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1 Sequences, sums and products

1.1 Definitions and notation

In computer science, we often need to work with sequences. A SEQUENCE is a collection SEQUENCE

of items (also called TERMS or ELEMENTS), where (unlike in a set) the equivalence of two TERMS
ELEMENTSsequences depends not only on what the elements are, but also on the order of the elements,

and whether they are repeated. A sequence is basically just a list, whether finite or infinite.
Here are some example sequences:

a) 1, 3, -4, 6.2

b) 4, 2, 6, 8

c) 2, 2, 4, 6, 8

d) 2, 4, 6, 8

e) 2, 4, 6, 8, . . .

f) a, ab, abb, abbb, . . .

Example 1.1.1. Which of the sequences above are finite, and which are infinite? Which are
equivalent to each other?

Solution: The first four are finite but none are equivalent: they all differ in terms of order or
repetition of elements. The last two examples are infinite sequences (indicated by . . .) so are
also not equivalent to the others, nor are they equivalent to each other.

All of the sequences above are written explicitly; that is, each of the terms is written
out, except in the case of the infinite sequences where the . . . are used and the reader is left
to extrapolate the remainder of the sequence. For example, sequence (1.0e)) contains all
positive even integers in order. We could also use . . . to help write out a finite but very long
sequence, such as 2,4,6, . . . ,100, the sequence of positive integers between 2 and 100.

However, it is more common to write sequences using formulas. For example, we could
refer to the sequence of even numbers between 2 and 100 as follows:

2i, for integers 1 ≤ i ≤ 50

Notice what we did here. We defined an INDEX (plural INDICES), also called an INDEX INDEX
INDICESVARIABLE i, which represents values from a very simple sequence: the sequence of integers
INDEX VARIABLE

1



from 1 to 50. We then defined the sequence we wanted (even integers between 2 and 100) in
terms of that simpler sequence. The formula tells us that the ith element in our sequence is
found by multiplying i by 2. That is, the explicit version of the sequence is:

2,4,6, . . . ,100

Example 1.1.2. Write a formula that expresses sequence 1.0f) from above. Use the notation
bx to indicate x repetitions of the character b.

Solution: There are zero repetitions of b in the first element, one in the second, two in the
third, and so on. So the number of repetitions for element i is i−1 and the formula is abi−1,
for integers i ≥ 1. (Note that italic a is a variable, while a is a particular character.)

Very often, we need to express the sum of a sequence of numbers. Again, we could do
this explicitly (e.g., 2+4+6+ . . .+100), but usually it’s easier to write a formula using a
SUMMATION symbol ∑. (The symbol is the Greek letter sigma, which sounds like s, as in SUMMATION

“sum”.) The beginning and ending values of the index are shown underneath and above the
summation symbol, as follows (we write both the formula and the explicit version):

50

∑
i=1

2i = 2 ·1+2 ·2+2 ·3+ . . .2 ·50 (1)

= 2+4+6+ . . .+100 (2)

Example 1.1.3. Write down a formula that expresses the infinite sum 1
2 +

1
4 +

1
9 +

1
16 + . . ..

Solution: Let k be the index of each term. (You could just as well use i, it doesn’t matter what
we call the index variable.) The denominator of the kth term is k2, so the sum is ∑

∞
k=1

1
k2 .

There is also a shorthand notation for the PRODUCT of a sequence of numbers, which PRODUCT

uses the Greek letter pi, ∏. The rest of the notation is the same as for summation, with the
index variable lower and upper limits written below and above the product symbol:

50

∏
i=1

2i = (2 ·1)(2 ·2)(2 ·3) . . .(2 ·50) (3)

= 2 ·4 ·6 · . . . ·100 (4)

1.2 Working with sums and products

Using Greek symbols does not change the basic algebraic properties of sums and products,
so we can use those standard properties to rewrite formulas if needed. For example, sums
and products are COMMUTATIVE: COMMUTATIVE

m

∑
i=1

xi +
m

∑
i=1

yi =
m

∑
i=1

(xi + yi) (5)(
m

∏
i=1

xi

)
·

(
m

∏
i=1

yi

)
=

m

∏
i=1

(xi · yi) (6)

where xi and yi just refer to the ith terms in each of the summations or products. Notice the
use of parentheses in these equations to avoid ambiguity about the scope of the summation
or product symbol (that is, which terms are in the sequence being summed). The scope of a
summation symbol stops at the next + or −, but (using standard order of operations) it could
include a multiplied term. For example, we can write out the DISTRIBUTIVE property of DISTRIBUTIVE
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sums and products as follows:

m

∑
i=1

(c · xi) =
m

∑
i=1

c · xi = c ·
m

∑
i=1

xi (7)

Products are more ambiguous, which is why parentheses are important. Notice, for
example, that ∏

m
i=1 xi ·c could mean x1 ·x2 . . . ·xn ·c, or it could mean x1 ·c ·x2 ·c . . . ·xn ·c. So

you should either use parentheses, or (if you really meant the latter) then put the c closer to
the product symbol than the indexed term (here, xi). That is, you should write ∏

m
i=1 cxi. In

this case, the product must take scope over the xi (otherwise the expression has no meaning),
therefore since the c is closer to the product symbol, it must be included in each of the
product terms as well. Notice that since c is a constant, we can choose to move the product
of the c’s outside the product symbol if we want:

m

∏
i=1

cxi = cm
m

∏
i=1

xi. (8)

Example 1.2.1. Rewrite ∏
50
i=1 2i as an expression where all constants are outside the product

symbol.

Solution: Following the formula in equation 8 (or looking at the explicit product sequence in
equation 3), we get:

50

∏
i=1

2i = 250
50

∏
i=1

i (9)

= 250 ·50! (10)

where the ! (FACTORIAL symbol) is just an alternative convenient notation: FACTORIAL

n! = 1 ·2 · . . . ·n =
n

∏
i=1

i (11)

So far, the index variables have always started with 1. But this needn’t be the case. For
example, we could write 2+3+ . . .+21 as ∑

21
k=2 k. However, if we want to combine multiple

summations or products into a single one, we need to make sure that the starting and ending
values of the indices are the same.

Example 1.2.2. Simplify the following expression into a single summation:

20

∑
i=1

1
i2
+

21

∑
i=2

i (12)

Solution: First, we need to rewrite the second expression so that the starting and ending
values of the indices match that of the first expression. To make things clear, I’ll use a
different index variable, k. We’d like an expression where

21

∑
i=2

i =
20

∑
k=1

?? (13)

It’s easy to solve for the ??: note that in the new indices, we substituted k = i−1. Therefore
i = k+1, and we can simply substitute k+1 inside the sum:

21

∑
i=2

i =
20

∑
k=1

(k+1) (14)
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Now, we can go back and simplify the original expression:

20

∑
i=1

1
i2
+

21

∑
i=2

i =
20

∑
i=1

1
i2
+

20

∑
k=1

(k+1) (15)

=
20

∑
k=1

(
1
k2 + k+1) (16)

Notice that, although the minimum and maximum values of the indices need to match,
the names of the index variables (i and k) do not need to match, because these are really just
dummy variables. I could equivalently have written the final simplified expression using all
i’s instead of all k’s.

Finally, it’s worth pointing out that sometimes sums or products of sequences can be
simplified to a single value with simple algebra.

Example 1.2.3. Compute the value of ∏
500
k=5

k
k+1 .

Solution: Begin by writing the product sequence explicitly: 5
6 ·

6
7 ·

7
8 · . . .

500
501 . This makes it

clear that nearly all of the terms just cancel out, leaving the solution: 5
501 .

2 Logarithms and exponents

3 Logistic (sigmoid) function

4 max, argmax
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