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We use the theory of algebraic effects to give a complete equational axiomatization for dynamic threads. Our
method is based on parameterized algebraic theories, which give a concrete syntax for strong monads on
functor categories, and are a convenient framework for names and binding.

Our programs are built from the key primitives ‘fork’ and ‘wait’. ‘Fork’ creates a child thread and passes its
name (thread ID) to the parent thread. ‘Wait’ allows us to wait for given child threads to finish. We provide a
parameterized algebraic theory built from fork and wait, together with basic atomic actions and laws such as
associativity of ‘fork’.

Our equational axiomatization is complete in two senses. First, for closed expressions, it completely captures
equality of labelled posets (pomsets), an established model of concurrency: model complete. Second, any two
open expressions are provably equal if they are equal under all closing substitutions: syntactically complete.

The benefit of algebraic effects is that the semantic analysis can focus on the algebraic operations of fork
and wait. We then extend the analysis to a simple concurrent programming language by giving operational
and denotational semantics. The denotational semantics is built using the methods of parameterized algebraic
theories and we show that it is sound, adequate, and fully abstract at first order for labelled-poset observations.

1 INTRODUCTION
The theory of algebraic effects provides a way of analyzing semantic aspects of different computa-
tional effects in isolation, and separately from other aspects of programming languages, via the
algebraic theories from universal algebra. This paper provides an analysis of concurrency using
the methods of algebraic effects.
A theory of algebraic effects for concurrency has proved elusive [32, 46]. This is in spite of the

success of equational and compositional reasoning in process algebra [5, 15, 25, 38], and equational
theories of concurrency such as concurrent Kleene algebra [13, 14]. Even more paradoxically,
algebraic effects have already inspired powerful concurrency libraries [30, 39], but these software
implementations do not yet tie with the theories of algebraic effects in terms of universal algebra
and category theory. (See §8 for further discussion of the literature.)
The key technique in our work is to take thread IDs seriously. This necessitates an algebraic

framework that supports abstract names or IDs, and binding and passing them. For this, we use
‘parameterized algebraic theories’ [41, 42], which already have a tight connection with monads
and algebraic effects. There are four operations in our algebraic theory:

• fork: Forking a child thread. This is the key operation and is written fork(𝑎.𝑥 (𝑎), 𝑦). This
spawns a new child thread with ID 𝑎, running continuation 𝑦, while concurrently running
continuation 𝑥 in the parent thread, which is passed the ID 𝑎 of the child.

• wait: A command to wait for a thread to end before proceeding.

Authors’ addresses: Ohad Kammar, ohad.kammar@ed.ac.uk, University of Edinburgh, UK; Jack Liell-Cock, jack.liell-
cock@keble.ox.ac.uk, University of Oxford, UK; Sam Lindley, sam.lindley@ed.ac.uk, University of Edinburgh, UK; Cristina
Matache, cristina.matache@ed.ac.uk, University of Edinburgh, UK; Sam Staton, sam.staton@cs.ox.ac.uk, University of
Oxford, UK.
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• stop: A command to end the current thread now.
• act𝜎 : Primitive atomic actions. Aside: going forward, we could combine with other algebraic

effects, such as memory access to look at concurrent shared memory, but for now to focus
on concurrency we restrict attention to primitive atomic actions.

Contributions. We present a theory with eight equations between these four operations (§4). We
give a syntax-free representation theorem of terms modulo equations (§5), and show that for closed
terms, the representation exactly matches the long-established model of true concurrency based
on labelled posets (‘pomsets’, Thm. 3.15). In fact, this might be the first basic syntactic theory for
labelled posets. For open terms with free variables, we prove a completeness theorem: there can be
no further equations on open terms while retaining the labelled posets model on closed terms (§6).

Algebraic effects allow us to focus on a particular theory, without worrying about other program-
ming language primitives, but it is typically easy to return to a fuller programming language having
analyzed the algebraic effects. In Section 2, we give a typical functional programming language
with concurrency primitives and an operational semantics. In Section 7 we use the algebraic effects
and the representation theorem to build a denotational semantics for the programming language
that is sound, adequate, and fully abstract at first order.

1.1 Motivating Fork and Wait with Thread IDs as Language Primitives
The style of programming with operations such as fork(𝑎.𝑥 (𝑎), 𝑦) is unusual, but according to the
theory of algebraic effects, algebraic operations have a counterpart in generic effects [33], and this
matches more closely to realistic languages with effects. The generic effect for ‘fork’ is a command
fork : unit → (tid option),

fork() = fork(𝑎.return (Some𝑎),None).
We provide a mini-programming language with an operational semantics in Section 2, which works
with pools of threads. There, fork will spawn a new child thread into the thread pool, and the
continuation is duplicated. The caller of fork can check whether they are the parent or child by
looking at the return value of fork, and if they are the parent they will be given the ID of the child,
otherwise None. Indeed this generic operation fork is reminiscent of the POSIX fork construct [1],
which is typed pid_t fork(void), which returns the child ID to the parent and 0 to the child.

Alongside the standard programming primitives, our other generic effects are
wait : tid → unit perform

𝜎
: unit → unit stop : unit → empty.

Here: wait(𝑎) puts the current thread into a waiting state, recording for the scheduler the thread 𝑎
that it is waiting for; perform

𝜎
() performs the action 𝜎 immediately, which is recorded by a label

in our transition system; and stop() ends the current thread, unblocking all other threads that were
waiting for it. Here, the type empty shows that nothing else will happen on this execution path.

Our operational semantics uses a labelled transition system that records the actions performed.
Inspired by true concurrency models such as asynchronous transition systems (e.g. [27]), we also
include some location information, by way of noting the ID of the thread that performed each
action. In this simple situation, this is sufficient to observe not only the traces of actions but also
the independence between different actions. We can thus, from the operational semantics, obtain a
labelled partial order, labelled by actions 𝜎 . Labelled posets, sometimes called ‘pomsets’, are another
model of ‘true’ concurrency [37]. For our semantics, the linearizations of the posets are exactly the
execution traces of the program.
By defining ‘well-formed configurations’ for our particularly simple language, we can show

that programs never deadlock, roughly because a child can never wait for its parent. We also
show that every closed program determines a unique finite-labelled poset. This clarifies that our
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An Equational Axiomatization of Dynamic Threads via Algebraic Effects 3

language is very simple, in that programs all terminate, and there is no ‘conflict’ in the sense of
event structures [28], nor are there any ‘races’. These are useful properties to have, and also useful
for later relating to denotational semantics. As we show, the language is still powerful enough to
describe concurrency situations, and we expect future work to extend with other primitives that
allow recursion and conflict.

1.2 A Simple Complete Fragment for Labelled Posets (Pomsets)
This simple language allows us to construct all labelled posets, in other words, it completely
describes that model of true concurrency. To show this we define node

𝜎
: tid set → tid by

node
𝜎
(𝑎1 . . . 𝑎𝑛)

def
= case fork() of {Some𝑏 ⇒ return𝑏;

None ⇒ wait(𝑎1); . . . ;wait(𝑎𝑛); perform𝜎
(); stop}.

𝜎1 𝜎2

𝜎3 𝜎4

Fig. 1. N-shape
poset

In the node
𝜎
-only fragment, every thread ID performs exactly one action. Thus the

induced labelled poset is a partial order on thread IDs, recording which waits for
which, each labelled with their action. The command node

𝜎
(𝑎1 . . . 𝑎𝑛) adds a node

labelled 𝜎 to the labelled poset, setting its immediate predecessors to {𝑎1 . . . 𝑎𝑛},
and returns the name of the new node.

For example, the following program induces the N-shape poset (Fig. 1).

let𝑎1 = node
𝜎1
( []) in let𝑎2 = node

𝜎2
( []) in let𝑎3 = node

𝜎3
( [𝑎1, 𝑎2]) in let𝑎4 = node

𝜎4
( [𝑎2]) in stop

We can completely axiomatize labelled posets by two axioms, written slightly informally for
now (see Example 3.7):

let 𝑐 = node
𝜎
( ®𝑎) in let𝑑 = node

𝜎
( ®𝑏) in (𝑐, 𝑑) = let𝑑 = node

𝜎
( ®𝑏) in let 𝑐 = node

𝜎
( ®𝑎) in (𝑐, 𝑑)

let𝑏 = node
𝜎
( ®𝑎) in [𝑏] = let𝑏 = node

𝜎
( ®𝑎) in (𝑏, ®𝑎)

The first law says that it does not matter in which order we add nodes, as long as ID dependencies
are respected, and the second captures the transitivity of the partial order. We show that these two
axioms are complete in Theorem 3.15, using the more formal framework of parameterized algebraic
theories. The key point is that by passing around the thread IDs, we are able to fully describe the
established model of true concurrency based on labelled posets.

1.3 Technical Setting: Functor Categories and Naturality for Syntax with Binding and
Semantics with Names

To cope with the dynamic threads and varying number of thread names, we follow the long-standing
tradition of using functor categories. In brief, let FinRel be the category of finite sets of names and
relations between them, and let Set be the category of all sets and functions. Then the computations
at some type 𝐴 form a functor ⟦𝐴⟧ : FinRel → Set, mapping a set𝑤 of available thread IDs to the
set ⟦𝐴⟧(𝑤) of computations that use at most those thread IDs.
According to the functorial action here, for each relation 𝑅 ⊆ 𝑤 × 𝑤 ′, we have a reindexing

function ⟦𝐴⟧(𝑤) → ⟦𝐴⟧(𝑤 ′). The idea is that if a computation in world𝑤 would wait for some
thread ID 𝑎 ∈ 𝑤 , then we can transform it into one that instead waits for all the thread IDs in the
direct image, {𝑏 | 𝑅(𝑎, 𝑏)}.
Programs of type 𝐴 → 𝐵 are interpreted as families of functions ⟦𝐴⟧(𝑤) → ⟦𝐵⟧(𝑤) that are

moreover natural. This, in particular, maintains the invariant that one cannot sum thread IDs, guess
thread IDs, or compare them in some order. This is similar to the role of names in nominal sets [31].
The framework of parameterized algebraic theories is an established method for algebraic ef-

fects over functor categories and admits a concrete syntax, which we use for our axiomatizations.
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Moreover, every parameterized algebraic theory induces a strong monad on the functor cate-
gory. Monads on functor categories have long been used for denotational semantics of dynamic
allocation [26, 29, 35], and we use them for our denotational semantics (§7.1).

1.4 Fork and Wait in General, Parallel Composition, and Labelled Posets with Holes
Although the node

𝜎
effect is enough to build all labelled posets, it is more paradigmatic to allow

higher level parallelism through fork and wait. For example, we can define a program that puts two
other programs in parallel, parallel : ((unit → empty), (unit → empty)) → empty, by spawning
two threads and waiting for them:

parallel(𝑥,𝑦) = case (fork(), fork()) of {(Some𝑎, Some𝑏) ⇒ wait(𝑎);wait(𝑏); stop()
(Some𝑎,None) ⇒ 𝑦 ();
(None, Some𝑏) ⇒ 𝑥 ();
(None,None) ⇒ stop()} 𝑥 𝑦

For this reason, we provide an equational theory for fork and wait in Section 4.1. A general idea
is that fork(𝑎.𝑡,𝑢) behaves like a monoid, with wait(𝑎); stop() like a unit, except care is needed for
the thread ID parameter.
The main result of our paper is the representation theorem for the fork/wait theory (Theo-

rem 5.4). This representation is along the lines of the labelled posets, except now there may be
holes standing for the different continuations. For example, the ‘parallel’ operation becomes the
‘cherries’ diagram shown. This is non-trivial because any thread plugged in for 𝑥 or 𝑦 may have
child threads that are not waited for, and may wait on other thread IDs that are not in the diagram.
We also prove a completeness theorem (Theorem 6.1), which says that if two expressions give

the same labelled poset whatever we substitute into the variables 𝑥 , 𝑦 etc., then they are provably
equal. We show this by finding special gadgets to substitute for the variables. This can be thought
of as a full abstraction result, and we make this connection in Theorem 7.4.

For a final remark, we define an operation series : ((unit → empty), (unit → empty)) → empty
that forks a child thread and immediately waits for it:

series(𝑥,𝑦) = case fork() of {Some𝑎 ⇒ wait(𝑎);𝑦 () | None ⇒ 𝑥 ()}

We can use ‘series’ and ‘parallel’ to build series-parallel graphs [3, 24], and we can easily deduce
from our algebraic theory that the equational laws of series-parallel graphs hold. But note that we
can also express the N shape, which is not series-parallel.

Although ‘series’ is easy to program, it is not the same as the sequencing 𝑥 ();𝑦 () of the program-
ming language. This can already be seen because the type is different. Another view is that the unit
of (; ) is (return ()) (return to the calling function) whereas the unit of series is stop (end the current
thread). The apparent similarity between ‘series’ and sequencing may be the reason for earlier
claims that concurrency via algebraic effects has ‘undesired equations’ [46, §8,p33], such as parallel
composition commuting with sequencing. By focusing instead on fork, wait, and dynamic threads,
we make clear the distinction between sequencing and series: even though ‘parallel’ commutes
with sequencing, it does not commute with ‘series’ as expected.

Paper summary. The operational and denotational semantics are given in Sections 2 and 7
respectively; the main programming language results are soundness, adequacy and full abstraction
(§7.2). The method for building the denotational semantics is via algebraic effects, developed in
Sections 3–4, shown to have a representation (§5) and thereby to be complete (§6).
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2 BACKGROUND CONCURRENT PROGRAMMING LANGUAGE
To precisely frame the situation, we discuss a fairly standard concurrent programming language
and operational semantics.

2.1 Language and Type System
We consider a standard higher-order order programming language with finite product and sum
types (e.g. [22, 26]). The grammar of types is:

𝐴, 𝐵
def
= tid | ∏𝑘

𝑖=1𝐴𝑖 |
∑𝑘

𝑖=1𝐴𝑖 | 𝐴 → 𝐵

When 𝑘 = 0 we get the empty product and sum types, denoted by 1 and 0 respectively, instead of
unit and empty in the introduction. The base type of thread IDs tid is specific to our setting.
The language is fine-grain call-by-value [22], meaning that terms are stratified into values and

computations. The grammar of values is:
𝑣 F 𝑥 | (𝑣1, ... , 𝑣𝑘 ) | inj𝑖 𝑣 | 𝜆𝑥 . 𝑡 | 𝑎 | 𝑔

It contains variables, the usual constructors for product and sum types, and functions; the body of
a function, 𝑡 , is a computation. The symbol 𝑎 ranges over a countably infinite set T of actual thread
IDs. The symbol 𝑔 ranges over a fixed set F of typed term constants 𝑔 : 𝐴 → 𝐵. These constants
allow us to add concurrency features to our languages.
The grammar of computations contains the usual destructors for product, sum and function

types, and a let-construct for explicitly sequencing computations:

𝑡 F return 𝑣 | proj𝑖 𝑣 | case 𝑣 of {inj𝑖 (𝑥𝑖 ) ⇒ 𝑡𝑖 }𝑘𝑖=1 | 𝑣1 𝑣2 | let𝑥 = 𝑡1 in 𝑡2

We include the following set F of value constants 𝑔 : 𝐴 → 𝐵 in our language, where 𝜎 ranges over
a fixed set of observable actions Σ:

fork : 1 → tid + 1 stop : 1 → 0 wait : tid → 1 perform
𝜎

: 1 → 1 (1)
Intuitively, fork() forks a new child thread and returns its ID to the parent thread, in the left branch
of the sum type tid + 1. The right branch is for the child thread which receives the unit value ().
The continuation of fork() will run twice, once in the parent thread and once in the child thread.

The computation stop() signals that the current thread has finished and its continuation will be
discarded. Once a thread has invoked stop() it cannot resume running. The computation wait(𝑣)
waits for all the threads with IDs in 𝑣 to finish by invoking stop(), then returns unit. Finally,
perform

𝜎
() performs the observable action 𝜎 then returns unit.

When writing programs, we use some syntactic sugar, such as (𝑡1; 𝑡2) for let𝑥 = 𝑡1 in 𝑡2 where 𝑡2
does not depend on 𝑥 , and case 𝑡 of . . . instead of let𝑥 = 𝑡 in case 𝑣 of . . . where it is unambiguous.

Example 2.1. Consider the computations below:
let𝑦 = fork() in case𝑦 of {inj1 (𝑥1) ⇒ wait(𝑥1); perform𝜎1

(); stop(), inj2 () ⇒ perform
𝜎2
(); stop()}

let𝑦 = fork() in case𝑦 of {inj1 (𝑥1) ⇒ perform
𝜎1
();wait(𝑥1); stop(), inj2 () ⇒ perform

𝜎2
(); stop()}

In both, the main thread forks a new child thread that performs action 𝜎2 then stops; the ID of
this new thread is bound to 𝑥1. In the first, the main thread waits for the child to finish before
performing action 𝜎1. So the sequence of observed actions is 𝜎2 followed by 𝜎1. In the second, the
main thread does not wait, so we may also see the other order, or 𝜎1 and 𝜎2 concurrently.

For equational reasoning about programs, it is very helpful to combine thread IDs into compound
thread IDs. For example, suppose that a thread 𝑎 has nothing left to do but is waiting for 𝑏 and 𝑐
before it finishes. Then thread 𝑎 is rather redundant, and the only reason to keep it is that the
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Γ, 𝑥 : 𝐴, Γ′ ⊢v𝑤 𝑥 : 𝐴

(
Γ ⊢v𝑤 𝑣𝑖 : 𝐴𝑖

)𝑘
𝑖=1

Γ ⊢v𝑤 (𝑣1, ... , 𝑣𝑘 ) :
∏𝑘

𝑖=1𝐴𝑖

Γ ⊢v𝑤 𝑣𝑖 : 𝐴𝑖

Γ ⊢v𝑤 inj𝑖 𝑣𝑖 :
∑𝑘

𝑖=1𝐴𝑖

Γ, 𝑥 : 𝐴 ⊢c𝑤 𝑡 : 𝐵
Γ ⊢v𝑤 𝜆𝑥 . 𝑡 : 𝐴 → 𝐵

Γ ⊢v𝑤 𝑣 : 𝐴
Γ ⊢c𝑤 return 𝑣 : 𝐴

Γ ⊢v𝑤 𝑣 :
∏𝑘

𝑖=1𝐴𝑖

Γ ⊢c𝑤 proj𝑖 𝑣 : 𝐴𝑖

Γ ⊢v𝑤 𝑣 :
∑𝑘

𝑖=1𝐴𝑖

(
Γ, 𝑥𝑖 : 𝐴𝑖 ⊢c𝑤 𝑡𝑖 : 𝐵

)𝑘
𝑖=1

Γ ⊢c𝑤 case 𝑣 of {inj𝑖 (𝑥𝑖 ) ⇒ 𝑡𝑖 }𝑘𝑖=1 : 𝐵

Γ ⊢v𝑤 𝑣1 : 𝐴 → 𝐵 Γ ⊢v𝑤 𝑣2 : 𝐴
Γ ⊢c𝑤 𝑣1 𝑣2 : 𝐵

Γ ⊢c𝑤 𝑡1 : 𝐴 Γ, 𝑥 : 𝐴 ⊢c𝑤 𝑡2 : 𝐵
Γ ⊢c𝑤 let𝑥 = 𝑡1 in 𝑡2 : 𝐵

(𝑔 : 𝐴 → 𝐵) ∈ F
Γ ⊢v𝑤 𝑔 : 𝐴 → 𝐵

Fig. 2. Standard typing rules for a fine-grain call-by-value programming language. Here F is given in (1).

parent thread might at some point wait for 𝑎. If the parent could instead wait for both 𝑏 and 𝑐 , then
we can indeed finish 𝑎 already. (This is an instance of axiom (17).) To reason in this example it is
helpful to substitute the compound thread ID (𝑏 ⊕ 𝑐) for 𝑎. To facilitate this equational reasoning,
which is the aim of this paper, we have the following constructions of compound threads ids.

𝑎 ∈ 𝑤

Γ ⊢v𝑤 𝑎 : tid Γ ⊢v𝑤 0 : tid
Γ ⊢v𝑤 𝑣1 : tid Γ ⊢v𝑤 𝑣2 : tid

Γ ⊢v𝑤 𝑣1 ⊕ 𝑣2 : tid

2.2 Operational Semantics
We now define an operational semantics for the language, based on a labelled transition relation
over configurations. These are pools of threads, some of which are ready to run, some are finished,
and some are stuck waiting for others to finish before they can run. We include a relation stating
which threads are waiting for which others to finish.

2.2.1 Alternative language construct: act
𝜎
. In order to set up the operational semantics, it is conve-

nient to consider the following operation
act

𝜎
: 1 → 0

which performs action𝜎 and then finishes immediately. This is interdefinablewith perform
𝜎

: 1 → 1:
act

𝜎
() = perform

𝜎
(); stop()

and perform
𝜎
() = let𝑥 = fork() in case𝑥 of {inj1 (𝑎) ⇒ wait(𝑎); return (), inj2 () ⇒ act

𝜎
()}.

That is, an action that may be followed by other commands can be achieved by forking a new
thread that merely performs the action, and then waiting for it.

Arguably, perform
𝜎
is more natural in programming, but act

𝜎
has an easier semantics. We focus

on semantics, and so we focus on act
𝜎
as a primitive, regarding perform

𝜎
as derived.

2.2.2 Configurations.

Definition 2.2. A configuration is a triple ⟨𝑤 ;≺; thread⟩ where
• 𝑤 ⊆ T is a finite set of thread IDs that are involved in this configuration.
• (≺) ⊆ T ×𝑤 is a relation, relating a thread id with the id’s it is waiting for.
• thread : 𝑤 → {computations 𝑡} ⊎ finished is a function assigning to each active thread id
the computation that it runs, or ‘finished’ if the thread has finished. We often enumerate
the map e.g. writing ( [𝑎]𝑡, [𝑏]𝑢), if 𝑎 ↦→ 𝑡 and 𝑏 ↦→ 𝑢.

We abbreviate the configuration when there is one thread, writing ⟨[𝑎]𝑡⟩ instead of ⟨{𝑎}; ∅; [𝑎]𝑡⟩.
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2.2.3 Transition relation. The transition system is given inductively in Figure 3. We define two
transition relations between configurations: silent reductions −→ and labelled reductions 𝜎−−→,
where 𝜎 is an action. We also annotate our transition relation with the thread which reduced (𝑎),
following [27]; this is not necessary and can be erased, but is useful in the metatheory.

The relation (≺) specifies which threads are waiting for which other threads to finish. The last
transition rule in Figure 3 says that a thread can step if indeed all the threads it was waiting for
have finished. After a step, the waiting relation (≺) needs to be updated with any new waits (≺′).

The other transition rules are for the reduction of single threads. Wait reduces by recording what
it is waiting for. Fork spawns a new child thread 𝑏, passing its identifier 𝑏 to the parent thread 𝑎.
In this simple language, there is only one evaluation context, let𝑥 = [−] in 𝑠 . To evaluate here

depends on which threads are reduced, spawned or finished by the expression in the context (𝑡 ). We
then continue to evaluate the let-expression with all of the existing and new threads; any finished
threads will finish without evaluating the continuation 𝑠 .

There are a couple of subtle points about the ≺ relation. First, a configuration ⟨𝑤 ; ≺; thread⟩ may
have 𝑏 ≺ 𝑎 for some 𝑏 not in𝑤 . Thus a thread may wait on thread IDs not in the current pool. This
is to allow us to restrict our view to particular threads, but will not happen at the top level.
Second, a configuration may have 𝑎 ≺ 𝑏 even if both 𝑎 and 𝑏 are finished. One could garbage-

collect this redundant information, as any efficient implementation would do, but this is not
necessary, and the metatheory is easier without it.

2.2.4 Observation as a labelled poset. We focus on true-concurrency semantics, and so, instead
of considering only linear traces, we include the dependency order ≺. This gives a labelled poset
(pomset [34, 37], equivalently conflict-free event structure [28]).

Definition 2.3. Let Σ be a set. A Σ-labelled poset is a partially ordered set 𝑃 = (𝑋, ≤) equipped
with a function ℓ : 𝑋 → Σ. (We omit Σ where it is clear from the context.)

Definition 2.4. A terminal configuration ⟨𝑤 ;≺; thread⟩ is one where all threads have finished:
thread (𝑎) = finished for all 𝑎 ∈ 𝑤 .

Let (𝑋, ≤, ℓ) be a labelled poset, and𝐶 a configuration. We write𝐶 ⇓ (𝑋, ≤, ℓ) when the following
conditions hold: 𝑋 = {𝑎1, . . . , 𝑎𝑛}; 𝑎 ≤ 𝑏 in 𝑋 iff 𝑎 ≺ 𝑏 or 𝑎 = 𝑏; and there is some terminal
configuration 𝐶′ = ⟨𝑤 ;≺; thread⟩ such that, letting 𝜎𝑖 = ℓ (𝑎𝑖 ), 𝐶 admits a sequence of transitions:

𝐶 −→∗ 𝜎1−−→𝑎1−→∗ 𝜎2−−→𝑎2−→∗ 𝜎𝑛−−→𝑎𝑛−→∗ 𝐶′

Recall from the reduction rules in Figure 3 that each action 𝜎𝑖 happens in a separate thread that
finishes immediately, so the thread IDs 𝑎1, . . . , 𝑎𝑛 above are all distinct. In Example 2.1, the first
program is related by ⇓ to the order (𝜎1 < 𝜎2), whereas the second one is related to the discrete
order {𝜎1, 𝜎2}. See [34] for further discussion of these concurrent notions of observation.

2.3 Operational Meta-theory
A well-typed program will never deadlock, and moreover that it induces a unique observed labelled
poset. More elaborate languages would not have these properties, but in this simple setting they
are useful for connecting exactly with the denotational semantics in Section 7.

2.3.1 Well-formed configurations. Well-typed programs never deadlock, that is, there are never
two threads that are waiting for each other. To show this, we consider well-formed configurations
for which there exists a linear order, which encodes a potential creation order of threads. The idea is
that the configuration appears as if the greatest thread is a parent thread that has itself forked all
the other threads in the configuration; the smallest thread is the child that was forked first, then
the second child etc.. A child can only refer to siblings that were forked earlier, so are smaller in
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Reduction rules for the main language constructs.
⟨[𝑎]wait(𝑣)⟩ −→𝑎 ⟨{𝑎}; {𝑏 ≺ 𝑎 | 𝑏 ∈ tids(𝑣)}; [𝑎]return ()⟩
⟨[𝑎]fork()⟩ −→𝑎 ⟨{𝑎, 𝑏}; ∅; [𝑎]return (inj1 (𝑏)), [𝑏]return (inj2 ())⟩ (𝑎 ≠ 𝑏)
⟨[𝑎]stop()⟩ −→𝑎 ⟨[𝑎]finished⟩

⟨[𝑎]act
𝜎
()⟩ 𝜎−−→𝑎 ⟨[𝑎]finished⟩

Standard reduction rules for products, sums, functions, and let binding.
⟨[𝑎]proj𝑖 (𝑣1, ... , 𝑣𝑘 )⟩ −→𝑎 ⟨[𝑎]return 𝑣𝑖⟩
⟨[𝑎]case inj𝑖 (𝑣) of {inj𝑘 (𝑥𝑘 ) ⇒ 𝑡𝑘 }𝑙𝑘=1⟩ −→𝑎 ⟨[𝑎]𝑡𝑖 [𝑣/𝑥𝑖 ]⟩
⟨[𝑎] (𝜆𝑥.𝑡) 𝑣⟩ −→𝑎 ⟨[𝑎]𝑡 [𝑣/𝑥]⟩
⟨[𝑎]let𝑥 = return 𝑣 in 𝑡⟩ −→𝑎 ⟨[𝑎]𝑡 [𝑣/𝑥]⟩

Reducing in evaluation context:

⟨[𝑎]𝑡⟩
(𝜎 )
−−→𝑎 ⟨𝑤 ;≺; thread⟩

⟨[𝑎]let𝑥 = 𝑡 in 𝑠⟩
(𝜎 )
−−→𝑎 ⟨𝑤 ;≺; {[𝑏]let𝑥 = 𝑡 ′ in 𝑠 | 𝑏 ∈ 𝑤, thread (𝑏) = 𝑡 ′}∪

{[𝑏]finished | 𝑏 ∈ 𝑤, thread (𝑏) = finished} ⟩

Converting thread-local transitions to global transitions on the configuration:

⟨{𝑎}; ∅; [𝑎]𝑡⟩
(𝜎 )
−−→𝑎 ⟨𝑤 ;≺′; thread⟩ ∀𝑏. 𝑏 ≺ 𝑎 =⇒ thread (𝑏) = finished

⟨𝑤0 ⊎ {𝑎};≺; thread0 ⊎ {[𝑎]𝑡}⟩
(𝜎 )
−−→𝑎 ⟨𝑤0 ⊎𝑤 ; (≺ ∪ ≺′ ∪{(𝑏, 𝑐) | 𝑏 ≺ 𝑎, 𝑐 ∈ 𝑤})∗; thread0 ⊎ thread⟩

where (−)∗ denotes transitive closure.

Fig. 3. Operational semantics for our concurrent programming language (Sec. 2.2). We write
(𝜎 )
−−−→ with

parentheses to indicate two copies of the rule, one with the label and one without. Here tids(𝑎) = 𝑎,
tids(𝑣 ⊕ 𝑣 ′) = tids(𝑣) ∪ tids(𝑣 ′), and tids(0) = ∅.

the order; the parent can refer to any of the children. Note that the threads might not have been
created in this (or any other) linear order, and there may have been more complex parent-child
relationships. The operational semantics does not depend on the creation order and there may be
multiple linear orders that are all consistent with a given configuration.

Definition 2.5. Consider a configuration 𝐶 = ⟨𝑤 ; ≺; thread⟩. Consider a linear order < on𝑤 , and
a type 𝐴. Let𝑤 ′ ⊆ T be disjoint from𝑤 . (The idea is that < is the creation order, and𝑤 ′ describes
some threads not in the current pool, which may be useful when we are zooming in on single
threads.) We say 𝐶 is well-formed for (𝐴, <,𝑤 ′) if

• The waiting order ≺ is transitive.
• A thread only waits on threads in the pool or in𝑤 ′: if 𝑎 ≺ 𝑏 then 𝑎 ∈ 𝑤 ⊎𝑤 ′.
• Threads only wait for siblings that were created earlier: if 𝑎 ≺ 𝑏 and 𝑎, 𝑏 ∈ 𝑤 then 𝑎 < 𝑏.
• All threads have type 𝐴, and only rely on previously created siblings: for all 𝑎 ∈ 𝑤 we have
⊢c{𝑏<𝑎}⊎𝑤′ thread (𝑎) : 𝐴; (the parent i.e. greatest in <, can rely and wait on all its children).



393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441

An Equational Axiomatization of Dynamic Threads via Algebraic Effects 9

Proposition 2.6 (Preservation). Let 𝐶1 = ⟨𝑤1;≺1; thread1⟩ and 𝐶2 = ⟨𝑤2;≺2; thread2⟩. If 𝐶1 is

well-formed for (𝐴, <1,𝑤
′) and 𝐶1

(𝜎 )
−−→ 𝐶2 and𝑤 ′ is disjoint from𝑤2, then there is a linear order <2

extending <1 such that 𝐶2 is well-formed for (𝐴, <2,𝑤
′).

Proof notes. By induction on the derivation of transitions. □

2.3.2 Labelled posets uniquely determined from terms of empty type.

Proposition 2.7. Consider a term ⊢c∅ 𝑡 : 0 of empty type in the empty world ∅.
(1) The configuration ⟨[𝑎]𝑡⟩ reaches a terminal configuration, i.e. there exists a labelled poset

(𝑃, ℓ) such that ⟨[𝑎]𝑡⟩ ⇓ (𝑃, ℓ).
(2) If ⟨[𝑎]𝑡⟩ ⇓ (𝑃1, ℓ1) and ⟨[𝑎]𝑡⟩ ⇓ (𝑃2, ℓ2), then the labelled posets are isomorphic,

i.e. there is an order isomorphism 𝑓 : 𝑃1 � 𝑃2 such that ℓ1 (𝑒) = ℓ2 (𝑓 (𝑒)).

Proof notes. Part 1 holds in greater generality: every reduction sequence starting in a well-
typed term ⊢c∅ 𝑡 : 𝐴 is finite. Our proof uses a straightforward combination of Tait’s method [44]
and Kőnig’s tree lemma [21]. Each reduction sequence of a program induces a finitely-branching
tree in which each branch corresponds to the sequential execution of a single thread that does
not mention the other threads. These thread-local executions include transitions steps in which
the environment changes the status of a known tid to finished. Each infinite reduction sequence
induces an infinite such tree, and Kőnig’s tree lemma implies it has an infinite branch. We then use
Tait’s method, i.e., design an appropriate Kripke logical relation, that shows that in all well-typed
programs every thread has only finite sequential executions. The Kripke property of the relation is
with respect to injective relabelling of tids. We define two ‘value’ relations: one indexed by types
over closed values, and the other indexed by contexts over closed environments. The computation
relation, indexed by types, over closed computations states that the computation has no infinite
reduction sequence, and whenever the computation evaluates to return 𝑣 , the value 𝑣 satisfies the
appropriate value relation. We then prove the Fundamental Property of these relations: every
well-typed value, computation, and substitution maps closed environments satisfying the value
relation to values, computations, and closed environments satisfying the relation.
For part 2, we prove a confluence result. First, we pick a deterministic naming scheme for the

fresh thread IDs introduced by fork(), so that fresh thread IDs are independent of the evaluation
order. One good scheme (e.g. [27]) is that a thread ID is a finite sequence of numbers, with the idea
that the ID (𝑚1𝑚2𝑚3 . . .𝑚𝑘𝑚𝑘+1) is the𝑚𝑘+1th thread spawned directly by the thread (𝑚1 . . .𝑚𝑘 ).
We then show that

(1) If 𝐶
(𝜎 )
−−→𝑎 𝐶1 and 𝐶

(𝜎 )
−−→𝑎 𝐶2 then 𝐶1 = 𝐶2; and

(2) If 𝐶
(𝜎 )
−−→𝑎 𝐶1 and 𝐶

(𝜏 )
−−→𝑏 𝐶2 then there is 𝐶′ such that 𝐶1

(𝜏 )
−−→𝑏 𝐶

′ and 𝐶2
(𝜎 )
−−→𝑎 𝐶

′.
The first is local determinacy within each thread, which is straightforwardly proved by induction
on the structure of transition derivations. The second is also proved by induction on the structure of
transition derivations. However, some care is needed that the transitive closure in the local-to-global
rule for a step in a particular enabled thread does not introduce dependencies that would cause a
different currently enabled thread to have to wait. Here the key strengthening of the induction
hypothesis is to show that

If ⟨𝑤 ;≺; thread⟩
(𝜎 )
−−→𝑎 ⟨𝑤 ′;≺′; thread′⟩and 𝑐 ≺′ 𝑏 and 𝑏 ∈ 𝑤 then either 𝑐 ≺ 𝑏 or 𝑎 = 𝑏 or 𝑎 ≺ 𝑏.

□



442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490

10 O. Kammar, Jack Liell-Cock, Sam Lindley, Cristina Matache, and Sam Staton

3 PARAMETRIZED ALGEBRAIC THEORIES, ILLUSTRATED VIA A NEW THEORY OF
LABELLED POSETS

Algebraic effects are formalized using algebraic theories from universal algebra. This section recalls
the concepts of algebraic theories and their generalisation, parametrized algebraic theories, along
with a novel running example, the theory of labelled posets.

3.1 Algebraic Theories
Definition 3.1. A (first-order finitary) algebraic signature O = ⟨|O|, ar⟩ is a collection of operations

|O| and a function ar : |O| → N, associating a natural number to each operation, called its arity.
We write O : 𝑛 for an operation O with arity 𝑛. A context Δ = 𝑎1, ... , 𝑎𝑛 is a list of distinct

variables. Terms in a context Δ are inductively generated by:

Δ, 𝑎,Δ′ ⊢ 𝑎
Δ ⊢ 𝑢1 · · · Δ ⊢ 𝑢𝑛 O : 𝑛

Δ ⊢ O(𝑢1, ... , 𝑢𝑛)
Definition 3.2. A (first-order finitary) algebraic theory T = (O, 𝐸) is a pair of an algebraic

signature O and a set of equations 𝐸, where an equation is a pair of terms in the same context,
Δ ⊢ 𝑡1 and Δ ⊢ 𝑡2, which we write Δ ⊢ 𝑡1 = 𝑡2.
Example 3.3. The algebraic theory of semi-lattices L has two operations: ⊕ : 2 and 0 : 0. The

equations are that ⊕ is associative, symmetric, idempotent, and has 0 as its unit:
𝑎, 𝑏, 𝑐 ⊢ (𝑎 ⊕ 𝑏) ⊕ 𝑐 = 𝑎 ⊕ (𝑏 ⊕ 𝑐) 𝑎, 𝑏 ⊢ 𝑎 ⊕ 𝑏 = 𝑏 ⊕ 𝑎 𝑎 ⊢ 𝑎 ⊕ 𝑎 = 𝑎 𝑎 ⊢ 𝑎 ⊕ 0 = 𝑎

The theory of semi-lattices is often used as a semantics for non-deterministic choice with failure [26].

3.2 Parametrized Algebraic Theories
Parametrized algebraic theories are an extension of plain algebraic theories that allow the binding
of abstract parameters. They have been used to axiomatize effects that involve a kind of resource,
such as new memory locations in local state and channels in the 𝜋-calculus [42]. We introduce the
concept in this section, highlighted by an example of a theory of labelled posets.

A parametrized algebraic theory is parametrized over an ordinary algebraic theory in the sense
of Definition 3.2. For the rest of the paper, we fix this ordinary algebraic theory to be the theory of
semi-lattices from Example 3.3. We recall the definition of parametrized algebraic theories along
with a running example of a novel theory of labelled posets.

Definition 3.4. A parametrized signature O = ⟨|O|, ar⟩ is a collection of operations |O| along
with a function ar : |O| → N × N∗, associating to each operation O an arity consisting of a natural
number and a list of natural numbers: ar(O) = (𝑝 | 𝑚1, ... ,𝑚𝑘 ). This means O takes 𝑝 parameters
and 𝑘 continuations, binding𝑚𝑖 parameters in the 𝑖th continuation.
Example 3.5. Consider operations node𝜎 : (1 | 1) and end : (0 |) where 𝜎 ranges over a finite

set of observable actions Σ. The node𝜎 operation takes one free parameter and one continuation
binding one parameter; end takes zero parameters and no continuations. A parameter stands for a
term in the theory of semi-lattices.

A parametrized context Γ | Δ is a list Δ of parameter variables (i.e. an ordinary algebraic context)
and a list of distinct computation variables Γ = 𝑥1 : 𝑚1, ... , 𝑥𝑘 : 𝑚𝑘 , where each 𝑥𝑖 is annotated with
the number𝑚𝑖 of parameters it uses. Terms in context Γ | Δ are inductively generated by:

(Δ ⊢ 𝑢𝑖 )𝑚𝑖=1

Γ, 𝑥 : 𝑚, Γ′ | Δ ⊢ 𝑥 (𝑢1, ... , 𝑢𝑚)
(Δ ⊢ 𝑢𝑖 )𝑝𝑖=1

(
Γ | Δ, 𝑏1, ... , 𝑏𝑚𝑖

⊢ 𝑡𝑖
)𝑘
𝑖=1 O : (𝑝 | 𝑚1, ... ,𝑚𝑘 )

Γ | Δ ⊢ O(𝑢1, ... , 𝑢𝑝 , 𝑏1 ... 𝑏𝑚1 .𝑡1, . . . , 𝑏1 ... 𝑏𝑚𝑘
.𝑡𝑘 )
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where Δ ⊢ 𝑢𝑖 is a term judgement in the ordinary algebraic theory of semi-lattices from Example 3.3.
Both contexts admit all the usual structural rules and we treat all terms up to renaming of variables.

Using the signature from Example 3.5 we can build the following terms in context:
𝑥 : 1 | 𝑎 ⊢ node𝜎 (𝑎, 𝑏.𝑥 (𝑏)) (2)
𝑥 : 2 | 𝑎1, 𝑎2 ⊢ node𝜎 (𝑎1 ⊕ 𝑎2, 𝑏1.node𝜏 (𝑎1, 𝑏2.𝑥 (𝑏2, 𝑏1))) (3)

In the term (2), 𝑎 is a free parameter while 𝑏 is bound in 𝑥 . From a concurrency perspective, we
interpret node𝜎 (𝑎, 𝑏.𝑥 (𝑏)) as forking a new child thread that performs action 𝜎 after the thread
with ID 𝑎 has performed its action. The thread ID of the child performing 𝜎 is 𝑏 and the continuation
𝑥 (𝑏) is executed concurrently.

The term (3) uses the operation ⊕ from the theory of semi-lattices to wait on both thread IDs 𝑎1
and 𝑎2 before executing 𝜎 . Figure 4 (c) is a graphical representation of the term (3), where 𝑎1 and
𝑎2 are inputs at bottom, and the two parameters that 𝑥 : 2 takes are outputs at the top. The names
of bound parameters 𝑏1 and 𝑏2 do not appear. The solid line signifies causal dependency.
We define two substitution operations on terms, one for parameters variables and one for

computation variables, in the standard capture-avoiding way as to admit the following rules:
Γ | Δ, 𝑎 ⊢ 𝑡 Δ ⊢ 𝑢

Γ | Δ ⊢ 𝑡 [𝑢/𝑎]
Γ, 𝑥 : 𝑚 | Δ ⊢ 𝑡 Γ | Δ, 𝑏1, ... , 𝑏𝑚 ⊢ 𝑠

Γ | Δ ⊢ 𝑡 [𝑏1 ... 𝑏𝑚 .𝑠/𝑥]
(4)

The notation 𝑏1 ... 𝑏𝑚 .𝑠/𝑥 emphasises that the bound parameters 𝑏1, ... , 𝑏𝑚 in 𝑠 will be replaced
with the parameters passed to 𝑥 .

Below are examples of each kind of substitution. They can be understood graphically: the first
transforms Figure 4 (b) into Figure 4 (c) and the second transforms Figure 4 (c) into Figure 4 (d).

node𝜎 (𝑎3, 𝑏1 .node𝜏 (𝑎1, 𝑏2 .𝑥 (𝑏2, 𝑏1 ) ) ) [𝑎1 ⊕ 𝑎2/𝑎3 ] = node𝜎 (𝑎1 ⊕ 𝑎2, 𝑏1 .node𝜏 (𝑎1, 𝑏2 .𝑥 (𝑏2, 𝑏1 ) ) ) (5)
node𝜎 (𝑎1 ⊕ 𝑎2, 𝑐1 .node𝜏 (𝑎1, 𝑐2 .𝑥 (𝑐2, 𝑐1 ) ) ) [𝑏1𝑏2 .𝑦 (𝑏1 ⊕ 𝑏2 )/𝑥 ] = node𝜎 (𝑎1 ⊕ 𝑎2, 𝑐1 .node𝜏 (𝑎1, 𝑐2 .𝑦 (𝑐2 ⊕ 𝑐1 ) ) ) (6)

Definition 3.6. A parametrized algebraic theory T = (O, 𝐸) is a pair of a parametrized signature
O and a set 𝐸 of equations. An equation is a pair of terms in the same context Γ | Δ, which we
write as Γ | Δ ⊢ 𝑡1 = 𝑡2.

Example 3.7. The parameterized theory of labelled posets consists of the signature from Exam-
ple 3.5, containing node𝜎 and end, and of the following two equations:

𝑥 : 2 | 𝑎1, 𝑎2 ⊢ node𝜎 (𝑎1, 𝑏1 .node𝜏 (𝑎2, 𝑏2 .𝑥 (𝑏1, 𝑏2))) = node𝜏 (𝑎2, 𝑏2 .node𝜎 (𝑎1, 𝑏1 .𝑥 (𝑏1, 𝑏2))) (7)
𝑥 : 1 | 𝑎 ⊢ node𝜎 (𝑎, 𝑏.𝑥 (𝑏)) = node𝜎 (𝑎, 𝑏.𝑥 (𝑎 ⊕ 𝑏)) (8)

The first equation states that independent actions may happen in any order. The second equation
encodes the transitivity of causal dependencies. There are no equations involving end; intuitively
end finishes the execution of the whole program.

In Section 4 we will present an extended example of a parameterized algebraic theory for forking
threads, together with examples of equational reasoning in Examples 4.2 to 4.4.

Given a parameterized theory T = (O, 𝐸), we can form an equivalence relation =T on the terms
of T , called derivable equality, by closing all simultaneous substitution instances of the equational
axioms from 𝐸 under reflexivity, symmetry, transitivity, and two congruence rules, one for variables
and one for the operations in O. Below is the congruence rule for variables; it allows us to use the
equations of the theory of semi-lattices when reasoning about parameterized terms.(

Δ ⊢ 𝑢𝑖 = 𝑢′
𝑖

)𝑚
𝑖=1

Γ, 𝑥 : 𝑚 | Δ ⊢ 𝑥 (𝑢1, ... , 𝑢𝑚) =T 𝑥 (𝑢′
1, ... , 𝑢

′
𝑚)
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1 2
𝜏

1 2 3

(a)
1 2
𝜏 𝜎

1 2 3

(b)
1 2
𝜏 𝜎

1 2

(c)
1

𝜏 𝜎

1 2

(d)

Fig. 4. Graphical examples of terms built from the node operation. (a) is the term node𝜏 (𝑎1, 𝑏.𝑥 (𝑏, 𝑎3)); num-
bers 1 and 2 at the top correspond to the two inputs of variable 𝑥 : 2. (b) is the application of node𝜎 (𝑎′3, 𝑎3 .−)
to (a). (c) is the term in eq. (3); it is obtained from (b) by substituting 𝑎1 ⊕ 𝑎2 for 𝑎′3 as in eq. (5); (d) is obtained
from (c) by substituting a term for the computation variable 𝑥 : 2, as in eq. (6).

3.3 Models of Parameterized Algebraic Theories
We recall models of parameterized algebraic theories by analogy with models for ordinary algebraic
theory. For this paper, it is sufficient to consider the case where the parameterizing theory is that
of semi-lattices (Example 3.3), but more general notions of models exist [41–43]. In Section 3.3.3
we illustrate models by considering the theory of labelled posets from Example 3.7.

3.3.1 Connection between the category of finite sets and relations and the theory of semi-lattices.
We define the objects of the category FinRel to be natural numbers 𝑛 and morphisms 𝑛 → 𝑛′ to be
relations 𝑅 ⊆ [𝑛] × [𝑛′], where [𝑛] denotes the set {1, ... , 𝑛}. Composition 𝑆 ◦ 𝑅 of 𝑅 ⊆ [𝑛] × [𝑛′]
with 𝑆 ⊆ [𝑛′] × [𝑛′′] is the usual composition of relations.

For each 𝑝 , we can define an isomorphism between the set of (equivalence classes of) terms
{[𝑎1, ... , 𝑎𝑝 ⊢ 𝑢]} in the theory of semi-lattices and the set of morphisms FinRel(1, 𝑝):

⟦𝑎1, ... , 𝑎𝑝 ⊢ 𝑎𝑖⟧ = {(1, 𝑖)} ⟦𝑎1, ... , 𝑎𝑝 ⊢ 0⟧ = ∅

⟦𝑎1, ... , 𝑎𝑝 ⊢ 𝑢1 ⊕ 𝑢2⟧ = ⟦𝑎1, ... , 𝑎𝑝 ⊢ 𝑢1⟧ ∪ ⟦𝑎1, ... , 𝑎𝑝 ⊢ 𝑢2⟧

3.3.2 Models of parameterized theories in SetFinRel. Amodel of an ordinary algebraic theory consists
of a set, the carrier, together with structure for interpreting the operations in the theory, such that
all equational axioms are satisfied. We are studying theories parameterized by the algebraic theory
of semi-lattices, so we will consider models where, instead of a set, the carrier is a family of sets
indexed by the objects of the category FinRel.

Definition 3.8. Let O be a parameterized signature. A O-structure X is an object 𝑋 in the functor
category SetFinRel equipped with for each operation O : (𝑝 | 𝑚1, ... ,𝑚𝑘 ) a family of functions
indexed by natural numbers 𝑛, and respecting naturality with respect to morphisms in FinRel:

OX,𝑛 : 𝑋 (𝑛 +𝑚1) × . . . × 𝑋 (𝑛 +𝑚𝑘 ) → 𝑋 (𝑛 + 𝑝)

Given a O-structure X, the interpretation of operations can be extended to all terms using the
interpretation of semi-lattices terms from Section 3.3.1. A term 𝑥1 : 𝑚1, ... , 𝑥𝑘 : 𝑚𝑘 | 𝑎1, ... , 𝑎𝑝 ⊢ 𝑡 is
interpreted as a family of functions

⟦𝑡⟧X,𝑛 : 𝑋 (𝑛 +𝑚1) × . . . × 𝑋 (𝑛 +𝑚𝑘 ) → 𝑋 (𝑛 + 𝑝)
natural in 𝑛, defined by structural recursion. A computation variable

𝑥1 : 𝑚1, ... , 𝑥𝑘 : 𝑚𝑘 | 𝑎1, ... , 𝑎𝑝 ⊢ 𝑥𝑖 (𝑢1, ... , 𝑢𝑚𝑖
)

is interpreted as projection followed by the interpretation of its semi-lattice term inputs

𝑋 (𝑛 +𝑚1) × . . . × 𝑋 (𝑛 +𝑚𝑘 )
𝜋𝑖−→ 𝑋 (𝑛 +𝑚𝑖 )

𝑋 (𝑛+[⟦𝑢1⟧,...,⟦𝑢𝑚𝑖
⟧])

−−−−−−−−−−−−−−−−−→ 𝑋 (𝑛 + 𝑝)
where ⟦𝑢1⟧, ... , ⟦𝑢𝑚𝑖

⟧ : 1 → 𝑝 are morphisms in FinRel.
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A term of the form Γ | 𝑎1, ... , 𝑎𝑝 ⊢ O(𝑢1, ... , 𝑢𝑝′ , 𝑏1 ... 𝑏𝑚′
1
.𝑡1, . . . , 𝑏1 ... 𝑏𝑚′

𝑘′
.𝑡𝑘 ′ ) is interpreted as

the 𝑛-indexed family,
𝑋 (𝑛 + [𝑝, ⟦𝑢1⟧, ... , ⟦𝑢𝑝′⟧]) ◦ OX,𝑛+𝑝 ◦ ⟨⟦𝑡1⟧X,𝑛, ... , ⟦𝑡𝑘 ′⟧X,𝑛⟩,

where O : (𝑝′ | 𝑚′
1, ... ,𝑚

′
𝑘 ′ ). The map [𝑝, ⟦𝑢1⟧, ... , ⟦𝑢𝑝′⟧] : 𝑝 + 𝑝′ → 𝑝 interprets the 𝑝′ arguments

of O using the parameter variables 𝑎1, ... , 𝑎𝑝 .

Definition 3.9. Let T = (O, 𝐸) be a parameterized theory. A O-structure X is a model for the
theory T if for every equational axiom from 𝐸, Γ | Δ ⊢ 𝑠 = 𝑡 , and for every natural number 𝑛, the
following functions are equal:

⟦Γ | Δ ⊢ 𝑠⟧X,𝑛 = ⟦Γ | Δ ⊢ 𝑡⟧X,𝑛 .

Proposition 3.10. For a parameterized theory T , the derivable equality =T is sound: if 𝑠 =T 𝑡 is
derivable, then ⟦𝑠⟧X = ⟦𝑡⟧X in any T -model X.

3.3.3 A model of the theory of labelled posets. To illustrate the notion of model from the previous
section, we build a model for the parameterized algebraic theory of labelled posets from Example 3.7.
To do this we generalize the notion of Σ-labelled poset from Definition 2.3.

Definition 3.11. An 𝑛-input 𝑚-output Σ-labelled poset 𝑃 = ⟨𝑉𝑃 , ≤𝑃 , 𝑙𝑃 ⟩ consists of a set 𝑉𝑃 of
elements labelled by a function 𝑙𝑃 : 𝑉𝑃 → Σ, and a partial order ≤𝑃 on the set [𝑛] ⊎𝑉𝑃 ⊎ [𝑚], such
that the 𝑛 input elements are minimal and the𝑚 output elements are maximal.

Examples of such posets appear in Figure 4, with inputs at the bottom and outputs at the top. If
there are no inputs and outputs, Definition 3.11 reduces to that of an ordinary Σ-labelled poset. An
isomorphism between two 𝑛-input𝑚-output Σ-labelled posets 𝑃 and 𝑄 is a bijection 𝑓 : 𝑉𝑃 → 𝑉𝑄
that preserves the labels, and such that id[𝑛] ⊎ 𝑓 ⊎ id[𝑚] preserves and reflects the order.
For each natural number 𝑛, define the set 𝑆𝑚 (𝑛) to contain isomorphism classes of 𝑛-input𝑚-

output Σ-labelled posets. Given a relation 𝑅 ⊆ [𝑛] × [𝑛′], 𝑆𝑚 (𝑅) acts on a labelled poset by updating
𝑖 ≤ 𝑒 to 𝑖′ ≤ 𝑒 if (𝑖, 𝑖′) ∈ 𝑅. The poset in Figure 4 (c) is obtained from Figure 4 (b) via this action.

For natural numbers𝑚 and 𝑛, we equip 𝑆𝑚 with an operation
node𝜎,𝑚,𝑛 : 𝑆𝑚 (𝑛 + 1) → 𝑆𝑚 (𝑛 + 1)

which given a labelled poset, labels its (𝑛 + 1)-th input by 𝜎 and creates a new (𝑛 + 1) input just
below 𝜎 . The poset in Figure 4 (b) is the result of applying node𝜎,2,3 to Figure 4 (a).

Remark. Labelled posets can be organised into a PROP (see [23]), where morphisms 𝑛 →𝑚 are
labelled posets 𝑆𝑚 (𝑛), identities are given by the poset with no labelled elements, composition
“plugs” the outputs of a poset into the inputs of another, and monoidal composition is juxtaposition.
This categorical formulation was valuable for proving Proposition 3.12 and Theorem 3.15. Similar
categorical ideas appear elsewhere, e.g. [6, 12, 18], but with a typically a first-order emphasis,
whereas we are aiming at a semantics for programming language via monads (§7).

Let Γ be a context of computation variables. For each natural number 𝑛, define the set

SΓ (𝑛) =
⊎

𝑥 :𝑚∈Γ
𝑆𝑚 (𝑛) ⊎ 𝑆0 (𝑛).

We equip SΓ (𝑛) with an operation node𝜎,𝑛 : SΓ (𝑛 + 1) → SΓ (𝑛 + 1) by applying node𝜎,𝑚,𝑛 pointwise.
Let end𝑛 : 1 → SΓ (𝑛) be the function that selects, from the right injection 𝑆0 (𝑛), the labelled poset
with only the 𝑛 inputs as elements and with discrete order.

Proposition 3.12. For each context Γ, the functor SΓ , together with the natural transformations
node𝜎 and end defined above, is a model of the parametrized theory of labelled posets from Example 3.7.
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3.4 Free Models of Parametrized Algebraic Theories
We now return to the study of models of parameterized algebraic theories in general. Using the
evident notion of homomorphism between O-structures, we can discuss O-structures and T -models
that are free over a collection 𝑋 ∈ SetFinRel of generators.

Definition 3.13. Consider a T -model Y with carrier 𝑌 ∈ SetFinRel and a morphism 𝜂𝑋 : 𝑋 → 𝑌

in SetFinRel. The model Y is free on 𝑋 if for any other modelZ and any morphism 𝑓 : 𝑋 → 𝑍 in
SetFinRel, there exists a unique homomorphism of models 𝑓 : Y → Z that extends 𝑓 , meaning
𝑓 ◦ 𝜂𝑋 = 𝑓 in SetFinRel.

Given a context of computation variables Γ, consider the functor 𝑉Γ where:

𝑉Γ (𝑛) = {[Γ | 𝑎1, ... , 𝑎𝑛 ⊢ 𝑥 (𝑢1, ... , 𝑢𝑚)]=T }.

The equivalence relation on terms in𝑉Γ is non-trivial because the parameter terms𝑢𝑖 are quotiented
by the semi-lattice equations.

The term model is given by the functor 𝐹T (𝑉Γ), which contains equivalence classes of terms:

𝐹T (𝑉Γ) (𝑛) = {[Γ | 𝑎1, ... , 𝑎𝑛 ⊢ 𝑡]=T } (9)

The action on morphisms 𝑛 → 𝑛′, which are relations 𝑅 ⊆ [𝑛] × [𝑛′], is given by substitution of
parameters. The functor 𝐹T (𝑉Γ) can be made into a T -model using the syntactic term formation
rules, and we can construct a morphism 𝜂𝑉Γ : 𝑉Γ → 𝐹T (𝑉Γ) by embedding variables into terms. We
use the term model to prove the completeness result below.

Proposition 3.14.
(1) The functor 𝐹T (𝑉Γ) is a T -model and is moreover a free T -model on 𝑉Γ .
(2) The derivable equality =T in a parameterized algebraic theory is complete: if an equation is

valid in every T -model then it is derivable in =T .

We can now characterize the labelled posets model from Proposition 3.12 using the universal
property of a free model. In particular, equivalence classes of closed terms {[− | − ⊢ 𝑡]=C } built
from node and end (Example 3.7) are in bijection with ordinary Σ-labelled posets.

Theorem 3.15. For each context Γ, the functor SΓ together with the natural transformations node𝜎
and end is isomorphic to the free model 𝐹C (𝑉Γ) of the theory of labelled posets from Example 3.7.

4 A PARAMETERIZED ALGEBRAIC THEORY OF DYNAMIC THREADS
In this section we introduce an equational axiomatization for the concurrency features from Sec-
tion 2 (fork, wait, stop and act

𝜎
) as a parameterized algebraic theory. In Section 5 we interpret this

theory semantically, using labelled posets similar to those from Section 3.3.3. Then in Section 7 we
extend the semantics to model the whole concurrent programming language from Section 2.

4.1 Presentation of the Theory
4.1.1 Signature. We introduce a theory of dynamic threads T , parameterized by the theory of
semi-lattices, with the following signature, where 𝜎 ranges over a finite set of observable actions Σ:

fork : (0 | 1, 0) wait : (1 | 0) stop : (0 |) act𝜎 : (0 |)

In the term fork(𝑎.𝑥 (𝑎), 𝑦) the variable 𝑥 is the parent thread, while 𝑦 is the child thread; the
parameter 𝑎 is the thread ID of the child 𝑦 and is bound in 𝑥 . The parent might wait for the
child named 𝑎 to finish, then continue as 𝑧, using the operation wait(𝑎, 𝑧). The operation stop has
no continuation and indicates that the current thread has finished execution; act𝜎 performs the
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Equations describing the interaction of wait with the semi-lattice structure of thread IDs.
𝑥 : 0 | − ⊢ wait(0, 𝑥) = 𝑥 (10)

𝑥 : 0 | 𝑎, 𝑏 ⊢ wait(𝑎,wait(𝑏, 𝑥)) = wait(𝑎 ⊕ 𝑏, 𝑥) (11)
𝑥 : 1 | 𝑎, 𝑏 ⊢ wait(𝑎, 𝑥 (𝑏)) = wait(𝑎, 𝑥 (𝑎 ⊕ 𝑏)) (12)

The wait and fork operations commute; fork is commutative and associative.
𝑥 : 1, 𝑦 : 0 | 𝑏 ⊢ wait(𝑏, fork(𝑎.𝑥 (𝑎), 𝑦)) = fork(𝑎.wait(𝑏, 𝑥 (𝑎)),wait(𝑏,𝑦)) (13)

𝑥 : 2, 𝑦 : 0, 𝑧 : 0 | − ⊢ fork(𝑎.fork(𝑏.𝑥 (𝑎, 𝑏), 𝑦), 𝑧) = fork(𝑏.fork(𝑎.𝑥 (𝑎, 𝑏), 𝑧), 𝑦) (14)
𝑥 : 1, 𝑦 : 1, 𝑧 : 0 | − ⊢ fork(𝑎.𝑥 (𝑎), fork(𝑏.𝑦 (𝑏), 𝑧)) = fork(𝑏.fork(𝑎.𝑥 (𝑎), 𝑦 (𝑏)), 𝑧) (15)

The stop operation acts as a unit for fork.
𝑥 : 0 | − ⊢ fork(𝑎.wait(𝑎, stop), 𝑥) = 𝑥 (16)
𝑥 : 1 | 𝑏 ⊢ fork(𝑎.𝑥 (𝑎),wait(𝑏, stop)) = 𝑥 (𝑏) (17)

Fig. 5. Equations for the parameterized algebraic theory of dynamic threads T .

observable action 𝜎 and finishes. Parameters carry a semi-lattice structure, so it is possible to wait
on a compound thread ID, e.g. wait(𝑎1 ⊕ 𝑎2, 𝑧) waits for both 𝑎1 and 𝑎2, or on no thread ID at all, 0.

Example 4.1. The term 𝑡1 encodes sequential execution of action 𝜎1 followed by 𝜎2, while 𝑡2 and
𝑡3 encode concurrent execution of 𝜎1 and 𝜎2:

𝑡1 = fork(𝑎.wait(𝑎, act𝜎2 ), act𝜎1 ) 𝑡2 = fork(𝑎.act𝜎2 , act𝜎1 ) 𝑡3 = fork(𝑎.act𝜎1 , act𝜎2 )

However, 𝑡2 and 𝑡3 have slightly different intended semantics. In the term fork(𝑏.wait(𝑏, act𝜏 ), 𝑡2)
the ID 𝑏 refers only to the thread act𝜎2 and not to its child act𝜎1 , so a possible execution is 𝜎2𝜏𝜎1.
But this is not possible in fork(𝑏.wait(𝑏, act𝜏 ), 𝑡3) because here 𝜎1 must happen before 𝜏 .

More generally, in the expression fork(𝑎.𝑥 (𝑎), 𝑦) we often refer to 𝑥 as the main thread because
its ID is available to the environment to wait on, while the ID of 𝑦 is only available to 𝑥 .

4.1.2 Equations. The equational axioms for the theory of dynamic threads appear in Figure 5.
There are no equations involving observable actions act𝜎 . Equation (12) states that if 𝑥 is waiting
for 𝑎 to finish, then waiting for 𝑎 in the future is redundant. Commutativity of fork, eq. (14), holds
only if the children 𝑦 and 𝑧 do not use each other’s IDs. Similarly, associativity, eq. (15), holds if
the parent 𝑥 does not use the ID 𝑏 of 𝑧. Equation (16) says that forking a child 𝑥 and waiting for it
to finish is the same as running 𝑥 as the main thread. Equation (17) removes a child that does not
perform any observable action; it involves a substitution of parameter 𝑏 for 𝑎 in 𝑥 .

Example 4.2. Similarly to the discussion in Section 2.2.1, we can use act𝜎 to encode an operation
perform𝜎 (𝑥) which executes action 𝜎 then continues as 𝑥 :

perform𝜎 (𝑥)
def
= fork(𝑎.wait(𝑎, 𝑥), act𝜎 )

We can recover act𝜎 from perform𝜎 (𝑥) by setting 𝑥 to be stop and using eq. (16).

Example 4.3. The node𝜎 operation from Example 3.7 can be encoded as:

node𝜎 (𝑎, 𝑏.𝑥 (𝑏))
def
= fork(𝑏.𝑥 (𝑏),wait(𝑎, act𝜎 ))
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Equation (7) for node𝜎 amounts to commutativity of fork (eq. (14)), while eq. (8) can be derived:
node𝜎 (𝑎, 𝑏.𝑥 (𝑏)) = fork(𝑏.𝑥 (𝑏),wait(𝑎, fork(𝑐.wait(𝑐, stop), act𝜎 ))) (eq. (16))

= fork(𝑏.𝑥 (𝑏), fork(𝑐.wait(𝑎 ⊕ 𝑐, stop),wait(𝑎, act𝜎 ))) (eq. (13) and eq. (11))
= fork(𝑐.𝑥 (𝑎 ⊕ 𝑐),wait(𝑎, act𝜎 )) (eqs. (15) and (17))

Example 4.4. In the term 𝑡 = fork(𝑎.wait(𝑎, act𝜎1 ), fork(𝑏.stop, act𝜎2 )) thread ID 𝑎 only refers to
the thread stop and not to its child act𝜎2 :

𝑡 = fork(𝑏.fork(𝑎.wait(𝑎, act𝜎1 ), stop), act𝜎1 ) (eq. (15))
= fork(𝑏.fork(𝑎.wait(𝑎, act𝜎1 ),wait(0, stop)), act𝜎1 ) (eq. (10))
= fork(𝑏.act𝜎1 , act𝜎2 ) (eq. (17) and eq. (10))

4.2 Normal Forms
In this section, we show that all the terms in the theory of dynamic threads T are equal, up to the
derivable equality =T , to a convenient subclass of terms, which we refer to as normal forms. We
define a normal form to be a term in context of the form:

Γ | 𝑎1, ... , 𝑎𝑛 ⊢ fork(𝑏1. ... fork(𝑏𝑝 .wait(𝑢𝑝+1, stop),wait(𝑢𝑝 , 𝑡𝑝 )), ...wait(𝑢1, 𝑡1)) (18)
where each subterm 𝑡𝑖 is either an observable action act𝜎 or a variable 𝑥 (𝑢𝑖1, ... , 𝑢𝑖𝑚), for some 𝑥 : 𝑚
in Γ. We also require that the parameters (i.e. compound thread IDs) 𝑢1, ... , 𝑢𝑝 , and the parameters
occurring in each 𝑡𝑖 = 𝑥 (𝑢𝑖1, ... , 𝑢𝑖𝑚) satisfy closure conditions explained below.

Informally, a normal form consists of a parent that forks 𝑝 child threads, waits on some collection
of thread IDs, 𝑢𝑝+1, then finishes. A child must perform exactly one action, or be a free computation
variable. Thanks to the term formation rules, 𝑢𝑖 can only use thread IDs 𝑏1, ... , 𝑏𝑖−1 that have been
forked earlier, or thread IDs from the context 𝑎1, ... , 𝑎𝑛 .

Example 4.5. The term fork(𝑏1.wait(𝑏1, act𝜎2 ), act𝜎1 ), from Example 4.1, is not in normal form
but it is (=T)-equal to the following normal form:

nf1 = fork(𝑏1.fork(𝑏2.wait(𝑏1 ⊕ 𝑏2, stop),wait(𝑏1, act𝜎2 )), act𝜎1 )
To show this, use eq. (16) followed by (13) and (11) to show the subterm wait(𝑏1, act𝜎2 ) equals

wait(𝑏1, fork(𝑏2.wait(𝑏2, stop), act𝜎2 )) = fork(𝑏2.wait(𝑏1 ⊕ 𝑏2, stop),wait(𝑏1, act𝜎2 )) .

4.2.1 Closure conditions for normal forms. The closure conditions that a term of shape (18) needs
to satisfy to be a normal form are that: if ID 𝑏 𝑗 appears in 𝑢𝑖 , then all the IDs in 𝑢 𝑗 are included
in 𝑢𝑖 ; the analogous condition when 𝑏 𝑗 appears in 𝑢𝑖𝑘 , where 𝑡𝑖 = 𝑥 (𝑢𝑖1, ... , 𝑢𝑖𝑚); and the IDs in 𝑢𝑖
must appear in each 𝑢𝑖𝑘 . Imposing these closure conditions means that a normal form contains
redundant information about dependencies between different threads, but this will help us formulate
a correspondence between normal forms and semantic objects, in Section 5.1.2 and Theorem 5.4.

Example 4.6. The normal form from Example 4.5 satisfies these closure conditions, as does the
following term, with free IDs 𝑎1 and 𝑎2:
nf2 = fork(𝑏1 .fork(𝑏2.wait(𝑏1 ⊕𝑏2 ⊕𝑎1, stop),wait(𝑏1 ⊕𝑎1, 𝑥 (𝑏1 ⊕𝑎1 ⊕𝑎2))),wait(𝑎1, act𝜎1 )) (19)

Definition 4.7. Fix a context of computation variables Γ. For each natural number 𝑛, define the
set NFΓ (𝑛) to contain normal forms, i.e. terms of shape (18) respecting the closure conditions above,
quotiented by: the equivalence relation generated by reordering of child threads that do not depend
on each other, and by the semi-lattice equations on compound thread IDs. Moreover, NFΓ has a
functorial action on relations 𝑅 ∈ [𝑛] × [𝑛′] given by parameter substitution.
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This definition implies that two representatives of the same equivalence class of normal forms are
also (=T)-equal in the theory of dynamic threads (Figure 5) because the reordering of independent
child threads corresponds to eq. (14), and =T is closed under the semi-lattice equations by definition.

Theorem 4.8. Every term Γ | 𝑎1, ... , 𝑎𝑛 ⊢ 𝑡 in the theory of dynamic threads T is derivably equal
to a, not necessarily unique, equivalence class of normal forms from NFΓ (𝑛).

We prove the theorem by induction on terms using the equations from Figure 5. As a corollary,
normal forms map surjectively onto (equivalence classes of) terms. We have not shown for now that
every term is equal to a unique equivalence class of normal forms, we prove this in Corollary 5.5.

5 A REPRESENTATION THEOREM FOR THE THEORY OF DYNAMIC THREADS
In this sectionwe interpret the parameterized theory of dynamic threads from Section 4 semantically,
using a notion of labelled poset similar to that used in Section 3.3.3. In Section 5.1 we discuss
labelled posets informally, then in Sections 5.2 and 5.3 we give their formal definition and show
that they form a free model. In Section 6, we show that this model is in a certain sense complete.

5.1 Labelled Posets with Holes by Example
We introduce labelled posets by example and use terms from the theory of dynamic threads (Sec-
tion 4) to motivate them. We define labelled posets formally in Definitions 5.1 and 5.2.

5.1.1 Labelled posets represent terms. Consider Figure 6 (a): two elements of the poset are labelled
by observable actions 𝜎1 and 𝜎2. The solid lines represent causal dependencies and induce a partial
order: 𝜎1 must happen before 𝜎2. All posets contain a distinguished maximal element s which
represents the end of the main thread; we will use s when defining an operation analogous to fork
for posets. In Figure 6 (b), 𝜎2 is part of the main thread but 𝜎1 is not, as discussed in Example 4.1.
Elements of the poset may be labelled by computation variables, for example, 𝑥 : 0 in Figure 6 (c).
A term’s free thread IDs appear as minimal elements in its poset, e.g. in Figure 6 (d) they are

numbered 1 and 2. Bound thread IDs do not appear in the poset. Figure 6 (d) depicts the poset of:

𝑥 : 1 | 𝑎1, 𝑎2 ⊢ fork(𝑏1 .wait(𝑏1, 𝑥 (𝑏1 ⊕ 𝑎2)),wait(𝑎1, act𝜎1 ))

In the poset, there is one element labelled 𝑥 which has one input. The dotted line is not part of the
partial order; it represents the thread IDs passed to variable 𝑥 and means that 𝑥 may wait for 𝑎2,
depending on what computation 𝑥 is. The dotted line induces a relation called visibility which is
assumed to be downward-closed with respect to the partial order (the solid line) and to contain all
elements below 𝑥 in the partial order; therefore we omit to draw dotted lines from 𝜎1 and 1 into 𝑥 .

5.1.2 Labelled posets are normal forms. Recall that a normal form has the shape below, where each
𝑡𝑖 is either one observable action or a computation variable from Γ:

Γ | 𝑎1, ... , 𝑎𝑛 ⊢ fork(𝑏1. ... fork(𝑏𝑝 .wait(𝑢𝑝+1, stop),wait(𝑢𝑝 , 𝑡𝑝 )), ...wait(𝑢1, 𝑡1))

The corresponding poset has 𝑛 minimal elements corresponding to the free thread IDs 𝑎1, ... , 𝑎𝑛 .
There is one labelled element for each of the terms 𝑡1 to 𝑡𝑝 . The parent, which stops, corresponds
to the distinguished maximal element s. The partial order (solid line) encodes the dependencies
given by the compound thread IDs 𝑢1 to 𝑢𝑝+1. The visibility relation (dotted line) corresponds to
the thread IDs passed to a variable 𝑡𝑖 = 𝑥 (𝑢𝑖1, ... , 𝑢𝑖𝑚). The closure conditions on normal forms
from Section 4.2.1 correspond to the transitivity of the partial order and to the fact that the visibility
relation is downward-closed with respect to the partial order.
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Fig. 6. Examples of labelled posets. (a) is the term fork(𝑎.wait(𝑎, act𝜎2 ), act𝜎1 ). (b) is fork(𝑎.act𝜎2 , act𝜎1 ). (c)
is fork(𝑎.wait(𝑎, 𝑥), act𝜎 ). (d) is the normal form in eq. (19). (g) is the result of substituting (f) for (𝑥 : 2) in
(𝑒). (h) is the representation of Figure 4 (c) using the notion of labelled poset introduced in this section.

5.1.3 Substitution for labelled posets. Just like terms in a parameterized theory, labelled posets
admit substitution of another poset for a computation variable; the formal definition is discussed
in Section 5.3.2. In Figure 6, posets (e) and (f) represent respectively the terms

𝑥 : 2 | 𝑎1 ⊢ fork(𝑏1.fork(𝑏2.wait(𝑎1, 𝑥 (𝑏1, 𝑏2)), act𝜎2 ), act𝜎1 ) − | 𝑎1, 𝑏1, 𝑏2 ⊢ wait(𝑏1, act𝜎 )

while (g), the result of substituting (f) for 𝑥 : 2 in (e), is the term:

− | 𝑎1 ⊢ fork(𝑏1.fork(𝑏2 .wait(𝑎1,wait(𝑏1, act𝜎 )), act𝜎2 ), act𝜎1 )

The input 1 of both (e) and (f) gets identified, while inputs 2 and 3 of (f) are mapped to the two
inputs of variable 𝑥 .
Substitution of a compound thread ID for an input of the poset corresponds to parameter

substitution on terms. We define this operation on posets in Definition 5.3.

5.1.4 Connection to labelled posets from Section 3.3.3 and to ordinary labelled posets. The Σ-labelled
posets with 𝑛 inputs and𝑚 outputs from Definition 3.11 are a special case of the labelled posets from
this section. For example, the poset in Figure 4 (c), which corresponds to the term 𝑥 : 2 | 𝑎1, 𝑎2 ⊢
node𝜎 (𝑎1 ⊕ 𝑎2, 𝑏1 .node𝜏 (𝑎1, 𝑏2 .𝑥 (𝑏2, 𝑏1))), is shown in Figure 6 (h). The two inputs of variable 𝑥
correspond to the two outputs of the poset from Figure 4 (c).

A labelled poset with no inputs and no elements labelled by computation variables is an ordinary
labelled poset in the sense of Definition 2.3, i.e. a partially ordered set (𝑋, ≤) with a function𝑋 → Σ,
provided we regard s as a label as well.

5.2 Labelled Posets with Holes Formally
The following two definitions formalize the ideas about labelled posets from the previous section.

Definition 5.1. Let Γ = 𝑥1 : 𝑚1, ... , 𝑥𝑘 : 𝑚𝑘 be a context of computation variables, and Σ be a set
of observable actions. A (Γ, Σ)-labelled poset with 𝑛 inputs 𝐺 = ⟨𝑉1,𝑉2, ≤𝐺 , 𝑙1, 𝑙2⟩ consists of:

• the set of 𝑛 input vertices [𝑛] = {1, . . . , 𝑛};
• finite disjoint sets of vertices 𝑉1 (labelled by actions) and 𝑉2 (labelled by variables);
• a distinguished vertex s;
• a partial order ≤𝐺 on the underlying set |𝐺 | def= [𝑛] ⊎𝑉1 ⊎𝑉2 ⊎ {s} (depicted by solid lines);
• a labelling function 𝑙1 : 𝑉1 → Σ, from the vertices in 𝑉1 to observable actions;
• a function 𝑙2 that labels the vertices in 𝑉2 with variables (𝑥 : 𝑚) from Γ:

𝑙2 : 𝑉2 →
∑︁

(𝑥 :𝑚) ∈Γ

(
𝑓 : [𝑚] → P(|𝐺 |)

)
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Fig. 8. Examples of forking on labelled posets: forking parent (a) with child (b) gives (d). If
instead, the child is (c), the result of forking is (e). (f) is the result of applying wait1 to (c).

and depending on the arity𝑚 of this variable, 𝑙2 also assigns a function 𝑓 : [𝑚] → P(|𝐺 |)
into the powerset of |𝐺 |. (Each 𝑓 is depicted by dotted lines).

If there are no inputs and no vertices labelled by variables, 𝑛 = 0 and𝑉2 = ∅, then a labelled poset
becomes an ordinary labelled poset. An isomorphism 𝛼 : 𝐺 → 𝐺 ′ between labelled posets consists
of two bijections 𝛼1 : 𝑉1 → 𝑉 ′

1 and 𝛼2 : 𝑉2 → 𝑉 ′
2 which preserve the two labelling functions, in a

suitable sense, and such that id[𝑛] ⊎ 𝛼1 ⊎ 𝛼2 ⊎ ids preserves and reflects the partial order.
To obtain the correspondence between labelled posets and normal forms explained in Section 5.1.2,

we restrict our attention to labelled posets that are well-formed.

Definition 5.2. An (Γ, Σ)-labelled poset with 𝑛 inputs 𝐺 = ⟨𝑉1,𝑉2, ≤𝐺 , 𝑙1, 𝑙2⟩ is well-formed if:
(1) the 𝑛 inputs are minimal and s is maximal, with respect to the partial order ≤𝐺 ;
(2) for each 𝑒 ∈ 𝑉2 such that 𝑙2 (𝑒) = (𝑥 : 𝑚, 𝑓 : [𝑚] → P(|𝐺 |)) and for each 𝑖 ∈ [𝑚]: 𝑒 ∈ 𝑓 (𝑖)

and s ∉ 𝑓 (𝑖), and 𝑓 (𝑖) is downward-closed with respect to ≤𝐺 .
(3) Consider the visibility relation 𝑆 ⊆ |𝐺 | × |𝐺 | induced by the labelling function 𝑙2:

(𝑒′, 𝑒) ∈ 𝑆 ⇐⇒ 𝑒 ∈ 𝑉2 and if 𝑙2 (𝑒) = (𝑥 : 𝑚, 𝑓 ) then 𝑒′ is in the image of 𝑓 .
The transitive closure of the relation (≤𝐺 ) ∪ 𝑆 is anti-symmetric.

All the labelled posets discussed in Section 5.1 satisfy the well-formedness conditions above.
Requiring that 𝑠 is maximal and 𝑠 ∉ 𝑓 (𝑖) ensures that child threads do not know the ID of the main
thread. Downward-closure of 𝑓 (𝑖) and 𝑒 ∈ 𝑓 (𝑖) correspond to some of the closure conditions on
normal forms (Section 4.2.1). Condition (3) ensures that, when taking into account the visibility
relation, there are no cycles in the labelled poset. Overall, well-formedness ensures that a labelled
poset can be linearly ordered into a normal form of shape (18). For example, the poset in Figure 7
cannot be linearized and does not satisfy condition (3).

5.3 The Labelled Poset Model and Representation Theorem
5.3.1 Model structure. In order to build a model for the theory of dynamic threads out of labelled
posets, we organize them into a functor 𝑇Γ of type FinRel → Set as follows.

Definition 5.3. Let Γ be a context of computation variables. For each natural number 𝑛, define
the set 𝑇Γ (𝑛) to contain isomorphism classes of well-formed (Γ, Σ)-labelled posets with 𝑛 inputs. The
functorial action on relations 𝑅 ⊆ [𝑛] × [𝑛′] acts on the inputs of a poset by updating 𝑖 ≤ 𝑒 to
𝑖′ ≤ 𝑒 if (𝑖, 𝑖′) ∈ 𝑅, and updating the labelling function 𝑙2 accordingly.

We can equip 𝑇Γ with a model structure, in the sense of Definition 3.8, for the fork, wait, stop
and act𝜎 operations of the theory of dynamic threads. For each natural number 𝑛, we define:

fork𝑛 : 𝑇Γ (𝑛 + 1) ×𝑇Γ (𝑛) → 𝑇Γ (𝑛).



932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980

20 O. Kammar, Jack Liell-Cock, Sam Lindley, Cristina Matache, and Sam Staton

The labelled vertices of fork𝑛 (𝐺1,𝐺2) are the union of those from 𝐺1 and 𝐺2 and the labels are
preserved. The partial order of fork𝑛 (𝐺1,𝐺2) is obtained by connecting the (𝑛 + 1)-th input of 𝐺1
to the s element of𝐺2 and closing under transitivity. The visibility relation is obtained via the same
connection from those of 𝐺1 and 𝐺2.
Figure 8 shows an example of forking. The parent (a) and the children (b) and (c) correspond

respectively to the terms:
𝑥 : 1 | 𝑎1, 𝑎2 ⊢ 𝑡1 = fork(𝑏1.fork(𝑏2.wait(𝑎2, 𝜎2), 𝑥 (𝑎2)),wait(𝑎1, 𝜎1))

𝑥 : 1 | 𝑎1 ⊢ 𝑡2 = wait(𝑎1, act𝜎3 ) 𝑥 : 1 | 𝑎1 ⊢ 𝑡3 = fork(𝑐.stop,wait(𝑎1, act𝜎3 ))
while (d) corresponds to fork(𝑎2.𝑡1, 𝑡2) and (e) corresponds to fork(𝑎2 .𝑡1, 𝑡3).

The operation wait𝑛 : 𝑇Γ (𝑛) → 𝑇Γ (𝑛 + 1) adds a new input 𝑛 + 1 and connects it to all the labelled
elements and to s. Figure 8 (f) is an example; it represents the term − | 𝑎1, 𝑎2 ⊢ wait(𝑎2, 𝑡3).
The operation stop𝑛 : 1 → 𝑇Γ (𝑛) picks out the poset with only the 𝑛 inputs and s as elements,

no labelled vertices, and with the discrete partial order. The act𝜎,𝑛 : 1 → 𝑇Γ (𝑛) operation gives a
poset with one vertex labelled by 𝜎 , directly below s in the partial order, and with the 𝑛 inputs not
connected to anything.

5.3.2 Main theorem. We now show that labelled posets form a model for the theory of dynamic
threads and that this model is free. Recall that we described the term model 𝐹T (𝑉Γ) as a free model
in Section 3.4.

Theorem 5.4 (Representation Theorem). For each context Γ, the functor 𝑇Γ from Definition 5.3
and the operations on labelled posets fork, wait, stop, act𝜎 respect the equations of the theory of
dynamic threads from Figure 5, and thus form a model of the theory, in the sense of Definition 3.9.

Moreover, 𝑇Γ is isomorphic to the term model 𝐹T (𝑉Γ) of the theory of dynamic threads.

Recall that in Section 5.1.3 we informally discussed substitution for labelled posets. Using the
isomorphism of models in the theorem above we can define substitution by translating a labelled
poset into an equivalence class of terms, using term substitution, then translating back to a poset.

5.3.3 Proof sketch of the Representation Theorem. To prove Theorem 5.4 we consider the diagram
below. Recall that the functor NFΓ , from Definition 4.7, contains equivalence classes of normal
forms, and 𝐹T (𝑉Γ) contains equivalence classes of terms.

𝐹T (𝑉Γ) 𝑇Γ

NFΓ

interp

reifyinc

The incmap is given by the inclusion of normal forms into terms. The map
interp is the unique map obtained by instantiating the universal property
of the free model 𝐹T (𝑉Γ) (Definition 3.13) for a suitable 𝑉Γ → 𝑇Γ that maps
computation variables to labelled posets; interp is essentially given by the
interpretation ⟦−⟧𝑇Γ of terms in the labelled poset model, from Section 3.3.2.

For each natural number 𝑛, we define a function reify𝑛 that linearizes a labelled poset into a
normal form, using the intuition from Section 5.1.2. To show that this gives a well-defined function,
natural in 𝑛, we use the conditions for a well-formed labelled poset (Definition 5.2), the closure
conditions and the equivalence relation on normal forms (Section 4.2.1).
We show that reify is both a left and a right inverse to the composite interp ◦ inc. To show

it is a left inverse we use induction on the number of child threads in a normal form; for the
right inverse, we use induction on the number of labelled elements in a poset. Knowing that inc is
surjective (Theorem 4.8) means that interp is an isomorphism.We already know from the definition
of the free model that interp is a homomorphism of models.

Corollary 5.5. The inclusion of equivalence classes of normal forms into equivalence classes of
terms is injective. By Theorem 4.8, every term is equal to a unique equivalence class of normal forms.
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6 A COMPLETENESS THEOREM FOR THE THEORY OF DYNAMIC THREADS
In Theorem 5.4, we have seen that terms Γ | 𝑎1, ... , 𝑎𝑛 ⊢ 𝑡 in the theory of dynamic threads
correspond exactly to (Γ, Σ)-labelled posets with 𝑛 inputs. When the context Γ is empty and 𝑛 = 0,
these labelled posets are in fact ordinary Σ-labelled posets i.e. a partially ordered set (𝑋, ≤) with
a function 𝑋 → Σ. The next theorem shows that our axiomatization of (Γ, Σ)-labelled posets
from Figure 5 is complete with respect to an equivalence relation induced by isomorphism of
ordinary Σ-labelled posets.
Given a term in context Γ | Δ ⊢ 𝑡 , a closing substitution 𝛾 is one that assigns to each variable

(𝑥 : 𝑚) from Γ a term 𝛾 (𝑥) =
(
− | Δ, 𝑏1, ... , 𝑏𝑚 ⊢ 𝑠

)
with no free computation variables, so that

− | Δ ⊢ 𝑡 [𝛾] holds. A closing context C[−] is a term with a hole such that given a term − | Δ ⊢ 𝑡 ,
the judgement − | − ⊢ C[𝑡] holds.
Theorem 6.1 (Completeness). Consider terms Γ | Δ ⊢ 𝑡1, 𝑡2 in the theory of dynamic threads.

If for all closing substitutions 𝛾 and for all closing contexts C[−] the two terms are equal, meaning
− | − ⊢ C[𝑡1 [𝛾]] = C[𝑡2 [𝛾]], then Γ | Δ ⊢ 𝑡1 = 𝑡2.

Proof sketch. First consider terms with no free computation variables − | 𝑎1, ... , 𝑎𝑛 ⊢ 𝑡1, 𝑡2.
Consider the context which binds each free thread ID to an observable action, and adds an observable
action act𝜎𝑛+1 at the end of the main thread:

C[−] = fork(𝑎1. ... fork(𝑎𝑛 .fork(𝑎𝑛+1 .wait(𝑎𝑛+1, act𝜎𝑛+1 ), [−]), act𝜎𝑛 ), ... act𝜎1 )
We assume 𝜎1, ... , 𝜎𝑛+1 are distinct from any observable actions occurring in 𝑡1 and 𝑡2.

Recall that C[𝑡1] and C[𝑡2] are interpreted as labelled posets in 𝑇∅ (0). If they are equal then
by Theorem 5.4 there is an isomorphism of labelled posets between ⟦C[𝑡1]⟧ and ⟦C[𝑡1]⟧. From
this we can construct an isomorphism between ⟦𝑡1⟧, ⟦𝑡2⟧ ∈ 𝑇∅ (𝑛) and deduce 𝑡1 = 𝑡2.
Now consider terms in context Γ | 𝑎1, ... , 𝑎𝑛 ⊢ 𝑡1, 𝑡2. Consider the
substitution𝛾 whichmaps each computation variable (𝑥𝑖 : 𝑚𝑖 ) from Γ to
the term − | 𝑎1, ... , 𝑎𝑛, 𝑏1, ... , 𝑏𝑚𝑖

⊢ 𝑠𝑖 depicted on the right as a labelled
poset with 𝑛+𝑚𝑖 inputs. We assume that the actions 𝜎𝑥 , 𝜎𝑥1 , ... , 𝜎𝑥𝑚𝑖

are
distinct for each computation variable 𝑥 , and distinct from the actions in
𝑡1 and 𝑡2. Note, we may encode “new” actions as distinct combinations.

s 𝜎𝑥1 . . . 𝜎𝑥𝑚𝑖

𝜎𝑥

(𝑛 + 1) (𝑛 +𝑚𝑖 )

𝑛. . .1

. . .

Assuming we have an isomorphism of labelled posets 𝛼 : ⟦𝑡1 [𝛾]⟧ → ⟦𝑡2 [𝛾]⟧, we can construct
an isomorphism 𝛼 ′ : ⟦𝑡1⟧ → ⟦𝑡2⟧. On labelled elements, 𝛼 ′ acts the same as 𝛼 , forgetting about
the elements labelled 𝜎𝑥1 , ... , 𝜎𝑥𝑚𝑖

. The elements labelled 𝜎𝑥 in ⟦𝑡1 [𝛾]⟧ correspond exactly to the
elements labelled (𝑥 : 𝑚) in ⟦𝑡1⟧. To show 𝛼 ′ is an isomorphism of (Γ, Σ)-labelled posets with 𝑛

inputs, we use the well-formedness of labelled posets that represent terms. In particular, we rely on
condition (3) from Definition 5.2 which says that the visibility relation does not induce cycles. □

7 DENOTATIONAL SEMANTICS, SOUNDNESS, ADEQUACY AND FULL ABSTRACTION
Sections 3–6 have developed a theory for an algebraic language based on fork and wait. The idea
of algebraic effects is that this can easily be extended to a full language. To demonstrate this, we
return to the programming language from Section 2, outlining how it can be given a semantics by
using our complete representation, which is sound, adequate, and fully abstract at first order with
respect to the operational semantics.

7.1 Interpretation
7.1.1 Summary. We interpret all types𝐴 of the programming language as functors ⟦𝐴⟧ ∈ SetFinRel.
The idea is that ⟦𝐴⟧(𝑤) is the set of interpretations of values of type 𝐴 in world 𝑤 , i.e. ⊢v𝑤 𝑣 : 𝐴.
Similarly, we interpret contexts Γ as functors ⟦Γ⟧ ∈ SetFinRel, i.e. world-indexed sets of valuations.
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We will interpret value expressions Γ ⊢v 𝑣 : 𝐴 as natural transformations ⟦𝑣⟧ : ⟦Γ⟧ → ⟦𝐴⟧
in SetFinRel. To interpret computation expressions, we build a monad 𝑇 on SetFinRel from the
representation, and interpret expressions Γ ⊢c 𝑡 : 𝐴 as natural transformations ⟦𝑡⟧ : ⟦Γ⟧ → 𝑇⟦𝐴⟧.

7.1.2 Interpretation of first-order types. The interpretation of the type of thread IDs is:
⟦tid⟧ = FinRel(1,−) 𝑖 .𝑒 . ⟦tid⟧(𝑤) � {𝑤 ′ | 𝑤 ′ ⊆ 𝑤}.

We thus interpret (compound) thread id values in world𝑤 as subsets of (non-compound) tids in𝑤 .
The interpretation of product and sum types uses the well-known and canonical categorical

structure of the functor category SetFinRel. Recall that products and coproducts in functor categories
are computed pointwise. Moreover, we have a strong connection with Section 3.4, since for a
context (𝑥1 : 𝑚1 . . . 𝑥𝑘 : 𝑚𝑘 ), the functor of variables is an interpretation of a type:

⟦∏𝑘
𝑖=1 𝐴𝑖⟧(𝑝) =

∏𝑘
𝑖=1⟦𝐴𝑖⟧(𝑝) ⟦∑𝑘

𝑖=1 𝐴𝑖⟧(𝑝) =
⊎𝑘

𝑖=1⟦𝐴𝑖⟧(𝑝) 𝑉𝑥1:𝑚1 ...𝑥𝑘 :𝑚𝑘
� ⟦∑𝑘

𝑖=1 tid
𝑚𝑖⟧. (20)

In fact, every first-order type is isomorphic to one of this form, since products distribute over sums.

7.1.3 Monad. We extend the parameterized algebraic theory for fork and wait to a strong monad
on SetFinRel, following [41, 42]. Recall (e.g. [35]) that a plain algebraic theory (such as monoids)
induces a monad (such as lists) on the category of sets, by letting 𝑇 (𝑋 ) be the free model of the
theory on the set 𝑋 . For a parameterized algebraic theory (such as the theory of fork and wait),
we can define a strong monad 𝑇 on the category SetFinRel by letting 𝑇 (𝑋 ) be the free model of the
theory on the functor 𝑋 ∈ SetFinRel. Recall that we have already characterized the free model over
𝑉Γ , in Theorem 5.4. Thus for first-order types, we can use this characterization of free models.

(Aside: every strong monad on SetFinRel that preserves sifted colimits arises from a parameterized
algebraic theory in this way, see [42]. This gives a monad-theory correspondence.)

7.1.4 Interpretation of higher order types. It is well-known that the category SetFinRel is cartesian
closed. For functors𝐺,𝐻 we have a functor 𝐻𝐺 determined by the currying isomorphism: to give a
natural transformation 𝐹 ×𝐺 → 𝐻 is to give a natural transformation 𝐹 → 𝐻𝐺 . We then interpret
the function type 𝐴 → 𝐵 using the monad, and this cartesian closed structure:

⟦𝐴 → 𝐵⟧ = (𝑇⟦𝐵⟧)⟦𝐴⟧.

7.1.5 Interpretation of terms. The interpretation of the concurrency-specific base constructions
is through the fact that 𝑇 (𝑋 ) is always a model of the parameterized algebraic theory, as follows.
These are sometimes called the ‘generic effects’ of the algebraic operations [33].
⟦fork⟧ = 𝜆().fork(𝜆𝑎.𝜂 (inj1 (𝑎)), 𝜂 (inj2 ())) : 1 → 𝑇 (⟦tid⟧ + 1) ⟦stop⟧ = 𝜆().stop : 1 → 𝑇 (0)
⟦wait⟧ = 𝜆𝑎.wait(𝑎, 𝜂 ()) : ⟦tid⟧ → 𝑇 (1) ⟦act

𝜎
⟧ = 𝜆().act𝜎 : 1 → 𝑇 (0)

If we elide (20) we can also regard these as the canonical terms:
fork() = fork(𝑎.𝑥 (𝑎), 𝑦 ()) wait(𝑎) = wait(𝑎, 𝑥) stop() = stop act

𝜎
() = act𝜎

The remainder of the interpretation of value and computation terms is the long-established interpre-
tation of a call-by-value language in a bicartesian closed category with a monad [26]. The language
constructs (sums, products and functions) match up with the categorical structure (coproducts,
products, and cartesian closure).
The interpretation of let𝑥 = . . . in . . . is given using the monad strength and the bind. For

first-order types, this amounts to the substitution of the parameterized algebraic theory. This is
informative to spell out. Let 𝐴 =

∑𝑘
𝑖=1 tid

𝑚𝑖 and 𝐵 =
∑𝑘 ′

𝑖=1 tid
𝑚′

𝑖 . Consider program expressions:
⊢c𝑎1 ...𝑎𝑝 𝑡 : 𝐴 𝑥 : 𝐴 ⊢c𝑎1 ...𝑎𝑝 𝑢 : 𝐵
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and we explain ⟦let𝑥 = 𝑡 in𝑢⟧. For 1 ≤ 𝑖 ≤ 𝑘 , let ⊢c
𝑎1 ...𝑎𝑝 ,𝑏1 ...𝑏𝑚𝑖

𝑢𝑖
def
= 𝑢 [inj𝑖 ( ®𝑏 )/𝑥 ] : 𝐵, where each

inj𝑖 ( ®𝑏) has type
∑𝑘

𝑖=1 tid
𝑚𝑖 . Then, by Theorem 5.4, we can regard ⟦𝑡⟧ ∈ 𝑇 (𝑉𝑚1 ...𝑚𝑘

) ( ®𝑎) and each
⟦𝑢𝑖⟧ ∈ 𝑇 (𝑉𝑚′

1 ...𝑚
′
𝑘′
) ( ®𝑎, ®𝑏) as terms

𝑥1 : 𝑚1 . . . 𝑥𝑘 : 𝑚𝑘 | 𝑎1 . . . 𝑎𝑝 ⊢ 𝑡 𝑥 ′1 : 𝑚′
1 . . . 𝑥

′
𝑘 ′ : 𝑚′

𝑘 ′ | 𝑎1 . . . 𝑎𝑝 , 𝑏1 . . . 𝑏𝑚𝑖
⊢ 𝑢𝑖

in the parameterized algebraic theory. Then the interpretation of ⊢c𝑎1 ...𝑎𝑝 let𝑥 = 𝑡 in𝑢 : 𝐵 in
𝑇 (𝑉𝑚′

1 ...𝑚
′
𝑘′
) ( ®𝑎) amounts to the following substituted term in the parameterized algebraic theory:

𝑥 ′1 : 𝑚′
1 . . . 𝑥

′
𝑘

: 𝑚′
𝑘 ′ | 𝑎1 . . . 𝑎𝑝 ⊢ 𝑡 [𝑢𝑖/𝑥𝑖 ]

For example, ⟦perform
𝜎
()⟧ ∈ 𝑇 (1) (0) is the semantics of both the program for perform

𝜎
() on the

left, and the term in the parameterized algebraic theory on the right:

let𝑥 = fork() in case𝑥 of
{
inj1 (𝑎) ⇒ wait(𝑎); return (),
inj2 () ⇒ act

𝜎
(),

}
: 1 𝑥 : 0 | − ⊢ fork(𝑎.wait(𝑎, 𝑥), act𝜎 ).

7.2 Adequacy, Contextual Equivalence, Soundness, and Full Abstraction
Lemma 7.1 (Adeqacy). For all ⊢c∅ 𝑡 : 0, we have ⟨[𝑎]𝑡⟩ ⇓ ⟦𝑡⟧.

Proof outline. We prove this in three steps.
(1) We extend term interpretations ⟦𝑡⟧ to well-formed configurations ⟦𝐶⟧.
(2) We show a soundness property for the reduction relation: semantic interpretation is pre-

served by reduction. For example, if 𝐶 −→ 𝐶′ then ⟦𝐶⟧ = ⟦𝐶′⟧. This is a straightforward
induction proof, but the statement is subtle, requiring accumulating the action labels.

(3) We pick a reduction sequence from ⟨[𝑎]𝑡⟩, noting by Proposition 2.7 that the choice of
sequence doesn’t matter and that it will terminate. A finished configuration only has the
waiting relation ⪯ remaining, and all the stopped threads. With the accumulated action
labels, this labelled poset is ⟦𝑡⟧, because reduction preserves semantic interpretations. □

Definition 7.2. Let Γ be a typing context and 𝐴 a type. A program context C[−] for Γ, 𝐴 is a
program of type 0 with a hole of type 𝐴. Thus, if Γ ⊢c∅ 𝑡 : 𝐴 then ⊢c∅ C[𝑡] : 0.

Two programs Γ ⊢c∅ 𝑡,𝑢 : 𝐴 are contextually equivalent, written 𝑡
ctx
= 𝑢, if for every (Γ, 𝐴) context

C[−], letting (�) denote isomorphism of labelled posets, we have that
⟨[𝑎]C[𝑡]⟩ ⇓ (𝑃, ℓ𝑃 ) & ⟨[𝑎]C[𝑢]⟩ ⇓ (𝑄, ℓ𝑄 ) =⇒ (𝑃, ℓ𝑃 ) � (𝑄, ℓ𝑄 )

By Proposition 2.7, the (𝑃, ℓ𝑃 ) and (𝑄, ℓ𝑄 ) are uniquely determined by C[𝑡] and C[𝑢] respectively.

Proposition 7.3 (Soundness). Suppose that Γ ⊢c∅ 𝑡,𝑢 : 𝐴. If ⟦𝑡⟧ = ⟦𝑢⟧ then 𝑡 ctx
= 𝑢.

Proof. We first handle the case where 𝐴 = 0. In that case, notice that ⟦𝑡⟧ ∈ 𝑇 (0) (0) can be
regarded as a labelled poset, by Theorem 5.4. We deduce the result from Lemma 7.1 as follows. We
consider any two terms in any typing context, Γ ⊢c∅ 𝑡,𝑢 : 𝐴, and any (Γ, 𝐴)-context, C[−]. Suppose
that ⟦𝑡⟧ = ⟦𝑢⟧. From Lemma 7.1, ⟨[𝑎]C[𝑡]⟩ ⇓ ⟦C[𝑡]⟧ and also ⟨[𝑎]C[𝑢]⟩ ⇓ ⟦C[𝑢]⟧. Since the
denotational semantics is compositional and ⟦𝑡⟧ = ⟦𝑢⟧, also ⟦C[𝑡]⟧ = ⟦C[𝑢]⟧. Thus 𝑡 ctx

= 𝑢. □

In particular, the standard 𝛽/𝜂 laws are sound, as are all the equations in Figure 5, such as (13):
wait(𝑏); fork() = let𝑥 = fork() inwait(𝑏); return𝑥

Theorem 7.4 (Full abstraction at first order). Suppose that 𝑎1 : 𝐴1 . . . 𝑎𝑝 : 𝐴𝑝 ⊢c∅ 𝑡,𝑢 : 𝐵 and

𝐴1 . . . 𝐴𝑝 and 𝐵 are all first order (no function types). Then ⟦𝑡⟧ = ⟦𝑢⟧ if and only if 𝑡 ctx
= 𝑢.
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Proof. From left to right follows from Theorem 7.3.
From right to left, we first consider the case where 𝑝 = 0 and 𝐵 = 0. Then contextual equivalence

with the empty context in particular, together with Lemma 7.1, gives ⟦𝑡⟧ = ⟦𝑢⟧.
We next consider the case where 𝐴1 = 𝐴2 = . . . 𝐴𝑝 = tid and 𝐵 =

∑𝑘
𝑖=1 tid

𝑚𝑖 . Suppose 𝑡 ctx
= 𝑢.

Via (20), ⟦𝑡⟧, ⟦𝑢⟧ ∈ 𝑇 (𝑉𝑥1:𝑚1 ...𝑥𝑘 :𝑚𝑘
) (𝑝), that is, 𝑡 and𝑢 are interpreted directly in the parameterized

algebraic theory. We must show that they are equal. By Theorem 6.1, it suffices to show that
C[⟦𝑡⟧] [𝛾] = C[⟦𝑢⟧] [𝛾] for all algebraic contexts C[−] and algebraic substitutions 𝛾 . We deduce
this by converting C[−] and 𝛾 into a program context (‘full definability’ at first order) so that we
can use the contextual equivalence 𝑡 ctx

= 𝑢.
First, we note that the programming language supports algebraic operations at all types, via the

generic effects: act𝜎 = act
𝜎
(), stop = stop() and

fork(𝑡,𝑢) = case fork() of {inj1 (𝑎) ⇒ 𝑡, inj2 (()) ⇒ 𝑢} wait(𝑎, 𝑡) = wait(𝑎); 𝑡 (21)

We use this to convert the algebraic context C[−] to a program context that binds the free variables
𝑎1 . . . 𝑎𝑝 . Moreover, each ‘substitutand’ 𝛾 (𝑥𝑖 ) has no computation variables, and hence can also be
regarded as a program of type 0 under (21). Now we define the computation program expression

𝑡 [𝛾] def
= case 𝑡 of {inj𝑖 ( ®𝑎) ⇒ 𝛾 (𝑥𝑖 )}𝑘𝑖=1

so that ⟦𝑡 [𝛾]⟧ = ⟦𝑡⟧[𝛾] ∈ 𝑇 (0) (𝑝). Thus C[⟦𝑡⟧] [𝛾] = ⟦C[𝑡] [𝛾]⟧ = ⟦C[𝑢] [𝛾]⟧ = C[⟦𝑢⟧] [𝛾] as
required. Finally, we deduce the full result by using 𝛽/𝜂 laws for sums and the fact that every
first-order type is definably isomorphic to one of the form (20). □

8 FURTHER RELATED AND FUTUREWORK AND CONCLUDING REMARKS
Before concluding, we discuss any additional related work and future directions our work enables.

8.1 Further related work
Algebraic effects for concurrency. As briefly discussed in Section 1, algebraic theories have been

used to axiomatize features of process calculi, including in the style of algebraic effects. This includes
an algebraic-effects analysis of name creation and communication of names over channels in the
𝜋-calculus [40], and a treatment of features of CSP such as action, choice and concealment [46]
using algebraic effects and handlers. From a programming language perspective, concurrency in
the presence of nondeterminism and global shared state has been modelled using algebraic effects
by Abadi and Plotkin [2] and Dvir et al. [9, 11]. As discussed in Section 1.4, our work differs from
this previous work in that parallel composition of programs (i.e. forking) is an operation in the
equational axiomatization, whereas in previous work it was defined on top of the algebraic effects
presentation. The key ingredient that makes this possible is that we treat thread IDs as primitive
and use the framework of parameterized algebraic theories to capture thread creation.

Trace semantics. Brookes’s influential work [7] models a preemptive concurrent programming
language with global shared state. Programs denote closed sets of traces; these traces represent
a protocol involving the changes to memory by the program and its environment. This form of
semantics is robust under variation and extensions [4, 45, 47], including variations to weak memory
models [10, 17]. Dvir et al. [11] give a two-sorted algebraic theory for Brookes-like traces. Their
representation theorem recovers Brookes’s monad when restricted to one of the sorts. Interest-
ingly, the same representation recovers Abadi and Plotkin’s [2] monad for cooperative concurrent
programming with shared state when restricted to the other sort. Both Dvir et al.’s and Abadi and
Plotkin’s presentations presuppose non-deterministic choice as an algebraic operation. In contrast,
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in our parameterized algebraic theory the non-deterministic behaviour emerges from the more
primitive behavior of thread forking.

Effect handlers for concurrency. Effect handlers arose from the theoretical study of algebraic
effects [36] as away of supporting non-algebraic effects, such as an operation for catching exceptions.
They were quickly adopted as a general feature for modular programming with effects [20], and are
central to how concurrency is currently implemented in OCaml 5 [39] and in WebAssembly [30].
They provide the basis for a whole range of different concurrency effects such as actors, async/await,
coroutines, generators, and green threads. Alas, the practice of programming with effect handlers
departs substantially from the established theory: we do no yet how to specify the semantics of
these effects using any kind of equational axiomatisation, let alone as an algebraic effect.

Hazel is a separation logic [8] for effect handlers built on the concurrent separation logic Iris [19]
in the Rocq proof assistant. Hazel provides a powerful framework for reasoning about concurrency
effects implemented as effect handlers, but it is quite a departure from the elementary equational
reasoning provided by the theory of algebraic effects and gives little semantic insight into the
effects being defined. In contrast, our work characterises a particular concurrency effect (dynamic
threads) as an algebraic effect (specifically a parameterised algebraic effect) corresponding to a
natural denotational model. Future work may adapt and extend our approach to support a broad
range of different concurrency effects or connect to effect handlers and programming practice.

8.2 Future work
The framework of algebraic theories allows for modular combination of effects [16]. We could use
this to combine concurrency based on dynamic threads with other effects such as global and local
state [35] which is shared between threads, and to model probabilistic scheduling of threads.
We have used labelled posets (pomsets), which are standard in the study of true concurrency

e.g. [37], as the notion of observation in our operational semantics. We hope our denotational
model can connect in the future with an operational semantics based on interleaving traces, which
is more standard in process calculus e.g. [25].
Possible semantic variations of fork and wait abound, such as waiting for a thread and all its

descendants to finish, or limiting the number of threads that can exist at one time. Another extension
involves threads that finish with a value rather than with the empty type, and so the wait operation
returns that value to the parent. This extension is an abstract form of inter-thread communication.

8.3 Concluding remarks
We have studied the semantics of dynamic creation of threads using the framework of parameterized
algebraic theories, by treating thread IDs as abstract parameters. In Section 4 we gave an algebraic
theory that axiomatizes operations such as forking and waiting for threads. In Section 5 we provided
a syntax-free characterization of terms in this theory (Theorem 5.4) based on an extension of labelled
posets, which are well-established in concurrency theory. We then showed in Section 6 that our
theory is in a certain sense complete with respect to equality of ordinary labelled posets.
In Section 2 we introduced a simple concurrent programming language and its operational

semantics. To model this language denotationally in Section 7, we used our algebraic theory of
dynamic threads and the connection between algebraic theories and monadic semantics. We proved
that the denotational semantics is adequate, sound and fully abstract at first order.

In summary, our simple language demonstrates that the theory of algebraic effects applies directly
to concurrency primitives, and that it is profitable to pursue this algebraic perspective.
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