic representations are highly structured, consisting of categories, rules, and
the like (Chomsky, 1957; Pinker, 1988). In Chomsky’s Principles and Parameters theory
(Chomsky, 1981), Universal Grammar consists of a set of principles that reference these
categories and rules, and delimit the set of all possible human languages. Languages differ
only in the setting of particular parameters, such as whether syntactic heads come before
their arguments or after. Optimality Theory (Prince and Smolensky, 1993), another major
nativist theory of language, views Universal Grammar as a set of constraints operating over
linguistic objects. Cross-linguistic variation results from the fact that not all constraints
can be satisfied simultaneously, and different languages rank the importance of satisfying
the various constraints differently.

According to the nativist view, the restriction to a highly structured, highly constrained
space of grammars makes the problem of language induction much simpler. For example,
certain features in the input might be specified by Universal Grammar to serve as cues,
allowing children to set the value of some particular parameter (Dresher and Kaye, 1990;
Dresher, 1999). Fixing a parameter eliminates a subset of the universally permissible gram-
mars, thus reducing the space of grammars the child must choose between. Over time,
enough cues will be observed to eliminate all but the correct grammar.

2.1.2 Empiricism

Psychologists and linguists who disagree with the nativist approach often align themselves
instead with the empiricist view of language acquisition. Under this view, language acqui-
sition is based on statistical properties of the input, and is an associative process essentially
similar to other associative learning (Elman et al., 1996). Where nativists see children’s
input as noisy and lacking the full complexity of adult language, empiricists focus on the
rich statistical patterns that are available even in simple child-directed speech. A strict
empiricist view rules out the possibility of innate learning mechanisms specific to language;
whatever general-purpose learning mechanisms allow children to draw complex inferences
in other domains are also sufficient for language.2

Just as empiricists minimize the importance of language-specific learning mechanisms,
they are also skeptical of language-specific mental representations. In the connectionist
theories that constitute much of the empiricist literature, mental representations of language
are considered to be probabilistic, distributed, and unstructured, without hard categorical
boundaries or explicit rules (Elman, 2004; Seidenberg and Gonnerman, 2000). Computer
models have shown that many of the apparently rule-governed phenomena of language can
be simulated using these kinds of networks (Christiansen and Curtin, 1999; Elman, 2003;
Rumelhart and McClelland, 1986), and connectionists take this as evidence that linguistic
rules and categories have no cognitive reality.

Overall, many of the differences between empiricism and nativism can be framed as
differences in the inductive bias of the learner – the strength and nature of constraints

2Note, however, that some researchers in the empiricist tradition do concede the possibility of special-
purpose learning mechanisms, but downplay their importance (Elman et al., 1996).



8

on learning. Nativist theories assume that learning is highly constrained by the nature of
linguistic representations and the ways those representations can be combined. Empiricism
assumes that constraints are relatively weak, so that learning is guided primarily by the
nature of the input. To the extent that constraints are discussed explicitly in the empiricist
literature, they are usually viewed as architectural rather than informational (Elman et al.,
1996). That is, the actual hardware used to implement a learning algorithm (whether it
is an artificial neural network or a human brain) is considered to be an important source
of inductive bias, because it can impose constraints on the communication and storage of
information. In contrast, nativist theories abstract away from architecture, focusing instead
on the kinds of information and representations that can and cannot be learned.

2.1.3 Structured probabilistic approaches

The typical features of nativist learning theories (strong domain-specific constraints, struc-
tured deterministic representations, deterministic learning procedures) have often been seen
as inextricably linked, as have the corresponding features of empiricism/connectionism
(weak general-purpose constraints, distributed representations, statistical learning proce-
dures). However, beginning in the 1990s, many researchers in artificial intelligence (and
later, linguistics and cognitive science as well) began to investigate the problem of lan-
guage acquisition using structured probabilistic approaches (Charniak, 1993; Manning and
Schütze, 1999; Boersma and Levelt, 1999; Albright and Hayes, 2003). These approaches
contain explicit linguistic representations, such as lexical items and rules governing how
those items can combine. However, those representations are associated with probabilities
indicating (roughly) how frequently each item occurs in practice. The process of learning
is also crucially based on word frequencies and other statistical properties of the input.

Among structured probabilistic approaches, it is important to draw a distinction be-
tween two types of systems. This distinction can probably best be understood in terms
of Marr’s levels of information processing (Marr, 1982). In Marr’s terminology, an in-
formation processing system can be studied at the computational level (focusing on the
goal of the computation and strategies for carrying it out), the algorithmic level (focusing
on input/output representations and procedures for implementing the computation), or the
hardware implementation level (focusing on the physical realization of the algorithm). Some
structured statistical approaches are concerned primarily with the computational level of
processing, others with the algorithmic level. (Note that connectionism, with its concern for
architecture, is the only common approach to modeling language acquisition that considers
the hardware implementation level as well as the algorithmic level.)

Examples of algorithmic-level models based on statistics and explicit structure date
back at least as far as the 1950s, when Harris proposed a procedure for determining mor-
pheme boundaries based on the statistical properties of words (Harris, 1954). More recent
algorithmic-level models include the Gradual Learning Algorithm (Boersma and Hayes,
2001), which defines a procedure to follow for learning stochastic Optimality Theory gram-
mars, and Albright and Hayes’ stochastic rule-based proposal for learning morphology
(2003).

Although these procedural proposals can be quite successful, the kinds of questions I
am interested in are more suited to a computational-level approach. I therefore develop
systems based on explicit probabilistic models. A probabilistic model is a computational-
level proposal about learning – that is, it describes the goal of learning, the different kinds of
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information that should be considered, and how those kinds of information should interact.
Of course, in order to implement a complete learning system, it is necessary to pair a
probabilistic model with a compatible learning algorithm that implements a procedure for
reaching the stated goal. However, the choice of algorithm is important only in the sense
that some algorithms may be insufficient to achieve the goals of the model.3 Two quite
different algorithms could be used with the same probabilistic model; the two resulting
systems would be equivalent at the computational level (and produce equivalent results)
provided the algorithms were both able to achieve the model’s objective. This contrasts with
algorithmic-level proposals, where changing any details of the procedure used for learning
would change the results.

The particular framework I will be using to model lexical acquisition is known as
Bayesian learning. Like other structured probabilistic models, the kind of Bayesian mod-
els I use employ explicit linguistic representations, which is helpful for understanding the
kinds of information the model has access to, and the ways that information can be used.4

However, Bayesian models include an additional component that is particularly useful for
studying language acquisition. This component, known as the prior, places constraints on
the kinds of generalizations that can be made by the model. Unlike the hard constraints
of Universal Grammar, these biases are statistical in nature, meaning that they guide the
learner in certain directions, but can be overridden by enough contrary evidence. Because
these biases are made explicit, they can be directly manipulated in order to examine the
effects on linguistic generalization. Modeling constraints in this way is quite different from
other approaches, where constraints are imposed implicitly by algorithms or architectures.
Changing the number of nodes or connections in a neural network, for example, may lead
to different results, but it will be difficult to determine why, or what the implications are.

A common argument against the use of Bayesian models (and other probabilistic models
as well) in cognitive science is that the mathematical descriptions of these models, and the
algorithms needed to perform inference, can be quite complex. Since a Bayesian model is
intended to describe the computational level of processing, whether or not an associated
inference algorithm is cognitively plausible is not of primary interest. Rather, it should
only matter whether some inference algorithm for the model could be implemented in the
human brain. The fact that we do not yet know what this algorithm might be should not
be fatal to the theory. On the other hand, it would be a real problem if Bayesian learning
is simply too complex for any cognitive process to implement. However, there is growing
evidence from a variety of domains (including natural language) that humans do behave in a
way consistent with Bayesian inference (Tenenbaum and Xu, 2000; Gerken, 2006; Griffiths
and Tenenbaum, In press). This does not mean that humans literally have probabilistic
equations in their minds, but it does indicate that these equations provide a useful way

3The widespread use of the term model to describe both a proposal about the nature of learning or
its implementation (as in “connectionist model”) and a specific mathematical statement regarding the
process generating a set of data (as in “probabilistic model”, “generative model”) is unfortunately
somewhat confusing. I will attempt to be as clear as possible about which sort of model I am referring
to, and will generally use the term “system” to describe fully implemented (probabilistic-)model-based
learners when the distinction between the probabilistic model and the model plus algorithm is important.

4There is nothing inherent in the Bayesian approach that requires structured linguistic representations;
Bayesian models can be defined over distributed representations similar to the ones typically used in
neural networks. However, most Bayesian models of language acquisition have employed structured
representations.



10

of describing human behavior. Moreover, if human learning is Bayesian, then exploring
the sources of information available in language and how they are exploited by a Bayesian
learner can tell us something about human language acquisition. We may discover that
optimal Bayesian inference does not fully account for human acquisition; in that case, it
would still be useful to examine how humans might differ from the “ideal” Bayesian learner,
and why.

Prior to presenting my own work on Bayesian modeling for language acquisition, I review
some useful computational and mathematical background material. In the remainder of this
chapter, I first describe some previous model-based approaches to language acquisition. I
then discuss how my own approach differs from these, and present in general terms the
family of inference algorithms used in my research.

2.2 Computational preliminaries

Within the domain of structured probabilistic models, nearly all language learning systems
have been based on Bayes’ rule, which defines the probability of hypothesis h (i.e. a grammar
or other linguistic analysis) given the observed data d:

P (h|d) =
P (d|h)P (h)

P (d)

∝ P (d|h)P (h)

That is, the posterior probability P (h|d) is proportional to the product of P (d|h) (the
likelihood, or probability of the data under hypothesis h) and P (h) (the prior probability of
h). The likelihood evaluates how well h explains the observed data, and the prior evaluates
how well h conforms to expectations about what a good hypothesis should be like, regardless
of the observed data. A hypothesis with a high prior probability requires less evidence in
its favor in order to be accepted. From a cognitive perspective, the prior distribution
results from a combination of innate learning biases and previous experience, and serves as
a constraint on learning.

In the remainder of this section, I review the two most common approaches that have
been used in model-based computational language learning systems: maximum-likelihood
estimation, which considers only the likelihood term when evaluating hypotheses, and the
minimum description length principle, which is a particular way of encoding a prior over
hypotheses. I then discuss in general terms how my approach differs from either of these.

2.2.1 Maximum-likelihood estimation

Maximum-likelihood estimation, as the name implies, assumes that the goal of learning is
to select the hypothesis ĥ with the highest likelihood:

ĥ = argmax
h

P (d|h)

For a fixed parameterization, this is equivalent to assuming that all hypotheses are equally
probable a priori, and then choosing the single hypothesis with the highest posterior prob-
ability.
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Figure 2.1: Regression using a simple function (left) and a complex function (right).

For many applications, maximum-likelihood estimation can be performed in a straight-
forward way using the algorithmic framework known as Expectation Maximization (EM)
(Dempster et al., 1977; Neal and Hinton, 1998). EM is particularly useful for models with
latent variables (whose values cannot be observed directly from the data), so it is popular for
unsupervised learning. Examples of EM for linguistic tasks include the forward-backward
algorithm for learning hidden Markov models and the inside-outside algorithm for learning
context-free grammars. EM is an iterative procedure with the attractive property that the
likelihood is guaranteed to increase (or remain the same) at each iteration.

There are at least two disadvantages to EM, however. First is the fact that it is guar-
anteed to converge only to a local maximum of the likelihood function, not the global
maximum. Complex models such as those often found in linguistic applications generally
have many local maxima, and these can be quite distant from the global maximum. This
can lead to poor results that are highly dependent on parameter initialization (Carroll and
Charniak, 1992).

Another limitation of EM (and maximum-likelihood estimation in general) is that it is
only useful for finding optimal parameter values in models where the number of parameters
is known. Consider a regression problem, where we must find the function that best fits a
set of data points. If we limit our hypothesis space to the set of linear functions (each of
which has two parameters: slope and intercept), we can use maximum-likelihood estimation
to find the best-fitting line. However, if we do not restrict the hypothesis space in this way,
a more complex function (i.e. with more parameters) can be found that will perfectly fit
the data points, yielding a much higher likelihood (see Figure 2.1). Judging purely by the
likelihood, this complex function is a better solution, even though intuitively it is less likely
to generalize to future observations. This phenomenon is known as overfitting the data.

Within the framework of maximum-likelihood estimation, there are methods (such as
likelihood ratio tests) that can be used to determine whether the increase in likelihood
achieved by a more complex model is sufficient to outweigh the extra parameters involved.
However, these methods require enumerating all hypotheses under consideration, which
can make it difficult to search through a complex hypothesis space. In addition, language
learning often involves choosing between hypotheses that differ not only in the number of
parameters, but also in the structure of those parameters. For example, two context-free
grammars may have the same total number of rules and categories, but the rule structures
may be completely different. This sort of learning problem is far more difficult than simply
identifying the optimal parameter values in a space of similar hypotheses.

Because of the problem of structure identification, maximum-likelihood estimation tech-
niques are often inappropriate for language learning. A number of researchers have therefore
turned to methods that incorporate a non-uniform prior distribution over hypotheses. The
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prior can be used to favor hypotheses with fewer parameters or particular kinds of struc-
tures, and serves to counterbalance the importance of the likelihood in model inference.
The remainder of this chapter is devoted to these kinds of methods.

2.2.2 Minimum description length

Rather than using maximum-likelihood estimation, many successful unsupervised learning
systems have been based on the assumption that simpler hypotheses are a priori more
probable, and have been designed to find the Maximum a Posteriori (MAP) solution under
this assumption:

ĥ = argmax
h

P (d |h)P (h) (2.1)

This approach has the advantage that it provides a principled way to compare hypotheses
with different numbers of parameters, but it raises the question of exactly how to evaluate
the notion of “simplicity” in a hypothesis. I have mentioned one obvious metric, the number
of parameters required to describe the hypothesis. However, in the domain of language,
linguistic plausibility or naturalness is also a desirable criterion for many researchers. A
common way of approaching the problem of designing a linguistically motivated prior is to
use the minimum description length (MDL) principle (Rissanen, 1989).

Informally, an MDL prior favors hypotheses that can be described succinctly. Imagine
that we need to encode a corpus of words as efficiently (i.e. with as few characters) as
possible. Encoding each word as itself would be simple, but inefficient. Instead, we could
design a codebook where each word was represented by a unique string. Frequent words
could be assigned short strings, and infrequent words would be assigned longer strings. With
a well-designed codebook, the total number of characters required to encode the corpus
(the length of the codebook plus the length of the encoded corpus) would be less than in
the original corpus. We could go further and encode smaller units such as morphemes or
phonemes, which would require fewer codewords and thus a shorter codebook. However, in
general, as we use fewer codewords in the codebook, it will become more difficult to encode
the corpus efficiently with them, leading to a trade-off between the length of the codebook
and the length of the encoded corpus. The MDL principle states that we should choose the
codebook that leads to the shortest total combined length.

The relationship between MDL and Bayesian inference becomes clear when we consider
results from information theory. In particular, information theory tells us that, under an
optimal encoding, the length (in bits) of an encoded corpus will be exactly − log P (d |h),
where d is the corpus and h is the codebook used to encode d. Therefore the optimal
codebook ĥ will be the one that satisfies

ĥ = argmin
h

(len(encodingh(d)) + len(h))

= argmin
h

(− log2 P (d |h) + len(h))

= argmax
h

(P (d |h) · 2(−len(h))) (2.2)

In other words, MDL is simply MAP Bayesian inference with the assumption that the prior
probability of a particular hypothesized grammar (the codebook) decreases exponentially
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with its description length. The usual argument for MDL is that linguistically principled
grammars should be able to describe a corpus well with relatively little descriptive overhead,
so searching for the lowest combined description length will tend to find such grammars.

MDL has been used successfully for unsupervised learning in a variety of linguistic
domains, including word segmentation (de Marcken, 1995; Brent and Cartwright, 1996),
phonology (Ellison, 1994), morphology (Goldsmith, 2001b; Creutz and Lagus, 2002), and
syntax (Dowman, 2000). It provides a principled approach to the structure-learning prob-
lem, which is an improvement on maximum likelihood estimation, but (at least with current
technology) it is far from an ideal solution. One problem is that the results of an MDL-
based system can be quite sensitive to seemingly minor changes in the encoding scheme,
in ways that are not linguistically transparent (Goldwater and Johnson, 2004). Also, the
flexibility of the MDL framework in allowing the researcher to choose an arbitrary encoding
scheme means that there is no standard way to search the space of possible hypotheses
for the optimal solution. Instead, researchers must design special-purpose algorithms using
heuristics or stochastic search. Either way, there is no guarantee that the algorithm will
find (or even approximate) the optimal solution.

There have been some attempts to develop Bayesian language learning systems using
priors defined by mathematical equations rather than by encoding methods (Brent, 1999;
Snover and Brent, 2003; Creutz, 2003). This approach can make the assumptions inherent
in the prior more explicit, and is in fact the approach I will take here. The difference
between my work and these previous systems lies in the added modeling flexibility allowed
by the two-stage framework I propose, and in the inference procedures I use, which are
instances of general-purpose algorithms with convergence guarantees. Previous Bayesian
systems for language acquisition, MDL-based and otherwise, have relied on special-purpose
algorithms with no such guarantees.

2.2.3 Bayesian statistics

The above review of previous language acquisition systems shows that most either use max-
imum likelihood estimation with EM (or some variant), or a non-uniform prior with some
specially designed inference procedure. This raises the question of whether it is possible to
combine EM or other standard algorithms with models that include non-uniform priors. In
fact, using standard techniques from Bayesian statistics, it is. In this section, I review some
of those techniques, to prepare the reader for my presentation of the two-stage modeling
framework in the following chapter.

Within Bayesian statistics, certain kinds of priors have convenient mathematical prop-
erties that lead to their widespread use. To illustrate some of these properties, I will use
the example of the Dirichlet distribution, a prior over multinomials. Suppose we have a
multinomial with possible outcomes {1 . . . K} and parameters θ = {θ1 . . . θK}, i.e. the prob-
ability of outcome k ∈ {1 . . . K} is θk. From this multinomial we sample a set of outcomes
x = {x1 . . . xn}, so that P (xi = k) = θk. This can also be written

xi |θ ∼ Multinomial(θ) (2.3)

which can be read as “xi is distributed according to a multinomial with parameters θ.”
The Dirichlet prior is a distribution over multinomials, i.e. each sample from a Dirichlet
distribution is a set of parameter values θ. Using a Dirichlet prior over a multinomial
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distribution therefore gives us

xi |θ ∼ Multinomial(θ) (2.4)

θ |β ∼ Dirichlet(β) (2.5)

where β = {β1 . . . βK} are the parameters (also known as hyperparameters) of the Dirichlet
distribution. I will discuss the effects of different choices for the hyperparameters in a
moment. First, consider the definition of the Dirichlet distribution:

P (θ |β) = c

K
∏

k=1

θβk−1
k (2.6)

with c =
Γ(

∑K
k=1 βk)

∏K
k=1 Γ(βk)

where βk > 0. The Gamma function, which appears in the normalizing constant c, is defined
as Γ(x) =

∫ ∞
0 ux−1e−udu for x > 0, and is a generalized factorial function: Γ(x) = (x − 1)!

for positive integer x, and Γ(x) = (x− 1)Γ(x− 1) for any x > 0. To determine the effect of
a Dirichlet(β) prior on the multinomial parameters that are inferred from observing x, we
use Bayes’ rule:

P (θ |x,β) ∝ P (x |θ)P (θ |β)

∝
n

∏

i=1

Pθ(xi)
K
∏

k=1

θβk−1
k

=

K
∏

k=1

θnk

k

K
∏

k=1

θβk−1
k

=

K
∏

k=1

θnk+βk−1
k (2.7)

where nk is the number of occurrences in x of outcome k. Notice that the posterior dis-
tribution P (θ |x) takes the form of another Dirichlet, with parameters nk + βk. A prior is
said to be conjugate to a distribution if the posterior has the same form as the prior. Thus,
the Dirichlet is conjugate to the multinomial.

Once we know the expression for P (θ |x,β), how can we use this information? The
approaches I have discussed so far search for the MAP estimate of a model, under the
assumption that this estimate will yield good predictions for future observations. In the
case of the Dirichlet-multinomial, the MAP estimate argmaxθ P (θ |x,β) results in θk =

nk+βk−1

n+
PK

k=1(βk−1)
. Thus, the MAP estimate of θ using a Dirichlet(β) prior and observed counts

{n1, . . . , nK} is equivalent to the maximum likelihood estimate of θ with observed counts
{n1 + β1 − 1, . . . , nK + βK − 1}. This means that standard maximum likelihood estimation
techniques such as EM can be used to find the MAP estimate of a multinomial with a
Dirichlet prior by simply adding “pseudocounts” of size βk − 1 to each of the real expected
counts nk at each iteration. This method works if βk ≥ 1 for all k, in which case the
Dirichlet prior has a smoothing effect: as βk grows larger, it will tend to increase the size
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of θk relative to the other multinomial parameters. When all the hyperparameters have
the same value γ (a symmetric Dirichlet prior), increasing γ will lead to more uniform
multinomials.

There is a problem with using MAP estimation when any βk is less than one, however.
As Figure 2.2 shows, hyperparameters less than one lead to a probability density function
with mass concentrated at values where one or more parameters are equal to zero. As a
result, the posterior probability of a set of parameters may be maximized by setting some
parameters equal to zero, even though doing so causes the likelihood to become zero and
the data to be un-analyzable. As a toy example, suppose we are using EM to learn syntactic
rule probabilities for parsing using the standard parameterization. The data d contains only
two strings, a and b, and the grammar consists of the following rules (with probabilities
shown to the left of each rule):

θx S→ X 1 X→ a
θy S→ Y 1 Y → a

1 − θx − θy S→ B 1 B→ b

We initialize the rules to have uniform probability, so θx = θy = 1
3 , and we use the same

Dirichlet hyperparameter β = .2 for all S productions. Under these conditions, the expected
counts nx and ny of rules S → X and S → Y are both .5, and the expected count nb of
rule S → B is 1. From equation 2.7, we have

P (θ | d, β) ∝ θnx+β−1
x θ

ny+β−1
y (1 − θx − θy)

nb+β−1

= θ−.3
x θ−.3

y (1 − θx − θy)
.2 (2.8)

It is easy to see that this function is maximized when θx = θy = 0, yet using this MAP
estimate for the parameter values makes the string a unparseable.

This example illustrates how MAP estimation may fail when βk < 1. Yet these hy-
perparameter values are ideal for unsupervised learning, because multinomials where many
of the θk are close to zero (often called sparse solutions) will have high probability, and
the data will be explained using fewer parameters when possible. In other words, using a
Dirichlet prior with hyperparameters between 0 and 1 is a way to introduce a bias against
model complexity and in favor of generalization.

Although using EM with βk < 1 is problematic, there are other ways to approach the
problem of Bayesian inference. In the models I will be discussing, there is no attempt to
directly represent θ at all. Rather than estimating a particular set of values for θ and using
these to predict future observations, the conditional distribution of a new observation is
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Figure 2.2: Probability density functions of the symmetric Beta(β, β) distribution (the two-
dimensional Dirichlet), with different values of β. When β < 1, mass is concentrated where
either θ1 or θ2 = 1 − θ1 is close to zero. When β > 1, mass is concentrated where θ1 ≈ θ2.

derived by integrating over all possible values of θ:

P (xn+1 = j |x,β) =

∫

∆
P (xn+1 = j |θ)P (θ |x,β) dθ

=

∫

∆
θj

Γ(n +
∑K

k=1 βk)
∏K

k=1 Γ(nk + βk)

K
∏

k=1

θnk+βk−1
k dθ

=
Γ(n +

∑K
k=1 βk)

∏K
k=1 Γ(nk + βk)

∫

∆
θ

nj+βj

j

∏

k 6=j

θnk+βk−1
k dθ

=
Γ(n +

∑K
k=1 βk)

∏K
k=1 Γ(nk + βk)

·
Γ(nj + βj + 1)

∏

j 6=k Γ(nk + βk)

Γ(n +
∑K

k=1 βk + 1)

=
nj + βj

n +
∑K

k=1 βk

(2.9)

where ∆ indicates the probability simplex, i.e. the set of values for θ such that
∑

k θk = 1.
The integral in the third line can be solved analytically, but the fourth line can also be
derived by using the fact that the Dirichlet distribution must sum to 1, and therefore

∫

∆

K
∏

k=1

θβk−1
k dθ =

∏K
k=1 Γ(βk)

Γ(
∑K

k=1 βk)
(2.10)

for any positive values of βk.
Integrating out the model parameters in this way is advantageous in several respects.

First, it permits the use of Dirichlet hyperparameters arbitrarily close to zero, because
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these cannot cause negative estimates for P (xn+1 = j |x,β). This approach can therefore
be used to infer sparse solutions in Dirichlet-multinomial models (and others, as we shall see
in the next chapter). Additionally, although the MAP estimate can yield good predictions
when the distribution P (θ |x,β) has a single narrow peak, it may be less accurate if the
distribution is relatively flat or has multiple modes. Considering all possible parameter
values may lead to better predictions in these cases.

A final advantage of this approach is that, because the model parameters are not repre-
sented explicitly, it becomes possible to work with the kinds of model families I will describe
in the next chapter, where the number of parameters is unbounded. Although individual
models are infinite, averaging over models by integrating out the model parameters actually
leads to a finite representation that can be used for inference.

2.2.4 Inference via sampling

Standard algorithms for MAP estimation of model parameters, such as EM, are inappro-
priate if we want to work with the full posterior distribution over models. These algorithms
provide a point estimate of the MAP solution, not an estimate of the full posterior distribu-
tion. Moreover, estimating the posterior analytically is generally intractable. Fortunately,
there is a class of algorithms we can use to obtain samples from the posterior distribution of
interest. These samples can be used to estimate the posterior distribution of the parameters
θ, or any function of the posterior, including the MAP or expected value.

These sampling algorithms, known as Markov chain Monte Carlo (MCMC) methods
(Besag, 2000; Neal, 1993; Gilks et al., 1996), are based on the concept of a Markov chain —
a stochastic process with random states Y 1 . . . Y T where P (Y t = y |Y 1 . . . Y t−1) = P (Y t =
y |Y t−1). The transition probability matrix of the chain is a matrix P that defines P (y, y′)
for all pairs of states (y, y′): the probability of transitioning to state y′ given that the current
state is y. The (i, j)th entry of P corresponds to the probability of a transition from the ith
state to the jth state. Under certain conditions (detailed below), the chain will converge
to a unique stationary distribution, defined as the distribution π over states (specified as a
row vector) such that

πP = π (2.11)

In other words, after converging to the stationary distribution, the probability of being in
each state is the same at every time step.

In MCMC, each possible state of the Markov chain consists of an assignment of values to
all the variables in the model we wish to sample from. This means that the state space of the
Markov chain is equal to the hypothesis space of models. By defining P appropriately, we
can guarantee that the stationary distribution of the chain will be the posterior distribution
over the model variables. Once the chain has converged, each Y t will be a sample from the
posterior distribution.

Several conditions must hold in order for the Markov chain to converge to the stationary
distribution we want. First, there must be a finite path with non-zero probability between
any two states (the chain is irreducible). Second, no state may occur only after a multiple of
c ≥ 2 time steps (the chain is aperiodic). This second condition is fulfilled for any irreducible
chain with P (y, y) > 0 for some y. Taken together, these two conditions specify an ergodic
chain.
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The final necessary property of the Markov chain is that the transition probability
matrix satisfies πP = π (general balance) when π is the posterior distribution we wish
to sample from. This property may be satisfied by constructing P as the composition of
several simpler component matrices P1 . . . PK where each of the components satisfies the
more restrictive condition of detailed balance:

π(y)Pk(y, y′) = π(y′)Pk(y
′, y) (2.12)

where Pk(y, y′) is the probability in Pk of transitioning from y to y′. Applying each of the
Pk in turn (or choosing Pk at random) produces a P that satisfies general balance.

There are several kinds of sampling algorithms that are designed to satisfy detailed
balance. The simplest of these is Gibbs sampling, which I use in my experiments, and will
describe next. For completeness, I then discuss a more general class of algorithms (of which
Gibbs samplers are a special case) called Metropolis-Hastings samplers. These algorithms
will likely become necessary for the extensions to my work discussed in Chapter 6.

2.2.4.1 Gibbs sampling

In the above discussion, I have treated the Markov chain state variable Y as a unitary object.
When discussing sampling algorithms, it is useful to consider the subcomponents Y1 . . . YK

of the state, where Yk corresponds to a single variable in the model we are sampling. In the
basic Gibbs sampling algorithm (Geman and Geman, 1984), each iteration of the sampler
consists of K steps. In the kth step, a new value for Yk is sampled from its conditional
distribution given the current values of all the other variables. That is, we let

Pk(y, y′) = P (y′k | {yj : j 6= k})
∏

j 6=k

I(yj = y′j) (2.13)

where yk is the value of the kth model variable and I(.) is an indicator function taking on
the value 1 when its argument is true, and 0 otherwise. Thus, the kth component of the
transition matrix allows only Yk to change values. The general proof of detailed balance for
Metropolis-Hastings samplers (given below) applies to Gibbs samplers as a special case, but
it is also easy to see intuitively that each Pk satisfies general balance when the distribution
over states is the posterior distribution of interest. For j 6= k, yj does not change under Pk,
so the distribution over these components is clearly maintained. The distribution over yk

is maintained by construction, so general balance is satisfied.
Before applying this version of Gibbs sampling, then, we need only verify that the chain

constructed from the Pk is ergodic. If all the conditional probabilities used in the definition
of every Pk are non-zero, this will be the case. However, it may be that certain variables
are tied in such a way that changing only one results in an inconsistent (zero-probability)
state. For example, when segmenting words into stems and suffixes, changing the suffix of a
word requires changing its stem as well. A Markov chain where only a single variable may
change at once will be non-ergodic.

To circumvent this problem, Gibbs samplers may be blocked: each Pk is designed to
resample a block of variables at once. For example, both a stem and suffix may be resampled
simultaneously. This procedure ensures that the chain is ergodic, while still maintaining
detailed balance. Blocked Gibbs samplers can be used to avoid zero-probability transitions,
but are also useful when certain variables are highly correlated, because they increase the
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mobility of the chain – the rate at which it moves from one state to another very different
state. This can decrease the time to convergence and allow more efficient sampling.

2.2.4.2 Metropolis-Hastings sampling

While conceptually simple, Gibbs sampling requires that the exact conditional distribution
of each variable (or set of variables) be computed at each step. In practice, these computa-
tions may be difficult or inefficient to perform. Metropolis-Hastings samplers (Metropolis
et al., 1953; Hastings, 1970) provide a way to construct a transition probability matrix sat-
isfying detailed balance without having to compute the exact conditionals. In particular,
they define

Pk(y, y′) = Rk(y, y′)Ak(y, y′) (2.14)

where Rk is some proposal distribution over transitions from y to y′, and Ak is the acceptance
probability, defined as Ak(y, y′) = 0 if Rk(y, y′) = 0 and

Ak(y, y′) = min

{

1,
π(y′)Rk(y

′, y)

π(y)Rk(y, y′)

}

(2.15)

otherwise. In other words, a Metropolis-Hastings sampler samples a new state from Rk and
transitions to it with probability Ak, otherwise remaining in the same state. Notice that
Gibbs sampling is a special case of Metropolis-Hastings sampling where Rk = Pk, so that
the acceptance probability is always 1.

Detailed balance can easily be verified for the Metropolis-Hastings sampler:

π(y)Rk(y, y′)Ak(y, y′) = π(y)Rk(y, y′)min

{

1,
π(y′)Rk(y

′, y)

π(y)Rk(y, y′)

}

= min
{

π(y)Rk(y, y′), π(y′)Rk(y
′, y)

}

= π(y′)Rk(y
′, y)min

{

π(y)Rk(y, y′)

π(y′)Rk(y′, y)
, 1

}

= π(y′)Rk(y
′, y)Ak(y′, y) (2.16)

Like Gibbs sampling, Metropolis-Hastings sampling can be applied to individual vari-
ables or blocks of variables.

2.2.4.3 Cognitive plausibility

As discussed in Section 2.1.3, the focus of the Bayesian approach to cognitive modeling is
on the probabilistic model itself, rather than on the specifics of the inference procedure.
Nevertheless, it is worth considering the cognitive plausibility of the kinds of sampling
algorithms just described. Two different factors are often mentioned in discussions of the
cognitive plausibility of an algorithm. One is whether the algorithm processes information
online or in batch mode. Online algorithms receive a single presentation of each data point,
which they process before observing the next data point. This mode of operation seems
to correspond roughly to the way humans process information. Batch algorithms, on the
other hand, receive all their input data at once, and may iterate through it multiple times.
They are generally considered implausible as models of human information processing.

The sampling algorithms that I have described clearly operate in batch processing mode,
iterating over the entire data set at each sampling step. However, there are closely related
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sampling algorithms that can approximate the posterior distribution over hypotheses when
presented a set of data online. These algorithms use a technique known as particle filtering
(Doucet et al., 2000) to track a number of samples from the posterior at every time step.
New samples are calculated from the old samples after each data point is observed, so the
estimate of the posterior changes over time.

Another property of algorithms that cognitive scientists often consider is the amount
of memory required for processing. On this metric, sampling algorithms do well compared
to many other statistical procedures. At any given time, the state of an MCMC sampler
consists only of the values currently assigned to each variable in the model. In the kinds
of models I will be presenting, this corresponds to the number of times each word (or mor-
pheme, bigram, etc.) occurs in the currently hypothesized analysis of the data. Crucially,
items with zero counts need not be represented. In contrast, algorithms like EM must rep-
resent the values of every parameter in the model, including parameters corresponding to
items with very low probability that never occur in the highest probability analysis of the
data. As an example, suppose we have an HMM language model for part-of-speech tagging.
In order to learn the model parameters using EM, the probabilities of every possible transi-
tion and emission must be stored at all times – a total of T 2 + TW parameters if there are
T tags and W words. Using a sampling algorithm, each sample consists of an assignment of
part-of-speech tags to the words in the data. At each iteration, the sampler need only keep
track of the number of times each tag-tag and tag-word pair occurs in the current sample.
In theory, the number of such pairs with non-zero counts could be as high as T 2 +TW , but
in practice it is likely to be much smaller, especially for the kind of sparse solutions we are
interested in.

2.3 Conclusion

In this chapter, I have presented the theoretical and computational underpinnings of my
work. I have discussed how the Bayesian approach provides a way to explicitly specify
the sources of information available to a learner and the constraints on learning. Bayesian
models are therefore particularly useful for addressing questions at the computational level
of processing. The use of a prior contrasts with maximum-likelihood estimation, which
considers only the observed data and is therefore prone to overfitting. There are different
ways to define the goal of a Bayesian learner; most previous researchers have assumed
that the goal is to identify the most probable solution under the posterior distribution. I
have argued that estimating the full posterior distribution can be more informative, and
also provides a way to perform inference in cases where it would be difficult or impossible
otherwise. Finally, I have described in general terms some algorithms that can be used to
estimate the posterior by producing samples from it. In the following chapter, I show how
the Bayesian approach described here can be used to develop models of lexical acquisition.
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3.1 Introduction

This chapter introduces the two-stage modeling framework I will be applying in the remain-
der of this thesis, and illustrates its advantages over previous computational approaches to
the problem of unsupervised language acquisition. The two-stage framework is based on
the Bayesian statistical techniques discussed in the previous chapter, so it can be used in
conjunction with standard sampling algorithms to infer sparse solutions – those that can
be described with relatively few parameters. It is a nonparametric framework, which means
that the number of parameters in a two-stage model need not be specified in advance.
Instead, the number of parameters will tend to grow naturally with the size of the data.
Finally, this framework is highly flexible, because models are specified as two separate com-
ponents: a lexicon generator (or simply generator), which models the kind of items that are
likely to be found in the lexicon, and an adaptor, which assigns frequencies to those lexical
items.

3.2 Intuition

The basic generative process underlying any model within the two-stage framework creates
a sequence of words w = w1 . . . wn as follows:

1. Generate a sequence of lexical items ℓ = ℓ1 . . . ℓK from some probability distribution
Pω, the lexicon generator (or simply generator).

2. Generate a sequence of integers z = z1 . . . zn with 1 ≤ zi ≤ K, where zi = k indicates
that wi = ℓk (i.e. zi is the index of the lexical item corresponding to wi). These
integers are assumed to be generated by some stochastic process Pγ with one or more
parameters γ. This process is the adaptor.

I will use the notation TwoStage(Pγ , Pω) to refer to a two-stage model with adaptor Pγ and
generator Pω. A graphical model illustrating the dependencies between the variables in this
framework is shown in Figure 3.1.

In principle, any distribution over integers could be used in Step 2 of this framework.
However, the models I discuss all assume that Pγ is chosen so that the frequencies with
which different integer outcomes are produced follow a power-law distribution — a few
outcomes have very high probability and most outcomes occur with low probability. This
is the same kind of distribution that word frequencies have been found to follow in natural
language.

An important point to note is that the use of the term “lexical item” here is non-
standard. Usually, a lexical item is considered to be a unique object. Here, Pω is a discrete
distribution and the lexical items are generated independently, so ℓ may contain duplicate
items1. Usually, Pω will be a distribution with infinite support (i.e. over an infinite number
of items). In this case, for the choices of Pω presented in this thesis, using an adaptor
that produces a power-law distribution over integers will result in a power-law distribution

1The assumption of independence between lexical items is not strictly necessary, but is mathematically
and computationally convenient. An example of a more complex distribution over lexical items that
enforces uniqueness is given in Brent (1999).
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Generator

wi

ℓk

Pωα

zi

n

K

Adaptor

Figure 3.1: A graphical model representation of the two-stage language modeling framework.
Arrows indicate dependencies between variables, and solid-line boxes indicate replicated
portions of the model, with the number of replicants shown in the lower right hand corner.
Variables associated with the generator are on the right; those associated with the adaptor
are on the left. Depending on the application, the words wi may or may not be directly
observed.

on the frequencies in the final sequence of words. Thus, the adaptor “adapts” the word
frequencies produced by the generator to fit a power-law distribution.

Given the assumption of an adaptor producing power laws, different choices for the
generator model will allow different kinds of linguistic structure to be learned. For example,
in Chapter 4, I show that morphological structure can be learned using a generator that
produces words by choosing a stem and suffix and concatenating them together. In Chapter
5, I use a different generator to discover word boundaries in unsegmented text. Due to the
task-specific nature of the generator, this chapter focuses primarily on the adaptor. I first
review power-law distributions and their relationship to natural language, and then present
the Chinese restaurant process, a simple statistical process that can be used as a power-
law adaptor. I discuss the resulting two-stage model (using the generic lexicon generator
Pω) and show that it is equivalent to a standard Bayesian statistical model known as
the Dirichlet process. I then present another possible power-law adaptor, the Pitman-Yor
process. Finally, I explain the sampling methods that can be used to perform inference on
the models I have discussed.

3.3 Power laws

One of the most striking statistical properties of natural language is the fact that word
frequencies follow a power-law distribution, i.e.

P (nw = x) ∝ x−g

where nw is the number of times the word type w is observed in a corpus and g is some
constant. This observation is often attributed to Zipf (1932), although according to Mitzen-
macher (2003), there is an earlier reference in Estoup (1916). “Zipf’s law”, though equivalent
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Figure 3.2: Standard plot (left) and Zipf-style plot (right) illustrating the power-law distri-
bution of words in the Penn Wall Street Journal corpus. nw is the number of occurrences
of w and Rank(w) is the rank order of the frequency of w. The noise in the data is more
apparent in the standard plot than the Zipf plot, but both are approximately linear on the
log-log axes. The slope of each line corresponds to the exponent g or c.

to the above definition, is actually stated in terms of the frequency ranking of words: the
probability of the kth most frequent word in a corpus is approximately proportional to k−c,
with c = g − 1 (Griffiths, 2005). Regardless of the chosen definition, the empirical proba-
bilities of the words in a corpus appear approximately linear on a log-log plot (see Figure
3.2), a behavior that is characteristic of a power-law distribution2.

In general, power-law distributions are produced by stochastic processes (non-independent
sequences of events) in which frequent outcomes attract probability mass over time —
“preferential attachment” or “rich-get-richer” processes. For example, the number of links
pointing to a given web page follows a power-law distribution, which can be explained by
assuming that new web pages are more likely to include links to already-popular pages
(Mitzenmacher, 2003). One widely used preferential attachment process is due to Simon
(1955):

P (zi = k | z−i) = a
1

Z
+ (1 − a)

n
(z−i)
k

i − 1
(3.1)

where zi is the ith outcome, Z is the number of possible values for that outcome, z−i =

{z1 . . . zi−1}, n
(z−i)
k is the number of times k occurs in z−i, and a is a parameter controlling

the exponent of the power law (in particular, g = 1/(1 − a)).
The difficulty with using this sort of process for the adaptor in a two-stage model is

that different permutations of the outcomes z have different probabilities. For example,
P (1, 1, 2) = ( a

Z
)( a

Z
+ 1 − a)( a

Z
) while P (1, 2, 1) = ( a

Z
)( a

Z
)( a

Z
+ 1−a

2 ). Of course, different
orderings of the words in a text do have different probabilities, but those probabilities do
not necessarily differ in the way that Equation 3.1 predicts. In the absence of additional

2Although both the standard and Zipf plots of word frequencies appear linear on a log-log scale, the
Zipf plot will appear non-linear for power-law distributions where g = 1 (Griffiths, 2005). In natural
language, g is typically closer to 2 (i.e. c, the constant in Zipf’s law, is close to 1).
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Figure 3.3: The Chinese restaurant process. Black dots indicate the seating arrangement
of the first nine customers. Below each table is P (z10 = k | z−10).

information, it is more reasonable to assume that outcomes are exchangeable, i.e. all permu-
tations of the set of outcomes have the same probability. In Chapter 5, I will show how to
introduce more linguistically natural ordering dependencies into the two-stage framework;
until then, it is simpler and less restrictive to assume that the probability of a set of words
does not depend on their ordering. Note the difference from the usual language modeling
assumption of independent, identically distributed outcomes. Here, outcomes are not in-
dependent: generating a word once increases the probability of generating it again in the
future.

The property of exchangeability also has practical benefits, in that it permits us to
perform inference using the sampling algorithms discussed in Section 2.2.4. Recall, for ex-
ample, that the Gibbs sampler requires us to compute the distribution of the ith variable
conditioned on the values of the other n variables in the model. When outcomes are ex-
changeable, we can easily do so by treating the ith variable as if it were the last observation,
and computing its distribution conditioned on the “previous” n observations.

3.4 The Chinese restaurant process

A simple stochastic process that is exchangeable and produces power laws is the Chinese
restaurant process (CRP) (Aldous, 1985; Pitman, 1995; Griffiths, 2006). Imagine a restau-
rant containing an infinite number of tables, each with infinite seating capacity. Customers
enter the restaurant and seat themselves. Each customer sits at an occupied table with
probability proportional to the number of people already seated there, and at an unoccu-
pied table with probability proportional to some constant α. That is, if zi is the number of
the table chosen by the ith customer, then

P (zi = k | z−i) =







n
(z

−i)

k

i−1+α
1 ≤ k ≤ K(z−i)

α
i−1+α

k = K(z−i) + 1
(3.2)

where n
(z−i)
k is the number of customers already sitting at table k, K(z−i) is the total

number of occupied tables in z−i, and α ≥ 0 is a parameter of the process determining how
“spread out” the customers become. Higher values of α mean that more new tables will
be occupied relative to the number of customers, leading to a more uniform distribution
of customers across tables. The first customer by definition sits at the first table, so this
distribution is well-defined even when α = 0. See Figure 3.3 for an illustration.
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Under this model, the probability of a particular sequence of table assignments for n
customers is

P (z) =
n

∏

i=1

P (zi | z−i)

= 1 ·

n
∏

i=2

P (zi | z−i)

=





n−1
∏

j=1

1

j + α





(

αK(z)−1
)





K(z)
∏

k=1

(n
(z)
k − 1)!





=
Γ(1 + α)

Γ(n + α)
· αK(z)−1 ·

K(z)
∏

k=1

(n
(z)
k − 1)! (3.3)

where the first factor in line 3 accounts for the product of all the denominators from the
factors in line 2, the second factor accounts for the numerators in the cases where a new
table was introduced, and the third factor accounts for the remaining numerators3. It is
easy to see that any reordering of the table assignments in z will result in the same factors in
Equation 3.3, so the CRP is exchangeable. In other words, all partitions of the n customers

into groups with sizes {n
(z)
1 , . . . , n

(z)
K(z)} are equivalent.

3.5 Generating words

The CRP can be used to create a power-law distribution over integers, but to create a
distribution over words we need to combine it with a lexicon generator to make a full two-
stage model. For expository purposes, I will continue to use the generic lexicon generator
Pω, a distribution parameterized by ω, so the full model is TwoStage(CRP(α), Pω). This
model can be viewed as a restaurant in which each table is labeled with a word produced
by Pω. Each customer represents a word token, so that the number of customers at a table
corresponds to the frequency of the lexical item labeling that table. A token may only be
assigned to a table whose label matches the token. The probability of the ith word in a
sequence, given the previous labels and table assignments, can be found by summing over

3It is more standard to see the joint distribution of table assignments in the CRP given as P (z) =
Γ(α)

Γ(n+α)
·αK(z) ·

QK(z)
k=1 (n

(z)
k −1)!. This distribution is derived from the Dirichlet process (see Section 3.6),

which is defined only for α > 0, and is equivalent to Equation 3.3 in that case. I use the distribution in
Equation 3.3 because it is defined also for α = 0, which is a possible parameter value in the CRP.
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Figure 3.4: The two-stage restaurant. Each label ℓk is shown on table k. Black dots indicate
the number of occurrences of each label in w−10. Below each table is P (z10 = k |w10 =

‘the’, z−10, ℓ(z−10), ω). Under this seating arrangement, P (w10 = ‘the’) = 6+αPω(the)
9+α

,

P (w10 = ‘dog’) = 1+αPω(dog)
9+α

, P (w10 = ‘a’) = 2+αPω(a)
9+α

, and for any other word w,

P (w10 = w) = αPω(w)
9+α

.

all the tables labeled with that word:

P (wi = w | z−i, ℓ(z−i), ω) =

K(z−i)+1
∑

k=1

P (wi = w | zi = k, ℓ(z−i))P (zi = k | z−i)

=

K(z−i)
∑

k=1

P (wi = w | zi = k, ℓk)P (zi = k | z−i)

+P (wi = w | zi = K(z−i) + 1)P (zi = K(z−i) + 1) | z−i)

=

K(z−i)
∑

k=1

I(ℓk = w)
n

(z−i)
k

i − 1 + α
+ Pω(w)

α

i − 1 + α

=
n

(w−i)
w + αPω(w)

i − 1 + α
(3.4)

where ℓ(z−i) are the labels of all the tables in z−i, I(.) is an indicator function taking on

the value 1 when its argument is true and 0 otherwise, and n
(w−i)
w is the number of previous

occurrences of w in w−i (i.e. the number of assignments in z−i to tables labeled with w).
The probability of an entire sequence of words is

P (w |ω) =
∑

z,ℓ

P (w, z, ℓ |ω)

=
∑

z,ℓ





Γ(1 + α)

Γ(n + α)
αK(z)−1

K(z)
∏

k=1

(

Pω(ℓk) · (n
(z)
k − 1)!

)



 (3.5)

where ℓ and z are constrained in the sum in the second line such that ℓzi
= wi for all i.

In later chapters, it will sometimes be necessary to use the conditional distribution over
table assignments for sampling. This distribution, which is illustrated in Figure 3.4, can be
determined using Equation 3.4. By definition,

P (zi = k |wi = w, z−i, ℓ(z−i), ω) =
P (zi = k,wi = w | z−i, ℓ(z−i), ω)

P (wi = w | z−i, ℓ(z−i), ω)
(3.6)
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where

P (zi = k,wi = w | z−i, ℓ(z−i), ω) =







n
(z

−i)

k

i−1+α
· I(ℓk = w) 1 ≤ k ≤ K(z−i)

α
i−1+α

· Pω(w) k = K(z−i) + 1
(3.7)

Dividing through by Equation 3.4 yields

P (zi = k |wi = w, z−i, ℓ(z−i), ω) =















n
(z

−i)

k

n
(w

−i)
w +αPω(w)

· I(ℓk = w) 1 ≤ k ≤ K(z−i)

α

n
(w

−i)
w +αPω(w)

· Pω(w) k = K(z−i) + 1
(3.8)

The conditional distribution over words given in Equation 3.4 leads to an alternative
way of viewing the two-stage framework, as a cache model. Under this view, each word is
generated in one of two ways: from a cache of previously occurring words (with probability
1−α
n+α

if we use the CRP adaptor) or as a novel word (with probability α
n+α

). Words from the
cache are chosen with probability proportional to the number of times they have occurred in
the cache. Novel words are chosen according to the probability distribution of the lexicon
generator (which means that, strictly speaking, they are not always “novel”, since the
generator may produce duplicates). This interpretation clarifies the significance of the
parameters α and Pω. Prior expectations regarding the probability of encountering a novel
word are reflected in the value of α, so lower values of α lead to sparser solutions. Prior
expectations about the relative probabilities of different novel words are reflected in Pω, so
the choice of generator determines the kinds of words that are likely to be inferred from the
data.

In the case where the generator is a K-dimensional multinomial distribution with param-
eters ω, Pω(wi = k) = ωk, so Equation 3.4 becomes equivalent to Equation 2.9, indicating
that the cache model reduces to a Dirichlet(αω)-multinomial model. However, if the gener-
ator is a distribution over an infinite number of items, the cache model makes it clear that
the number of different word types that will be observed in a corpus is not fixed in advance.
Rather, new word types can be generated “on the fly” from an infinite supply. In general,
the number of different word types observed in a corpus will slowly grow as the size of the
corpus grows.

Models whose complexity grows with the size of the data are referred to in the statistical
literature as nonparametric. In the following section I show that the two-stage model with
generator Pω and CRP adaptor is equivalent to a standard nonparametric statistical model
known as the Dirichlet process.

3.6 The Dirichlet process

In Chapter 2, I discussed the Dirichlet distribution, which can be used as a prior over multi-
nomials. Each draw from a K-dimensional Dirichlet distribution returns a set of parameters
θ for a K-dimensional multinomial – a distribution over a finite set of outcomes. In a sym-
metric Dirichlet distribution, the hyperparameter α determines the variance in the values
of θ. The Dirichlet process is like an infinite-dimensional symmetric Dirichlet distribution:
each draw returns a distribution G over a countably infinite set of outcomes. The Dirichlet
process has two parameters: G0, a distribution which determines the probability that any
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Figure 3.5: A graphical representation of the Dirichlet process language model.

particular outcome will be in the support of G, and α, which determines the variance in
the probabilities of those outcomes under G. In general, G0 may have uncountably infinite
support, but in the models presented here, G0 is a distribution over words, a countably
infinite set.

A Dirichlet process (DP) unigram language model can be characterized as follows:

wi |G ∼ G

G |α,Pω ∼ DP(α,Pω) (3.9)

The corresponding graphical model can be seen in Figure 3.5. This formulation makes
the distribution G sampled from the DP explicit. However, it is possible to integrate over
G to obtain the conditional distribution P (wi |w−i, α, Pω) just as we integrated over θ in
the Dirichlet-multinomial model (Equation 2.9). This integration results in the following
conditional distribution (Blackwell and MacQueen, 1973):

wi |w−i, α, Pω ∼
1

i − 1 + α

i−1
∑

j=1

δ(wj) +
α

i − 1 + α
Pω (3.10)

where δ(wj) is a distribution with all its mass at wj . Rewriting this distribution as a
probability mass function makes clear the equivalence between TwoStage(CRP(α), Pω) and
DP(α,Pω):

P (wi = w |w−i, α, Pω) =
1

i − 1 + α

i−1
∑

j=1

I(wj = w) +
α

i − 1 + α
Pω(w)

=
n

(w−i)
w + αPω(w)

i − 1 + α
(3.11)

The sort of language model I have just described is an unusual application of the Dirichlet
process. The Dirichlet process is more typically used as a prior in infinite mixture models
(Lo, 1984; Escobar and West, 1995; Neal, 2000), where each table represents a mixture
component, and the data points at each table are assumed to be generated from some
parameterized distribution. Technically, the DP language model can be viewed as a mixture
model where each table is parameterized by its label ℓk, and P (wi | ℓzi

) = I(wi = ℓzi
), so
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every data point in a single mixture component is identical. Previous applications of DP
mixture models use more complex distributions to permit variation in the data within
components. Usually Gaussians are used for continuous data (Rasmussen, 2000; Wood
et al., 2006) and multinomials for discrete data (Blei et al., 2002; Navarro et al., 2006).
DPs and their extensions have been used for language-related tasks (Blei et al., 2004), but
this work has focused on modeling the overall semantic content of text rather than fine-
grained linguistic structure. Models that are similar to the Dirichlet process model used
here have been described before (MacKay and Peto, 1994; Elkan, 2006; Madsen et al.,
2005), but these assume a finite number of parameters (i.e. they are based on the Dirichlet-
multinomial distribution and can be described as TwoStage(CRP(α),Multinomial(ω))). To
my knowledge, the language models described in this document are the first to apply DPs
to the problem of low-level language acquisition.

3.7 The Pitman-Yor process

The models I develop in Chapter 5 of this thesis use the CRP adaptor. In Chapter 4,
however, I describe a model that uses a different adaptor, the Pitman-Yor process (Pitman,
1995; Pitman and Yor, 1997; Ishwaran and James, 2003). The Pitman-Yor process is a
generalization of the CRP, defined as

P (zi = k | z−i) =







n
(z

−i)

k
−a

i−1+b
1 ≤ k ≤ K(z−i)

K(z−i)a+b

i−1+b
k = K(z−i) + 1

(3.12)

where 0 ≤ a < 1 and b ≥ 0 are parameters of the process. As in the CRP, z1 = 1 by
definition. When a = 0 and b = α, this process reduces to the CRP. Like the CRP, the
Pitman-Yor process is exchangeable and produces a power-law distribution on the number
of customers seated at each table. In this case, the power-law exponent g is equal to 1 + a
(Griffiths, 2006).

Under the Pitman-Yor process, the probability of a particular seating arrangement z is

P (z) =

n
∏

i=1

P (zi | z−i)

= 1 ·
n

∏

i=2

P (zi | z−i)

=





n−1
∏

j=1

1

j + b









K(z)−1
∏

k=1

(ka + b)











K(z)
∏

k=1

n
(z)
k

−1
∏

j=1

(j − a)







=
Γ(1 + b)

Γ(n + b)

K(z)−1
∏

k=1

(ka + b)

K(z)
∏

k=1

Γ(n
(z)
k − a)

Γ(1 − a)
(3.13)

The derivation is similar to the derivation for the CRP. Further discussion of the Pitman-
Yor process and the significance of the parameters a and b will be deferred to Chapter
4.
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3.8 Conclusion

In this chapter, I have presented a two-stage framework for language modeling that is
based on nonparametric Bayesian statistical techniques. Models in this framework consist
of a lexicon generator, which can be modified to suit the needs of specific tasks, and an
adaptor, which produces a power-law distribution on the frequencies of items produced
by the generator. I have discussed two different adaptors, the Chinese restaurant process
and the Pitman-Yor process. Both of these adaptors include parameters that control the
sparseness of the solutions that will be found, and both are exchangeable, so they can be
used with the sampling procedures described in Section 2.2.4.

The two-stage framework I have described is both general and flexible. I have shown
that it subsumes at least two widely used Bayesian model families: the Dirichlet(αω)-
multinomial can be viewed as TwoStage(CRP(α),Multinomial(ω)), and DP(α,Pω) is equiv-
alent to TwoStage(CRP(α), Pω). The following chapters illustrate how the modular nature
of the framework allows models to be developed and modified more easily than in previous
approaches. This flexibility will permit me to address a broad range of questions regarding
the kinds of information that are available and useful for linguistic acquisition, and how
these kinds of information can be integrated to improve learning.
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4.1 Introduction

In the previous chapters, I have laid out an argument in favor of taking a statistical (in
particular, Bayesian) approach to modeling language acquisition, and have presented a
general framework for doing so. In this chapter, I apply that framework to the particular
task of learning simple morphological structure (stems and suffixes) in order to address
the question of what kinds of statistics are most useful for this task. Most proponents of
statistical learning implicitly assume that the statistics that are relevant for learning are
those of the input data; i.e. what matters is the frequency with which different lingustic
forms (or sets of forms) are observed in natural speech (Saffran et al., 1996b; Roark and
Demuth, 2000; Boersma and Hayes, 2001; Mintz et al., 2002). This view contrasts with
the approach of most nativist learning theories, where learning is usually assumed to be
triggered by individual linguistic instances, and has little (if anything) to do with observed
frequencies (Randall, 1992; Gibson and Wexler, 1994; Dresher and Kaye, 1990; Tesar and
Smolensky, 2000). There is also a third possibility, which has received less attention than
the first two. In many cases, there are statistical patterns that can be found amongst the
set of lingustic types that are found in the input. That is, if we consider the set of unique
forms at some level of structure (syllables, words, phrases), the statistics of this set may be
informative about the language in question. Notice that the kinds of generalizations that
may be drawn by considering statistical regularities amongst lexical items (counting each
unique item only once) may be different from the generalizations drawn by standard corpus-
based models (which consider also the frequency with which each lexical item appears in
the corpus.) Although some previous work has made use of statistics gathered from the
lexicon, there has not been much attention devoted to determining whether or when these
kinds of statistics might be helpful, or how they might interact with corpus frequencies
during learning.

The remainder of this chapter is structured as follows. I first review the literature
on learning from types (unique lexical items) and tokens (instances of those items in the
input), which suggests that sublexical generalizations (including morphology) are informed
by type frequencies, while token frequencies are useful for learning many other kinds of
linguistic structure. I discuss previous computational approaches to morphological analysis
and then describe my own morphological learner, which is based on the two-stage language
modeling framework from Chapter 3. I explain how the parameters of the two-stage model
determine whether it makes morphological generalizations based on corpus frequencies,
damped corpus frequencies, or word types. I present experiments explicitly comparing
these possibilities, and provide evidence that morphological structure is learned better by
attending to the statistics of the lexicon rather than of the input corpus. In light of these
results, I argue that the two-stage framework provides a natural way to simultaneously learn
from types (as seems to be necessary for morphological acquisition) and tokens (as in, e.g.,
word segmentation).
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4.2 Previous work

4.2.1 Types and tokens in learning

4.2.1.1 Learning from types without statistics

Traditionally, non-statistical approaches to learning have assumed that learning is based
on types. That is, to the extent that the learner’s input influences the final state of the
grammar, it does so by the presence or absence of certain lingustic forms, rather than by
their frequency. There are two basic mechanisms that have been proposed to explain how
observing particular constructions could affect the learning process. Under a view in which
language acquisition consists of parameter setting (Chomsky, 1981), certain constructions
may provide evidence as to the proper setting of particular parameters (Randall, 1992;
Dresher and Kaye, 1990; Dresher, 1999). When one of these constructions (or ”cues”, in
the terminology of Dresher and Kaye (1990)) is observed, it causes the learner to set the
value of the associated parameter appropriately. According to the theory of cue-based
learning articulated by Dresher (1999), once a parameter value has been set in this way, no
further evidence can modify its value. The types of constructions that serve as cues and
the order in which those cues may be used for parameter setting is specified by Universal
Grammar. Notice that cue-based learning does not assume that the learner is attempting
to match the input in any way; in fact, it is possible that the correct setting of a parameter
could temporarily cause the learner to make more overt mistakes.

In contrast to cue-based learning, other non-statistical theories of language acquisition
do assume that the learning process is driven by mismatches between the learner’s grammar
and the observed input (Gibson and Wexler, 1994; Tesar and Smolensky, 2000). Probably
the most well-known and well-studied learning algorithms are various incarnations of the
Constraint Demotion Algorithm (CDA) (Tesar and Smolensky, 1996; Tesar, 1998; Tesar
and Smolensky, 2000) for learning in Optimality Theory (Prince and Smolensky, 1993). In
essence, the CDA works by noting cases where an observed form is considered ungrammat-
ical by the learner’s current grammar (constraint ranking). When such a case occurs, the
learner reranks some of the constraints so as to make the observed form optimal.

Although the CDA, cue-based learning, and other non-statistical methods have been
shown to learn correctly on constructed examples, they all share the common drawback of
being highly sensitive to noisy or variable input data. Data with multiple surface realiza-
tions of the same lexical item can prevent the CDA from converging (Boersma and Hayes,
2001; Boersma, 2003); noisy input could cause an irrecoverable parameter setting error in
a cue-based learner. Since my purpose is to develop a model of learning that uses natu-
ralistic input, the kind of type-based learning exemplified by these models does not seem
appropriate, since it is not clear how to apply it successfully to potentially noisy input.

4.2.1.2 Learning from tokens

Not surprisingly, most work on statistical learning has focused on the most obvious source
of statistics – the raw linguistic input received by the learner. For early acquisition tasks
such as word segmentation, this is the only source of statistics that could plausibly be of
use, since lexical representations have not yet been built. Much of the behavioral research
on statistical learning has indeed focused on word segmentation tasks, showing that humans
are able to extract word-like units from continuous speech by attending to differences in
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the transitional probabilities between syllables or phonemes1 (Saffran et al., 1996b; Saffran
et al., 1996a; Newport and Aslin, 2004). In these experiments, artificial languages must
be used in order to create stimuli with appropriate statistical properties that are simple
enough to learn in the laboratory. There have also been some experiments suggesting that
token frequencies play a role in the kinds of representations that are stored in the mental
lexicon. For example, the frequency of a morphologically complex form relative to its base
form seems to affect how morphologically transparent (“decomposable”) the derived form
is judged to be (Hay, 2001).

Computational modeling makes it possible to explore statistical learning of a wider
variety of linguistic information from more complex input. Many different connectionist
simulations have been performed using full corpora or examples extracted from corpora
(with the corresponding frequencies) to train neural networks. Tasks learned successfully
have ranged from word segmentation (Christiansen et al., 1998) to prepositional phrase
attachment and verb subcategorization (Elman, 2003). The Gradual Learning Algorithm
(Boersma, 1997; Boersma, 1998), an algorithm for learning statistical Optimality Theory
grammars, has been shown to correctly learn various phonological grammars using input
example frequencies drawn from corpora (Boersma and Hayes, 2001), and to accurately
predict the acquisition order of syllable shapes in Dutch (Boersma and Levelt, 1999).

Natural language processing software is another place where the use of token frequen-
cies is widespread for a large range of tasks such as tagging (Merialdo, 1994; Ratnaparkhi,
1996), parsing (Charniak, 2000; Collins, 1999), machine translation (Brown et al., 1993;
Och, 2005), and speech recognition (Jelinek, 1997). Supervised systems for morphological
analysis are regularly trained on large corpora (Hajič and Hladká, 1998; Hakkani-Tür et al.,
2000), and token-based learning has been used for semi-supervised and unsupervised mor-
phological learning as well (Yarowsky and Wicentowski, 2000; Wicentowski, 2004; Creutz
and Lagus, 2005; Baroni, 2003). The few tasks for which raw token frequencies are gen-
erally not used are semantic in nature – information retrieval, where token frequency is
downweighted to emphasize infrequent but important content words, is a prime example
(Salton and Buckley, 1988; Baeza-Yates and Ribeiro-Neto, 1999).

Overall, the success of token-based approaches to statistical language learning is strong
evidence that there is valuable information to be found in raw token frequencies. However,
it does not rule out the possibility that statistical properties of the lexicon might also be
useful for learning certain kinds of linguistic information, perhaps even more useful than
the statistical properties of the input.

4.2.1.3 Learning from the statistics of types

Compared to the body of work studying the effects of token statistics on learning, there
has been relatively little attention devoted to the question of statistics in the lexicon. Most
cognitive work in this area has focused on phonological generalizations (Pierrehumbert,
2001; Pierrehumbert, 2003) and their effect on word recognition (Luce and Pisoni, 1998).
There is strong evidence that the time it takes to recognize a word is affected not only by that
word’s frequency, but also by the number of phonologically similar words in the lexicon, and
by the frequencies of those words (Luce and Pisoni, 1998; Vitevitch and Luce, 1999; Luce et

1The term transitional probability is typically used in this community rather than the standard conditional

probability to refer to P (x|y).
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al., 2000). Judgments of phonotactic well-formedness also depend on both lexical and token
statistics (Bailey and Hahn, 2001). One of the few researchers to discuss morphological
generalization is Bybee (2001), who provides some evidence that morphological productivity
is correlated with type frequency, and may even be inversely correlated with token frequency.

In contrast to these behavioral researchers, most researchers developing computational
models have either ignored the possibility of learning from lexical statistics, or have implic-
itly assumed this sort of learning without actually justifying or explaining their decision.
For example, many connectionist simulations of morphological or word learning use lists of
inflected lexical items as input to the learner, but never discuss the implications of this de-
cision2 (Plaut and Gonnerman, 2000; Regier et al., 2001). In particular, there is no attempt
to explain whether or how lexical statistics interact with the statistics of the input. This
disregard of the potential importance of input frequencies seems strange and problematic,
especially considering the connectionists’ usual focus on input statistics. In addition, it is
not clear how to reconcile training from lexical types with the standard connectionist view
that lexical types do not even exist in the traditional sense – each input token of the same
“type” will have a slightly different internal representation, so types only exist in the sense
that they can be induced by clustering similar representations (Elman, 2004).

The use of word lists for training morphological analyzers is not limited to connec-
tionist models. Structured statistical approaches have also been trained on lists of lexical
items, with good results (Snover and Brent, 2003; Monson et al., 2004). Unfortunately,
the researchers implementing these systems have made no more effort than the connection-
ists to explain why (or even whether) types are the appropriate form of input for learning
morphological information.

The only work I am aware of on computational morphology that explicitly addresses
the question of learning from types or tokens is that of Albright and Hayes (2003). In this
work, the authors develop and test a model of regular and irregular morphology based on
statistical rules. They mention briefly that the model was tested using both types and tokens
as input, and that the model trained on types more closely matches human performance.
No results were provided for the model trained on tokens, however, which makes it difficult
to evaluate how different those results were, and in what way.

4.2.1.4 Summary

To summarize, nearly all the work on language learning using statistical methods has as-
sumed that generalizations should be based on token frequencies in the input data. A
few researchers have suggested that generalizations about sublexical structure (morphology
and phonology) are based on the statistics of lexical types. However, except in the case of
modeling adult word recognition, almost no attempt has been made to assess the relative
importance of lexical versus token statistics, to determine the qualitative or quantitative
differences in learning that might result from using one or the other, or to propose a unified
approach that can make use of both sorts of statistics to learn different kinds of informa-
tion. These are exactly the issues I plan to address in this chapter, using a model developed

2It is interesting to note that in the groundbreaking work of Rumelhart and McClelland (1986), a neural
network was trained on lists of verbs, but the most frequent verbs were presented first in an initial round
of training, and then again along with the rest of the verbs. Although this regime does not accurately
match input frequencies, it does suggest that the authors believed that token frequencies were a relevant
(if not the relevant) source of information in morphological learning.
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within the framework presented in Chapter 3. Before presenting that model, however, I
briefly review previous computational work in the area of morphology.

4.2.2 Approaches to computational morphology

4.2.2.1 Hand-built and supervised approaches

There are several reasons why researchers have tried to build morphological analysis sys-
tems. In some cases, the focus is on engineering: for highly inflected languages such as
Arabic, Czech, and Turkish, it can be helpful or even necessary to perform some morpho-
logical analysis before applying standard natural language processing tools, simply to avoid
problems with data sparseness (Larkey et al., 2002; Hajič and Hladká, 1998; Hakkani-Tür
et al., 2000). The most basic tools for morphological analysis are hand-built “stemmers”
for information retrieval, which essentially just strip off inflectional and some derivational
morphology, leaving the more semantically contentful stem form (Porter, 1980; Popovič
and Willett, 1992; Kraaij and Pohlmann, 1996). Other hand-built systems use finite-state
techniques to produce complete linguistic analyses, transforming each surface form into a se-
quence of morphemes (Koskenniemi, 1983; Karttunen et al., 1992; Beesley and Karttunen,
2003). These systems can be useful tools for linguists, but because they frequently pro-
duce several possible analyses for each word, they are often not sufficient for morphological
pre-processing in more complex systems. A number of researchers have therefore developed
statistical systems trained on hand-annotated corpora that can be combined with hand-built
systems and/or lexical resources to disambiguate between possible morphological analyses
(Hajič and Hladká, 1998; Hajič, 2000; Hakkani-Tür et al., 2000; Lee et al., 2003).

In contrast to these tools for language processing or lingustic analysis are systems built
to investigate questions of language learning in humans and machines. Many of these
systems, like those above, are trained in a supervised manner; the difference is usually in an
emphasis on generating correct inflected forms rather than analyzing the input. Rumelhart
and McClelland (1986) created an early system intended to show that rule-like behavior
could be produced by a neural network. Albright and Hayes’ later work with a statistical
rule-based model (2002; 2003) suggests that their approach may provide a better explanation
of human behavioral results.

Although these kinds of supervised systems can provide some insight into the possible
mechanisms involved in morphological acquisition, it is probably more informative to ex-
amine the existing work on unsupervised and minimally supervised morphological learning,
as I do in the following sections.

4.2.2.2 Maximum-likelihood approaches

Despite the problems with maximum-likelihood estimation discussed in Chapter 2, a few re-
searchers have still experimented with using it for morphological segmentation, i.e. splitting
words into their constituent morphemes. Creutz and Lagus (2002), for example, present a
segmentation procedure for Finnish that includes a maximum-likelihood step embedded in
a larger algorithm. However, as I will show in Section 4.3, the true maximum-likelihood
solution for the kind of model Creutz and Lagus propose actually contains no morpheme
boundaries at all. Their algorithm works only because it limits the number of parameters
in the model in an ad hoc way. In fact, the same argument holds true for a later system
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presented by the same researchers, which includes a more sophisticated generative model
(Creutz and Lagus, 2004). The later model incorporates morphotactics (which are impor-
tant in agglutinative languages such as Finnish) through the use of an HMM to model
prefix, suffix, and stem classes.

4.2.2.3 MAP approaches

Most unsupervised morphological segmentation systems have used model-based approaches
incorporating MDL or other priors favoring sparse solutions. Probably the most general
of these is Linguistica (Goldsmith, 2001b; Goldsmith, 2001a), an MDL-based system that
analyzes words into a stem plus one or more affixes (both prefixes and suffixes are consid-
ered). There are also extensions to the basic system for detecting allomorphic variation
(Goldsmith, In press) and incorporating some syntactic context (Hu et al., 2005). Snover
and Brent (2003) present a different approach, using an explicitly formulated prior to seg-
ment words into a single stem and suffix. The approach taken by Creutz and Lagus (2005)
is similar, except that their model generates words using the HMM from their earlier work
(Creutz and Lagus, 2004).

Although none of these systems is general enough to yield good results on all languages,
each of them performs well on at least some languages. Collectively, they suggest that
probabilistic learning of morphology is possible using an appropriate model and prior, and
that incorporating additional sources of information such as phonology or contextual in-
formation can improve performance. On the other hand, because all of these systems use
heuristic search procedures to find an approximate MAP solution, it is difficult to know
how close the published results are to the true MAP solution. We must therefore be wary
of drawing too strong conclusions about learning from the results of these systems.

4.2.2.4 Other approaches

A final set of morphological learning systems uses statistics, but no explicit probabilistic
models. These include one “minimally supervised” learning system (Yarowsky and Wicen-
towski, 2000; Wicentowski, 2004) and at least two unsupervised systems (Schone and Juraf-
sky, 2001; Baroni et al., 2002). All of these are intended to perform morphological alignment
(i.e. identify related forms) rather than segmentation, and share the property of incorporat-
ing many more types of information than the model-based systems described above.3 For
example, Wicentowski (2004) assesses the probability that two forms are morphologically
related using frequency similarity, contextual similarity, orthographic similarity, and the
frequency of the particular orthographic transformation required to change one form to the
other. The other systems use several of these forms of information as well, with Schone
and Jurafsky (2001) distinguishing between contextual similarity within a local (syntactic)
window and broad (semantic) area.

Although the lack of explicit probabilistic models in these systems makes them inappro-
priate for detailed investigations of the kind I am interested in, they do suggest a number
of sources of information that might be useful to incorporate into a probabilistic model. In

3Neuvel and Fulop (2002) present a system that also produces morphological alignments using multiple
sources of information, but in this case the information (the syntactic and morphological function of
each word) must be provided as input, and the system uses only very simple count information rather
than the more sophisticated statistics of the other systems discussed here.
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particular, the use of frequency similarity between inflected forms as a potential cue to mor-
phological relatedness suggests that perhaps token frequency is indeed important in learning
morphology. Contextual similarity is also a token-based property, while orthographic sim-
ilarity is a property of lexical items, and orthographic transformation probabilities could
be computed based on either types or tokens. In short, there seemed to be useful cues
available in both the type and token domains, which makes the question of how to unify
these domains only more important.

4.2.2.5 Summary

There have been many different approaches to computational morphology. The most so-
phisticated hand-built and supervised systems are able to analyze even complex morpho-
phonological interactions and non-concatenative phenomena, but they are usually special-
ized to process particular languages and require a great deal of human knowledge for devel-
opment. Most unsupervised systems are only able to segment surface forms into a stem and
one or (in some cases) more affixes, although some are designed to include the possibility
of phonological/orthographic processes at morpheme boundaries or even within the stem.
Successful model-based systems generally include a prior favoring sparse solutions and rely
on heuristic search procedures. Evidence from these and other successful systems indicates
that useful statistical cues to morphological structure can be found both in the lexicon and
by examining the full set of input data.

In the remainder of this chapter, I first show why, using the kind of generative models
that are standard in this domain, maximum-likelihood estimation fails as a method for
segmenting words into morphemes. I then present my own work on morphological segmen-
tation, which uses the two-stage modeling framework developed in Chapter 3 to discover
the stems and suffixes of English verbs. While the model’s assumption of a single stem
and suffix is more limited than some other approaches, it has two novel advantages. First,
inference can be performed using a Gibbs sampler rather than heuristic methods. Second,
the use of the two-stage framework provides a principled way to downweight the frequen-
cies of input forms to any degree, yielding type-based learning in the limiting case. Using
this property, I examine the differences in learning morphology from types and tokens, and
conclude that, with the kinds of information included in my model, type-based learning is
more successful.

4.3 Failure of maximum-likelihood estimation

In this section, I show why proper maximum-likelihood estimation with the kinds of models
used in the papers described above does not lead to a successful solution to the problem of
morphological segmentation. In fact, the maximum-likelihood solution for all these models
is the solution with no boundaries at all. To see why, consider a simplified version of the
model described in Creutz and Lagus (2002), where each word w consists of a single stem
and (possibly empty) suffix. Let x1 . . . xm be the phonemes or characters in w, and

P (A(w) = (x1,i−1, xi,m)) = Pstem(x1,i−1)Psuffix (xi,m) (4.1)



40

where A(w) is a random variable representing the morphological analysis of w (a stem/suffix
pair), 1 < i ≤ m, and xi,j is shorthand for xi . . . xj

4. If we assume every word has an
empty suffix (i.e. Psuffix (ε) = 1) and that Pstem(x1m) equals the empirical probability of
the word x1m, we obtain a model in which P (w) = Pstem(w), and the distribution over
words matches the empirical distribution in the corpus exactly. Since Equation 4.1 assumes
that the probability of a suffix is independent of the stem (an approximation that will
be incorrect for all but trivial corpora), any other analysis of the corpus will assign a
distribution that differs from the empirical distribution. However, it is easy to show that
choosing the maximum-likelihood parameter values for a model is equivalent to choosing
the values yielding the smallest KL divergence5 from the empirical distribution of the data6.
The empty-suffix solution always has zero KL divergence from the empirical distribution,
and is therefore a maximum-likelihood solution.

Although my analysis uses a particular very simple generative model, the same kind of
argument holds for any model in which a) there exists a solution with no boundaries that
matches the empirical distribution in the corpus exactly, and b) independence assumptions
cause an imperfect match between the empirical distribution and any solution containing
boundaries. This includes the morphological segmentation models in Creutz and Lagus
(2002; 2004), as well as the word segmentation models described in Venkataraman (2001)
(see Chapter 5). The only reason these systems work in practice is because they employ
search procedures that do not explore the entire space described by their models, limiting
the number of parameters under consideration at any given time. While this can lead to
successful results in practice, it is undesirable if we wish to examine the effects of changing
the underlying model, as we do here, since those effects can be obscured by the search
procedure.

At this point, it is natural to ask whether simply adding a Bayesian prior favoring
sparse solutions would be sufficient to acquire morphological structure from a corpus. My
own preliminary experiments with this approach yielded poor results, leading me to explore
more fully the differences between type-based and token-based learning. Since the model I
used for these experiments can simulate the token-based Bayesian model (given appropriate
parameter settings), I will delay reporting these results until Section 4.6.1.3.

4.4 Two-stage model

To examine the question of whether word types or word tokens are more useful for learning
morphology, I use a TwoStage(PY(a, b), Pµ) model. The Pitman-Yor adaptor was described
in Chapter 3; below I discuss its relevance to the question of types vs. tokens. I then present
the morphological lexicon generator Pµ and the full two-stage model.

4The model in Equation 4.1 is also discussed in Goldsmith (2001b). The actual model used in Creutz
and Lagus (2002) allows multiple morphemes per word.

5The Kullback-Leibler (KL) divergence of a discrete probability distribution Q from another discrete

distribution P , is defined as D(P ||Q) =
P

y
P (y) log P (y)

Q(y)
. It yields a measure of how different the two

probability distributions are.
6See e.g. http//www.cs.berkeley.edu/∼jordan/courses/281A-fall04/lectures/lec-10-7.pdf
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4.4.1 Types and tokens

Recall the definition of the Pitman-Yor process from Section 3.7, which gives the probability
of seating the ith customer at table k given the previous seating arrangement:

P (zi = k | z−i) =







n
(z

−i)

k
−a

i−1+b
1 ≤ k ≤ K(z−i)

K(z−i)a+b
i−1+b

k = K(z−i) + 1

(4.2)

for 0 ≤ a < 1 and b ≥ 1, with P (z1 = 1) = 1 always. If we create a two-stage model using
a Pitman-Yor adaptor and a generator Pµ with parameters µ, the joint distribution on a
sequence of words w will be
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(4.3)

where the sums in lines 2 and 3 are over only those ℓ and z such that ℓzi
= wi for all i.

The three parenthesized products in the second line correspond respectively to the factors
introduced by the Pitman-Yor denominators, by the numerators for new tables (with new
labels), and by the numerators for additional tokens placed on old tables.

I will be using this model to learn the parameters of the generator, which (as we will
see) will provide morphological analyses of the words in the input data. To see how the
Pitman-Yor process can be used to address the question of learning from types or tokens,
assume that b = 0 and consider how different values of a affect estimates of µ. When b = 0,
the probability of w reduces to

P (w |µ) =
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z,ℓ
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(4.4)

In this case, the limiting cases of a → 0 and a → 1 lead to estimates of µ based on types
and tokens respectively, as I will now show.

When a → 0, the aK(z)−1 term in Equation 4.4 causes the sum over (z, ℓ) to be domi-
nated by the partition of customers with the smallest value of K(z), i.e. the fewest number
of tables. Since seating arrangements are restricted so that ℓzi

= wi, the dominant ar-
rangement contains exactly one table, and one occurrence of Pµ(wk), per word type wk.
Therefore estimates of µ will be based on word types.

When a → 1, aK(z)−1) → 1. If nk = 1 then
Γ(n

(z)
k

−a)

Γ(1−a) = 1, but otherwise this term
approaches 0. Therefore all terms in the sum approach 0 except for those where there is
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only a single token assigned to each table. In this case, K(z) = n and ℓk = wk, which means
that Pµ is responsible for generating all the word tokens in the data. Estimates of µ will
consequently be based on word tokens.

4.4.2 A generator for morphology

The lexicon generator I use to model morphological structure assumes that each word
consists of a single stem and (possibly empty) suffix and belongs to some morphological
class. The joint probability of generating a particular class c, stem t, and suffix f is defined
as

Pµ(c, t, f) = P (c)P (t | c)P (f | c) (4.5)

where the distributions on the right hand side are all assumed to be multinomial, generated
from symmetric Dirichlet priors with hyperparameters κ, τ , and φ respectively. Up to now,
I have been assuming that the generator in a two-stage model is a distribution over words,
not analyses of words, as above. However, in this model, it is the analyses themselves that
are produced by the generator. I will therefore distinguish between the label ℓk on each
table, which I continue to assume is a string, and the analysis of that label A(ℓk), which is
an object produced by the generator. Since it will be necessary to refer to the probability
of a word or label itself (regardless of its analysis), I will abuse notation somewhat and use
Pµ(w) to refer to this probability as well. Pµ(w) is defined as

Pµ(w) =
∑

(c,t,f)

I(w = t.f)P (c)P (t | c)P (f | c) (4.6)

where t.f is the concatenation of t and f , and I(.) is an indicator function taking on the
value 1 when its argument is true, and 0 otherwise.

The generator model for morphology is intended to encode several linguistic intuitions.
The first is that different morphological classes contain different sets of stems and suffixes.
Also, although stems and suffixes are not truly independent even within a morphological
class, morphological boundaries do tend to coincide with points of low predictability in a
string of phonemes or characters (Harris, 1955). That is, there is greater independence
between stems and suffixes than between other possible substrings. Another way of looking
at this is that, if we know that past and present tenses are each relatively common, then if
we see a word very frequently in the past tense, we would expect to see it very frequently
in the present tense as well (Yarowsky and Wicentowski, 2000).

I should also note that this model is similar to the one used by Goldsmith (2001b), with
two important differences. First, Goldsmith’s model is recursive (i.e. a word stem can be
further split into a smaller stem plus suffix), which makes it better able to deal with complex
morphology than the model presented here. However, for English, the simpler model is
probably sufficient. The second difference between the two models is that Goldsmith’s
model assumes that all occurrences of each word type have the same analysis. The model
here allows different tokens with the same observed form to have different analyses when
a > 0. This could be important for representing ambiguity and homonymy.
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4.5 Gibbs sampler

To implement a Gibbs sampler for the model described above, we need to determine the
distribution of each variable (or block of variables) conditioned on the remaining variables
in the model. Because the model is exchangeable, sampling the ith variable conditioned on
the values of the other n−1 variables is equivalent to sampling the nth variable conditioned
on the previous n − 1. Grouping together all the variables associated with a particular
analysis of wi and exploiting exchangeability in this way, we have

P (zi = z, ci = c, ti = t, fi = f |h−, d)

=
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(4.7)

where zi, ci, ti, and fi are the table number, morphological class, stem, and suffix associated
with the ith word, h−= (z−i, c−i, t−i, f−i, ℓ1, . . . , ℓK(z−i)), and d is the observed data (corpus
of words). The meaning of the notation x−i is slightly different than before: here, it is
used to indicate {x1 . . . xi−1, xi+1 . . . xn}. Pµ is the distribution over analyses specified in
Equation 4.5, which yields the following conditional distribution:

Pµ(c, t, f |h−, d)
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where θc, θt, and θf are the parameters of the multinomial distributions over classes, stems,
and suffixes; C, T , and F are the total possible number of classes, stems, and suffixes; and

m
(h−)
x is the number of tables in h− whose label includes x. (I use m to distinguish these

counts over labels from the n counts over tokens.) In the experiments presented in this
chapter, C is fixed empirically and T and F are determined for each set of input data
by computing the number of possible segmentations of the words in the data into stems
and suffixes (i.e. determining all the prefix and suffix strings for those words). This is
a simple but not terribly realistic approach; in Chapter 6 I discuss how to generalize the
morphological model so that the number of possible classes, stems, and suffixes need not
be specified in advance.

Although it would be possible to sample all the variables in the two-stage morphology
model simultaneously using Equation 4.7, it is simpler to alternate between sampling the
variables in the generator and those in the adaptor. The algorithm works by iterating over
the following two steps:

1. Fixing the assignment of words to tables, sample a new morphological analysis for
each table according to

P (A(ℓz) = (c, t, f) |A(ℓ−z)) ∝ I(ℓz = t.f) · Pµ(c, t, f |A(ℓ−z))

= I(ℓz = t.f) ·
mc + κ

m + κC
·
mt,c + τ

mc + τT
·
mf,c + φ

mc + φF
(4.9)
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where all counts are with respect to A(ℓ−z), the analyses of the labels ℓ−z.

2. Sample a new table assignment zi for each word from

P (zi = z | z−i,w, A(ℓz−i
)) ∝

{

I(ℓz = wi)(n
(z−i)
z − a) 1 ≤ z ≤ K(z−i)

P (ℓz = wi)(K(z−i)a + b) z = K(z−i) + 1
(4.10)

where ℓz−i
= {ℓ1, . . . , ℓK(z−i)} and P (ℓz = wi) is found using Equation 4.9 by summing

over all possible analyses.

Note that in Step 2, tables may appear or disappear, which will cause the label counts
to change. When a table is removed, the class, stem, and suffix counts of its label are
decremented. When a new table is added, a morphological analysis is chosen at random
according to Equation 4.9, and the appropriate counts are incremented.

4.6 Experiments

4.6.1 Experiment 1: Verbs

4.6.1.1 Data

I prepared a data set consisting of English verbs in orthographic form from the Penn Wall
Street Journal treebank (Marcus et al., 1993), a corpus of hand-tagged and parsed text
from the Wall Street Journal. Using the part-of-speech tags, I extracted all the verbs from
sections 0-21 of the corpus, which yielded 137,997 tokens belonging to 7,761 types. This list
of verbs served as the input to the morphological segmentation system. In this data set,
the total number of unique prefix strings T is 22,396, and the total number of unique suffix
strings F is 21,544.

To create a gold standard for evaluation, I automatically segmented each verb in the
input corpus using heuristics based on its part-of-speech tag and spelling. For example,
verbs tagged as VBD (past tense) or VBN (past participle) and ending in -ed were assigned
a boundary before the -ed, while most verbs tagged as VBZ (third person present singular)
and ending in -s were assigned a boundary before the -s. (The VBZ forms does and goes, as
well as forms ending in -xes or -ches, such as mixes, were assigned a boundary before -es
instead.) Potentially irregular forms such as past participles ending in -n were examined
by hand to ensure correct segmentation.

It is important to note that any choice of segmentation will lead to some inconsistencies
due to spelling rules that insert or delete characters before certain endings. The segmen-
tation I used gives preference to consistency among suffixes rather than stems whenever
possible. That is, suffixes will be the same across words such as jump.ed and stat.ed, or
jump.s and state.s, but the stems in stat.ed and state.s will be different.

4.6.1.2 Evaluation procedure

To evaluate the morphological segmenter, I ran the sampler described in Section 4.5 with
b = 0 and values of a between 0 and 17. I evaluated the results of each parameter setting

7Technically, setting a = 0 and b = 0 leads to undefined results, but algorithmically one can simulate
lima→0 by using exactly one table for each word type, which is what I did.
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on a single sample taken after 1000 iterations of the algorithm, with C = 6 classes, κ = .5
and τ = φ = .0018. I compared the suffixes found by my system to the true suffixes given
in the gold standard. As a comparison point, I also evaluated the results of the Linguistica
program (Goldsmith, 2001a) on the same data set. Note that the results of the Linguistica
system were the same regardless of whether it was presented with the full corpus or a list
of unique word types, indicating that the system ignores token frequencies and works from
lexical statistics.

4.6.1.3 Results and discussion

Effects of the hyperparameter a

Figure 4.1 shows the true distribution of words with each suffix and the distribution found
by the two-stage system for various values of a. The results are displayed in two different
ways. First, for each word type, the most probable suffix for that type (in the sampled
hypothesis) was determined and counted once to evaluate the proportion of types with each
suffix. Second, since different tokens of the same type may be assigned different analyses,
the proportion of word tokens with each suffix is also displayed. This analysis gives more
weight to the results of frequent words, and also takes into account any uncertainty in the
model (although in fact less than 1.5% of types have multiple analyses for any value of a).

From Figure 4.1, it is clear that values of a close to 1 cause the system to propose far too
few suffixes overall, while results are more accurate and surprisingly consistent for values of
a up to 0.7. This consistency is confirmed by Figure 4.2, which shows that the percentage
of verbs whose analyses match the gold standard holds steady for a ≤ .7, and drops off
thereafter. Table 4.1 indicates that the average number of tables per word type for a ≤ .7
rises slowly from one to about four, whereas higher values of a cause a sharp increase in
the average number of tables per type, up to almost 18. It is this increase that seems to be
problematic for learning, since for a ≤ 0.7, results match the distribution of suffixes in the
gold standard fairly well, although certain suffixes (-e and -es) are found too frequently. I
discuss this point further in the section on error analysis below.

Convergence

To ensure that the results presented above reflect the properties of the underlying model,
it is important to examine the convergence of the Gibbs sampler. I did so by running the
sampler for 20,000 iterations and tracking several statistics at each iteration, including the
number of tables in the current solution and its posterior probability. In addition to the
standard initialization (assigning the morpheme boundary at random within each word), I
also performed experiments initializing boundaries at the beginning of each word (i.e. with
empty stems) or at the end of each word (i.e. with empty suffixes). The results of these
experiments are shown in Figure 4.3. As these trace plots show, both the number of tables
and the posterior probability level out by 1000 iterations, and remain steady (aside from
the expected random fluctuations) thereafter. Although the numbers are different for the

8Although I fixed the values for the hyperparameters in all the experiments presented in this thesis, it
is possible to extend all of my models to contain prior distributions over the hyperparameters as well.
In that case, the hyperparameters can be inferred using sampling procedures similar to those used here
(West, 1992).
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Figure 4.1: Results of the morphology learner for various values of a. The proportion of
word types (top) and tokens (bottom) found with each suffix is shown, along with the
distribution of suffixes in the gold standard.
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a No. of Tables Tables/Type

0 7761 1
.1 8758 1.13
.2 10272 1.32
.3 12172 1.57
.4 14178 1.83
.5 17957 2.31
.6 22676 2.92
.7 29478 3.80
.8 44020 5.67
.9 65751 8.47
1 137997 17.78

Table 4.1: Total number of tables in the sampled solution for each value of a, and average
number of tables per word type.

two values of a shown, the trends are the same. Iterations 10,000 through 20,000 are not
shown, since there is essentially no change in the plots.

One interesting fact that these plots illustrate is that there seem to be two different local
maxima in the search space. The solutions found by initializing randomly or with boundaries
at the ends of words are essentially similar, but initializing with word-initial boundaries leads
to different kinds of solutions, which I will describe in a moment. Figure 4.3 shows that
these solutions have lower probability (primarily due to the morphological component), but
are very stable nonetheless. Given enough time, of course, all of the samplers would produce
samples from both of these local maxima, but there is no way to know how long this would
take. If mobility within the search space were more of a concern, one solution would be to
implement an annealing procedure similar to those described in Chapter 5. Since random
initialization produces good results in practice, I did not implement annealing.

Example output

To give a better sense of the kind of output produced by the morphology learning system,
Table 4.2 summarizes the final samples generated by two of the samplers plotted in Figure
4.3. The solution produced by the sampler initialized with word-initial boundaries, while not
the expected analysis of the data, is nevertheless quite interesting: instead of discovering
suffixes, the sampler has analyzed the data using prefixes. This result suggests that an
extended model designed to handle multiple affixes per word might succeed in finding both
prefixes and suffixes from this data set. Note that in the current system, the prefix solution
can be avoided by disallowing empty stems.

Examining the output of the system also provides insight into some of the differences
between the model developed here and the model used by Linguistica. In Linguistica, each
class is associated with a unique set of suffixes that have been observed to combine with
every stem in that class. Here, different classes may be associated with the same set of
suffixes, and not every stem-suffix combination in each class is necessarily observed in the
data. This property allows the model to generalize more freely than Linguistica, by placing
stems together if they share several suffixes, even if some suffixes are different. In theory,
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Figure 4.3: Trace plots of the morphology sampler over 10,000 iterations on the WSJ verb
corpus with Pitman-Yor parameters b = 0 and (a) a = .1 or (b) a = .6. In three different
conditions, boundaries were initially assigned at the beginning of each word (‘beg’), at ran-
dom (‘ran’), or at the end of each word (‘end’). From top to bottom, plots indicate at each
iteration: the number of occupied tables; the probability of the morphological component
of the model (i.e. the analyses A(ℓ)); the probability of the frequency component of the
model (i.e. the table assignments z); and the total probability of the sample P (A(ℓ), z | d).
The initial and final positions of the plots are marked on the axes.
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(a)

Tables Stems Suffixes
1473 advis 9 ed 499

rang 8 ing 371
eliminat 8 e 255
pass 8 NULL 177
settl 8 es 171
compar 8
. . .

1936 remov 13 ed 615
assum 10 e 539
enabl 9 ing 480
produc 9 es 296
continu 9 en 6
prov 8
. . .

1333 represent 9 NULL 612
back 9 ed 305
contend 8 ing 250
list 8 s 166
maintain 8
walk 8
. . .

1255 see 13 NULL 650
adjust 12 ed 228
yield 10 ing 217
want 9 s 148
limit 8 n 12
fill 8
. . .

1319 total 13 NULL 674
work 10 ed 255
respond 9 ing 244
add 9 s 146
equal 8
shift 8
. . .

1531 open 11 NULL 715
ask 9 ed 337
fund 8 ing 285
turn 8 s 194
reflect 8
demand 8
. . .

(b)

Tables Stems Suffixes
1492 NULL 1492 followed 6

recorded 6
controlled 4
thought 4
gives 3
dashed 3
. . .

1415 NULL 1415 improving 4
downgraded 4
proposing 4
posted 4
pulled 4
charging 4
. . .

1631 NULL 1476 turn 8
re 103 sold 8
over 27 valued 7
under 25 doing 6

stated 6
saw 5
. . .

1678 NULL 1479 reported 11
re 156 continuing 7
dis 43 place 6

placed 6
sought 5
acquired 5
. . .

1359 NULL 1359 play 5
praised 4
bother 4
guarantees 4
tends 4
blocking 4
. . .

1443 NULL 1409 thinks 5
s 34 has 4

elected 4
wore 4
earned 4
log 4
. . .

Table 4.2: Sample solutions for the WSJ verb corpus with a = .1, with boundaries initialized
(a) at random or (b) or word-initially. For each class, the number of tables assigned to that
class is shown in column 1, followed by the most frequent stems and suffixes in that class,
with their table counts. Solution (a) has higher probability than solution (b).
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this should be useful for generating novel (i.e. unobserved) inflected forms. In practice,
more than one paradigm is sometimes contained within a single class (as in the first two
classes in Table 4.2), which leads to overgeneralization.

Error analysis

Since the accuracy of the morphological learner is similar for 0 ≤ a ≤ 0.7, I focused my
error analysis on the case where a = 0. Figure 4.4 gives a better sense of the sorts of
errors that are made by the system when a = 0. In particular, the system frequently
hypothesizes analyses in which stem identity is kept constant across forms (as in stat.e,
stat.ing, stat.ed, stat.es), whereas the gold standard is designed to maintain suffix identity
(state, stat.ing, stat.ed, state.s). This leads the system to assume -e and -es suffixes where
the gold standard has NULL and -s. This kind of problem is common to other morphological
learning systems, including Linguistica (see Figure 4.4), and cannot be solved without the
addition of phonological or orthographic capabilities. It is also worth noting that, if stems
and suffixes are given equal weight in terms of economy, the choice of segmentation taken
by the system is actually better than the gold standard, since the total number of distinct
stems plus suffixes is smaller. Only a few extra suffixes must be included to avoid near
duplication of a large number of stems.

The primary remaining source of error that can be seen in the confusion matrices comes
from wordforms analyzed as containing no suffix, where actually some non-empty suffix was
present. In most cases, these were words where only a single inflected form was present
in the data, so there was no reason for the system to postulate a complex analysis. These
errors are far less prevalent in Linguistica, where encoding a longer stem is more costly than
encoding a shorter stem, so words that can be analyzed using an existing suffix tend to be
segmented. Overall, this is the main difference in performance between the two systems,
as can be seen in Table 4.3. Because these errors occur on the most infrequent words, the
difference in error percentages between the two systems is much more pronounced when
scored on types rather than tokens.

The confusion matrices highlight one other difference in the behavior of the two systems,
which is that Linguistica proposes more suffix types than does the 2-stage model, including
the following ten in the “other” class: {ting, ied, y, ted, led, ate, ying, ized, ped, ize}.
Between 3 and 34 word types are analyzed with one of these suffixes. Although analyses
using these suffixes are counted as errors relative to the gold standard, in some cases they
are arguably correct.

4.6.2 Experiment 2: Child-directed speech

4.6.2.1 Data

Experiment 1 used a corpus of verbs in orthographic form as input data, partly because
learning English verbs has become a standard task for computational models of morphology,
and partly because this choice of corpus makes evaluation against a gold standard possible.
However, the verb corpus does not accurately reflect the input to the child learning En-
glish. I therefore performed a second experiment using a corpus of phonemically transcribed
child-directed speech. The source of this data was the Brown corpus (Brown, 1973) from
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Figure 4.4: Confusion matrices for the 2-stage morphology model with a = 0 (top), and for
Linguistica (bottom). The area of a square at location (i, j) is proportional to the number
of word types (left) or tokens (right) with true suffix i and found suffix j.

Missing Extra Wrong Correct

Linguistica, types 1.65% 9.21% 6.84% 82.31%
2-stage, types 9.28% 9.11% 5.57% 76.05%
Linguistica, tokens 2.91% 10.04% 3.27% 83.78%
2-stage, tokens 2.89% 10.46% 2.32% 84.33%

Table 4.3: Percentage of types and tokens analyzed by the two systems with missing suffixes
(gold standard contains a suffix, but none was found), extra suffixes (gold standard con-
tains no suffix, but one was found), wrong suffixes (when both gold standard and analysis
contained non-empty suffixes), and correct suffixes. Results for the two-stage system are
with a = 0.
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the CHILDES database (MacWhinney and Snow, 1985), which contains transcribed parent-
child interactions from long-term observational studies on three English-learning children.
Utterances not made by caretakers were filtered out and the remaining transcriptions were
converted from orthographic to phonemic representations using a phonemic dictionary9.
Variations in pronunciation indicated in the orthography (e.g. going vs. goin’) were pre-
served as much as possible in the phonemic forms10 (go1N, go1n), and many non-words (e.g.
hm) were also retained. This Brown-Morgan corpus is therefore noisier than the Bernstein-
Ratner-Brent corpus used in Chapter 5. There are a total of 369,443 word tokens in the
corpus belonging to 6,807 types. The total number of unique prefix strings T is 14,639, and
the total number of unique suffix strings F is 16,313.

4.6.2.2 Evaluation procedure

For this experiment, the sampler was run using the same parameter values as in Experiment
1: b = 0, C = 6, κ = .5, and τ = φ = .001. The value of a was varied between 0 and
1, and a single sample was taken after 1000 iterations. Since there is no gold standard for
this corpus, my evaluation is qualitative, based on examining the output of the algorithm.
Note also that because Linguistica automatically removes capitalization from the input, and
capitalization is used to distinguish between different phonemes in the phonemic alphabet
used in this corpus, it was not possible to run Linguistica on the input.

4.6.2.3 Results and discussion

Qualitatively, the results of varying the Pitman-Yor parameter a are similar for this data
set and the corpus of English verbs. Table 4.4 shows that as a increases, the number of
different suffixes found decreases, and the proportion of word types analyzed with empty
suffixes increases. As an indicator of the effect on other suffixes, the proportion of words
found to contain the most common non-empty suffix z is also shown. As in the verb corpus,
the highest values of a lead to analyses with almost no interesting morphological structure,
while for lower values, many words are found to contained non-empty suffixes.

An interesting difference between the results from the two corpora is noticeable for the
lowest values of a. In the verb corpus, results were very similar for values of a ≤ .7. Here,
there is a more graded effect, and for a ≤ .2 the system actually produces too many different
suffix types. Examining the output of the system with a = 0 (summarized in Table 4.5)
illustrates the problem. Three of the classes found contain primarily nouns, with possible
suffixes NULL and z. Two of the remaining classes contain large numbers of verbs with a
variety of verbal inflections (including allomorphic and phonetic variants) and derivational
endings. The final class, however, contains a set of words that are phonologically rather
than morphosyntactically similar. In particular, the words dominating this class are very
short (mostly monosyllabic) and consist of common sequences of phonemes. Among these
words, the hypothesized “stems” are onset+nucleus sequences and the “suffixes” are codas
(or sometimes a second syllable). Rather than morphological structure, the system has
discovered phonological structure.

9Thanks to James Morgan and the Metcalf Infant Research Lab for the phonemic version of this corpus.
10The phonemic alphabet used for this data set is provided in Appendix A.
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a Suffix types % NULL % z

0 78 58.0 10.2
.1 76 64.1 9.6
.2 40 73.8 8.8
.3 17 80.8 7.7
.4 17 84.9 6.6
.5 13 88.0 5.4
.6 12 90.5 4.8
.7 13 94.3 2.9
.8 10 99.6 2.2
.9 12 98.7 0.8
1 11 99.8 0.2

Table 4.4: Effects of varying the parameter a on the results from the Bernstein-Ratner-
Morgan corpus. Columns show the total number of suffix types found, percentage of word
types with empty suffixes, and percentage of word types with the suffix z.

Interestingly, as the value of a is increased, the system’s tendency to split words into
half-syllables decreases faster than its tendency to split words at morpheme boundaries.
Moving from a = 0 to a = .3 reduces the number of hypothesized syllable types from 78 to
17 (those found in the noun and verb classes in Table 4.5, plus n, 6n, l, &d, and 1nz) and
the percentage of words with non-empty suffixes by 54%, but only reduces the percentage
of words with the z suffix by 25%. All six classes in this condition correspond roughly to
either nouns or verbs. Unfortunately, since there is no gold standard for this corpus, it is
difficult to say what the actual percentage of morphologically complex types, or types with
the z suffix, is. In future work, it would be useful to perform a more detailed analysis of
a representative sample of the corpus to get a better sense of the accuracy of the system
and the kinds of errors it makes. This analysis might also shed light on the question of
why morphological inference from types leads to a class of monosyllables, while adding only
a very small amount of frequency information11 eliminates this phenomenon. Does this
indicate some problem with discarding all frequency information, or does it simply reflect
weaknesses in the current model? In natural language, for example, stems tend to be longer
than affixes, yet in the model used here, all strings are equally likely as stems or suffixes. Is
it necessary to have prior knowledge that stems tend to be longer? In most of the classes
found by the system here, this fact simply falls out; perhaps the use of additional sources of
information, such as context, would be sufficient to eliminate the spurious analyses of the
remaining words.

4.6.3 General Discussion

The experiments presented here provide evidence that, for induction of regular morphology,
statistics derived from the lexicon are more useful than statistics derived from corpus fre-
quencies. This result agrees with the previous computational work of Albright and Hayes
(2003), and supports the conclusions of Bybee (2001). It also provides a justification for the

11With a = .3, the sampled solution contained 12,463 tables, versus 6,807 with a = 0.
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Tables Stems Suffixes Tables Stems Suffixes
915 gArti 2 NULL 777 1212 jAmp 6 NULL 736

barbar6 2 z 138 fOl 6 z 153
kIC1n 2 spIl 6 1N 83
kro 2 slip 6 s 64
k&m6l 2 kUk 6 d 49
TIN 2 yEl 5 1n 38
Cer 2 f9t 5 i 32
skQt 2 r9d 5 6r 25
pIkC6r 2 sp&Nk 5 t 16
nobadi 2 pIk 5 6l 16
bAt6rfl9 2 tep 5
b&nded 2 tArn 5
. . . . . .

867 EvribAdi 2 NULL 761 1437 ple 9 NULL 687
notbUk 2 z 106 muv 8 1N 170
lEp6rd 2 kQnt 7 1n 98
fAn6l 2 slIp 7 z 97
pl&n 2 klin 7 6r 79
wUd 2 tiC 6 d 65
brAD6r 2 wOk 6 s 59
r&mbl6r 2 mark 6 t 57
duti 2 rol 6 i 53
kartun 2 dr9v 6 6z 45
f9rm6n 2 rAb 6 6rz 27
dorbEl 2 k&ri 6
. . . . . .

862 kUS6n 2 NULL 735 1514 NULL 22 NULL 255
p6tuny6 2 z 127 p& 19 t 89
meri6n 2 & 19 n 84
DEm 2 bi 18 z 73
pEns1l 2 hI 16 d 72
pep6r 2 e 16 l 65
bAlb 2 pE 15 r 52
fom 2 ste 15 k 44
stAf1n 2 t9 15 p 41
b9s1k6l 2 dI 15 s 40
hEv6n 2 w9 14 ni 38
tEl6fon 2 bE 14 nz 36
. . . . . . . . .

Table 4.5: Sample solution for the Brown-Morgan corpus with a = 0. For each class, the
number of tables assigned to that class is shown in column 1, followed by the most frequent
stems and suffixes in that class, with their table counts. Note that since a = 0, table counts
in this case are equal to type counts.
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use of word lists in many previous morphological learning systems (Plaut and Gonnerman,
2000; Regier et al., 2001; Snover and Brent, 2003). Interestingly, my experiments also sug-
gest that damping corpus frequencies may be as effective, or perhaps even more effective,
than using lexical statistics. Further investigation into this possibility, and its implications
for theories of human learning, is called for.

Given the success of corpus-based learning for many other linguistic tasks, it is natural to
ask why using corpus frequencies would be detrimental to morphological induction. There
are two likely reasons for this. First, the most frequent words in any language tend to be
irregular, and due to the power-law distribution of word frequencies, these words strongly
dominate the corpus statistics. The effect of these suffix-less words is so strong that, despite
a prior preference for solutions with fewer stems and suffixes, the system learns that most
words should have no suffix. This causes many regular forms to go unsegmented.

The other reason that token frequencies may be problematic for learning regular mor-
phology is that the modeling assumption of independence between stems and suffixes is
only approximately correct. This assumption is intended to capture the fact that stems and
suffixes are less tightly correlated with each other than are arbitrary subsequences of words.
The system uses this information to determine where suffix boundaries are likely to be.
However, different stems do pattern somewhat differently, with some stems appearing more
often in the past tense and others in the infinitive, for example. By partially or completely
damping the corpus statistics, the differences in behavior between stems are reduced, while
the relative lack of predictability of suffixes is retained.

Of course, the experiments described here are limited in scope. The evidence against
token-based learning of morphology would be stronger if additional experiments were per-
formed with a greater variety of data from multiple languages, and if more detailed analysis
were undertaken on the output from the Brown-Morgan corpus. Most of my analysis was
performed on orthographic verb forms, simply because the WSJ verb data set is large and
provides an easy way to produce a mostly-accurate gold standard. It is unfortunately the
case that gold standards for morphological segmentation are difficult to produce and open
to disagreement (Goldsmith, In press). Nevertheless, even a basic qualitative analysis on
additional data sets would be useful.

Another possible objection to my experiments lie in the simplistic nature of the mor-
phological model. The limitation to a single stem and suffix is certainly not adequate to
account for the morphology of many languages, even those with fairly basic morphology,
such as Spanish12. However, for regular English verb inflections and the very simple mor-
phology found in child-directed speech, it is mostly sufficient. The system is able to identify
common suffixes in both corpora, and distinguish roughly between nouns stems and verb
stems in the Brown-Morgan corpus. The classes found are fairly noisy, but in combination
with other cues such as local context, they might be used effectively as a bootstrapping
mechanism for discovering more accurate syntactic information.

One modeling deficiency that does affect the results obtained from the English data
sets is the fact that all possible stems and suffixes are assumed to be equally probable
a priori. It was suggested that this assumption might be partially responsible for the
“short word” class found in Experiment 2. In Experiment 1, another problem with this

12Pilot experiments on Spanish data do in fact reveal underanalysis of suffix sequences. For example, the
suffix ito is not found in animalitos (although both animal and ito are found in other words) because
the model only permits a single suffix per word. Animalitos is analyzed as animalito.s.
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assumption was highlighted: if only a single inflected form of a particular stem is observed
(e.g. acquiesced, with no other form of acquiesce), the system will introduce a new stem to
account for this word. Any new stem has the same probability, so the overall probability
of the word depends on the suffix that is chosen. The system will therefore (with high
probability) choose whichever possible suffix appears most frequently on other wordforms.
In the English data, the empty suffix is most frequent, so the word will not be segmented.
This is not completely unreasonable as a conservative learning strategy, but does not seem
to match the way that humans are able to generalize from single instances.

One way the model could be extended in order to segment words when no direct evidence
of the stem is available is by changing the assumption of a uniform prior distribution over
stems and suffixes. I have discussed how Linguistica segments these kinds of words because
of its preference for shorter morphemes as well as fewer morphemes. Introducing a preference
for shorter morphemes would not be difficult in the framework I have been working with.
It could be done by replacing the Dirichlet priors over P (t|c) and P (f |c) with an n-gram
phoneme model, for example. Since longer strings tend to have lower probability in an
n-gram model, this prior would favor shorter stems and suffixes.

Favoring shorter stems is probably the simplest way to improve performance on unique
items, but there are other possibilities as well. An obvious source of information that is
not exploited by the current model is syntactic context: words with similar inflection tend
to appear in similar syntactic contexts, and vice versa. Certain semantic properties are
also correlated with morphology. While these sources of information are surely useful to
human learners, the results of my experiments indicate that distributional information in
the lexicon, along with a prior favoring sparse solutions, is sufficient to induce a fairly
accurate morphological analysis of English verbs.

4.7 Conclusion

In this chapter, I have presented a two-stage model with a morpheme-based lexicon gener-
ator and a Pitman-Yor adaptor. By varying the parameters of the adaptor, I have shown
how morphological induction changes as the frequencies observed by the morphological
component of the model vary smoothly from those in the lexicon to those in the corpus.
For two very different English corpora, I found that, when inference was based on corpus
frequencies, the model was unable to discover much morphological structure at all. On the
other hand, type-based inference led to successful discovery of many common suffixes, and
allowed the system to create separate noun and verb classes. In one corpus, I found that
type-based inference led to over-analysis of monosyllabic words, but that this problem was
eliminated with the addition of a small amount of frequency information. These results
support the hypothesis that lexical statistics are more useful for learning morphology than
corpus statistics, although damped corpus frequencies might be better still.

Although the learning system presented here incorporates a very simple model of mor-
phology, it nevertheless has several advantages over many other systems. The explicit nature
of the model, including assumptions about the prior, makes it easy to analyze how these
assumptions affect the results of learning. For example, the two-stage model behaves differ-
ently from Linguistica for words with unique stems; Linguistica includes a prior assumption
about stem length that the two-stage model does not; therefore, the difference in behavior
is probably due to the difference in the prior. The flexibility of the two-stage framework
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means that this hypothesis will be easy to test in future work simply by modifying the prior
in the two-stage model.

A final (to my knowledge, unique) advantage of the current system is its ability to
represent both corpus frequencies and lexicon information within a single unified framework.
Other systems based on lexicon statistics assume that the corpus is preprocessed to extract
a lexicon, but this assumption requires that the word tokens in the corpus are known.
There is evidence that children are sensitive to morphological information at a stage when
word segmentation is far from perfect (Santelmann and Jusczyk, 1998), which suggests that
token identification and lexicon building are taking place at the same time as morphological
acquisition. This raises the question of how changes in the structure of the lexicon might flow
back to affect corpus processing. Representing both token frequencies and type frequencies
within the same model makes it possible to address such a question by learning linguistic
structure at both levels simultaneously. Although a complete system of this sort is beyond
the scope of this thesis, in Chapter 6 I do provide a rough outline of an integrated model for
discovering both word boundaries (based on corpus statistics) and morphological analyses
(based on lexicon statistics). Before doing so, however, I review the word segmentation task
and explain how the two-stage framework can be applied to word segmentation.
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Word Segmentation
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5.1 Introduction

One of the first tasks infants must solve as they are acquiring language is the problem of word
segmentation: identifying word boundaries in continuous speech. About 9% of utterances
directed at English-learning infants consist of isolated words (Brent and Siskind, 2001), but
there is no obvious way for children to know from the outset which utterances these are.
Since multi-word utterances generally have no apparent pauses between words, children
must be using other cues to identify word boundaries. In fact, there is evidence that infants
use a wide range of weak cues for word segmentation. These cues include phonotactics
(Mattys et al., 1999), allophonic variation (Jusczyk et al., 1999a), metrical (stress) patterns
(Morgan et al., 1995; Jusczyk et al., 1999b), effects of coarticulation (Johnson and Jusczyk,
2001), and statistical regularities in the sequences of syllables found in speech (Saffran et
al., 1996a). This last source of information, which I will refer to as distributional cues1,
seems to be used by infants earlier than most other cues, by the age of 7 months (Thiessen
and Saffran, 2003). In addition, word segmentation strategies based on distributional cues
can be language-independent, which many other proposed strategies are not. These facts
have caused some researchers to propose that the use of distributional cues is a crucial first
step in bootstrapping word segmentation (Thiessen and Saffran, 2003), and have provoked
a great deal of interest in distributional segmentation among cognitive scientists.

Computational models of word segmentation have proven to be a useful complement
to behavioral studies of distributional cues. These models provide a way to examine dis-
tributional learning from much larger and more realistic data sets than is usually possible
behaviorally, and can be used to implement and test possible theories of distributional learn-
ing. Most of the models that have been developed take an algorithmic approach, asking
how statistical information can be used procedurally to identify word boundaries. However,
there have been few attempts to approach the problem at the computational level, asking
what statistics are actually needed in order to solve the problem successfully. In this chapter,
I discuss my own word segmentation modeling experiments, which are designed to address
the latter question. In particular, I focus on the importance of context for segmentation.
Most previous researchers have developed models based on the assumption that words are
generated independently, i.e. the probability of generating a particular word is the same
regardless of the words that came before it. I show that this unigram assumption leads
to relatively poor performance. When context is taken into account using a bigram model
(where the probability of a word depends on the previous word), segmentation improves
markedly. I argue that previous results to the contrary (Venkataraman, 2001) were due to
the use of approximate search techniques.

The remainder of this chapter is organized as follows. In Section 5.2, I review some
of the previous work on distributional word segmentation, including approaches based on
local association statistics, neural networks, maximum likelihood, and Bayesian modeling.

1The use of the term distributional cues to refer specifically to statistical regularities in syllable or
phonemes sequences can be a bit misleading, since other cues can also be viewed as “distributional”. For
example, metrical strategies rely on the distribution of stress patterns in lexical items, and allophonic
and phonotactic cues depend on the distribution of different allophones or phoneme sequences within
syllables, words, or phrases. In addition, there is potential for confusion with the related, but distinct,
concept of a probability distribution. Nevertheless, I will continue to use this term as just defined,
following Saffran et al. (1996b) and others.
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I discuss systems intended as cognitive models, as well as some designed for practical appli-
cation in the segmentation of Asian texts (where word boundaries are not made explicit in
the orthography). In Section 5.3, I present a unigram model for word segmentation based
on the two-stage language modeling framework in Chapter 3, and provide experimental
results illustrating the failures of this model. I consider some improvements to the unigram
model in Section 5.4 and show that, because they do not address the underlying unigram
assumption, results remain relatively poor. In Section 5.5, I describe a different model that
incorporates contextual dependencies, and show that segmentation performance improves
dramatically, outscoring previous distributional approaches. In Section 5.6, I discuss the
implications of these results and conclude.

5.2 Previous work

5.2.1 Supervised and lexicon-based approaches

In the natural language processing community, most approaches to word segmentation
involve language-specific knowledge in the form of a lexicon, hand-segmented training data,
or both. The simplest lexicon-based methods match the longest possible substrings to
lexicon entries, possibly using heuristics to resolve ambiguities (Nie et al., 1994). Training
data can be used to evaluate the probabilities of many different possible segmentations
and choose the most probable one (Chang and Chen, 1993). These methods, and hybrid
approaches, include techniques of varying sophistication to deal with the problem of novel
words. Examples include modeling different classes of unknown words with a weighted
finite state transducer (Sproat et al., 1996) and iteratively growing the dictionary using
local association statistics similar to those described below (Chang and Su, 1997). These
methods are useful in practice, but have little to say about infant word segmentation, where
lexical knowledge is minimal or absent. Most cognitive models of adult word recognition
are similarly tied to pre-existing lexical knowledge (Marslen-Wilson, 1987; McClelland and
Elman, 1986; Norris, 1994; Luce and Pisoni, 1998) and are therefore unsuitable as models of
the earliest stages of word segmentation. I therefore turn to work focusing on unsupervised
methods with no initial lexicon.

5.2.2 Approaches based on local association statistics

Probably the most popular method for unsupervised word segmentation is based on the
observation that transitions between linguistic units (characters, phonemes, or syllables)
within words are generally more predictable than transitions across word boundaries. Orig-
inally, Harris (1954) suggested that boundaries between morphemes within words could be
found by counting the number of phonemes that can extend each prefix string of a word
to form another legal prefix in the language. Morpheme boundaries should be assigned at
peaks of this statistic, successor frequency. For example, the strings gover and governm
each have a successor frequency of 1, while govern has a successor frequency of at least 5
(government, governed, governor, governing, governance), suggesting a morpheme bound-
ary after this prefix. More recently, cognitive scientists have proposed that children use
the transitional probabilities between syllables (i.e. the conditional probability of syllable si

given the previous syllable si−1) as cues to word boundaries (Saffran et al., 1996a). Other
statistics measuring the degree of association between adjacent units or groups of units have
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been also been proposed in both the cognitive science and the natural language process-
ing literature. These include mutual information (Sun et al., 1998; Brent, 1999; Swingley,
2005), n-gram frequency (Ando and Lee, 2000; Swingley, 2005), “accessor variety” (Feng et
al., 2004), and boundary entropy (Cohen and Adams, 2001).

Using any of these statistics, the most straightforward segmentation algorithm simply
calculates the chosen statistic at each possible boundary point and inserts a boundary at
every local minimum (or maximum, depending on the statistic). However, this procedure
yields poor results on realistic corpora when using transitional probabilities (Brent, 1999;
Gambell and Yang, In submission), mutual information (Brent, 1999), and presumably
other statistics as well. Gambell and Yang (In submission) suggest that the addition of
language-universal constraints on the placement of primary stress can improve performance,
and that a non-statistical stress-based strategy works best of all. These proposals are
problematic, however, since stress can be manifested in a variety of ways cross-linguistically
(Hayes, 1995) and it isn’t clear that the primary stress of each word can be identified
solely on the basis of acoustic cues, without knowing the word boundaries in the first place.
Other researchers have demonstrated good performance using local association statistics
by combining multiple statistics or thresholding based on the magnitude of the statistic or
the difference between statistics (Sproat and Shih, 1990; Sun et al., 1998; Swingley, 2005;
Ando and Lee, 2000; Chang and Su, 1997; Cohen and Adams, 2001). Unfortunately, the
lack of explicit probabilistic models in these systems makes it difficult to evaluate whether
differences in performance are due to the different statistics used, differences in the way
those statistics are combined, or differences in other aspects of the systems.

5.2.3 Neural networks

Several researchers have used neural networks to segment representations of speech using
distributional cues. Some researchers have used artificial corpora as input (Elman, 1990;
Allen and Christiansen, 1996), while others have trained their networks from phonological
transcriptions of natural speech (Cairns and Shillcock, 1997; Christiansen et al., 1998).
These simulations have typically used the simple recurrent network (SRN) architecture
(Elman, 1990), which combines a standard feed-forward network with a set of “copy-back”
units, so that the input at each time step is a combination of the current corpus input and
the previous output of the network. By including recurrence, these kinds of networks allow
predictions based on context, where the context is the state of the network at the previous
time step. This use of context is a very different approach from most of the algorithms
described above, and may provide advantages. Unfortunately, it is very difficult to determine
exactly what part of the contextual information is actually useful for prediction, and there is
no way to explicitly manipulate the use of context. The results of most of these systems are
also difficult to compare to others, since they have been based on different input corpora,
and in many cases different input representations as well.

The work that is probably most comparable to other cognitive models is that of Chris-
tiansen, Allen, and Seidenberg (1998). They trained an SRN using a single pass through a
corpus of phonologically transcribed utterances of child-directed speech. As in the cognitive
models described below as well as my own work, word boundaries were removed from the
input, but utterance boundaries remained. The corpus was similar in size to the corpus
used by these other systems. Each phoneme was converted to a set of phonological fea-
tures for input to the system, and stress markings and utterance boundaries were input as
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well. The task of the network was to predict, at each time step, the next set of inputs.
Since the network had no explicit notion of a word boundary, the authors counted a word
boundary whenever the network predicted an utterance boundary with higher-than-average
activation. Despite the additional cue of stress, the results reported by Christiansen, Allen,
and Seidenberg are worse than those of other systems using similar input (Brent, 1999;
Venkataraman, 2001; Batchelder, 2002), and they degrade in simulations where the stress
cue was not included. Moreover, the decision to equate utterance boundaries with word
boundaries means that if the input contains no utterance boundaries, no word boundaries
will be predicted. Natural language does contain utterance boundaries, of course, but the
experiments of Saffran et al. (Saffran et al., 1996a) suggest that infants are able to detect
words even when no utterance boundaries are available.

5.2.4 Maximum-likelihood approaches

In contrast to the systems described above are those based on explicit probabilistic models.
Several of these use maximum-likelihood estimation as a primary component, despite the
fact that, unless some constraint is placed on the set of allowable words, the maximum-
likelihood segmentation of a corpus contains no word boundaries (aside from any utterance
boundaries known at the outset). The reason is the same as in the case of morphology: the
solution where each utterance is postulated as a “word”, with probability proportional to
its empirical frequency, captures the empirical distribution of the data perfectly. Any other
solution is sub-optimal.

Given this fact, it follows that systems based on maximum-likelihood estimation all
place constraints on the set of possible words. In the Chinese word segmentation systems of
Peng and Schuurmans (2001) and Ge et al. (1999), only words with four or fewer charac-
ters are considered, and additional heuristics are used to split up agglomerations of multiple
words. These heuristics improve performance, but may drive the system to a solution with
lower likelihood. The cognitive model described by Batchelder (2002) uses an online search
procedure that segments each utterance in turn using maximum-likelihood estimation, then
adds the newly segmented words to a progressively built lexicon. The initial lexicon contains
only single characters, and after each utterance is segmented, the frequencies of the seg-
mented words are incremented and each pair of adjacent words is concatenated and added
to the lexicon (with a frequency of 1) as a potential word for future segmentations. The
probability of each word is assumed to be proportional to its relative frequency, and the
probability of an utterance is the product of the word probabilities. Batchelder notes that
“as longer and longer words become eligible for parsing, they tend to be selected over shorter
words” so that “a typical unconstrained run tends to underdivide the text”. To correct for
this effect, Batchelder combines the maximum-likelihood evaluation of a segmentation with
an evaluation based on an “optimum-length parameter”, which downgrades the scores of
words that are longer than the true average for the corpus. A more principled approach
would replace this parameter with a Bayesian prior on word length. Note also that making
the average word length of the corpus available to the algorithm gives it a big advantage
over truly unsupervised systems. Nevertheless, performance is similar to other model-based
systems.

A final system based on maximum-likelihood estimation is that of Venkataraman (2001).
This system is similar to Batchelder’s in that it uses an online search procedure to segment
each utterance in turn, adding the new words to its lexicon before moving on to the next
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utterance. The difference is that Venkataraman’s search procedure starts with each utter-
ance unsegmented, and proceeds by splitting utterances and adding shorter words to the
lexicon. The probability of a possible segmentation of an utterance u into words w1 . . . wn

is
P (u) = P (w1)P (w2 |w1) . . . P (wn |w1 . . . wn−1) (5.1)

Venkataraman experiments with three different ways of approximating P (wi |w1 . . . wi−1):

P (wi |w1 . . . wi−1) ≈ P (wi) (5.2)

P (wi |w1 . . . wi−1) ≈ P (wi |wi−1) (5.3)

P (wi |w1 . . . wi−1) ≈ P (wi |wi−2, wi−1) (5.4)

i.e. he uses unigram, bigram, and trigram models. Since the empirical probability of a
novel n-gram is 0, Venkataraman uses a backoff procedure to estimate probabilities using
lower-order models when needed. The word unigram model backs off to a phoneme unigram
model.

In Venkataraman’s system, the probability of a string under the phoneme model will
generally be less than its probability calculated as the product of (previously observed) word
probabilities, so utterances tend to be split into known words when possible. Essentially,
the online search and backoff scheme together introduce a constraint that can be roughly
stated as follows: “add a new n-gram to the lexicon only when the utterance cannot be
parsed using the current lexicon2.” This constraint prevents the algorithm from introducing
an arbitrary number of new lexical items, so it does not memorize every utterance whole.
However, limiting the number of parameters in this way is not a principled solution to the
over-fitting problem of maximum likelihood. In practice, Venkataraman’s results are very
similar to those of Batchelder (2002) and the Bayesian system developed by Brent (1999)
(see below).

Venkataraman’s work is most notable because he presents the only model-based system
I am aware of that goes beyond a unigram model. All of the other maximum-likelihood-
based systems described above, as well as the Bayesian systems described below, assume that
words are generated independently. This assumption also underlies the experimental stimuli
used in many word segmentation experiments with artificial languages3 (Saffran et al.,
1996a; Saffran et al., 1996b; Newport and Aslin, 2004; Thiessen and Saffran, 2003; Johnson
and Jusczyk, 2001). Unlike these experimental stimuli, natural language displays many
complex dependencies, so one would expect that incorporating some notion of sequential
context into a word segmentation model should improve results. Venkataraman found
instead that his system performed almost the same regardless of which n-gram model was
used. However, the results of my own work (detailed below) suggest that this lack of effect
is misleading, caused by a search procedure whose effects overwhelm any differences in the
underlying model.

This problem with Venkataraman’s system is symptomatic of a more general problem
with all the maximum-likelihood systems described here: by using unprincipled methods

2The real situation is fuzzier than this statement suggests. An item could be added to the lexicon if the
rest of the items in the parse were sufficiently probable to outweigh a parse consisting entirely of known,
but improbable, items.

3Technically, the stimuli in these experiments do not quite follow a unigram model, since the same word
never appears twice in a row. Aside from this constraint, words in the stimuli are independent.



64

of constraining the number of parameters (words) in the model, they lose the benefit that
is normally conferred by using a probabilistic model. The results of these systems are due
to some unknown combination of model and search procedure. A better way to apply
constraints to a model-based learning system is by using a Bayesian prior. Constraints are
explicitly incorporated into the model itself, so that results are independent of the particular
search procedure used (assuming that the procedure is sufficient to achieve the objective).
Changing the assumptions in the model should then yield insights about the effects these
assumptions have on learning. I review the previous work on Bayesian modeling for word
segmentation in the following section, and then present my own research in this area starting
in Section 5.3.

5.2.5 Bayesian models

Bayesian models for word segmentation fall into two categories: those based on the MDL
principle, and those based on some other Bayesian formulation. One of the earliest MDL-
based systems is described by de Marcken (de Marcken, 1995; de Marcken, 1996). This
system builds a representation of the input corpus as a tree-structured hierarchy of chunks,
where the smallest chunks are single characters, and the largest chunks tend to correspond
to phrases, words, or morphemes. De Marcken argues that the hierarchical nature of the
representation captures the fact that, for example, the meaning of National Football League
is partially explained by the meaning of national, which in turn is partially explained by the
meaning of nation. The model assumes that complex structures contain both compositional
and non-compositional aspects of meaning and behavior. Although these properties of the
model are attractive in some respects, they also make it difficult to evaluate the performance
of the system alone or with reference to other systems, since there is no distinguished word
level representation. Later work seems to have been influenced more by the idea of using
MDL for word segmentation than by the specifics of de Marcken’s approach.

Another early MDL system for word segmentation is described by Brent and Cartwright
(1996). This system is intended as a model of early lexical acquisition in humans, and its
input consists of phonological transcriptions of child-directed speech. The results of Brent
and Cartwright’s experiments suggest that phonotactic constraints (derived by observing
the sequences of consonants that occur at utterance boundaries) can be very helpful for a
distributional learner. However, the search algorithm used in this system was sufficiently
compute-intensive that Brent and Cartwright were only able to segment a very small corpus
(about 170 utterances).

In later research, Brent presents another Bayesian model for word segmentation with a
more efficient search algorithm (Brent, 1999). This system, which Brent calls Model-Based
Dynamic Programming-1 (MBDP-1), is not based on MDL. Instead, it uses a model that
generates the entire corpus at once in a sequence of five steps:

1. Generate L, the number of types in the lexicon.

2. Generate the phonemic representation of each type (except for the single distinguished
“utterance boundary” type, $).

3. Generate a token frequency for each lexical type.

4. Generate an ordering for the set of tokens.
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5. Concatenate all the tokens to create an unsegmented corpus.

The first four steps of this model define a probability distribution over all possible segmented
corpora. The last step is deterministic, which means that certain segmented corpora will
produce the observed data with probability 1, and all others will produce it with probability
0. Therefore the posterior probability of a segmentation given the data is proportional to
its prior probability under the model, and the best segmentation will be the one with the
highest prior probability.

Rather than exhaustively evaluating all possible segmentations of the corpus, Brent
instead implements an efficient dynamic programming algorithm to search for the best
segmentation. He defines the relative probability of a word to be the ratio of the probability
of the segmented corpus up to and including that word to the probability of the segmented
corpus prior to that word. This permits him to use an algorithm that segments one utterance
at a time, assuming the segmentations of all previous utterances to be fixed.

There are two important points to note about the MBDP-1 model. First, the distribution
over L assigns higher probability to models with fewer lexical items. I have argued that this
is necessary to avoid memorization, and indeed the unsegmented corpus is not the optimal
solution under this model, as I will show in Section 5.3. Second, the factorization into four
separate steps makes it theoretically possible to modify each step independently in order
to investigate the effects of the various modeling assumptions. However, the mathematical
statement of the model and the approximations necessary for the search procedure make
it unclear how to modify the model in any interesting way. In particular, the fourth step
uses a uniform distribution over orderings, which creates a unigram constraint that cannot
easily be changed. In the following sections, I show how the two-stage modeling framework
described in Chapter 3 can be used to develop both unigram and bigram models for word
segmentation, while also incorporating a preference for sparse solutions. This flexibility will
allow me to investigate the effects of context on word segmentation.

5.3 Unigram word segmentation

5.3.1 The Dirichlet process model

The two-stage model I use for unigram word segmentation is TwoStage(CRP(α0), P0), where
the generator P0 is a unigram phoneme model:

P0(w) = p#(1 − p#)n−1
n

∏

i=1

P (mi) (5.5)

where word w consists of the phonemes m1 . . . mn, and p# is the probability of the word
boundary #. For simplicity I used a uniform distribution over phonemes, and experimented
with different fixed values of p#. (I discuss a different distribution over phonemes in Section
5.4. It is also possible to infer both the distribution over phonemes and p#, although I did
not do so here.)

As discussed in Chapter 3, this two-stage model is equivalent to the following Dirichlet
process language model:

wi |G ∼ G

G |α0, P0 ∼ DP(α0, P0)
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where wi is the ith word in the corpus. From Equation 3.11, the probability of wi given
previously observed words w−i is

P (wi = w |w−i) =
n

(w−i)
w + α0P0(w)

i − 1 + α0
(5.6)

where n
(w−i)
w is the number of instances of w observed in w−i. The actual CRP table

assignments for each word z−i only become important later, in the bigram model.
So far, the model accounts for the number of times each word appears in the data. The

input corpus used in my experiments also includes utterance boundaries, so these must be
accounted for in the model as well. This is done by assuming that utterances are generated
as follows:

1. Decide whether the next word will end the utterance or not.

2. Choose the identity of the that word.

3. If more words are to be generated, return to step 1.

This process can be described by a probabilistic grammar with context-free production
rules, where each rule is assigned a probability that depends on the number of times that
rule has already been observed:

P (ri = rbranch | r−i) U → W U
P (ri = rend | r−i) U → W
P (wi = w |w−i) W→ w ∀wi ∈ Σ∗

where rbranch = U → W U , rend = U → W , and ri ∈ {rbranch , rend} is the ith U production
generated. I assume a symmetric Beta(ρ

2 ) prior4 over the probability of the U productions,
so

P (ri = rbranch | r−i) =
nrbranch

+ ρ
2

i + 1 + ρ
(5.7)

P (ri = rend) = 1 − P (ri = rbranch) and P (wi = w) is given by Equation 5.6. Notice
that this grammar has the form of a standard probabilistic context-free grammar, but the
probabilities of the rules change as more data is observed. Figure 5.1 provides an example
parse.

5.3.2 Gibbs sampler

With the generative model described above, Gibbs sampling can be used to sample from
the posterior distribution of segmentations given an unsegmented input corpus. The Gibbs
sampler I implemented considers a single possible boundary point at a time, so each sample
is from a set of two hypotheses, h1 and h2. These hypotheses contain all the same boundaries
for the entire corpus except at the one position under consideration, where h2 has a boundary
and h1 does not (i.e. h1 contains a single word w1 spanning the same characters as words
w2 and w3 in h2). The structures are shown in Figure 5.2. In order to sample a hypothesis,
we need only calculate the relative probabilities of h1 and h2. Since h1 and h2 are the same

4The Beta distribution is a Dirichlet distribution over two outcomes.
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U

look

the

W U

at

UW

W U

W

doggie

Figure 5.1: A hypothetical utterance, as parsed by the unigram DP word model.

h1:

UW

U

W

w3

w2

h2:

W

U

w1 = w2.w3

Figure 5.2: The two hypotheses considered by the unigram sampler, where the possible
boundary location is between w2 and w3. Dashed lines indicate possible additional structure.
Rules in bold differ between h1 and h2; all other rules are part of h−.
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except for a few rules, this is straightforward. Let h− be all of the structure shared by the
two hypotheses, including n− words, and let d be the observed data. Then

P (h1 |h
−, d) = P (w1 |h

−, d)

=
n

(h−)
w1 + α0P0(w1)

n− + α0
(5.8)

where the second line follows from Equation 5.6 and the exchangeability of the CRP. Also,

P (h2 |h
−, d)

= P (rbranch , w2, w3 |h
−, d)

= P (rbranch |h
−, d)P (w2 |h

−, d)P (w3 |w2, h
−, d)

=
n

(h−)
rbranch

+ ρ
2

n− + 1 + ρ
·
n

(h−)
w2 + α0P0(w2)

n− + α0
·
n

(h−)
w3 + I(w2 = w3) + α0P0(w3)

n− + 1 + α0
(5.9)

where the denominator of the n
(h−)
rbranch

term is derived by noting that the number of U
productions in h− is n− + 1 (one production for each of the n− words in h−, plus one
additional production dominating either w1 or w3).

After initializing word boundaries at random (or non-randomly; see experiments below),
the Gibbs sampler iterates over the entire data set multiple times. On each iteration, every
potential boundary point is sampled once using the equations above. When the sampler
converges, these samples will be drawn from the posterior distribution P (h|d).

Although relatively straightforward to implement, this Gibbs sampler has the prac-
tical disadvantage that transitions are only possible between states with high similarity.
This leads to low mobility through the state space, because movement from one state to
another very different state may require transitions through many low-probability interme-
diate states. Since the initial state is unlikely to be near the high-probability part of the
solution space, it may take a very long time for the algorithm to converge to that part of
the space.

To alleviate this problem and improve convergence time, I modified the Gibbs sampler
to use simulated annealing (Aarts and Korst, 1989). Annealing the sampler causes it to
choose low-probability transitions more frequently early in search, which allows it to explore
a larger area of the search space more rapidly than otherwise. This is achieved by using
a temperature parameter γ that starts high and is gradually reduced to 1. Annealing
with a temperature of γ corresponds to raising the probabilities in the distribution under
consideration (in this case, h1 and h2) to the power of 1

γ
prior to sampling. Thus, when

γ > 1, the sampled distribution becomes more uniform, with low-probability transitions
becoming more probable. As the temperature is reduced, samples become more and more
concentrated in the high-probability areas of the search space. Notice also that if the
temperature is reduced below 1, the sampled distribution becomes even more peaked, so
that in the limit as γ → 0, all probability mass will be concentrated on the mode of the
distribution. This means that, by reducing the temperature to almost zero, we can obtain
an approximation to the MAP solution. I use this method in some of the experiments
below.
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5.3.3 Experiments

5.3.3.1 Data

For all the experiments described in this chapter, I report results on the same corpus used
by Brent (1999) and Venkataraman (2001), which allows me to compare my results directly
to theirs. The data is derived from the Bernstein-Ratner corpus (Bernstein-Ratner, 1987) of
the CHILDES database (MacWhinney and Snow, 1985), which contains orthographic tran-
scriptions of utterances directed at 13- to 23-month-olds. The data was post-processed by
Brent, who removed disfluencies and non-words, discarded parental utterances not directed
at the children, and converted the rest of the words into a phonemic representation using
a phonemic dictionary (i.e. each orthographic form was always given the same phonemic
form). The resulting corpus contains 9790 utterances, with 33399 word tokens and 1321
unique types. The average number of words per utterance is 3.41 and the average word
length (in phonemes) is 2.87. The word boundaries in the corpus are used as the gold
standard for evaluation, but are not provided in the input to the system (except for word
boundaries that are also utterance boundaries).

The process used to create this corpus means that it is missing many of the complexities
of real child-directed speech. Not the least of these is the acoustic variability with which
different tokens of the same word are produced, a factor which presumably makes word
segmentation more difficult. On the other hand, the corpus is also missing many cues which
could aid in segmentation, such as coarticulation information, stress, and duration. While
this idealization of child-directed speech is somewhat unrealistic, the corpus does provide a
way to investigate the use of purely distributional cues for segmentation, and permits direct
comparison to other word segmentation systems.

5.3.3.2 Evaluation procedure

For quantitative evaluation, I use the metrics of precision (number of correct items found
out of all items found), recall (number of correct items found out of all correct items), and

F-score ( = 2∗precision∗recall
precision+recall

). I report the following scores for each model I propose:

• P, R, F: precision, recall, and F-score on words: both boundaries must be correctly
identified to count as correct.

• LP, LR, LF: precision, recall, and F-score on the lexicon, i.e. word types.

• BP, BR, BF: precision, recall, and F-score on potentially ambiguous boundaries (i.e.
utterance boundaries are not included in the counts).

For comparison, I report scores as well for Brent’s MBDP-1 system (Brent, 1999) and
Venkataraman’s n-gram segmentation systems (Venkataraman, 2001), which I will refer to
as NGS-u and NGS-b (for the unigram and bigram models). Both Brent and Venkataraman
use online search procedures, so in their papers they calculate precision and recall separately
on each 500-utterance block of the corpus and graph the results to show how scores change
as more data is processed. They do not report lexicon recall or boundary precision and
recall. Their results are rather noisy, but performance seems to stabilize rapidly, after
about 1500 utterances. To facilitate comparison with my own results, I calculated scores
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Figure 5.3: Word (F) and lexicon (LF) F-score in the DP model (a) as a function of p#,
with α0 = 20 and (b) as a function of α0, with p# = .5.

for MBDP-1 and NGS over the whole corpus, using Venkataraman’s implementations of
these algorithms5.

Since my algorithm produces random segmentations sampled from the posterior distri-
bution rather than a single optimal solution, there are several possible ways to evaluate its
performance. For initial comparison to previous work, I evaluated a single sample taken
after 20,000 iterations. The sampler was annealed in 10 increments of 2000 iterations each,
with 1

γ
= {.1, .2, . . . , .9, 1}. Unless otherwise noted, scores and examples are based on this

evaluation procedure. Additional experiments were performed to estimate the variation
between different samples, and to evaluate performance using annealing to approximate the
MAP solution. These additional evaluation methods are described in more detail below.

5.3.3.3 Results and Discussion

Recall that the DP model has three parameters: ρ (the prior on rbranch), p# (the prior
probability of a word boundary), and α0 (which affects the number of word types proposed).
Given the large number of known utterance boundaries, the value of ρ should have little
effect on the results, so I simply fixed ρ = 2 for all experiments. Figure 5.3 shows the
effects of varying of p# and α0. Lower values of p# result in more long words, which
tends to improve recall (and thus F-score) in the lexicon. The accompanying decrease in
token accuracy is due to an increasing tendency for the model to concatenate short words
together, a phenomenon I discuss further below. Higher values of α0 allow more novel
words, which also improves lexicon recall, but begins to degrade precision after a point.

5The implementations are available at http://www.speech.sri.com/people/anand/.
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P R F BP BR BF LP LR LF

NGS-u 67.7 70.2 68.9 80.6 84.8 82.6 52.9 51.3 52.0
MBDP-1 67.0 69.4 68.2 80.3 84.3 82.3 53.6 51.3 52.4
DP 61.9 47.6 53.8 92.4 62.2 74.3 57.0 57.5 57.2

Table 5.1: Accuracy of the various systems, with best scores in bold. DP results are with
p# = .5 and α0 = 20.

F LF − log P (w | d)
mean std mean std mean std

Samples(10 runs) 53.9 .32 57.8 .60 200587 192
Samples(1 run) 53.5 .07 57.7 .43 200493 25
MAP Approx. 53.7 .26 58.7 .56 199853 228

Table 5.2: Comparison of the accuracy and posterior probability of DP solutions found by
sampling (averaged over ten independent runs, or over ten samples from the same run) and
by approximating the MAP solution (averaged over ten independent runs).

Due to the negative correlation between token accuracy and lexicon accuracy, there is no
single best value for either p# or α0. In the remainder of this section, I discuss results for
p# = .5, α0 = 20 (though others are qualitatively similar).

In Table 5.1, I compare the results of my system to those of MBDP-1 and NGS-u.
Although my system has higher lexicon accuracy than the others, its token accuracy is
much worse. Performance does not vary a great deal between different samples, since
calculating the score for a single sample already involves averaging over many random
choices – the choices of whether to place a boundary at each location or not. Table 5.2
shows the mean and standard deviation in F-scores and posterior probabilities over samples
taken from 10 independent runs of the algorithm with different random initializations.
The same statistics are also provided for ten samples obtained from a single run of the
sampler. Samples from a single run are not independent, so to reduce the amount of
correlation between these samples they were taken at 100-iteration intervals (at iterations
19100, 19200, . . . 20000). Nevertheless, they show less variability than the truly independent
samples. In both cases, lexicon accuracy is more variable than token accuracy, probably
because there are far fewer lexical items to average over within a single sample. Finally,
Table 5.2 provides results for the approximate MAP evaluation procedure. This procedure
is clearly imperfect, since if it were able to identify the true MAP solution, there would
be no difference in results across multiple runs of the algorithm. In fact, compared to the
standard sampling procedure, there is only slightly less variation in F-scores, and greater
variation in probability6. Nevertheless, the MAP approximation does succeed in finding
solutions with significantly higher probabilities. These solutions also have higher lexicon
accuracy, although token accuracy remains low.

6The large standard deviation in the probabilities of the approximate MAP solutions is due to a single
outlier. The standard deviation among the remaining nine solutions is 160, well below the standard
deviation in the sample solutions, where there are no outliers.
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Seg: True None MBDP-1 NGS-u DP

NGS-u 204.5 90.9 210.7 210.8 183.0
MBDP-1 208.2 321.7 217.0 218.0 189.8

DP 222.4 393.6 231.2 231.6 200.6

Table 5.3: Negative log probabilities (x 1000) under each model of the true solution, the
solution with no utterance-internal boundaries, and the solutions found by each algorithm.
The most probable solution under each model is shown in bold.

The reason that token accuracy is so low with the DP model is that it often mis-analyzes
frequently occurring words. Many instances of these words occur in common collocations
such as what’s that and do you, which the system interprets as a single words. This pattern
of errors is apparent in the boundary scores: boundary precision is very high, indicating
that when the system proposes a boundary, it is almost always correct. Boundary recall is
low, indicating undersegmentation.

I analyzed the behavior of the system more carefully by examining the segmented cor-
pus and lexicon. A full 31% of the proposed lexicon and nearly 30% of tokens consist of
undersegmentation (collocation) errors, while only 12% of types and 5% of tokens are other
non-words. (Some additional token errors, under 4%, are caused by proposing a correct
word in an incorrect location.) About 85% of collocations (both types and tokens) are
composed of two words, nearly all the rest are three words. To illustrate the phenomenon, I
provide the system’s segmentation of the first 35 utterances in the corpus in Figure 5.4, and
the 35 most frequently found lexical items in Figure 5.5. The 70 most frequent collocations
identified as single words by the system are shown in the Figure 5.6.

There is some evidence that young children may treat phrases like what’s that or social
conventions as single units (Peters, 1983). However, many of the other collocations found
by the system do not seem cognitively plausible. Other than the Det+N phrases, none of
the remaining collocations constitute linguistic units, and there is no evidence that children
view them as such. Why, then, are these units found by the DP model? The answer
seems clear: groups of words that frequently co-occur violate the unigram assumption in
the model, since they exhibit strong word-to-word dependencies. The only way the model
can capture these dependencies is by assuming that these collocations are in fact words
themselves.

This analysis raises the question of why MBDP-1 and NGS-u, which also use unigram
models, don’t exhibit the same problem with collocations. I have already shown that NGS’s
results are due to its search procedure rather than its model. The same turns out to be
true for MBDP-1. I calculated the probability of various segmentations of the corpus under
each model, as shown in Table 5.3. These figures indicate that the MBDP-1 model assigns
higher probability to the solution found by my Gibbs sampler than to the solution found by
Brent’s own incremental search algorithm. In other words, the model underlying MBDP-1
does favor the lower-accuracy collocation solution, but Brent’s approximate search algorithm
finds a different solution that has higher accuracy but lower probability under the model.

I performed two experiments suggesting that my own inference procedure does not suffer
from similar problems. First, I initialized the Gibbs sampler in three different ways: with
no utterance-internal boundaries, with a boundary after every character, and with random
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yuwant tu si D6bUk
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&nd 6dOgi

yu wanttu lUk&tDIs
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Figure 5.4: The first 35 utterances in the corpus as segmented by the DP model (left) and
the correct segmentation (right). The model undersegments the corpus. The stochastic
nature of the Gibbs sampling procedure is apparent in the segmentation of the sequence
gEtIt, which receives two different analyses. A key to the ASCII transcriptions used in the
corpus is given in Appendix A.
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+ 396 WAt

+ 383 yu

+ 360 oke

+ 351 tu

+ 340 &nd

+ 337 y&

+ 313 D6

+ 295 It

+ 293 lUk

- 275 z

- 258 WAtsD&t

+ 248 D&t

+ 235 6

+ 217 no

+ 196 D&ts

+ 193 D*

+ 189 DIs

+ 188 si

- 184 k&nyu

+ 178 In

+ 177 y)

+ 172 h(

+ 160 WAts

+ 147 Its

- 141 IN

- 138 IzD&t

- 135 WAtsDIs

+ 123 Iz

+ 117 du

+ 116 nQ

- 112 s

+ 104 f%

- 102 D6dOgi

- 101 D&ts6

+ 101 bUk

1704 yu

1291 D6

895 6

798 D&t

783 WAt

653 Iz

632 It

588 DIs

569 WAts

528 tu

463 du

429 lUk

412 k&n

399 D&ts

389 si

389 D*

382 9

378 &nd

375 In

363 y)

362 #

360 oke

337 y&

301 no

268 l9k

266 Its

250 an

246 h(

246 wAn

244 want

239 pUt

227 hi

226 wan6

221 r9t

217 bUk

Figure 5.5: The 35 most frequent items in the lexicon found by the DP model (left) and in
the correct lexicon (right). The frequency of each lexical item is shown to its left. Items in
the segmented lexicon are indicated as correct (+) or incorrect (-). Frequencies of correct
items in the segmented lexicon are lower than in the true lexicon because many occurrences
of these items are accounted for by collocations.
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Full S or socialization:

258 WAts D&t

135 WAts DIs

65 T&Nk yu

61 D&ts r9t

57 b9 b9

53 WAt Iz It

41 lUk &t DIs

38 WAt # Doz

38 WAt Els

36 huz D&t

33 D&t wAn

31 n9t n9t

30 lEt mi Qt

30 sIt dQn

30 kloz D6 d%

29 gUd g3l

28 lUk &t D&t

Det + N:

102 D6 dOgi

64 D6 dr&g~

56 DIs wAn

47 D6 dOg

43 D6 b7

43 D6 bUk

37 D6 bAni

36 DIs bUk

31 6 bUk

31 D6 d%

30 y) h&nd

29 6nADR wAn

Aux + NP (+ V):

184 k&n yu

138 Iz D&t

91 du yu

56 du yu want

53 wUd yu l9k

50 Iz It

48 dId yu

39 du yu si

30 # yu

29 Iz hi

Pronoun + Aux/V:

95 yu want

85 yu k&n

65 yu wan6

55 9 TINk

48 yu l9k

34 y) g6n6

33 yu dont

31 9 si

29 yu no WAt

28 9 dont

Wh + X:

44 W*z D6

39 hQ mEni

36 WAt kAlR

34 WAt # yu

30 WAt du yu

Other:

101 D&ts 6

87 lUk &t

78 Its 6

69 In D*

51 DIs Iz

48 an D6

42 Doz #

41 Iz f%

39 pUt It

38 du It

36 si D6

36 In D6

32 ple wIT

30 pUt hIm

28 k9nd 6v

27 wan6 si

Figure 5.6: The 70 most frequently occurring items in the segmented lexicon that consist of
multiple words from the true lexicon. These items are all identified as single words; the true
word boundaries have been inserted for readability. The frequency of each item is shown to
its left.
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Figure 5.7: Trace plots of the negative log probabilities of samples from samplers for the DP
model initialized with a boundary after every phoneme (‘pho’), with random boundaries
(‘ran’), and with a boundary only at the end of each utterance (‘utt’). Top: trace plot for
the entire run of the algorithm, plotted every 10 iterations. The initial probabilities of each
run (circles at x = 0) are very different, but within a few iterations the plots are barely
distinguishable. Steep drops in the plots occur when the temperature is lowered. Bottom:
detail of the final part of the plot.

boundaries. The results were virtually the same regardless of initialization. In fact, the
effects of initialization are almost immediately washed out in the high-temperature initial
stage of sampling, as shown in Figure 5.7 (top). Figure 5.7 (bottom) shows a detail of the
final stage of sampling (with γ = 1), illustrating the large degree of overlap in the range of
posterior probabilities produced by the three samplers.

For a second experiment testing the convergence of the Gibbs sampler, I created an
artificial corpus by randomly permuting all the words in the true corpus and arranging them
into utterances with the same number of words as in the true corpus. This manipulation
creates a corpus where the unigram assumption is correct. If my inference procedure works
properly, the unigram system should be able to correctly identify the words in the permuted
corpus. This is exactly what I found, as shown in Table 5.4. The performance of the DP
model jumps dramatically, and most errors occur on infrequent words (as evidenced by
the fact that token accuracy is much higher than lexicon accuracy). In contrast, MBDP-1
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P R F BP BR BF LP LR LF

NGS-u 76.6 85.8 81.0 83.5 97.6 90.0 60.0 52.4 55.9
MBDP-1 77.0 86.1 81.3 83.7 97.7 90.2 60.8 53.0 56.6
DP 94.2 97.1 95.6 95.7 99.8 97.7 86.5 62.2 72.4

Table 5.4: Accuracy of the various systems on the permuted corpus, with best scores in
bold. DP results are with p# = .5 and α0 = 20.

and NGS-u receive a much smaller benefit from the permuted corpus, again indicating the
influence of search.

These results imply that the DP model itself, rather than the Gibbs sampling procedure
I used for inference, is responsible for the poor segmentation performance on the natural
language corpus. In particular, the unigram assumption of the model seems to be at fault.
In the following section I present some additional experiments designed to further test this
hypothesis. In these experiments, I replace the (admittedly impoverished) lexicon generator
with a better model of lexical items. If the poor lexical model is responsible for the DP
model’s undersegmentation of the corpus, then improving the generator should improve
performance. However, if the problem is that the unigram assumption fails to account for
sequential dependencies in the corpus, then a better lexicon generator will not make much
difference.

5.4 The impact of the generator on word segmentation

One possible improvement to the lexicon generator is to replace the assumption of a uniform
distribution over phonemes with the more realistic assumption that phonemes have different
probabilities of occurrence. This assumption is more in line with the MBDP-1 and NGS
models. In NGS, phoneme probabilities are estimated online according to their empirical
distribution in the corpus. In MBDP-1, phoneme probabilities are also estimated online, but
according to their empirical distribution in the current lexicon. For models like MBDP-1
and the DP model, where the phoneme distribution is used to generate lexicon items rather
than word tokens, the latter approach makes more sense. It is relatively straightforward to
extend the DP model to infer the phoneme distribution in the lexicon simultaneously with
inferring the lexicon itself. Before implementing this extension, however, I tried simply fixing
the phoneme distribution to the empirical distribution in the true lexicon. This procedure
gives an upper bound on the performance that could be expected if the distribution were
learned. I found that this change improved lexicon F-score somewhat (to 60.5, with α = 20
and p# = .5), but made almost no difference on token F-score (53.6). Inference of the
phoneme distribution was therefore not implemented.

Other changes could be made to the lexicon generator in order to create a better model
of word shapes. For example, using a bigram or trigram phoneme model would allow
the learner to acquire some notion of phonotactics. Basing the model on syllables rather
than phonemes could incorporate constraints on the presence of vowels or syllable weight.
Rather than testing all these different possibilities, I designed an experiment to determine
an approximate upper bound on performance in the unigram DP model. In this experiment,
I provided the model with information that no infant would actually have access to: the



78

F-score % Collocations
ǫ Tokens Lexicon Tokens Lexicon

10−2 61.4 82.1 26.9 21.1
10−3 62.5 83.5 26.0 19.3
10−4 63.8 84.6 25.1 17.3
10−5 65.2 85.2 24.1 16.1
10−6 67.7 86.0 22.0 13.9

Table 5.5: Results of the DP model using Ptrue . The percentage of tokens and lexicon
entries consisting of collocations is shown for each value of ǫ.

set of word types that occur in the correctly segmented corpus. The lexicon generator is
defined as follows:

Ptrue(w) =

{

(1 − ǫ) 1
|L| + ǫP0(w) w ∈ L

ǫP0(w) w /∈ L

where L is the true set of lexical items in the data, and ǫ is some small mixing constant. In
other words, this model is a mixture between a uniform distribution over the true lexical
items and the basic model P0. If ǫ = 0, the model is constrained so that segmentations may
only contain words from the true lexicon. If ǫ > 0, a small amount of noise is introduced so
that new lexical items are possible, but have much lower probability than the true lexical
items. If the model still postulates collocations when ǫ is very small, we have evidence that
the unigram assumption, rather than any failure in the lexicon model, is responsible for the
problem.

The results from this model are shown in Table 5.5. Not surprisingly, the lexicon F-
scores in this model are very high, and there is a large improvement in token F-scores against
previous models. However, considering the amount of information provided to the model,
its scores are still rather low, and collocations remain a problem, especially for frequent
items.

Considering the case where ǫ = 10−6 yields some insight into the performance of these
models with improved generators. The solution found, with a lexicon consisting of 13.9%
collocations, has higher probability than the true solution. This is despite the fact that
the most probable incorrect lexical items are about five orders of magnitude less probable
than the true lexical items7. These incorrect lexical items are proposed despite their ex-
tremely low probability because only the first occurrence of each word is accounted for by
the lexicon generator. Subsequent occurrences are accounted for by the unigram adaptor, so
low-probability lexical items incur no additional probability cost after the first occurrence.
This is why the collocations remaining in the DP model using Ptrue are the highest-frequency
collocations: over many occurrences, the probability mass gained by modeling these collo-
cations as single words outweighs the mass lost in generating the first occurrence.

7There are 1321 lexical items in the corpus, so the generator probability of each of these is approximately
10−3. There are 50 phonemes and p# = .5, so a single-character word has probability .01 under P0.
Multiplying by the discount factor ǫ = 10−6 yields Ptrue = 10−8 for one-character words not in the true
lexicon. Longer incorrect words will have much lower probability.
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The results of this experiment suggest that problems with the lexicon generator are not
primarily responsible for the large number of collocations found by the unigram DP model.
Regardless of how good a model the lexicon generator is, it will not be able to completely
overcome the influence of the unigram adaptor when modeling the full corpus. In order to
reduce the number of collocations, it is necessary to improve the adaptor by accounting for
sequential dependencies between words. I show how to do so in the following section.

5.5 Bigram word segmentation

5.5.1 The hierarchical Dirichlet process model

The results of my unigram experiments suggest that word segmentation can be improved
by taking into account dependencies between words. To test this hypothesis, I extended
the DP model to incorporate bigram dependencies using a hierarchical Dirichlet process
(HDP) (Teh et al., 2005). This approach is similar to previously proposed n-gram models
using hierarchical Pitman-Yor processes (Goldwater et al., 2006; Teh, 2006). The HDP
is appropriate for situations in which there are multiple distributions over similar sets of
outcomes, and the distributions are believed to be similar. For language modeling, we can
define a bigram model by assuming each word has a different distribution over the words
that follow it, but all these distributions are linked. The definition of the HDP bigram
language model (disregarding utterance boundaries for the moment) is

wi |wi−1 = w, Hw ∼ Hw ∀w

Hw |α1, G ∼ DP(α1, G) ∀w

G |α0, P0 ∼ DP(α0, P0)

That is, P (wi |wi−1 = w) is distributed according to Hw, a DP specific to word w. Hw is
linked to the DPs for all other words by the fact that they share a common base distribution
G, which is generated from another DP. This model is TwoStage(CRP(α1),DP(α0, P0)).

As in the unigram model, Hw and G are never represented explicitly. By integrating over
them, we get a distribution over bigram frequencies that can be understood in terms of the
CRP, as illustrated in Figure 5.8. Each word type w is associated with its own restaurant,
which represents the distribution over words that follow w. Different restaurants are not
completely independent, however: the labels on the tables in the restaurants are all chosen
from a common base distribution, which is represented by another CRP. A word w′ that
has high probability in the base distribution will tend to appear in many different bigram
types (i.e. following many other word types). However, P (w′ |w) may be very different for
different w, since each w has its own restaurant for bigram counts.

As in the unigram model, we can account for utterance boundaries using a grammar
construction. In the bigram grammar, the utterance boundary marker $ is considered a
special word type, so that wi ranges over Σ∗∪{$}. After observing w−i, the HDP grammar
is

P2(wi |w−i, z−i) Uwi−1→ Wwi
Uwi

∀wi ∈ Σ∗, wi−1 ∈ Σ∗ ∪ {$}
P2($ |w−i, z−i) Uwi−1→ $ ∀wi−1 ∈ Σ∗

1 Wwi
→ wi ∀wi ∈ Σ∗
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backoff:

the a theandsee

..

.

is anddog

dog car girl dog redthe

. . .girl the redanddog dog car

bigrams:

Figure 5.8: Bigrams are modeled using a hierarchical Chinese restaurant process. Each word
type w has its own restaurant to represent the distribution of tokens following w in the data.
The labels on the tables in these bigram restaurants are drawn from the distribution in the
backoff or “master” restaurant (top). Each customer (black dot) in the bigram restaurants
represents a bigram token; each customer in the backoff restaurant represents a label on
some bigram table.

$

Wat Uat

at

U$

look

Wlook Ulook

the

doggie

Uthe

Udoggie

Wthe

Wdoggie

Figure 5.9: A hypothetical utterance as parsed by the bigram HDP grammar.
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See Figure 5.9 for an illustration. The distribution P2, which gives the bigram posterior
probability of wi, is derived as follows:

P2(wi |w−i, z−i) =

∫

P (wi |Hwi−1)P (Hwi−1 |w−i, z−i) dHwi−1

=
n(wi−1,wi) + α1P1(wi |w−i, z−i)

nwi−1 + α1
(5.10)

where n(wi−1,wi) is the number of occurrences of the bigram (wi−1, wi) and

P1(wi |w−i, z−i)

=

{
∫

P ($ | θ)P (θ |w−i, z−i) dθ wi = $

(1 −
∫

P ($ | θ)P (θ |w−i, z−i) dθ) ·
∫

P (wi |G)P (G |w−i, z−i) dG wi ∈ Σ∗

=







t$+ ρ
2

t+ρ
wi = $

tΣ∗+ ρ
2

t+ρ
·

twi
+α0P0(wi)

tΣ∗+α0
wi ∈ Σ∗

where θ is the parameter of a binomial distribution; t$, tΣ∗ , and twi
are the total number of

bigram tables (across all words) labeled with $, non-$, and wi, respectively; and t = t$ + tΣ∗

is the total number of bigram tables. I have suppressed the superscript (w−i) notation in all
cases. P1 is the posterior estimate of the base distribution shared by all bigrams, and can
be viewed as a unigram backoff. In P1, utterance boundaries are generated from a binomial
distribution with parameter θ and other words are generated from the DP G. Since θ and
G determine the probability that a word type appears on a bigram table, P1 is estimated
from the number of tables on which each type appears. In other words, when a particular
bigram sequence (wi−1, wi) is never observed in w−i, the probability of wi following wi−1 is
estimated using the number of different word types that have been observed to precede wi.
If this number is high, then P (wi|wi−1) will be higher than if this number is low8.

5.5.2 Gibbs sampler

Inference can be performed on the HDP bigram model using a Gibbs sampler similar to
the unigram sampler. To sample from the posterior distribution over segmentations in the
bigram model, I define h1 and h2 as I did in the unigram sampler so that for the corpus
substring s, h1 has a single word (s = w1) where h2 has two (s = w2.w3). Let wl and wr

be the words (or $) preceding and following s. The rules that differ between h1 and h2 are
shown in Figure 5.10. The posterior probability of h1 can be calculated as

P (h1 |h
−, d)

= P (r(wl,w1) |h
−, d) · P (r(w1,wr) | r(wl,w1), h

−, d)

=
n(wl,w1) + α1P1(w1 |h

−, d)

nwl
+ α1

·
n(w1,wr) + I(wl = w1 = wr) + α1P1(wr |h

−, d)

nw1 + 1 + α1
(5.11)

8Many standard n-gram procedures use similar kinds of estimates based on both type and token counts.
In fact, Kneser-Ney smoothing (Kneser and Ney, 1995), a particularly effective smoothing technique
for n-gram models (Chen and Goodman, 1998), has been shown to fall out naturally as the posterior
estimate in a hierarchical Bayesian language model similar to the one described here, with the DPs
replaced by Pitman-Yor processes (Goldwater et al., 2006; Teh, 2006).
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h1: Uwl

Uw1

Wwr
Uwr

w1 =w2.w3

Ww1

h2: Uwl

Ww2
Uw2

Ww3
Uw3

Uwr
w3 Wwr

w2

Figure 5.10: The portions of the derivation trees that differ between the two hypotheses
considered by the Gibbs sampler for the HDP model.

where r(wi,wj) is shorthand for the grammar rule Uwi
→ Wwj

Uwj
and all counts are with

respect to h−. The terms for the W productions have been left out, since they all have
probability 1. Similarly, the posterior probability of h2 is

P (h2 |h
−, d)

= P (r(wl,w2) |h
−, d) · P (r(w2,w3) | r(wl,w2), h

−, d) · P (r(w3,wr) | r(wl,w2), r(w2,w3), h
−, d)

=
n(wl,w2) + α1P1(w2 |h

−, d)

nwl
+ α1

·
n(w2,w3) + I(wl = w2 = w3) + α1P1(w3 |h

−, d)

nw2 + 1 + α1

·
n(w3,wr) + I(wl = w3, w2 = wr) + I(w2 = w3 = wr) + α1P1(wr |h

−, d)

nw3 + 1 + I(w2 = w4) + α1
(5.12)

P1(.) can be calculated exactly using Equation 5.10, but this requires explicitly tracking and
sampling the assignment of words to tables, which is computationally expensive. Instead,
I used an approximation, replacing each table count twi

by its expected value E[twi
]. In a

DP(α,P ), the expected number of CRP tables for an item occurring n times is α log n+α
α

(Antoniak, 1974), so

E[twi
] = α1

∑

j

log
n(wj ,wi) + α1

α1

This approximation requires only the bigram counts, which must be tracked anyway.

5.5.3 Experiments

I used the same basic setup for my experiments with the HDP model as I used for the
DP model. The model was initialized by treating each utterance as a single word9. I
experimented with different values of α0 and α1, keeping p# = .5 throughout. Some results
of these experiments are plotted in Figure 5.11. In the bigram model, there is now a positive
correlation between type and token accuracy, and with appropriate parameter settings, both
are higher than in the unigram model (dramatically so, for tokens). High-frequency words
are segmented correctly far more often than in the unigram model. The best values of α0

are much larger than in the unigram model, presumably because all unique word types must

9This initialization is different from the random initialization used for most of the DP model experiments.
Based on the results of those experiments, and preliminary analysis of the HDP model results, it was
assumed that initialization would not affect the results reported here. More complete later analysis
(described below) supports this assumption.
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Figure 5.11: Word (F) and lexicon (LF) F-score in the HDP model (a) as a function of α0,
with α1 = 10 and (b) as a function of α1, with α0 = 1000.

P R F BP BR BF LP LR LF

NGS-b 68.1 68.6 68.3 81.7 82.5 82.1 54.5 57.0 55.7
HDP 79.4 74.0 76.6 92.4 83.5 87.7 67.9 58.9 63.1

Table 5.6: Bigram system accuracy, with best scores in bold. HDP results are with p# = .5,
α0 = 1000, and α1 = 10.

be generated via P0, but in the bigram model there is an additional level of discounting
(the unigram process) before reaching P0. Smaller values of α0 lead to fewer word types
with fewer characters on average, which causes oversegmentation. The effect of α1 is less
pronounced. Larger values lead to more bigram types and a distribution that is more similar
to the unigram distribution in the corpus. Smaller values create greater disparities between
the bigram distributions for each word.

Table 5.6 compares the results of the HDP model using optimal parameter settings to
the only previous model incorporating bigram dependencies, NGS-b. Due to search, the
performance of the bigram NGS model is not much different from that of the unigram
model. In contrast, the HDP model performs far better than the DP model, leading to the
highest published accuracy for this corpus that I am aware of, on both tokens and lexical
items. Figure 5.12 gives some example results.

Not only are the results of the bigram model much better than those of the basic
unigram model, they are qualitatively different. In the unigram model, type accuracy is
higher than token accuracy, indicating many errors on frequent words. In the bigram model,
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Figure 5.12: Results for the HDP model with p# = .5, α0 = 1000, and α1 = 10: the
first 35 segmented utterances (left) and the 35 most frequent lexical items (right). Fewer
collocations appear than in the DP model, there are fewer errors on high-frequency words,
and word frequencies match the true frequencies (Figure 5.5) more closely.
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Count Collocations Other non-words Placement
Tokens Lexicon Tokens Lexicon Tokens Lexicon Tokens

DP(α0, P0) 25677 1331 31.0 29.6 11.9 4.7 3.8
DP(α0, Ptrue) 27295 1347 13.9 22.0 1.0 1.1 1.5
HDP 31128 1146 16.9 10.6 15.2 4.9 5.1

Table 5.7: Error analysis for two unigram models and the bigram model. Figures give
the number of proposed tokens and lexical items, and the percentage of those consisting
of collocations, other items not in the true lexicon, and placement errors (words belonging
to the true lexicon, but proposed in the wrong location). Parameters for the DP models
were p# = .5, α0 = 20. The mixing constant in the DP(α0, Ptrue) model was ǫ = 10−6.
Parameters for the HDP model were p# = .5, α0 = 1000, and α1 = 10.

the opposite is true: frequent words are much more likely to be segmented correctly, so token
accuracy is higher than type accuracy. As Table 5.7 shows, the bigram model does make
some collocation errors, but they are far less common (both proportionally and absolutely)
than in the unigram model, especially with frequent words. Other kinds of errors make up
a larger proportion of the errors in the bigram model. A particularly interesting kind of
error is the segmentation of suffixes as individual words. The top 100 most frequent lexical
items proposed by the bigram model include z, s, IN, i, and t, which correspond to plural,
progressive, diminutive, and past tense endings. This effect suggests that incorporating
a notion of morphology into the lexicon generator could improve results. I explore this
possibility in the next chapter.

Comparison of the bigram model to the DP(α0, Ptrue) model is particularly enlightening.
Access to the true word types gives the unigram model much higher accuracy on lexical
items, but frequent items are still analyzed as collocations at a much higher rate than in
the bigram model. The net result is that the bigram model scores better on token accuracy,
even though it is completely unsupervised. This difference between type accuracy and
token accuracy is not surprising: the contextual dependencies built into the bigram model
primarily encode information about the behavior of word tokens. With even a small amount
of uncertainty in the contents of the lexicon, a model that doesn’t take word usage into
account will have difficulty segmenting natural language. On the other hand, incorporating
contextual dependencies seems to be helpful not only for learning about likely sequences of
words, but also for building an accurate lexicon. We see evidence in the improvement in
lexicon accuracy between the unsupervised unigram model and the bigram model.

As in the unigram model, I performed additional experiments to examine the amount of
variability in the results produced by a single sample of the bigram model. Average results
over ten samples are shown in Table 5.8, and indicate that the bigram sampler yields more
varied scores than the unigram sampler. On the other hand, variation in the posterior
probabilities of samples from the bigram model is lower than in the unigram model. This
suggests that the correlation between probability and performance is somewhat weaker in
the bigram model than in the unigram model. The effect is not very large, and may be
due to the approximation of table counts used in the bigram model, which was also used in
calculating the bigram posterior.

Also shown in Table 5.8 are the results of the MAP approximation for the bigram model.



86

F LF − log P (w | d)
mean std mean std mean std

Samples(10 runs) 75.9 .91 61.5 1.03 183084 163
Samples(1 run) 76.5 .06 61.8 .17 182902 21
MAP Approx. 75.5 .86 61.6 .59 182970 126

Table 5.8: Comparison of the accuracy and posterior probability of HDP solutions found
by sampling (averaged over ten independent runs, or over ten samples from the same run)
and by approximating the MAP solution (averaged over ten independent runs).

The difference between the average MAP results and the average (10-run) sampled results is
not statistically significant, and the variation in MAP results is almost as great as that in the
sampled results. The trace plots shown in Figure 5.13 suggest a possible explanation. Three
different initialization conditions are shown. At the beginning of sampling, the different
forms of initialization are quickly washed out, and the three runs overlap in probability
space. However, by the end of sampling the three runs no longer overlap. This suggests
that the mobility of the algorithm is too low relative to the number of iterations considered,
and each sampler is only observed to explore a small part of the search space. Because
of annealing, the samplers are all likely to be near the mode of the distribution as their
mobility decreases, so they end up fairly close to each other in probability space (and in
terms of performance). Annealing past γ = 1 for the MAP approximation has little effect,
because the samplers are already relatively confined in their exploration of solutions. If this
analysis is correct, it suggests that the sampled solutions are already very close to the MAP,
and that annealing more slowly would probably bring them even closer and make them more
similar. Achieving a more representative sample of the posterior on a reasonable timescale
would probably require redesigning the sampling algorithm to increase its mobility.

5.6 General discussion

The experiments presented in this chapter strongly suggest that the unigram assumption
made by most previous model-based approaches to word segmentation presents an obstacle
to learning. I have argued that the results presented by previous researchers are misleading,
because the results of their systems are overly influenced by search. The evidence from my
own experiments indicates that the Gibbs samplers I implemented give a more accurate
picture of the solutions preferred by different models. In particular, I found that models
incorporating a unigram assumption tend to undersegment the data, concatenating common
sequences of words. I showed that incorporating sequential dependencies into a model of
word segmentation can greatly reduce this problem, improving accuracy on both lexical
items and word tokens.

It is important to consider the implications of these results for the kinds of statistical
learning experiments exemplified by Saffran et al. (1996a). As I mentioned earlier, most of
these experiments use stimuli that are constructed according to a unigram model. Thus,
following a word-final syllable10, there is a uniform probability of observing any word-initial

10Unlike the models presented here, where words are constructed from phoneme-sized units, the words in
statistical learning experiments are typically constructed from syllabic units. Given the results of my
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Figure 5.13: Trace plots of the negative log probabilities of samples from samplers for
the HDP model initialized with a boundary after every phoneme (‘pho’), with random
boundaries (‘ran’), and with a boundary only at the end of each utterance (‘utt’). Top:
trace plot for the entire run of the algorithm, plotted every 10 iterations, with the initial
probabilities of each run circled at x = 0. Middle: detail from the beginning of the plot.
Bottom: detail of the final part of the plot.
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syllable – transitions between syllables at word boundaries are completely random. Transi-
tions between syllables within words are non-random, and therefore have higher probability.
Implicit in this design is the idea that unpredictable transitions always occur at word bound-
aries, and predictable transitions always occur within words. My experiments suggest that
this is an oversimplification, because words that frequently occur in sequence create pre-
dictable transitions across word boundaries. In other words, high transitional probabilities
can occur in natural language either because there is no word boundary, or because there
is a boundary between two words that frequently co-occur. Accounting for both of these
possibilities seems to be important for distributional segmentation to succeed.

These subtleties of transitional probabilities point to a need to revisit some of the behav-
ioral work used to establish the possibility of distributional word segmentation in humans.
In particular, it would be valuable to know whether humans are able to track and use bi-
gram statistics as well as unigram statistics for word segmentation. Unfortunately, moving
beyond unigrams would considerably complicate the artificial language stimuli, which might
make typical statistical learning paradigms infeasible. However, it might be possible to in-
vestigate this question less directly by probing adults’ sensitivity to bigram frequencies, or
by examining the kinds of errors made by young children.

In addition to these behavioral investigations, it is important to continue exploring
distributional word segmentation via computational modeling. In my experiments, I fol-
lowed the convention of many previous researchers in using a phonemically transcribed
and normalized corpus, which allowed me to compare the performance of different systems.
However, it is still an open question how much influence the input representation has on the
performance of distributional word segmentation systems. It would be useful to investigate
whether a more phonetically accurate representation leads to different kinds of results. In
addition, prosodic cues are believed by many researchers to be very important in early word
segmentation. In future work, I hope to explore how the incorporation of stress or other
prosodic information into the model affects results. Based on the hypothesis of this disser-
tation, I would expect that combining multiple sources of information in this way would
lead to improved performance.

Another question that is worth exploring in future is how my results are affected by
processing different amounts of data. My analysis of the unigram models suggests that
additional data would be likely to degrade performance, since it is the more frequent words
that tend to be mis-analyzed by these systems. On the other hand, the performance of the
bigram model is less easy to predict, making this a worthwhile experiment.

A final area for future work lies in examining possible differences between languages.
The models I have presented incorporate almost no language-specific information, but the
optimal settings of the sparseness parameters might vary between languages. In addition,
I am interested in the possibility of incorporating general lingustic tendencies (language
universals) into these models, probably as part of the lexicon generator. The models pre-
sented here contain only very general constraints (i.e. prefer shorter words, and prefer fewer
words), but performance could very likely improve with the addition of some basic linguistic
intuition (e.g. words tend to contain vowels). If these kinds of constraints are added to the
model, it would be very important to test on a variety of different languages.

experiments with modifying the unigram generator, this difference seems unlikely affect the conclusions
drawn here.
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5.7 Conclusion

In this chapter, I have shown how to develop unigram and bigram models of word segmen-
tation based on the two-stage framework. Using these models, I have presented evidence
that, contrary to previous results, unigram modeling is not sufficient for successful word
segmentation based on distributional cues. My experiments illustrate the advantages of
the two-stage approach: I was able to develop several different models combining different
modular components, and thus examine the effects of each of these components individu-
ally. I have argued that my results are more informative than previous work, because other
researchers have (intentionally or unintentionally) relied on algorithms that constrained the
solutions found by their systems. The effects of these algorithms are such that, on a corpus
that conforms to the modeling assumptions underlying these systems, results are still far
from ideal. In contrast, the Gibbs sampler used in my own system finds a solution that is
close to correct in this circumstance. This and other evidence strongly suggests that the
benefit I found in modeling contextual dependencies for word segmentation is a real effect
of the model, rather than an artifact of the particular inference procedure used.

To my knowledge, the bigram model I have presented here achieves higher performance
on this corpus than any previously published unsupervised system. However, it is not error-
free. One particularly common type of error is in proposing bound morphemes (inflectional
and derivational suffixes) as separate words. In the following chapter, I discuss how the
two-stage modeling framework could be used to develop a model incorporating both word
segmentation and morphological analysis capabilities, potentially solving this problem.
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6.1 Introduction

I began this thesis with the claim that successful language acquisition requires interaction
between different components of the grammar and integration of different sources of infor-
mation. In Chapters 4 and 5, I discussed experiments designed to address questions relevant
to the acquisition of morphology and word segmentation. The models used to perform these
experiments were developed within the two-stage modeling framework described in Chapter
3, whose flexibility allowed me to investigate the effects of various sources of information,
including context and learning biases. However, the question of how different components of
the learner’s grammar interact during learning has yet to be addressed. The implementation
of a complete system combining word segmentation and morphology is beyond the scope
of this thesis, but it is important to emphasize that such a system is completely feasible
using models and algorithms very similar to those presented here. The probabilistic model-
based approach embodied by the two-stage framework makes it relatively straightforward
to layer multiple components, with Gibbs or Metropolis-Hastings sampling for inference. In
the remainder of this chapter, I sketch out how a combined word segmentation-morphology
model could be built, while also reviewing the models and results obtained for the individual
components. I then discuss some additional directions for future work and conclude.

6.2 Combining word segmentation and morphology

In this thesis, I have developed several models within the two-stage framework in order
to address questions regarding the kinds of information that are useful for morphological
acquisition and word segmentation. In particular, my experiments in Chapter 4 used a
Pitman-Yor morphology model to investigate the use of corpus frequencies in morphologi-
cal acquisition. My results on a large set of English verbs and on transcribed child-directed
speech suggest that partially or fully discounting corpus frequencies leads to better mor-
phological generalization. Previous computational systems for acquiring morphology have
often used lists of lexical items as input, which is consistent with my results, but leads
to the question of how improved morphological knowledge feeds back into other areas of
processing, including word segmentation. One would expect, for example, that a child who
recognizes that -ing is a common verbal ending in English would be more likely to correctly
segment an utterance containing a novel progressive verb form than a child without this
morphological knowledge. Correct segmentation could in turn lead to the addition of a new
word to the lexicon, the analysis of a new stem, and the generation of other inflected forms
from that stem.

The advantage of the modeling framework presented here is that it provides a way for
multiple grammar components to influence each other in precisely the way I have just de-
scribed. Rather than preprocessing a tokenized corpus to extract a lexicon for input, the
generator-adaptor framework allows the morphology model to accept the full corpus as in-
put, using the adaptor to downweight corpus frequencies within the model itself. This raises
the possibility of using an input corpus in which word boundaries have not yet been iden-
tified, and learning both word and morpheme boundaries simultaneously. In this section, I
discuss how the models presented in the previous chapters can be extended and combined
to do exactly that1.

1It is worth pointing out that de Marcken (1996) also developed a model capable of discovering both
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6.2.1 Extending the morphology model

Recall the model of morphological acquisition presented in Section 4.4, which was defined
as TwoStage(PY(a, b), Pµ), with Pµ(c, t, f) = P (c)P (t | c)P (f | c). The probability distri-
butions over classes, stems, and suffixes were taken to be multinomial, with symmetric
Dirichlet priors. As a result, the generator in this model is a distribution over a finite set of
(class, stem, suffix) combinations, each of which has the same prior probability. As I have
already discussed, the assumption of a uniform prior over a finite set is not very realistic,
but it was sufficient for my experiments because the word types in the corpus were known,
and there were relatively few of them. Therefore, only stems and suffixes that were prefix
or suffix strings of the words in the corpus had to be considered. The number of prefix and
suffix strings could be easily pre-computed, and most of these strings are plausible as stems
or suffixes (i.e. they are all relatively short and do not violate English phonotactics).

In moving to a corpus where word boundaries are not known, the assumptions made in
Chapter 4 become problematic. Any substring of the corpus could in theory constitute a
stem or suffix, which causes a blowup in the number of possible stems and suffixes, while
also making most of them linguistically implausible. It therefore makes sense to adopt a
different generator model that places a distribution over an infinite number of possible stems
and suffixes, with some far more likely than others. To see how this can be done, consider
first the finite generator model:

ck | θc ∼ Multinomial(θc)

θc |κ ∼ Dirichlet (κ)

tk | ck = c, θt|c ∼ Multinomial(θt|c) ∀c

θt|c | τ ∼ Dirichlet (τ) ∀c

fk | ck = c, θf |c ∼ Multinomial(θf |c) ∀c

θf |c |φ ∼ Dirichlet (φ) ∀c (6.1)

where ck, tk, and fk are the class, stem, and suffix associated with table k, and θt|c and θf |c

indicate the parameters of the multinomials from which the stems and suffixes in class c are
drawn. A straightforward way to extend this model to the infinite case is by replacing the
multinomial-Dirichlet distributions over stems and suffixes by Dirichlet processes:

ck | θc ∼ Multinomial(θc)

θc |κ ∼ Dirichlet (κ)

tk | ck = c, Tc ∼ Tc ∀c

Tc |αµ, P0 ∼ DP(αt, P0) ∀c

fk | ck = c, Tc ∼ Fc ∀c

Fc |αµ, P0 ∼ DP(αf , P0) ∀c (6.2)

word and morpheme (as well as phrasal) boundaries. The model suggested here differs from de Mar-
cken’s in that words and morphemes are conceptually different, and modeled differently: words come in
unbounded sequences, while morphemes come in pairs and are associated with classes. In de Marcken’s
model, lexical units (sequences of characters) are hierarchical but conceptually undifferentiated, so that
any size unit may or may not contain smaller subunits.
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where αt and αf are concentration parameters for the stem and suffix DPs, and P0 is the
unigram phoneme model introduced in Equation 5.5 as the lexicon generator for word seg-
mentation. In other words, stems and suffixes are now generated by the unigram phoneme
model P0, which is a distribution over all possible strings and gives more weight to shorter
strings, discouraging very long stems and suffixes.

The particular model given in (6.2) is, of course, only one possible way of extending
(6.1) to the infinite case. Other possibilities include using a Dirichlet process for classes as
well, or using different lexicon generators for the stems and suffixes, perhaps with different
values of p#, the boundary probability. Setting p# to be larger for suffixes than for stems
would encode the fact that stems are usually longer than suffixes. It would be particularly
interesting to experiment with inferring the parameters of P0, to see whether it is possible
to learn the phonotactic properties of typical stems and suffixes.

6.2.2 Extending the word segmentation models

In Chapter 5, I discussed two different kinds of word segmentation models incorporating
unigram and bigram dependencies respectively. The simplest unigram model was defined
as

wi |G ∼ G

G |α0, P0 ∼ DP(α0, P0) (6.3)

where wi is the ith word in the corpus, P0 is the unigram phoneme model, and α0 is the
concentration parameter of the DP. This model can very easily be extended to account
for morphology by replacing P0 with Pµ0

, the infinite morphological generator defined in
(6.2). The result is a TwoStage(CRP(α0), Pµ0

) model. Replacing the CRP adaptor with
a Pitman-Yor adaptor would make this model more similar to the morphological model
used in Chapter 4, but based on the results of that chapter, it is not clear whether the
extra flexibility provided by the more complex Pitman-Yor adaptor is really critical. My
results showed that, for low values of the Pitman-Yor parameter a, varying a led to minimal
differences in morphological learning. This suggests that morphological generalization can
occur as long as the differences in frequency between words is fairly low. The Dirichlet
process prior favors solutions where the number of tables is logarithmic in the number of
tokens, so morphological induction (which works from table labels) will be based on log
frequencies. This is probably a sufficient damping of the corpus frequencies for successful
generalization to occur.

Regardless of the adaptor used, however, it is unlikely that a unigram word model with
morphology would succeed in finding either words or morphemes correctly. My experiments
in Chapter 5 showed that, even knowing the correct lexicon with high probability, word
segmentation using a unigram model leads to poor results. Most of the errors are due to
undersegmentation of frequently co-occurring words, not to oversegmentation at morpheme
boundaries, so adding a morphological component is probably not to a good way to improve
results.

Using a hierarchical Dirichlet process to encode bigram dependencies between words,
I found not only that word segmentation improved markedly, but also that many of the
remaining errors consisted of suffixes that were identified as separate words. Therefore,
incorporating morphological information into the bigram model seems likely to improve
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word segmentation. The bigram word model with morphology differs from the model in
Section 5.5.1 only in that the lexicon generator for the unigram backoff has been replaced
by Pµ0

:

wi |wi−1 = w, Hw ∼ Hw ∀w

Hw |α1, G ∼ DP(α1, G) ∀w

G |α0, P0 ∼ DP(α0, Pµ0
) (6.4)

Note that, because Pµ0
is itself defined in terms of Dirichlet processes, an additional level

has been added to the hierarchical model: labels on the bigram tables are generated by the
unigram backoff DP, labels on the unigram tables are generated by the stem and suffix DPs,
and labels on the stem and suffix tables are generated by P0. The extension to account for
utterance boundaries is similar to the one given in Section 5.5.1.

6.2.3 Inference

While the specification of the combined word segmentation-morphology model is simple,
performing inference on this model is somewhat more complicated. First, note that all
tables for a single word type must be explicitly tracked in this model, because they may
contain different morphological analyses. This differs from the algorithms used in Chapter
5, where only the total number (or expected number) of tables with each word type was
tracked. Second, if we assume an algorithm that considers a single potential word boundary
location at each sampling step, the number of different hypotheses that must be considered
at each step is much larger than in the basic word segmentation models. For each of the
three possible words, all possible assignments to tables labeled with that word must be
considered, as well as all possible new tables (i.e. all possible assignments of class, stem,
and suffix). If we use a Gibbs sampler, each of these hypotheses must be enumerated and
its probability computed exactly. For the case where two words are proposed, this involves
O((T1 +CM)(T2 +CN)) computations, where T1 and T2 are the number of tables occupied
by other instances of the two words, C is the number of classes, and M and N are the
number of possible morpheme boundary locations in the two words. Note that we cannot
simply sample an analysis of the first word, and then an analysis of the second, because
of the dependencies induced by integrating out the model parameters. The choice of a
particular class or stem or suffix in each word affects the probability that it will appear in
the other.

Instead of using Gibbs sampling, then, it would be more efficient to perform inference
using a Metropolis-Hastings sampler. I will only provide a brief sketch of a possible sam-
pler here; it is essentially the same as the one described in Johnson et al. (In preparation).
Recall from Section 2.2.4.2 that in Metropolis-Hastings sampling, a proposal probability for
each hypothesis must be computed, but the proposal probability need not be the actual
probability of that hypothesis given the remaining data. Instead, it could be an approxima-
tion of the true probability, obtained by ignoring the dependencies between the analyses of
the two words. A sample from the proposal distribution can therefore be found by choosing
an analysis for the first word, followed by an analysis for the second word. This proce-
dure requires only O((T1 + CM + T2 + CN) computations. The sampler then requires one
additional step to determine whether to accept the proposal as the next state or reject it
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(remaining in the same state). The acceptance probability is computed as

min

{

1,
π(y′)R(y)

π(y)R(y′)

}

where y and y′ are the old and new states, R is the proposal distribution, and π is the true
state transition probability distribution (accounting for all dependencies).

6.3 Other extensions

In addition to combining the word segmentation and morphology models as described above,
there are a number of other possible extensions to the work described in this thesis. One
weakness of the current work is its use of normalized transcriptions – orthographic forms
and dictionary-based phonemic representations with little or no phonetic variation. The
assumption that each word has a unique orthographic or phonemic representation is built
into the models I have presented, in the sense that every token assigned to a table must
have the same form as that table’s label. However, this assumption could be relaxed by
allowing the label on each table to represent a sort of prototype or cluster center, with
a distribution over actual pronunciations. The models in this thesis can be viewed as a
special case where each label is associated with a point distribution placing all its mass on
the pronunciation corresponding to the label itself. To allow multiple phonetic realizations,
the distribution could be defined so that phonetic forms similar to the prototype would have
high probability, while more phonetically distant forms would have lower probability. This
would represent a novel type of Dirichlet process mixture model2, and could provide insight
into the interactions in word recognition between word frequency, neighborhood size, and
acoustic realization.

Another deficiency of the current models is in their treatment (or rather, lack of treat-
ment) of syntax. It seems clear from the experiments in Chapter 5 that some notion of
context is needed for accurate word segmentation; an obvious question is how abstracting
away from specific context words to classes of words would affect the results of the model.
In the morphology experiments in Chapter 4, the learner tended to place nouns and verbs
in separate classes based on differing morphological behavior, yet these classes were noisy,
and words with only one or two inflected forms were often misclassified. Since the model
classes are intended to represent morphosyntactic categories, it would make sense to explic-
itly incorporate syntactic context into the model, perhaps by treating the morphosyntactic
categories as states in an HMM3. Ideally, the morphological alternations and syntactic be-
havior observed in the data would complement each other to produce a more linguistically
realistic assignment of words to classes.

2The mixture model is novel in the kind of distribution that would be defined over tokens at each table.
Previous Dirichlet process mixture models have typically used multinomials (Blei et al., 2002; Navarro et
al., 2006) or Gaussians (Rasmussen, 2000; Wood et al., 2006). Multidimensional Gaussian distributions
might be appropriate if the input representation is even less abstract, as in continuous acoustic data
rather than discrete phonetic transcriptions.

3Nonparametric Bayesian methods have been applied to create “infinite hidden Markov models” (Beal
et al., 2002), where the complexity of the model, including the number of states, transitions between
states, and emissions from states, grows with the size of the data.
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A final area that would be worth pursuing further in the future is the question of how to
define more linguistically motivated priors in the kinds of Bayesian models I have discussed.
The priors I have used have been fairly basic, favoring solutions with fewer and shorter
lexical items. It would be useful to explore whether other kinds of cross-linguistic tendencies
(e.g. words usually contain vowels, and more complex consonant clusters are often permitted
at word edges than word-medially) can be encoded into the prior, and what effects this
has on learning. In more complex models including phonetic, phonological, or syntactic
information, other kinds of priors could be investigated. Of course, the more information
is included in the prior, the more important it is to make sure that this information isn’t
accidentally tuned to a particular language or set of languages. Therefore, cross-linguistic
experiments (which are called for even to support my current results) would be absolutely
necessary for this line of research.

6.4 Conclusion

The preceding discussion makes it clear that there are many questions left open by the work
presented in this thesis. Nevertheless, this research represents an important contribution to
the computational study of language acquisition. I have presented a generic, flexible frame-
work for language modeling based on techniques from nonparametric Bayesian statistics. I
have shown how this framework can be used to develop models of morphological acquisition
and word segmentation, and how standard sampling methods can be used for inference with
these models. This work represents the first application of nonparametric Bayesian meth-
ods to the acquisition of linguistic structure, and demonstrates that these methods can be
used successfully for unsupervised learning from natural language data. Unlike maximum-
likelihood estimation, where model selection must be approached as a separate problem,
nonparametric Bayesian learning provides a model-internal way to limit the complexity of
any proposed hypothesis, while also allowing hypotheses to grow in complexity as more
evidence is accumulated.

In addition to these methodological contributions, my experiments provide a valuable
addition to the literature on statistical language learning. In particular, I have provided ev-
idence to support the hypothesis that morphological generalizations are based on statistical
patterns found among word types, rather than word tokens. In the area of word segmen-
tation, I have shown that the results of previous model-based approaches were misleading
due to the effects of the search procedures used, and that failure to account for context
leads to undersegmentation of the data. This suggests that current explanations of word
segmentation based on transitional probabilities may be oversimplified, since they generally
assume independence between words. On the other hand, my experiments also show that
accounting for bigram dependencies between words leads to better segmentation than any
previously published computational system on a comparable data set. This result indicates
that the idea of statistical word segmentation itself is sound, and that with more subtle use
of information comes more successful learning.

If there is one point in particular I hope to make with this research, it is precisely that
the ability to use statistical information from different sources in a variety of ways is what
allows language learners to succeed. The simplest model using only the most obvious source
of information often fails, yet examining the ways in which it fails is often instructive. I
have argued that the nonparametric Bayesian framework presented in this thesis is useful
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for developing both simple models and more complex ones that integrate multiple sources
of information. Here, I have used this framework to investigate the differences between
learning from types or tokens, and learning with or without access to context. The results
I have achieved so far bode well for future research, in which I plan to develop models that
are able to learn from more realistic input using a wider variety of information. These more
sophisticated models will no doubt lead to more successful unsupervised language learning
in machines, as well as to important insights into the process of language acquisition in
humans.
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A.1 Brown-Morgan corpus

The following ASCII characters are used in the phonemic transcriptions in the Brown-
Morgan corpus, which was used as input to the morphological learner in Chapter 4.

Consonants

ASCII Example

D THe
N siNG
S SHip
T THin
Z aZure
C CHip
b Boy
d Dog
f Fox
g Go
h Hat
j Jump
k Cut
l Lamp
m Man
n Net
p Pipe
r Run
s Sit
t Toy
v View
w We
y You
z Zip

Vowels

ASCII Example

& thAt
1 hopelEss
6 About
7 bOY
9 flY
A bUt
E bEt
I bIt
O lAW
Q bOUt
U pUt
a hOt
e bAY
i bEE
o bOAt
u bOOt
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A.2 Bernstein-Ratner-Brent corpus

The following ASCII characters are used in the phonemic transcriptions in the Bernstein-
Ratner-Brent corpus, which was used as input to the word segmentation system in Chapter
5.

Consonants

ASCII Example

D THe
G Jump
L bottLe
M rhythM
N siNG
S SHip
T THin
W WHen
Z aZure
b Boy
c CHip
d Dog
f Fox
g Go
h Hat
k Cut
l Lamp
m Man
n Net
p Pipe
r Run
s Sit
t Toy
v View
w We
y You
z Zip
~ buttON

Vowels

ASCII Example

& thAt
6 About
7 bOY
9 flY
A bUt
E bEt
I bIt
O lAW
Q bOUt
U pUt
a hOt
e bAY
i bEE
o bOAt
u bOOt

Rhotic Vowels

ASCII Example

# ARe
% fOR
( hERE
) lURE
* hAIR
3 bIRd
R buttER


