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1 Sets

1.1 Set notation, equivalence, cardinality

A SET is simply a collection of items, or ELEMENTS. We notate a set using braces, so SET
ELEMENTS

S = {Alice,Bob} (1)

means that set S contains the two elements Alice and Bob. (I’ll use capital letters here for
variables referring to sets.) When considering equivalence of sets, the order of elements is
irrelevant, and repeated elements are ignored, so the following sets are equivalent:

{Alice,Bob}= {Bob, Alice}= {Alice, Bob, Alice} (2)

The CARDINALITY of a set S, which we write as |S|, is just the number of elements in S. CARDINALITY

So, for S as defined in (1), |S|= 2.

1.2 Element notation, empty set, infinite sets

We write

Alice ∈ S (3)

Carla /∈ S (4)

to mean, respectively, “Alice is an element of S” (or “Alice is in S”) and “Carla is not an
element of S”.

The EMPTY SET, which is the set containing no elements, can be written either {} or /0. EMPTY SET

It is not written { /0}! That is a different set, which contains one element: the empty set.
We need not explicitly enumerate all of the elements in a set. Here are some examples of

sets defined using properties:

{x | x is an integer} (5)

{x | x is a three-letter word appearing in the Oxford English Dictionary} (6)

{x | x is a real number between 3 and 5 (inclusive)} (7)

The | symbol is read as “such that” (some people use a : symbol instead), so (5) would
be read as “the set containing all elements x such that x is an integer”, i.e., the set of all
integers. This particular set comes up often, so we also use the shorthand notation Z to refer
to it. Similarly, R is shorthand for the set of all real numbers, so we could also write (7) as
{x | x ∈ R and 3≤ x≤ 5}.

Hopefully you will have noticed that not all of these sets contain a finite number of
elements. Both Z and R are infinite, and so is the set in (7). 1

1Although both Z and R are infinite, they are infinite in different ways. If you’re interested to know more,
look up the definitions of countably infinite and uncountably infinite sets.
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1.3 Subsets, intersection, union, set difference

For sets A and B, we say that A is a SUBSET of B iff2 every element of A is also an element SUBSET

of B. We write this as
A⊆ B (8)

and we can also write A * B to mean “A is not a subset of B”.
Sometimes you might also see the following notation:

A⊇ B (9)

which is read as “A is a SUPERSET of B” and is equivalent to B⊆ A. SUPERSET

Notice that according to the definition of subset, every set is a subset of itself. If A is a
subset of B and also does not equal B (i.e., there is at least one element in B that is not in A),
then we say A is a PROPER SUBSET of B, written as PROPER SUBSET

A⊂ B (10)

and similarly, A 6⊂ B means “A is not a proper subset of B”.
The INTERSECTION of sets A and B, written A∩B, is the set of all elements that are INTERSECTION

members of both A and B. If A∩B = /0 (i.e., they have no elements in common), then we say
A and B are DISJOINT. DISJOINT

The UNION of sets A and B, written A∪B, is the set of all elements that are members of UNION

either A or B.
The SET DIFFERENCE A−B is the set of elements that are members of A but not of B. SET DIFFERENCE

1.4 Cartesian product

Suppose we have two (possibly equal) sets A and B. The CARTESIAN PRODUCT of A and B, CARTESIAN
PRODUCTwritten A×B, is defined as:

A×B = {(x,y) | x ∈ A,y ∈ B} (11)

That is, A×B the set of all possible ORDERED PAIRS (x,y) where x is an element of A and y ORDERED PAIRS

is an element of B. As implied by the name, the ordering matters in an ordered pair (unlike
in a set), so for example

{a,b}×{a,b}= {(a,a),(a,b),(b,a),(b,b)} (12)

not just {(a, a), (a, b), (b, b)}. Similarly, {a,b}×{c,d} includes (a,c) but not (c,a).

1.5 Powerset

The POWERSET of a set S is the set of all possible subsets of S, including the POWERSET

empty set and S itself. For example, if A = {1,2,3}, then the powerset of A is
{{},{1},{2},{3},{1,2},{1,3},{2,3},{1,2,3}}. Notice that whereas A has 3 elements,
the powerset has 8, or 23 elements. In fact, for any set S with n elements, the powerset of S
has 2n elements (and we’ll explain why in the Counting section below!). For this reason, the
powerset of S is often written as 2S.

1.6 Excercises

2iff means “if and only if”
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Exercise 1.1
Say whether each statement is true or false.

a) {a,b,c,d}= {c,b,d,a}

b) If we define A = {c,a,b,c,}, then |A|= 3.

c) |Z| is a finite number.

d) 3.2 ∈ Z

e) 3.2 is in R

f) {b} /∈ {c,b,d,a}

g) /0 = {}

h) Z⊆ R

i) {a,b,c,d} ⊂ {a,b,c,d}

j) The set {{a,b}} contains 2 elements.

Exercise 1.2
What set is specified by each of the following expressions?

a) {a,b}∪{a,c,d}

b) {a,b}∩{a,c,d}

c) {a,b}∩{c,d}

d) {a,b}∪ /0

e) {a,b}×{Alice,Bob,Carla}

f) 2A, where A = {red,green}.

Exercise 1.3
Describe each of the following sets in words.

a) {x | x
2 ∈ Z}

b) {x | 2x ∈ Z}

c) {x | 2x ∈ R}

d) Z∩R

e) Z−S, where S is {x | x
2 ∈ Z}

f) Z−S, where S is {x | 2x ∈ Z}
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Exercise 1.4
For each statement, either explain why it is true, or give a counterexample to prove it is false.

a) {a,b,c,d} 6⊂ {a,b}∪{c,b}∪{d}

b) {x | x
2 ∈ Z} ⊆ Z

c) {x | 2x ∈ Z} ⊆ Z

d) For any two sets A and B, if A 6⊂ B, then B⊆ A.

e) For any two sets A and B, A×B = B×A.

f) For any two sets A and B, if A = B, then A×B = B×A.

2 Counting

Of course we all know how to count things that we can enumerate one by one. But when
writing algorithms or dealing with probabilities, we often need to be able to count things
without explicitly enumerating them. For example, we might want to know many times
will a line of code be executed (to estimate how fast a program will run), or how many
different 5-word sequences are possible given a particular vocabulary (so that we know how
much computer memory is required to store them). Counting is also the basis of one view of
probability theory.

2.1 Counting by multiplying

Many things we might want to count can be viewed as different possible outcomes of a
multi-step procedure where each step determines part of the final outcome. If the number of
choices at step i doesn’t depend on the outcome of the previous step i−1, then we can count
the total number of outcomes of steps 1 . . .N by simply multiplying together the number of
outcomes at each step. In the simplest case, when the number of choices at each step is the
same (say, n), then the total number of possible outcomes is

nN (13)

Example 2.1.1. How many different 3-character sequences can be constructed using only
the characters a and b?

Solution: Each sequence can be thought of as requiring 3 steps: choose the first character,
then the second character, then the third character. Each of the three steps has two possible
outcomes, so the total number of outcomes is 2 ·2 ·2, or 23.

If it isn’t immediately clear why this rule works, here is a slightly more detailed expla-
nation. At the first step, there are two possible outcomes: a and b. For each of those two
outcomes, there are a further two outcomes at the second step (so, a becomes either aa or ab,
b becomes either ba or bb). That gives us 2 ·2 = 4 outcomes after two steps, and again in the
next step there are two further outcomes for each of those four, yielding 4 ·2 = 8 altogether.

Example 2.1.2. Suppose we have a set S of size N. How many different subsets of S are
there?

Solution: I already told you in the section on powersets that the answer is 2N . But now I
will explain why. Formulate the problem as follows: to create a subset S′ of S, consider each
of the N elements of S in turn. For each element, specify one of two choices: either the
element is in S′, or it is not. The number of distinct subsets is equal to the number of distinct
sequences of choices. Two choices for each of N elements yields 2N possible subsets.
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Depending on the problem, we may not always have the same number of possibilities at
each step. But, if the number of possible outcomes at step i (call it ni) does not depend on
the outcome of the previous step, we can still just multiply the possibilities at each step to
get the total number of possibilities:

n1 ·n2 · ... ·nN (14)

Example 2.1.3. Let’s say we have a system with ID numbers containing exactly two letters
(a-z) followed by three numbers (0-9). How many different ID numbers are there?

Solution: Here, we have 26 choices for each of the first two steps, and 10 choices for each of
the following three steps, for a total of (262)(103) possible ID numbers.

Warning: There are cases that may at first look similar to those given here, but where
the simple multiplication rule in (14) doesn’t apply.

Example 2.1.4. Suppose we want a password containing exactly 3 digits (0-9) and 8 letters
(a-z), but in any order. How many possible passwords are there?

Solution: This is not a straightforward question to answer using the multiplication rule. The
first three characters each have 36 possibilities, but once we have chosen those three, the
number of possibilities for the next character could be either 26 (if the first three characters
are digits) or 36 (otherwise). Things get even more complicated for the fifth character, where
there are only 26 choices if any three of the preceding characters are digits. And so forth.
There are ways to count outcomes in cases like this, but the most important point here is just
to consider whether it’s ok to use simple multiplication or not.

2.2 Permutations and factorials

A special case of using the multiplication rule in (14) comes up when we want to compute
the number of PERMUTATIONS (orderings) of a set. PERMUTATIONS

Example 2.2.1. How many different permutations are there of the numbers in the set
{0,1,2}?
Solution: Each permutation is just an ordered sequence of the three numbers in the set. We
can solve the problem by noting that for each permutation, we start by choosing one of the
three elements to be the first number in the sequence. Once we have done that, there are two
elements left to choose from, and once we have chosen again, there is only one element left.
So, the total number of permutations is 3*2*1.

From this example it should be clear that in general, the number of permutations of a set
of n elements is

n · (n−1) · (n−2) · . . . ·2 ·1 = n! (15)

where n! is read as “n factorial”.
Warning: Formula (15) is correct only if we are considering permutations of a set, i.e.

there are no repeated elements. If instead we are considering permutations of an ordered
sequence with repetitions, like (1,2,5,1,3), then some of the permutations are actually the
same as others and should not be counted separately. In this example, it doesn’t matter
which 1 is in which position, but the above formula assumes each element is distinct so it
will count each sequence twice, once with each 1 in each position. The correct number of
distinct permutations in this case is 5!/2, and can be found more generally by computing
the number of permutations as if each one is distinct, and then dividing by the number of
identical sequences (which can be found using similar techniques to those described here). I
won’t go into more detail except to say that counting permutations and combinations can
become quite tricky in some situations! Hopefully you won’t have to deal with them much
but if you are thinking about permutations, you should at least make sure you know whether
you need to worry about repeated elements or not.
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2.3 Exercises

For each question, first consider whether it is possible to solve straightforwardly using the
simple multiplication methods above. If not, can you think of a clever way to break down the
problem or look at it differently in order to solve it anyway? (Remember, the most important
part is recognizing whether or not you can use the straightforward method; but you might
also like to think about how to get the solution anyway.)
Exercise 2.1
Using the 26 lowercase letters of English, how many different 6-character strings (character
sequences) are possible if letters can be reused? What if letters cannot be reused?

Exercise 2.2
Consider a language where all words consist of alternating consonant-vowel sequences,
starting with a consonant. (Some real languages, like Japanese and Hawaiian, are almost this
simple.) If there are 5 vowels {a,e, i,o,u} and 15 consonants, how many 6-character words
are possible that obey the consonant-vowel restriction?

Exercise 2.3
Many natural language processing and speech recognition systems use n-gram language
models which, if implemented naively, require storing the probability of each possible
sequence of n words in the language. Suppose our dictionary lists 15,000 words. If storing a
single probability takes 1 byte (this is an underestimate), how much storage space would we
need for this naive n-gram model if n = 3? n = 4? n = 5? (Remember, 1 gigabyte = 1 billion
bytes.)

Exercise 2.4
Consider a language in which every three-character word has exactly one vowel. The number
of vowels and consonants is the same as in question 2.2. How many different three-character
words are possible in this language?

Exercise 2.5
In English, every three-character word has at least one vowel. Using the 26 lowercase
letters of English, with {a,e, i,o,u} as the vowels (we simplify by assuming y is always a
consonant), how many 3-letter strings are there with at least one vowel?
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3 Solutions to selected exercises

Solution 1.1
a) True.

b) True. Since duplicates are ignored in sets, A can also be written as {a,b,c}, so its
cardinality is 3.

c) False. Z is the set of all integers, of which there are an infinite number.

d) False. Z is the set of all integers and doesn’t contain non-integer values.

e) True.

f) True. The element b is a member of the set, but the element {b} is not.

g) True. /0 and {} are different ways to write the empty set.

h) True.

i) False. But it would be correct to write {a,b,c,d} ⊆ {a,b,c,d}.

j) False. This set contains a single element, the set {a,b}. That set contains two elements.

Solution 1.3
a) The set of all even integers.

b) The set of all integers and integers plus 0.5 (that is, any number that is half of an
integer).

c) The set of all real numbers. (Note that any number that is half a real number is also a
real number).

d) The set of integers.

e) The set of odd numbers.

f) The empty set.

Solution 2.1
If letters can be reused, then there are 26 choices for each of the six characters, so 266 (or
about 300 million) possible strings. If letters cannot be reused, then there are 26 ·25 ·24 ·23 ·
22 ·21 (which we can also write as 26!

20! , or about 165 million) possible strings.

Solution 2.3
For n = 3, we need 15,0003 or about 3.37×1012 (3.37 trillion) probabilities (or bytes), i.e.,
3,370 gB of storage. For n = 4, we need 15,0004 or about 5.06×1016 bytes (50,600,000
gB), and for n = 5, we need 15,0005 or about 7.59×1020 bytes (759 billion gB). Hopefully
you can see why we call this a naive method.

Solution 2.5
This problem cannot be solved directly by multiplying together the number of choices for
each position, because the number of choices in the third position depends on what happened
in the previous positions: if there was already a vowel, then there are 26 choices, otherwise
only 5. However, there is a clever way to solve this problem: notice that the number of strings
with at least one vowel is equal to the number of all strings (263) minus the number of strings
with no vowels (213). So the answer is 263−213, or 8315.
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