
A Semantics for Propositions as Sessions

Sam Lindley and J. Garrett Morris

The University of Edinburgh
{Sam.Lindley,Garrett.Morris}@ed.ac.uk

Abstract. Session types provide a static guarantee that concurrent pro-
grams respect communication protocols. Recently Caires, Pfenning, and
Toninho, and Wadler, have developed a correspondence between the
propositions of linear logic and session typed π-calculus processes. We
relate the cut-elimination semantics of this approach to an operational
semantics for session-typed concurrency in a functional language. We be-
gin by presenting a variant of Wadler’s minimal session-typed functional
language, GV. We give a small-step operational semantics for GV. We
develop a suitable notion of deadlock for our functional setting, based
on existing approaches for capturing deadlock in π-calculus, and show
that all well-typed GV programs are deadlock-free, deterministic, and
terminating. We relate GV to linear logic by giving translations between
GV and CP, a process calculus with a type system and semantics based
on classical linear logic. We prove that both directions of our translation
preserve reduction; previous translations from GV to CP, in contrast,
failed to preserve β-reduction. Crucially, we use a weak form of explicit
substitutions, effectively generalising lambda abstractions to closures,
in order to maintain a correspondence with cut reduction. Finally, to
demonstrate the modularity of our approach, we define two extensions
of GV and show that they preserve deadlock freedom.

1 Introduction

From massively distributed programs running across entire data centres, to hand-
held apps reliant on remote services for functionality, concurrency has become
a critical aspect of modern programs and thus a central problem in program
correctness. Assuring correct concurrent behaviour requires reasoning not just
about the types of data communicated, but the order in which the communica-
tion takes place. For example, the messages between an SMTP client and server
are all strings, but a client that sends the recipient’s address before the sender’s
address is in violation of the protocol, despite sending the correct type of data.

Session types, originally proposed by Honda [10], provide a mechanism to
reason about the state of communications. The type of a session captures the
expected behavior of a process communicating on that session. For example, we
could express a simplified session type for an SMTP client as

!SenderAddress.!RcptAddress.!Message.end,

where !T .S denotes the expectation that the process will send a value of type
T , then continue with the behavior specified by S . An important property of

session types is duality: we can derive the type of an SMTP server session from
the client’s session type:

?SenderAddress.?RcptAddress.?Message.end,

where ?T .S denotes the expectation that the process will send a value of type T ,
then continue with the behavior specified by S . Honda originally defined session
types for process calculi; recent work [8, 21] has investigated the use of session
types for concurrency in functional languages.

Session type systems are necessarily substructural—if processes can freely
discard or duplicate sessions, then the type system cannot guarantee that the
observable messages on sessions match the expectations of their types. Recent
work has sought to establish a correspondence between session types and linear
logic, the archetypal substructural logic for reasoning about state. Caires and
Pfenning [4] developed a correspondence between cut elimination in intuitionistic
linear logic and process reduction in a session-typed process calculus. Wadler [22]
adapted their approach to classical linear logic, emphasising the role of duality
in typing; the semantics of his system is given directly by the cut elimination
rules of classical linear logic. He also gives a type-preserving translation from a
simple functional calculus (GV) to a process calculus (CP); however, he gives
no semantics for GV besides the semantics of the translated terms.

In this paper, we develop a minimal, session-typed functional language, also
called GV. (Our language shares most of the distinctive features of Wadler’s, al-
though it differs in some details.) We present a small-step operational semantics
for GV, factored into functional and concurrent portions following the approach
of Gay and Vasconcelos [8]. The functional portion of our semantics differs from
standard presentations of call-by-value reduction only in that we adopt a weak
form of explicit substitution to better maintain a connection with cut reduc-
tion. The concurrent portion of our semantics includes the typical reductions
and equivalences of π-calculus-like systems. We develop a characterisation of
deadlock-free programs in our setting; this is not completely trivial because
closed expressions may return channels, so we cannot simply require that all
possible communication take place. We show that well-typed GV programs are
deadlock-free, deterministic, and terminating. We give translations between our
variant of GV and Wadler’s CP, and show that these translations preserve re-
duction as well as typing. Finally, we show that GV is a useful basis for further
language development by giving two extensions of GV and showing that our
deadlock freedom results transfer easily to the extended languages.

The paper proceeds as follows.

– We define a core linearly-typed functional language, by extending linear
lambda calculus with session-typed communication primitives (§2.1). We
present an (untyped) synchronous operational semantics for our core lan-
guage (§2.2). We characterise deadlock and normal forms; we show that
typed terms are deadlock-free, that closed typed terms evaluate to normal
forms (§2.3), and that evaluation is deterministic and terminating (§2.4).

Session types S ::= !T .S | ?T .S | end? | end! | S]
Types T ,U ::= S | 1 | T ×U | 0 | T + U | T (U
Terms L,M ,N ::= x | K M | λx .M | M N

| (M ,N) | let (x , y) = M in N
| inlM | inrM | case M {inl x 7→ N ; inr x 7→ N }
| () | M ;N | absurdM

Constants K ::= send | receive | fork | wait | link

Fig. 1: Syntax of GV Terms and Types

– We connect our language to the interpretation of session types as linear logic
propositions, by establishing a correspondence between the semantics of our
language and that of CP. We begin by introducing CP (§3). We show that
we can simulate CP reduction in GV (§3.1), and GV reduction in CP (§3.2).
As π-calculus-like process calculi provide substitution only for names, not
entire process expressions, the latter depends crucially on the use of weak
explicit substitutions in the semantics of GV lambda abstractions.

– We consider two extensions of our core language: one which has a single, self-
dual type for closed sessions, harmonising the treatment of closed channels
with their treatment in other session-typed calculi (§4.1), and another which
adds unlimited types and replicated behavior (§4.2). We show that these
extensions preserve the essential deadlock freedom properties of the core
language.

We conclude by discussing related (§5) and future (§6) work.

2 A Session-Typed Functional Language

2.1 Syntax and Typing

Figure 1 gives the syntax of GV types and terms. The types T include nullary
(0) and binary (T + U) linear sums, nullary (1) and binary (T × U) linear
products, and linear implication (T (U). We frequently write M ; N as the
elimination form of 1 in place of the more verbose let () = M in N . Session
types S include input (?T .S), output (!T .S), and closed sessions (end?, end!).
We also include a type S] of channels; values of channel type cannot be used
directly in terms, but will appear in the typing of thread configurations. The
terms are the standard λ-calculus terms, augmented with constructs for pairs
and sums. Figure 2 gives both typing rules and type schemas for the constants.

Concurrency. Concurrent behavior is provided by the constants. Communica-
tion is provided by send and receive. For example (assuming an extension of our
core language with numbers and arithmetic operators), a computation M that
received a pair of numbers along a channel z and then sent their sum along the
same channel could be expressed by

M , let ((x , y), z) = receive z in send (x + y , z)

Typing rules

T 6= S]

{x : T} ` x : T

K : T (U Γ ` M : T

Γ ` K M : U

Γ, x : T ` M : U

Γ ` λx .M : T (U

Γ ` M : T (U Γ ′ ` N : T

Γ, Γ ′ ` M N : U

Γ ` M : T Γ ′ ` N : U

Γ, Γ ′ ` (M ,N) : T ×U

Γ ` M : T × T ′ Γ ′, x : T , y : T ′ ` N : U

Γ, Γ ′ ` let (x , y) = M in N : U

Γ ` M : T

Γ ` inlM : T + U

Γ ` M : T + T ′ Γ ′, x : T ` N : U Γ ′, x : T ′ ` N ′ : U

Γ, Γ ′ ` case M {inl x 7→ N ; inr x 7→ N ′} : U

` () : 1

Γ ` M : 1 Γ ′ ` N : T

Γ, Γ ′ ` let () = M in N : T

Γ ` M : 0

Γ, Γ ′ ` absurdM : T

Type schemas for constants

send : T × !T .S (S receive : ?T .S (T × S fork : (S (end!)(S

wait : end? (1 link : S × S (end!

Duality

!T .S = ?T .S ?T .S = !T .S end? = end! end! = end?

Fig. 2: GV Typing Rules

(where the interpretation of nested patterns by sequences of bindings is stan-
dard). Sessions are treated linearly in GV. Thus, receive returns not only the
received value (the pair of x and y) but also a new copy of the session used for
receiving (z); similarly, send returns a copy of the session used for sending. Thus,
the term above is well-typed in the context z : ?(Int × Int).!Int .S , and evaluates
to a session of type S . Session initiation is provided by fork. If f is a function
from a session of type S to a closed session (of type end!), then fork f forks a
new thread in which f is applied to a fresh session of type S , and returns a ses-
sion of type S in order to communicate with the thread. For example, the term
fork (λz .M) returns a channel of type !(Int × Int).?Int .end?. Given a thread cre-
ated by fork f , the session returned from f is closed by fork; however, the other
end of the channel must be closed by calling wait. A client of the process M
could be defined as follows:

N , let z = send ((6, 7), z) in let (x , z) = receive z in wait z ; x

The combined process let x = fork (λz .M) in N evaluates to 13. The form
link (x , y) forwards messages sent on x to be received on y and vice versa.

Choice. In addition to input and output, typical session type systems also
provide session types representing internal (S1 ⊕ S2) and external (S1 N S2)
choice (also known as selection and branching, respectively). For example, we
could write a process that can either sum two numbers or negate one:

offer z { inl z 7→ let ((x , y), z) = receive z in send (x + y , z)
inr z 7→ let (x , z) = receive z in send (−x , z) }

This term initially requires z : (?(Int × Int).!Int .S) N (?Int .!Int .S). A client of
this process would begin by choosing which branch of the session to take; for
example, we could extend the preceding example as follows:

let z = select inl z in let z = send ((6, 7), z) in let (x , z) = receive z in wait z ; x

While we would expect a surface language to include selection and branching,
we omit them from our core calculus. Instead, we show that they are macro-
expressible using the linear sum type. The intuition is that selection is imple-
mented by sending a suitably tagged process, while branching is implemented
by a term-level branch on a received value. Concretely, we define the types by:

S1 N S2 , ?(S1 + S2).end? S1 ⊕ S2 , !(S1 + S2).end!

Note that we have the expected duality relationship: S1 N S2 = S1 ⊕ S2. We
can implement the select and offer primitives as follows (where ` ranges over
{inl, inr}):

select `M , fork(λx .send (` x ,M))

offer M {inl x 7→ P ; inr x 7→ Q} , let (x , y) = receive M in
wait y ; case x {inl x 7→ P ; inr x 7→ Q}

Correspondingly, nullary choice and selection may be encoded with the 0 type:

N{} , ?0.end? ⊕ {} , !0.end!

offer M {} , let (x , y) = receive M in wait y ; absurd{}

2.2 Evaluation

Following Gay and Vasconcelos [8], we factor the semantics of GV into a (deter-
ministic) reduction relation on terms (called −→V) and a (non-deterministic)
reduction on configurations of processes (called −→). Figure 3 gives the syntax
of values, configurations, and evaluation and configuration contexts.

Terms. To preserve a close connection between the semantics of our term lan-
guage and cut-reduction in linear logic, we define term reduction using weak
explicit substitutions [15]. In this approach, we capture substitutions at λ-terms
rather than immediately applying them to the body of the term. Our language

Values V ,W ::= x | λσx .M
| () | (V ,W) | inlV | inrV

Substitutions σ ::= {V1/x1, . . . ,Vn/xn}
where the xi are pairwise distinct

Evaluation contexts E ::= [] | E M | V E | K V | E ;M
| (E ,M) | (V ,E) | let (x , y) = E in M
| inlE | inrE | case E {inl x 7→ N ; inr x 7→ N ′}

F ::= φE
Configurations C ,D ::= φM | C ‖ C ′ | (νx)C
Configuration contexts G ::= [] | G ‖ P | (νx)G
Flags φ ::= ◦ | •

Fig. 3: Syntax of Values, Configurations, and Contexts

of terms, therefore, includes closures λσx .M , where σ provides the captured
substitution. We extend the typing judgement to include closures, as follows:

Γ, x : T ` Mσ : U dom(σ) = (fv(M) \ {x})
Γ ` λσx .M : T (U

The free variables of a closure λσx .M are the free variables of the range of
σ, not the free variables of M . The capture avoiding substitution Mσ of σ
applied to M is defined as usual on the free variables of M . Note that the side
condition on the domain of σ is preserved under substitution. We implicitly
treat plain lambda abstractions λx .M as closures λσx .M , where σ is a renaming
substitution restricted to the free variables of M less {x}; concretely:

λx .M , λσx .(Mσ′)
where fv(M) = {x1, . . . , xn} y1, . . . , yn are fresh variables

σ = {y1/x1, . . . , yn/xn} σ′ = {x1/y1, . . . , xn/yn}

Configurations. The grammar of configurations includes the usual π-calculus
forms for composition and name restriction. However, because functional com-
putations return values (which may, in turn, contain channels), we distinguish
between the “main” thread •M (which returns a meaningful value) and the
threads ◦M created by fork (which do not).

Reduction. Reduction rules for terms and configurations, and equivalences for
configurations, are given in Figure 4. Term reduction (−→V) is standard call-by-
value left-to-right evaluation; the only complication is that application not only
substitutes for the λ-bound variables, but also applies any substitution captured
by the closure. Configuration equivalence (≡) is also relatively standard. We
provide an additional equivalence observing that link is symmetric in order to
simplify the definition of reduction. Communication is provided by rule Send and

Term reduction

(λσx .M)V −→V M ({V /x}] σ)
();M −→V M

let (x , y) = (V ,V ′) in M −→V M {V /x ,V ′/y}
case (inlV) {inl x 7→ N ; inr x 7→ N ′} −→V N {V /x}

E [M] −→V E [M ′] if M −→V M ′

Configuration equivalence

F [link (x , y)] ≡ F [link (y , x)] C ‖ D ≡ D ‖ C C ‖ (D ‖ E) ≡ (C ‖ D) ‖ E

C ‖ (νx)D ≡ (νx)(C ‖ D) if x 6∈ fv(C) G[C] ≡ G[D] if C ≡ D

Configuration reduction

Send

F [send (V , x)] ‖ F ′[receive x] −→ F [x] ‖ F ′[(V , x)]

Lift
C −→ C ′

G[C] −→ G[C ′]

Fork
x is a fresh channel name

F [fork (λσy .M)] −→ (νx)(F [x] ‖ M ({x/y}] σ)

Wait

(νx)(F [wait x] ‖ φx) −→ F [()]

Link
x ∈ fv(M)

(νx)(F [link (x , y)] ‖ F ′[M]) −→ (νx)(F [x] ‖ F ′[wait x ;M {y/x}])

LiftV
M −→V M ′

G[M] −→ G[M ′]

Fig. 4: Reduction Rules and Equivalences for Terms and Configurations

session initiation is provided by rule Fork. Rule Wait combines synchronisation
of closed channels with garbage collection of the associated name restriction.
Rule Link is complicated by the need to produce a session of type end!; the
inserted wait synchronises with the produced session.

Relation Notation. We write R R′ for the sequential composition of relations
R and R′, R∪R′ for the union of relations R and R′, R? for the reflexive closure
of R, R+ for the transitive closure of R, and R? for the reflexive, transitive
closure of R.

Configuration Typing. Our syntax of configurations permits various forms of
deadlocked configurations. For example, if we define the terms M and N by

M , let (z , y) = receive y in
let x = send (z , x) in M ′

N , let (z , x) = receive x in
let y = send (z , y) in N ′

given suitable terms M ′ and N ′, then it is apparent that configurations such as
(νxy)M , (νxy)(M ‖ M) and (νxy)(M ‖ N) cannot reduce further, even though

Configuration typing

Γ ` M : T T 6= end!

Γ `• •M
Γ ` M : end!

Γ `◦ ◦M
Γ, x : S] `φ C

Γ `φ (νx)C

Γ, x : S `φ C Γ ′, x : S `φ
′
C ′

Γ, Γ ′, x : S] `φ+φ
′
C ‖ C ′

Combination of flags

◦+ ◦ = ◦ ◦+ • = • •+ ◦ = • •+ • undefined

Reduction of configuration typing environments

(!T .S)] −→ S] (?T .S)] −→ S]
T −→ T ′

Γ, x : T −→ Γ, x : T ′

Fig. 5: Configuration Typing

M and N can be individually well-typed. To exclude such cases, we provide
a type discipline for configurations (Figure 5). It is based on type systems for
linear π-calculus [14] with two significant differences.

– First, we seek to assure that there is at most one main thread. This constraint
is enforced by the flags (• and ◦) on the derivations: a derivation Γ `• C
indicates that configuration C contains the main thread, while Γ `◦ C
indicates that C does not contain the main thread. We write Γ ` C to
abbreviate ∃φ.Γ `φ C , that is, C may include a main thread.

– Second, we require that exactly one channel is shared at each composition of
processes. This restricts standard type systems for linear π-calculus, which
allow an arbitrary number of processes (including none) to be shared at a
composition of processes.

We see that the earlier stuck examples are ill-typed in this system: (νxy)M
because y must have a type S] in M ; (νxy)(M ‖ M) because there is no type
S] such that both S and S are of the form ?T .S ′, as required by receive; and,
(νxy)(M ‖ N) because both x and y must be shared between M and N , but the
typing rule for composition only allows one channel to be shared.

Observe that reduction may transform the types of sessions—for example,
if Γ ` F [send (V , x)] ‖ F ′[receive x], then Γ must contain an assignment x :
(!T .S)] for some type T and session type S . However, after reduction, for F [x] ‖
F ′[(V , x)] to be well-typed we need x : S]. We capture this constraint with the
reduction relation Γ −→ Γ ′. Now, we can show that reduction preserves typing.
We begin with term reduction.

Lemma 1. If Γ ` M : T and M −→V M ′, then Γ ` M ′ : T

The proof is by induction on M ; the cases are all standard. We can extend this
result to show preservation of configuration typing under reduction.

Theorem 2. If Γ ` C and C −→ C ′ then there is some Γ ′ such that Γ −→? Γ ′

and Γ ′ ` C ′.

The proof is in Appendix B.

Typing and Configuration Equivalence. Alas, our notion of typing is not
preserved by configuration equivalence. For example, assume that Γ ` (νxy)(C ‖
(D ‖ E)), where x ∈ fv(C), y ∈ fv(D), and x , y ∈ fv(E). We have that C ‖ (D ‖
E) ≡ (C ‖ D) ‖ E , but Γ 0 (νxy)((C ‖ D) ‖ E), as both x and y must be
shared between the processes C ‖ D and E . However, we can show that starting
from a well-typed configuration, we need never rely on an ill-typed equivalent
configuration to expose possible reductions.

Theorem 3. If Γ ` C , C ≡ C ′ and C ′ −→ D ′, then there exist Γ ′,D such that
Γ −→? Γ ′, D ≡ D ′, and Γ ′ ` D.

Proof. Observe that if Γ ` C , then for any pair of terms M1,M2 appearing in
C , there are environments Γ1, Γ2 and types T1,T2 such that Γ1 ` M1 : T1, Γ2 `
M2 : T2, and (because of the typing rule for composition) Γ1 and Γ2 share at
most one variable. By examination of the reduction rules, we can conclude that
there are well-typed C0,D0 such that C ′ = G [C0], C0 −→ D0 and D ′ = G [D0].
The result then follows by structural induction on C , examining the possible
equivalences in each case. ut

We extend Theorem 3 to sequences of reductions, defining =⇒ as (≡−→≡)?.

Corollary 4. If Γ ` C and C =⇒ D, then there exist Γ ′,D ′ such that Γ −→?

Γ ′, D ≡ D ′, and Γ ′ ` D ′.

2.3 Deadlock and its Absence

Previously (§2.2), we saw several examples of deadlocked terms which were re-
jected by our type system. We now present a general account of deadlock: we
characterise deadlocked configurations, and show that well-typed configurations
do not evaluate to deadlocked configurations.

We begin by observing that many examples of stuck configurations are al-
ready excluded by existing session-typing disciplines: in particular, those con-
figurations in which either too many or too few threads attempt to synchronise
on a given session. The cases of interest to us are those in which the threads
individually obey the session-typing discipline, but the order of synchronisations
in the threads creates deadlock. We say that a thread M is blocked on a ses-
sion x , written blocked(x ,M), if M has evaluated to some context surrounding
a communication primitive applied to x :

blocked(x ,M)
def⇐⇒ ∃N . M = E [send (N , x)]

∨M = E [receive x]
∨M = E [wait x]

In such a case, M can only reduce further in composition with another thread
blocked on x , and any communication on other sessions in M will be delayed until
a communication on x has occurred. In general, we abstract over the property
that y depends on x in M , abbreviated depends(x , y ,M); in other words, M
is blocked on x , but has y as one of its (other) free variables. We extend this
notion of dependency from single threads to configurations of threads, with the
observation that in a larger configuration intermediate sessions may participate
in the dependency.

depends(x , y ,E [M])
def⇐⇒ blocked(x ,M) ∧ y ∈ fv(E)

depends(x , y ,C)
def⇐⇒ (C ≡ G [M] ∧ depends(x , y ,M)) ∨ (C ≡ G [D ‖ D ′]

∧ (∃z .depends(x , z ,D) ∧ depends(z , y ,D ′)))

We now define deadlocked configurations as those with cyclic dependencies:

deadlocked(C)
def⇐⇒ C ≡ G [D ‖ D ′]∧∃x , y .depends(x , y ,D)∧depends(y , x ,D ′).

Because the definition of dependency permits intermediate sessions, this def-
inition encompasses cycles involving an arbitrary number of sessions. Finally,
we say that a configuration C is deadlock free if, for all D such that C =⇒ D ,
¬deadlocked(D). Observe that if C ≡ D , then deadlocked(C) ⇐⇒ deadlocked(D).

At this point, we can observe that in any deadlocked configuration, there
must be a composition of configurations that shares more than one session. This
is precisely the situation that is excluded by our configuration type system.

Lemma 5. If Γ ` C , and C = G [D ‖ D ′], then there is exactly one variable x
such that fv(D) ∩ fv(D ′) = {x}.

Proof. By structural induction on the derivation of Γ ` C ; the only interesting
case is for parallel composition, where the desired result is assured by the par-
titioning of the environment. ut

To extend this observation to deadlock freedom, we must take equivalence
into account. While it is true that equivalence need not preserve typing, there
are no equivalence rules that affect the free variables of individual threads. Thus,
cycles of dependent sessions are preserved by equivalence.

Lemma 6. If Γ ` C then ¬deadlocked(C).

Proof. By contradiction. Suppose deadlocked(C), then by expanding the def-
inition of deadlocked we know that there must exist variables x1, . . . , xn and
processes M1, . . . ,Mn in C such that

depends(x1, x2,M1) ∧ depends(x2, x3,M2) ∧ · · · ∧ depends(xn , x1,Mn).

Either n = 1, which violates linearity, or configuration C must partition the
cycle. However, any cut of the cycle is crossed by at least two channels, so C
must be ill-typed by Lemma 5. ut

Finally, we can combine the previous result with preservation of typing to
show that well-typed terms never evaluate to deadlocked configurations.

Theorem 7. If Γ ` M : T , then •M is deadlock-free.

Proof. If Γ ` M : T , then Γ ` •M , and so ¬deadlocked(•M) and, for any
D such that •M =⇒ D , we know that there is a well-typed D ′ ≡ D , and so
¬deadlocked(D). ut

Progress and Canonical Forms. We conclude the section by describing a
canonical form for configurations, and characterising the stuck terms resulting
from the evaluation of well-typed terms. One might hope that evaluation of
a well-typed term would always produce a value; however, this is complicated
because terms may return sessions. For a simple example, consider the term

• fork (λx .let (y , x) = receive x in send (y , x))

This term spawns a thread (which simply echoes once), and then returns the
resulting session; thus, the result of evaluation is a configuration equivalent to

(νx)(• x ‖ ◦ let (y , x) = receive x in send (y , x)).

Clearly, no more evaluation is possible, even though the configuration still con-
tains blocked threads. However, it turns out that we can show that evaluation
of terms that do not return sessions must always produce a value.

Definition 8. A process C is in canonical form if there is some sequence of
variables x1, . . . , xn−1 and terms M1, . . . ,Mn such that

C = (νx1)(◦M1 ‖ (νx2)(◦M2 ‖ · · · ‖ (νxn−1)(◦Mn−1 ‖ φMn) . . .)).

Note that canonical forms need not be unique. For example, consider the
configuration ` (νxy)(C ‖ D ‖ E) where x ∈ fv(C), y ∈ fv(D), and x , y ∈ fv(E).
Both (νx)(C ‖ (νy)(D ‖ E)) and (νy)(D ‖ (νx)(C ‖ E)) are canonical forms
of the original configuration. We can show that any well-typed term must be
equivalent to a term in canonical form; again, the key insight is that captured
by Lemma 5: if any two sub-configurations share at most one session, then we
can order the threads by the sessions they share.

Lemma 9. If Γ ` C , then there is some C ′ ≡ C such that Γ ` C ′ and C ′ is
in canonical form.

The proof is in Appendix B.
We can now state some progress results. We begin with open configurations:

each thread must be blocked on either a free variable or a ν-bound variable.

Theorem 10. Let Γ ` C , C 6−→ and let C ′ = (νx1)(◦M1 ‖ (νx2)(◦M2 ‖ · · · ‖
(νxn−1)(◦Mn−1 ‖ φMn) . . .)) be a canonical form of C . Then:

1. For 1 ≤ i ≤ n − 1 either blocked(xj ,Mi) where j ≤ i or blocked(y ,Mi) for
some y ∈ dom(Γ); and,

2. Either Mn is a value or blocked(y ,Mn) for some y ∈ {xi | 1 ≤ i ≤ n − 1} ∪
dom(Γ).

Proof. By induction on the derivation of Γ ` C ′, using the definition of −→. ut

We can strengthen the result significantly when we move to configurations
without free variables. To see why, consider just the first two threads of a con-
figuration (νx1)(M1 ‖ (νx2)(M2 ‖ . . .)). As there are no free variables, thread
M1 can only be blocked on x1. Now, from the previous result, thread M2 can
be blocked on either x1 or x2. But, were it blocked on x1, it could reduce with
thread M1; we can conclude it is blocked on x2. Generalising this observation
gives the following progress result.

Corollary 11. Let ` C , C 6−→ and let C ′ = (νx1)(◦M1 ‖ (νx2)(◦M2 ‖ · · · ‖
(νxn−1)(◦Mn−1 ‖ φMn) . . .)) be a canonical form of C . Then:

1. For 1 ≤ i ≤ n − 1, blocked(xi ,Mi); and,
2. Mn is a value.

Proof. By induction on the derivation of ` P ′, relying on Theorem 10. ut

Finally, observe that some subset of the variables x1, . . . , xn must appear in the
result V . Therefore, if the original expression returns a value that does not
contain any sessions, it will evaluate to a configuration with no blocked threads.

2.4 Determinism and Termination

It is straightforward to show that GV is deterministic. In fact, GV enjoys a
strong form of determinism, called the diamond property [2].

Theorem 12. If Γ ` C , C ≡−→≡ D1, and C ≡−→≡ D2, then there exists D3

such that D1 ≡−→≡ D3, and D2 ≡−→≡ D3.

Proof. First, observe that −→V is deterministic, and furthermore configuration
reductions always treat −→V redexes linearly. This means we need only con-
sider the interaction between different configuration reductions. Linear typing
ensures that two configuration reductions cannot overlap. Furthermore, each
configuration reduction is linear in the existing redexes, so we can straightfor-
wardly perform the reductions in either order. ut

It is not hard to see that the system remains deterministic if we extend the
functional part of GV with any well-typed confluent reduction rules at all.

Theorem 13 (Strong normalisation). If Γ ` C , then there are no infinite
≡−→≡ reduction sequences beginning from C .

To prove strong normalisation for core GV, one can use an elementary argument
based on linearity. When we add replication (§4.2) and other features, a standard
logical relations argument suffices. Strong normalisation also follows as a direct
corollary of Theorem 22 and the cut-elimination theorem for classical linear logic.

Syntax

Types A,B ::= A⊗ B | A O B | 1 | ⊥ | A⊕ B | A N B | 0 | >
Terms P ,Q ::= x ↔ y | νy (P | Q) | x (y).P | x [y].(P | Q)

| x [ini].P | case x {P ;Q} | x ().P | x [].0 | case x {}

Duality

(A⊗ B)⊥ = A⊥ O B⊥

(A O B)⊥ = A⊥ ⊗ B⊥
1⊥ = ⊥
⊥⊥ = 1

(A⊕ B)⊥ = A⊥ N B⊥

(A N B)⊥ = A⊥ ⊕ B⊥
>⊥ = 0

0⊥ = >

Typing

x ↔ w ` x : A,w : A⊥
P ` ∆, y : A Q ` ∆′, y : A⊥

νy (P | Q) ` ∆,∆′ x [].0 ` x : 1

P ` ∆, y : A, x : B

x (y).P ` ∆, x : A O B

P ` ∆, y : A Q ` ∆′, x : B

x [y].(P | Q) ` ∆,∆′, x : A⊗ B

P ` ∆
x ().P ` ∆, x : ⊥

P ` ∆, x : Ai

x [ini].P ` ∆, x : A1 ⊕A2

P ` ∆, x : A Q ` ∆, x : B

case x {P ;Q} ` ∆, x : A N B case x {} ` ∆, x : >

Fig. 6: CP Syntax and Typing

3 Classical Linear Logic

Figure 6 gives the syntax and typing rules for the multiplicative-additive frag-
ment of CP; we let ∆ range over typing environments. CP types and duality
are the standard propositions and duality function of classical linear logic, while
the terms are based on a subset of the π-calculus. The types N and ⊕ are in-
terpreted as external and internal choice; the types O and ⊗ are interpreted as
input and output, while their units ⊥ and 1 are interpreted as nullary input and
output. Note that CP’s typing rules implicitly rebind identifiers: for example, in
the hypothesis of the rule for O, x identifies a proof of B , while in the conclusion
it identifies a proof of A O B .

CP includes two rules that are logically derivable: the axiom rule, which
is interpreted as channel forwarding, and the cut rule, which is interpreted as
process composition.

Two of CP’s terms differ from standard π-calculus terms. The first is compos-
ition—rather than having distinct name restriction and composition operators,
CP provides one combined operator. This captures syntactically the restriction
that composed processes must share exactly one channel. The second is output:
the CP term x [y].(P | Q) includes output, composition, and name restriction
(the name y designates a new channel, bound in P). We will frequently write
x 〈y〉.P to abbreviate x [z].(y ↔ z | P) (see Appendix A for more discussion of
output in CP).

Structural congruence

x ↔ w ≡ w ↔ x
νy (P | Q) ≡ νy (Q | P)

νy (P | νz (Q | R)) ≡ νz (νy (P | Q) | R), if y 6∈ fv(R)
νx (P1 | Q) ≡ νx (P2 | Q), if P1 ≡ P2

Primary cut reduction rules

νx (w ↔ x | P) −→C P [w/x]
νx (x [y].(P | Q) | x (y).R) −→C νx (Q | νy (P | R))

νx (x [].0 | x ().P) ` ∆ −→C P
νx (x [ini].P | case x {Q1;Q2}) −→C νx (P | Qi)

νx (P1 | Q) −→C νx (P2 | Q), if P1 −→C P2

Commuting conversions

νz (x [y].(P | Q) | R) −→CC x [y].(νz (P | R) | Q), if z 6∈ fv(Q)
νz (x [y].(P | Q) | R) −→CC x [y].(P | νz (Q | R)), if z 6∈ fv(P)

νz (x (y).P | Q) −→CC x (y).νz (P | Q)
νz (x [ini].P | Q) −→CC x [ini].νz (P | Q)

νz (case x {P ;Q} | R) −→CC case x {νz (P | R); νz (Q | R)}

Fig. 7: CP Congruences and Cut Reduction

Cut Elimination. The semantics of CP terms are given by cut reduction, as
shown in Figure 7. We write fv(P) for the free names of process P . Terms are
identified up to structural congruence ≡ (as name restriction and composition
are combined into one form, composition is not always associative). We write
−→C for the cut reduction relation, −→CC for the commuting conversion re-
lation, and −→ for −→C ∪ −→CC . The majority of the cut reduction rules
correspond closely to synchronous reductions in π-calculus—for example, the
reduction of N against ⊕ corresponds to the synchronisation of an internal and
external choice. The rule for reduction of O against ⊗ is more complex than syn-
chronisation of input and output, as it must also manipulate the implicit name
restriction and composition in CP’s output term. The commuting conversions do
not correspond to any reduction rule in π-calculus. We write =⇒ for (≡−→≡)+,
=⇒C for (≡−→C≡)+, and =⇒CC for =⇒C (−→?

CC).

Just as cut elimination in logic shows that any proof can be transformed to
one that does not make use cut, the reduction rules of CP transform any term
into a term blocked on an external communication—that is to say, if P ` ∆,
then P =⇒CC P ′ where P ′ 6= νx (Q | Q ′) for any x ,Q ,Q ′. The final commuting
conversions play a central role in this transformation, moving any further internal
communication behind the external communication.

On types

LA⊗ BM = !LAM.LBM
LA O BM = ?LAM.LBM

L1M = end!

L⊥M = end?

LA⊕ BM = LAM⊕ LBM
LA N BM = LAM N LBM

L0M = ⊕{}
L>M = N{}

On terms
Lνx (P | Q)M = let x = fork (λx .LPM) in LQM

Lx ↔ yM = link (x , y)
Lx [y].(P | Q)M = let x = send (fork (λy .LPM), x) in LQM

Lx (y).PM = let (y , x) = receive x in LPM
Lx [].0M = x

Lx ().PM = let () = wait x in LPM
Lx [l].PM = let x = select l x in LPM

Lcase x {P ;Q}M = offer x {inl x 7→ LPM; inr x 7→ LQM}
Lcase x {}M = let (y , x) = receive x in absurd y

CLνx (P | Q)M = (νx)(CLPM ‖ CLQM)
CLPM = ◦ LPM, P is not a cut

Fig. 8: Translation of CP Terms into GV

3.1 Translation from CP to GV

In this section, we show that GV can simulate CP. Figure 8 gives the translation
of CP into GV; typing environments are translated by the pointwise extension
of the translation on types. We rely on our encoding of choice in GV (§2.1).

In translating CP terms to GV terms, the key observation is that CP terms
contain their continuations; for example, the translation of input includes both a
call to receive and the translation of the continuation. Additionally, the rebinding
that is implicit in CP syntax is made explicit in GV. The translation CL−M
translates top-level composition (i.e., composition not under any prefix) to GV
configurations; cuts that appear under prefixes are translated to applications of
fork. As CP processes do not have return values, the translation of a CP process
contains no main thread.

It is straightforward to see that the translation preserves typing; note that the
channels in the CP typing environment become free variables in its translation.

Theorem 14. If P ` ∆ then L∆M `◦ CLPM.

Structural congruence in CP is a subset of the structural congruence relation for
GV configurations; thus the translation trivially preserves congruence.

Theorem 15. If P ≡ Q, then CLPM ≡ CLQM.

Finally, observe that the translation of any prefixed CP term is a GV thread of
either the form F [K M] for K ∈ {send, receive,wait} or is ◦x for some variable
x . Thus, we can see that any cut reduction immediately possible for a process
P is similarly possible for LPM. Following such a reduction, several additional
GV reductions may be necessary to expose the next possible communication,

Session types

J!T .SK = JT K⊥ ⊗ JSK J?T .SK = JT K O JSK Jend!K = 1 Jend?K = ⊥

Functional types
JT K = VTW⊥, if T is not a session type

V0W = V0W
VT + UW = VTW⊕ VUW

V1W = V1W
VT ×UW = VTW⊗ VUW

VT (UW = VTW⊥ O VUW
VSW = JSK

Fig. 9: Translation of GV Types into CP

such as substituting the received values into the continuation in the case of the
translation of input, or spawning new threads in the translation of composition.

Theorem 16. If P ` ∆ and P −→C Q, then CLPM −→+ CLQM.

Proof. By induction on P ; the cases are all straightforward.

The commuting conversions in CP do not expose additional reductions, but
are only necessary to assure that the result of evaluation does not have a cut
at the top level. Our characterisation of deadlock freedom in GV has no such
requirement, so we have no need of corresponding steps in GV.

3.2 Translation from GV to CP

In this section, we show that CP can simulate GV. Figure 9 gives the transla-
tion on types and Figure 10 gives the translation on terms, substitutions, and
configurations; we translate typing environments by the pointwise extension of
the translation on types.

The translation on session types is homomorphic except for output, where the
output type is dualised. This accounts for the discrepancy between !T .S =?T .S
and (A⊗B)⊥ = A⊥ O B⊥. Following our previous work [16], the translation on
functional types is factored through an auxiliary translation V−W. The intuition
is that the translation JT K of a functional type T is the type of its interface,
whereas VTW is the type of its implementation.

As CP processes do not have return values, the translation JM Kz of a term
M of type T includes the additional argument z : JT K⊥, which is a channel
for simulating the return value. The translation on session terms is somewhat
complicated by the need to include apparently trivial axiom cuts (highlighted
in grey). These are needed to align with the translation of values, which permit
further reduction inside the value constructors. The output in the translation of
a fork arises from the need to apply the argument to a freshly generated channel
(notice that application is simulated by an output). Linking is simulated by a

Session terms

Jfork M Kz = νw (w ↔ z | νx (JM Kx | νy (x 〈w〉.x ↔ y | y [])))
Jlink (M ,N)Kz = νv (v ↔ z | νw (v ↔ w | νx (JM Kx | νy (JN Ky | w().x ↔ y))))
Jsend (M ,N)Kz = νx (JN Kx | νy (JM Ky | x 〈y〉.x ↔ z))

JreceiveM Kz = νy (JM Ky | y(x).νw (w ↔ y | z 〈x 〉.w ↔ z))
Jwait M Kz = νy (y ↔ z | JM Ky)

Functional terms

JxKz = x ↔ z
Jλσx .M Kz = JσK(z (x).JM Kz)

JLM Kz = νx (JM Kx | νy (JLKy | y〈x 〉.y ↔ z))
J()Kz = z []

Jlet () = M in N Kz = νy (JM Ky | y().JN Kz)
J(M ,N)Kz = νx (JM Kx | νy (JN Ky | z 〈x 〉.y ↔ z))

Jlet (x , y) = M in N Kz = νy (JM Ky | y(x).JN Kz)
JinlM Kz = νx (JM Kx | z [in1].x ↔ z)
JinrM Kz = νx (JM Kx | z [in2].x ↔ z)

Jcase L {inl x 7→ M ; inr x 7→ N }Kz = νx (JLKx | case x {JM Kz ; JN Kz})
JabsurdLKz = νx (JLKx | case x {})

Substitutions
J{Vi/xi}K(P) = ν̂(xi 7→ JViKxi)i [P]

ν̂(xi 7→ Pi)i [P] , νx1 (P1 | . . . νxn (Pn | P) . . .)

Configurations
J◦M Kz = νy (JM Ky | y [])
J•M Kz = JM Kz

J(νx)C Kz = JC Kz
JC ‖x C ′Kz = νx (JC Kz | JC ′Kz)

Fig. 10: Translation of GV Terms, Substitutions, and Configurations into CP

link (↔) guarded by a nullary input which matches the nullary output of the
output channel. Sending is simulated by output as one might expect. Receiving
is simulated by input composed with sending the result to the return channel.
Waiting is simulated by simply connecting the result to the return channel.

Variables are linked to the return channel. Closures are simulated by input,
subject to an appropriate substitution, and application by output. Unit val-
ues are simulated by empty output to the return channel. Pairs are simulated
by evaluating both components in parallel and transmitting the results to the
return channel. Injections are simulated by injections. Each elimination form
(other than application) guards the continuation with a suitable prefix, delaying
reduction of the continuation until a value has been computed to pass to it.

The translation of configurations is quite direct. We write C ‖x C ′ to indicate
that the variable x is shared by C and C ′; in a well-typed GV configuration,
there will always be exactly one such variable, so the translation is unambiguous.

Our translation differs from both Wadler’s [22] and our previous one [16],
neither of which simulate even plain β-reduction. This is because the obvious
translation to CP cannot simulate substitution under a lambda abstraction, mo-
tivating our use of closures / weak explicit substitution. Indeed, others have taken
advantage of full explicit substitutions in order simulate small-step semantics of
λ-calculi in the full π-calculus [20].

Another departure from the previous translations to CP is that, despite the
call-by-value semantics of GV, our translation is more in the spirit of call-by-
name. For instance, in the translation of an application L M , the evaluation of L
and M can happen in parallel, and β-reduction can occur before M has reduced
to a value. The previous translations hide the evaluation of M behind the prefix
y〈x 〉, which means that reduction of M can get stuck in the case that L is a free
variable. Short of performing CPS transformation on the translation, our new
approach seems necessary in order to ensure that J−K preserves reduction.

It is straightforward to show that the translation preserves typing.

Theorem 17.

1. If Γ ` M : T , then JM Kz ` JΓ K, z : JT K⊥.
2. If Γ ` C , then ∃T .JC Kz ` JΓ K, z : JT K⊥.

Proof. By induction on derivations. ut

We now show that reduction in GV is preserved by reduction in CP. First,
we observe that structural equivalence is preserved.

Theorem 18. If Γ ` C , Γ ` D, and C ≡ D, then JC Kz ≡ JDKz .

Proof. By induction on the derivation of Γ ` C . ut

As the translation on terms and configurations are compositional, we can
mechanically lift them to translations on evaluation contexts and configuration
contexts such that the following lemma holds by construction. Each translation
of a context takes two arguments: a function that describes the CP term to plug
into the hole, and an output channel.

Lemma 19. For X ∈ {E ,F ,G}, JX [M]Kz = JX K[JM K]z

We will make implicit use of Lemma 19 throughout our proofs. We write x 7→ P
for a function that maps a name x to a process P that depends on x .

We now show that substitution commutes with J−K.

Lemma 20. If Γ ` M : T , Γ ` σ : ∆, and z /∈ dom(σ), then JσK(JM Kz) =⇒
JMσKz .

Proof. By induction on the structure of M . Here we show the cases for variables
and closures.

– Case x . By linearity there exists V such that σ = {V /x}.

JσK(JxKz) = νx (JV Kx | x ↔ z) −→ JV Kz = JxσKz

– Case λσ
′
x .M .

JσK(Jλσ
′
x .M K)

= (σ′ = {Vi/xi}i)
JσK(ν̂(xi 7→ (JViKxi))i [z (x).JM Kz])

= (σ = σ1] · · ·] σn where dom(σi) = fv(Vi))
Jσ1K(. . . JσnK(ν̂(xi 7→ JViKxi)i [z (x).JM Kz]))

= (structural equivalence)
ν̂(xi 7→ JσiK(JViKxi))i [z (x).JM Kz]

=⇒ (IH)
ν̂(xi 7→ JViσiKxi)i [z (x).JM Kz]

= (Viσi = V σ)
ν̂(xi 7→ JViσKxi)i [z (x).JM Kz]

= (definition of J−K)
Jλσ

′σx .M K
= (definition of substitution)

Jλσ
′
x .MσK

Each of the remaining non-binding form cases follows straightforwardly using
the induction hypothesis. Each of the remaining binding form cases requires a
commuting conversion to push the appropriate substitution through a prefix. ut

Using the substitution lemma, we prove that J−K preserves reduction on
terms.

Theorem 21. If Γ ` M , Γ ` N , and M −→V N , then JM Kz =⇒ JN Kv.

Proof. By induction on the derivation of M −→V N . Here we show the case of
β-reduction.

– Case (λσx .M) V −→V M ({V /x} ∪ σ).

J(λσx .M) V Kz
= (definition of J−K)
νw (JV Kw | νy (JσK(y(x).JM Ky) | y [x](w ↔ x | y ↔ z)))

=⇒C (cut send against receive)
νw (JV Kw | νy (y ↔ z | νx (w ↔ x | JσK(JM Ky))))

=⇒C (cut links and α rename)
νx (JV Kx | JσK(JM Kz))
=⇒ (by Lemma 20)
JM ({V /x}] σ)K

The remaining base cases are similarly direct. The inductive case for reduc-
tion inside an evaluation context follows straightforwardly by observing that the
translation of an evaluation context never places its argument inside a prefix. ut

Finally, we prove that J−K preserves reduction on configurations.

Theorem 22. If Γ ` C , Γ ′ ` D, Γ −→ Γ ′, and C −→ D, then JC Kz =⇒ JDKz .

Syntax
Session types S ::= !T .S | ?T .S | end | S]
Constants K ::= send | receive | fork | close | link

Changes to duality
end = end

Changes to type schemas for constants

fork : (S (1)(S close : end(1 link : S × S (1

Fig. 11: Syntax and Typing Rules for Combined Closed Channels

Proof. By induction on the derivation of C −→ D . The inductive cases follow
straightforwardly from the compositionality of the definitions and Theorem 21.
We give a representative example of the base cases. The other cases appear in
Appendix B.

– Case F [send (V , x)] ‖ F ′[receive x] −→ F [x] ‖ F ′[(V , x)].

JF [send (V , x)] ‖ F ′[receive x]Kz
=
νx (JF K[Jsend (V , x)Ky]z | JF ′K[Jreceive xK]z)

=
νx (JF K[z 7→ νv (JV Kv | νw (x ↔ w | w〈v〉.w ↔ z))]z
| JF ′K[z 7→ νy (x ↔ y | y(v).νw (y ↔ w | z 〈v〉.w ↔ z))]z

=⇒C (cut links)
νx (JF K[z 7→ νv (JV Kv | x 〈v〉.x ↔ z)]z
| JF ′K[z 7→ x (v).νw (x ↔ w | z 〈v〉.w ↔ z)]z

=⇒C (cut send against receive)
νx (JF K[z 7→ νv (JV Kv | x ↔ z)] | JF ′K[z 7→ νw (x ↔ w | z 〈v〉.w ↔ z)]z)

≡
νx (JF K[z 7→ x ↔ z]z | JF ′K[z 7→ νv (JV Kv | νw (x ↔ w | z 〈v〉.w ↔ z))]z)

=
JF [x] ‖ F ′[(V , x)]K

ut

4 Extending GV

In this section, we consider two extensions of our core calculus: in the first,
we have a single, self-dual type for closed sessions; in the second, we support
unlimited types. In both cases, we are able to directly apply our characterisation
of deadlock to show that the extended systems are deadlock free.

4.1 Unifying end? and end!

We begin by defining a language, based on GV, but combining the types end? and
end! of closed sessions. Figure 11 gives the alterations to the syntax and typing

Extended configuration equivalence

C ‖ ◦ () ≡ C

Extended reduction rules (all other reduction rules apply as in GV)

Close

(νx)(F [close x] ‖ F ′[close x]) −→ F [()] ‖ F ′[()]

Link
x ∈ fv(P)

F [link (x , y)] ‖ C −→ F [()] ‖ C{y/x}

Fig. 12: Updated Configuration Evaluation Rules

rules. The session types are updated to have a single, self-dual type end; a new
constant, close is provided to eliminate sessions of type end. (In many existing
systems, sessions of type end are treated as unlimited, subject to weakening,
rather than providing an explicit close. We have left close explicit to simplify
the presentation.) The type schemas for fork and link have been simplified, as
we no longer need to build the elimination of closed sessions into fork. Figure 12
gives the updated evaluation rules for the extended language. In addition to a
new rule for close (replacing the rule for wait), the rule for link can be simplified
significantly (as it can now return a unit value instead of a closed channel).

Our extended language is, perhaps surprisingly, strictly more expressive than
GV. To see this, we can consider the following term (assuming well-typed M ,N):

let w = fork (λw .close w ; M) in close w ; N

Initially, the forked thread and its parent share (only) session w . After both
threads close w , however, there can be no further communication between the
threads; in contrast, in core GV, there is always a final synchronisation with wait.
To capture the increase in expressivity, we must extend the existing configuration
typing rules (Figure 5) with a rule for composition in which no threads are shared
(such as after the reduction of close w in the example):

Γ `φ C Γ ′ `φ
′

C ′

Γ, Γ ′ `φ+φ
′

C ‖ C ′

We have a slightly different result about channels shared between processes,
to account for the multiple possible typings of composition:

Lemma 23. If Γ ` C and C = G [D ‖ D ′], then fv(D) ∩ fv(D ′) is either empty
or the singleton set {x} for some variable x .

The proof is again by induction on the derivation of Γ ` C . Clearly, this change
does not allow the introduction of cyclic dependencies.

Theorem 24. If Γ ` M : T then •M is deadlock free.

Syntactic extensions

Types T ::=�T | . . .
Terms M ,N ::= let !x = M in N | !M | . . .
Values V ::= !V | . . .
Evaluation contexts E ::= let !x = E in M | !E | . . .

Typing rules

Γ ` M : T �Γ

Γ ` !M : �T

Γ ` M : �T Γ ′, x : T ` N : U

Γ ` let !x = M in N : U

Γ ` M : T

Γ, x : �U ` M : T

Γ, x : �T , x ′ : �T ` M : U

Γ, x : �T ` M {x/x ′} : T

Reduction

let !x = !V in M −→V M {V /x}

Fig. 13: GV Extensions for Unlimited Types

4.2 Adding Unlimited Types

So far, we have limited GV to containing only linear types. In this section,
we consider one standard approach to extending the term language to include
unlimited types. We will then show we can encode replicated processes using
term-level contraction and weakening. Finally, we will show that our encoding
is equivalent to the replicated processes in CP.

Figure 13 gives the extension of GV. We begin by adding a new class of
types, �T , representing unlimited types. (The typical notation for such types
in linear logic, !T , clashes with the notation for output in session types.) We
will write T → U to abbreviate �(T (U). We add terms to construct and
deconstruct values of type �T ; �Γ denotes that every type in Γ must be of the
form �U for some type U . Finally, we allow values of type �T to be weakened
(discarded) and contracted (duplicated). The reduction rule for �T values is
unsurprising—however, unlike in the other reductions, x be used non-linearly in
M . The extension of deadlock freedom to this calculus is immediate.

Wadler’s CP calculus provides unlimited service channels, which can be used
to obtain arbitrarily many copies of some concurrent behavior. We can encode
such channels as follows. First, we introduce new, dual session type constructors
Service(S) and Server(S), defined by

Server(S) , !(S → end!).end! Service(S) , ?(S → end!).end!

Note that Server(S) = Service(S). Note the parallel between the encoding of
session-level sums using value-level sums and the encoding of session-level repli-
cation using value-level replication—in each case, the key is “trivial” channels
!T .end! for suitable T . We then introduce new constants replicate and request,

with the types

replicate : ((S → end!)× Server(S))(end! request : Service(S)(S

defined as follows:

replicate (f , s) , link (s, fork (λx .send (f , x)))

request s , let (f , s) = receive s in wait s; let !g = f in g

Now, we can extend the translation from GV into CP:

J!M Kz , νx (!z (y).y ↔ x | JM Kx)

Jlet !x = V in M Kz , νy (JV Ky | ?y [x].JM Kz)

and similarly the translation from CP into GV:

L!s(x).PM , replicate (λx .LPM, s)

L?s[x].PM , let x = request s in LPM

L P ` ∆
P ` ∆, x : ?A M , let (y , s) = receive s in

wait s; LPM

LP ` ∆, x : ?A, y : ?A

P [x/y] ` ∆, x : ?A M , let f = request x in
let x = fork (λx .replicate (f , x)) in
let y = fork (λx .replicate (f , y)) in LPM

The translation from CP into GV emphasises that, while weakening and contrac-
tion are implicit in CP syntax, they play a central role in the CP semantics of
exponentials, and thus have non-trivial translation to GV. Finally, the extensions
of Theorems 16 and 22 to unlimited channels is direct.

5 Related Work

Session Types and Functional Languages. Session types were originally
proposed by Honda [10], and later extended by Takeuchi et al. [18] and by
Honda et al. [11]. Honda’s system relies on a substructural type system (in which
sessions cannot be duplicated or discarded) and adopts the syntax N and ⊕ for
choice; however, he does not draw a connection between his type system and
the connectives of linear logic, and his system includes a single, self-dual closed
channel. Vasconcelos et al. [21] develop a language that integrates session-typed
communication primitives and a functional language. Gay and Vasconcelos [8]
extend the approach to describe asynchronous communication with statically-
bounded buffers. Their approach provides a more flexible mechanism of session
initiation, distinct from their construct for thread creation, and they do not
consider deadlock. Kobayashi [12] describes an embedding of session-typed π-
calculus in polyadic linear π-calculus, relying on multi-argument send and receive
to capture the state of a communication and variant types to capture choice;
Dardha et al. [7] extend his approach to subtyping and polymorphism.

Linear Logic and Session Types. When he originally described linear logic,
Girard [9] suggested that it would be suited to reasoning about concurrency.
Abramsky [1] and Bellin and Scott [3] give embeddings of linear logic proofs in
π-calculus, and show that cut reduction is simulated by π-calculus reduction.
Their work is not intended to provide a type system for π-calculus: there are
many processes which are not the image of some proof.

Caires and Pfenning [4] present a session type system for π-calculus that ex-
actly corresponds to the proof system for the dual intuitionistic linear logic, and
show that (up to congruence) cut reductions corresponds to process reductions
or process equivalences. Toninho et al. [19] consider embeddings of the λ-calculus
into session-typed π-calculus; their focus is on expressing the concurrency inher-
ent in λ-calculus terms, rather than simulating standard reduction. Wadler [22]
adapts the approach of Caires and Pfenning to classical (rather than intuitionis-
tic) linear logic, and gives a translation from GV (his functional language) to CP
(his process calculus). He does not give a direct semantics for GV. In previous
work [16], we give a translation between CP and GV.

Deadlock Freedom and Progress. There have been several approaches to
guarantee deadlock freedom in π-calculus. Kobayashi [13] and Padovani [17]
give type systems that guarantee deadlock freedom. Their approaches capturing
priority information in types, restricting the order in which channels are used,
and thus statically eliminating the possibility of cyclic dependencies. Their ap-
proaches can be seen as developments of linear π-calculus—they do not directly
address the evolution of types provided by session types.

Carbone and Debois [6] give a graphical characterisation of session-typed
processes; this allows them to directly identify cycles in the session interactions.
They show that all possible interactions eventually take place in cycle-free pro-
cesses. Carbone et al. [5] show similar results for well-typed processes under
Kobayashi’s type system for deadlock freedom; their approach accommodates
processes with open channels by defining a type-directed closure of a process,
and showing that open processes progress only if their typed closures progress.

6 Conclusion and Future Work

We have presented a small-step operational semantics for GV, a minimal session-
typed functional language. We have shown that it is deadlock-free, deterministic,
and terminating, and have established simulations both ways between our se-
mantics for GV and cut-reduction in a process calculus based on linear logic.
Finally, we have demonstrated that GV is a suitable basis for future modular
language development by illustrating two extensions of GV, and observing that
our proof of deadlock freedom extends directly to these cases.

In closing, we identify two important directions for future work. The first
direction is recursion. Recursion is essential both for sessions (to capture repeat-
ing behavior, such as adding recipients to a mail message) and for functional
programming. Adding unchecked recursion to GV would clearly compromise

termination and introduce the possibility of livelock; we hope that adapting
approaches used for fixed points in linear logic might mitigate this issue. The
second direction is asynchrony. We hope to develop the approach of Gay and Vas-
concelos [8] and show a correspondence between synchronous and asynchronous
semantics for GV.

References

[1] S. Abramsky. Proofs as processes. Theor. Comput. Sci., 135(1):5–9, Apr. 1992.
[2] H. P. Barendregt. The Lambda Calculus Its Syntax and Semantics, volume 103.

North Holland, revised edition, 1984.
[3] G. Bellin and P. J. Scott. On the π-Calculus and linear logic. Theoretical Computer

Science, 135(1):11–65, 1994.
[4] L. Caires and F. Pfenning. Session types as intuitionistic linear propositions. In

CONCUR, pages 222–236, 2010.
[5] M. Carbone, O. Dardha, and F. Montesi. Progress as compositional lock-freedom.

In COORDINATION 2014, pages 49–64, 2014.
[6] M. Carbone and S. Debois. A graphical approach to progress for structured com-

munication in web services. In ICE, pages 13–27, 2010.
[7] O. Dardha, E. Giachino, and D. Sangiorgi. Session types revisited. In PPDP,

pages 139–150, 2012.
[8] S. J. Gay and V. T. Vasconcelos. Linear type theory for asynchronous session

types. Journal of Functional Programming, 20(01):19–50, 2010.
[9] J.-Y. Girard. Linear logic. Theoretical Computer Science, 50(1):1–101, Jan. 1987.

[10] K. Honda. Types for dyadic interaction. In CONCUR, pages 509–523, 1993.
[11] K. Honda, V. T. Vasconcelos, and M. Kubo. Language primitives and type disci-

pline for structured communication-based programming. In ESOP, pages 122–138,
1998.

[12] N. Kobayashi. Type systems for concurrent programs. In 10th Anniversary Col-
loquium of UNU/IIST, pages 439–453, 2002.

[13] N. Kobayashi. A new type system for deadlock-free processes. In CONCUR, pages
233–247, 2006.

[14] N. Kobayashi, B. C. Pierce, and D. N. Turner. Linearity and the pi-calculus. In
POPL, pages 358–371, 1996.

[15] J. Lévy and L. Maranget. Explicit substitutions and programming languages.
In Foundations of Software Technology and Theoretical Computer Science, 1999,
volume 1738 of LNCS, pages 181–200. Springer, 1999.

[16] S. Lindley and J. G. Morris. Sessions as propositions. In PLACES, 2014.
[17] L. Padovani. Deadlock and lock freedom in the linear π-calculus. In LICS, page 72,

2014.
[18] K. Takeuchi, K. Honda, and M. Kubo. An interaction-based language and its

typing system. In PARLE, pages 398–413, 1994.
[19] B. Toninho, L. Caires, and F. Pfenning. Functions as session-typed processes. In

FOSSACS, pages 346–360, 2012.
[20] S. van Bakel and M. G. Vigliotti. A logical interpretation of the λ-calculus into

the π-calculus, preserving spine reduction and types. In CONCUR, pages 84–98,
2009.

[21] V. T. Vasconcelos, S. J. Gay, and A. Ravara. Type checking a multithreaded
functional language with session types. Theor. Comput. Sci., 368(1-2):64–87, 2006.

[22] P. Wadler. Propositions as sessions. J. Funct. Program., 24(2-3):384–418, 2014.

A A Simpler Send

The CP send rule is appealing because if one erases the terms it is exactly the
classical linear logic rule for tensor. However, this correspondence comes at a
price. Operationally, the process x [y].(P | Q) does three things: it introduces a
fresh variable y , it sends y to a freshly spawned process P , and in parallel it
continues as process Q . This complicates both the reduction semantics of CP
(as the cut reduction of ⊗ against O must account for all three behaviours) and
the equivalence of CP and GV (where the behavior of send is simpler).

We can give an alternative formulation of send, avoiding the additional name
restriction and composition, as follows:

P ` ∆, x : B , y : A

x 〈y〉.P ` ∆, x : A⊗ B , y : A⊥

where x 〈y〉.P is defined as x [z].(y ↔ z | P). In particular, note that

νx (x 〈y〉.P | x (z).Q) = νx (x [z].(y ↔ z | P) | x (z).Q)
−→C νz (y ↔ z | νx (P | Q))
−→C νx (P | Q{y/z})

as we would expect for synchronising a send and a receive. Similarly, we note
that any process x [y].(P | Q) can also be expressed as a process νy (P | x 〈y〉.Q),
which reduces to the original by one application of the commuting conversions.
However, the two formulations are not quite identical. Let us consider the pos-
sible reductions of the two terms. Notice that in x [y].(P | Q), both P and Q
are blocked on x ; however, the same is not true for νy (P | x 〈y〉.Q); the latter
permits reductions in P before synchronising on x .

B Proofs of Selected Results

Theorem 2. If Γ ` C and C −→ C ′ then there is some Γ ′ such that Γ −→? Γ ′

and Γ ′ ` C ′.

Proof. By induction on the derivation of C −→ C ′. We include several repre-
sentative cases.

– Case Lift is immediate by the induction hypothesis.
– Case LiftV follows from Lemma 1.
– In case Send, from the assumption Γ ` F [send (V , x)] ‖ F ′[receive x], we

can assume that Γ partitions as Γ1, Γ2, x : S] such that S = !T .S ′, V has
type T , and Γ1, x : !T .S ′ ` F [send (V , x)], Γ2, x : ?T .S ′ ` F ′[receive x]. As
send : T × !T .S ′ (S ′ and Γ1, x : !T .S ′ ` F [send (V , x)], we can conclude
that Γ1, x : S ′ ` F [x]. By a similar argument, we conclude that Γ2, x : S ′ `
F ′[(V , x)]. Finally, as (!T .S)] −→ S], Γ1, Γ2, x : (!T .S)] −→ Γ1, Γ2, x : S],
and we can recompose the resulting processes concluding that Γ1, Γ2, x :
S] ` F [x] ‖ F ′[(V , x)].

– In case Fork, from the assumption Γ ` F [fork V], we can conclude that Γ
splits as Γ1, Γ2 and there is some S such that Γ1, x : S ` F [x] and Γ2, x : S `
V x . Thus we have that Γ, x : S ` F [x] ‖ V x and Γ ` (νx)(F [x] ‖ V x).

– In case Wait, from the assumption Γ ` (νx)(F [wait x] ‖ x), we can conclude
that Γ, x : end? ` F [wait x] and thus, from the typing of wait, that Γ ` F [()].

– In case Link, from the assumptions Γ ` (νx)(F [link (x , y)] ‖ F ′[M]), x ∈
fv(M), we can conclude that Γ partitions as Γ1, Γ2, y : S such that Γ1, y :
S , x : S ` F [link (x , y)] and Γ2, x : S ` F ′[M]. (Note that the free variable
assumption on the reduction rule for fork allows us to assume that neither F
nor F ′ binds x or y .) From the type of link, we have that Γ, x : end! ` F [x];
similarly, from x ∈ fv(M), we can conclude that Γ2, y : S ` F ′[M {y/x}].
Finally, from the typing rule for wait, we have that Γ2, x : end?, y : S `
F ′[wait x ; M {y/x}], and that Γ ` (νx)(F [x] ‖ F ′[wait x ; M {y/x}]) ut

Lemma 9. If Γ ` C , then there is some C ′ ≡ C such that Γ ` C ′ and C ′ is in
canonical form.

Proof. Let x1, . . . , xn−1 be the ν-bound variables in C and M1, . . . ,Mn be the
terms in P ; the proof is by induction on n. If n > 1, then pick some Mi such that
there is exactly one ν-bound variable xj where xj ∈ fv(Mi). (That there must be
such an Mi and xj can be established by a standard counting argument, together
with Lemma 5.) Now, construct D from C by the homomorphic extension of the
mapping (νxj)E 7→ E ; E ‖ φMi 7→ E . From the assumption that Γ ` C , we can
conclude that there is some Γ ′ ⊆ Γ and type S such that Γ ′, xj : S ` D . By
the induction hypothesis, there is some D ′ ≡ D in canonical form. Finally, let
C ′ = (νxj)(φMi ‖ D ′); we can see that straightforwardly that C ′ is in canonical
form; that C ≡ C ′; and, that Γ ` C ′. ut

Theorem 22. If Γ ` C , Γ ′ ` D , Γ −→ Γ ′, and C −→ D , then JC Kz =⇒ JDKz .

Proof. By induction on the derivation of C −→ D . The inductive cases follow
straightforwardly from the compositionality of the definitions and Theorem 21.
The case for send against receive is included in the main body of the paper. The
remaining cases follow.

– Case (νx)(F [wait x] ‖ ◦ x) −→ F [()].

J(νx)(F [wait x] ‖ ◦ x)Kz
=
νx (JF K[y 7→ νw (w ↔ x | w ↔ y)]z | νy (x ↔ y | y []))

=⇒C (cut links)
νx (JF K[y 7→ x ↔ y]z | x [])

=⇒C (cut link)
JF K[y 7→ y []]z

=
JF [()]Kz

– Case F [fork (λσx .M)] −→ (νx)(F [x] ‖ Mσ).

JF [fork (λσx .M)]Kz
=

JF K[Jfork (λσx .M)K]z
=

JF K[z 7→ νx (JxKz | νy (JσK(y(x).JM Ky) | νw (y〈x 〉.y ↔ w | w [])))]z
=⇒C (cut send against receive)

JF K[z 7→ νx (JxKz | νy (JσK(JM Ky) | y []))]z
≡
νx (JF K[JxK]z | JσK(Jνy (JM Ky | y [])K))

=
J(νx)(F [x] ‖ Mσ)Kz

– Case (νx)(F [link (x , y)] ‖ F ′[M]) −→ (νx)(F [x] ‖ F ′[wait x ; M {y/x}]).

J(νx)(F [link (x , y)] ‖ F ′[M])Kz
=
νx (JF K[Jlink (x , y)K]z | JF ′K[JM K]z)

=
νx (JF K[z 7→ νv(v ↔ z | νw(v ↔ w |
νx ′ (x ↔ x ′ | νy ′ (y ↔ y ′ | w().x ′ ↔ y ′))))]z | JF ′K[JM K]z)

=⇒C (cut links)
νx (JF K[z 7→ νv (v ↔ z | νw (v ↔ w | w().x ↔ y))]z | JF ′K[JM K]z)
≡
νv (JF K[z 7→ v ↔ z]z | νx (νw (v ↔ w | w().x ↔ y) | JF ′K[JM K]z))
≡
νv (JF K[z 7→ v ↔ z]z | JF ′K[z 7→ νw (v ↔ w | w().νx (x ↔ y | JM Kz))]z)

=
J(νx)(F [x] ‖ F ′[wait x ; M {y/x}])Kz

	A Semantics for Propositions as Sessions

