
First-order Laziness
Technical Report, Jun 1, 2025 (v1).

ANTON LORENZEN, University of Edinburgh, UK

DAAN LEIJEN,Microsoft Research, USA

WOUTER SWIERSTRA, Universiteit Utrecht, Netherlands
SAM LINDLEY, University of Edinburgh, UK

In strict languages, laziness is typically modelled with explicit thunks that defer a computation until needed

and memoize the result. Such thunks are implemented using a closure. Implementing lazy data structures
using thunks thus has several disadvantages: closures cannot be printed or inspected during debugging;

allocating closures requires additional memory, sometimes leading to poor performance; reasoning about the

performance of such lazy data structures is notoriously subtle. These complications prevent wider adoption of

lazy data structures, even in settings where they should shine. In this paper, we introduce lazy constructors as
a simple first-order alternative to lazy thunks. Lazy constructors enable the thunks of a lazy data structure to

be defunctionalized, yielding implementations of lazy data structures that are not only significantly faster but

can easily be inspected for debugging.

Additional Key Words and Phrases: Laziness, Defunctionalization, Perceus

1 INTRODUCTION
Purely functional data structures have several important advantages. Data structures implemented

in a purely functional language are persistent, thread safe, and may be verified using elementary

methods. Efficient purely functional data structures, however, often require laziness to avoid

recomputation, even when implemented in a strict language [Okasaki 1999]. In a strict language,

like OCaml and Racket, computations may be deferred by creating an explicit thunk. Despite the

apparent simplicity of implementing laziness in this fashion, using higher-order functions has its

drawbacks: thunked computations cannot be printed or inspected; allocating closures requires

additional memory; reasoning about the performance of such arbitrary closures is a subtle affair.

This paper explores how to add a dash of laziness to a strict language, where computations

are deferred explicitly using a first-order data constructor , defunctionalizing the higher-order

closures programmers would otherwise write by hand. As we will show, these techniques suffice

to implement purely functional data structures efficiently, reducing the time and space used by

traditional implementation techniques. To sketch the main idea, consider the following definition

of a stream in Koka [Leijen 2014]:

type stream<a>
SCons(head : a, tail : stream<a>)
SNil
lazy SAppend(s1 : stream<a>, s2 : stream<a>) ->

match s1
SCons(x,xx) -> SCons(x,SAppend(xx,s2))
SNil -> s2

Besides the familiar data constructors, SNil and SCons, there is a third lazy constructor SAppend.

Whenever we append two streams using this constructor, the operation takes constant time.

However, in contrast to the regular constructors, we never match on a lazy constructor. Instead,

whenever the run-time encounters an SAppend constructor, the associated right-hand side of the

data declaration is executed, producing a single SCons cell if the first stream is non-empty. Written

in this style, the append of the two streams happens on-demand, only traversing as much of the

1

first stream as is necessary. To illustrate this point, we define the take function on streams:
1

fun stream/take(xs : stream<a>, n : int) : list
if n <= 0 then Nil
else match xs

SCons(x,xx) -> Cons(x, stream/take(xx,n - 1))
SNil -> Nil

As this definition shows, there is no need to write a case for the SAppend constructor. If there are

any lazy constructors in the argument stream, these are forced on-demand as the take function

traverses its input. This is best illustrated with an example:

val xs : stream<int> = SCons(0,SAppend(SCons(1,SNil),SCons(2,SNil)))

If we call take(xs,1) this produces a singleton list with the number 0, leaving the tail of the stream

unchanged. If we call take(xs,2), however, this evaluates the lazy SAppend constructor – but only

enough to discover that the second element of the resulting list should be 1. Taking three or more

elements forces the entire stream. This process happens entirely under the hood and the program

cannot observe that thunks have been evaluated. Laziness preserves referential transparency: a

lazy thunk is indistinguishable from the value it computes.

However, for debugging or educational purposes, it would be nice to peek under the hood [Gill 2000].

With lazy constructors, this is possible: the unsafe primitive debug-show displays the lazy constructors

without forcing any further evaluation. The informal description of the behaviour of take is visible

in the command line:

> take(xs,1); debug-show(xs)
SCons(0,SAppend(SCons(1,SNil),SCons(2,SNil)))
> take(xs,2); debug-show(xs)
SCons(0,SCons(1,SAppend(SNil,SCons(2,SNil))))
> take(xs,3); debug-show(xs)
SCons(0,SCons(1,SCons(2,SNil)))

Lazy constructors are limiting: unlike unrestricted laziness as in Haskell or the explicit thunks

in strict languages, our example stream only supports a single lazy operation. If we need other

lazy operations, we need to add further lazy constructors to the stream data type. As we shall see,

however, most implementations of lazy data structures (e.g. as given by Okasaki [1999]) rely only

on a handful of lazy operations. By making the laziness first-order, we gain the ability to inspect

and optimize thunked computations in new and interesting ways.

For example, the compiler can now statically determine the runtime size of each lazy constructor:

the memory location associated with each forced SAppend cell can for example always be reused

in-place for the resulting SCons cell, instead of overwriting it with an indirection node as in most

implementations of laziness. Moreover, with Perceus reference counting [Lorenzen and Leijen 2022;

Reinking, Xie et al. 2021], if the matched SCons of s1 happens to be unique at runtime, the next

SAppend can reuse that memory in-place as well.

Just as first-order data types are easier to manipulate and implement efficiently than their Church

encoding, the first-order approach to laziness pioneered in this paper is both efficient and effective.

This paper demonstrates the applicability of lazy constructors, nails down their semantics, and

benchmarks the performance of our implementation in Koka. More specifically, this paper makes

the following contributions:

• We illustrate the use of first-order laziness through a series of examples drawn from Okasaki’s

book on functional on functional data structures [Okasaki 1999], such as the Bankers Queue and

Realtime Queue (Section 2). Our implementation using lazy constructors arises naturally from

defunctionalizing the thunked closures used in Okasaki’s original implementation (Section 3).

• We formalize the behaviour of lazy constructors as a modest extension of Launchbury’s natural

semantics for lazy evaluation [Launchbury 1993] and prove that this extension preserves type

1
In Koka, we can locally qualify an identifier, as in stream/take. A bare take is usually resolved to the right definition based

on the type context, but we can always use the fully qualified name as well to distinguish it for example from list/take.

2

soundness and referential transparency (Section 4).

• We present a small step semantics (Section 5), which forms the basis of the implementation

in Koka. The first-order nature of lazy constructors enables new compiler optimizations that

are not possible in general: avoiding indirection nodes entirely; re-using memory; and running

in constant stack space. We justify these compiler optimizations using equational reasoning

(Section 5).

• We implement lazy constructors in Koka and benchmark all lazy queues and heaps given

by Okasaki [1999]. Our benchmarks show that lazy data structures, implemented using lazy

constructors, are always faster than the same data structures implemented using traditional

thunks, and can come close to their strict implementations even in sequential settings where

laziness provides no benefit (Section 7).

2 PROGRAMMINGWITH FIRST-ORDER LAZINESS
To illustrate the importance of laziness, even in a strict language, we revisit the Bankers Queue

example by Okasaki [1999]. It is a typical example of a functional data structure that uses laziness

to obtain better amortized time complexity bounds in a persistent setting.

2.1 A Strict BankersQueue using Lists
To warm up, we first define a strict Bankers Queue; the next section will give an alternative lazy

implementation using streams. A Bankers Queue consists of a pair of lists, where new elements are

appended to the rear list ys, and elements are removed from the front list xs:

struct queue<a> // queue with elements ‘xs ++ reverse(ys)‘
xs : list<a> // front list
n : int // length of the front
ys : list<a> // rear list (to be reversed)
m : int // length of the rear

The queue maintains the invariants that length(xs)==n, length(ys)==m, and n>=m. As the rear list

grows and the front list shrinks, the queue becomes unbalanced. To ensure the desired invariant is

maintained, Okasaki defines a balance function that sometimes moves the rear list to the front list:

fun balance(Queue(xs,n,ys,m) : queue<a>) : queue<a>
if n >= m

then Queue(xs,n,ys,m)
else Queue(xs ++ reverse(ys), n + m, Nil, 0)

The the enqueue and dequeue operations ensure the result queues are always balanced:

fun snoc(Queue(xs,n,ys,m) : queue<a>, y : a) : queue<a>
balance(Queue(xs, n, Cons(y,ys), m + 1))

fun uncons(Queue(xs,n,ys,m) : queue<a>) : maybe<(a,queue<a>)>
match xs
Cons(x,xx) -> Just((x, balance(Queue(xx, n - 1, ys, m))))
Nil -> Nothing

However, as noted by Okasaki, this implementation is not always very efficient. A rebalancing step

may take time linear in the length of the queue (xs ++ reverse ys). In a persistent setting, there may

be many shared references to a single queue; unless we ensure the rebalancing computation is also

shared, each reference may need to redo the rebalancing work. To illustrate this point, consider the

following code snippet:

val q = Queue(xs,n,xs,n)
for(1,n, fn(i) snoc(q,i))

In this example, we construct an ‘almost unbalanced’ queue q. Each snoc operation in the loop

requires the queue to be rebalanced, where each rebalancing requires 2n steps. Consequently, the

3

entire loop takes quadratic time. If, however, the rebalancing work is shared between the different

calls to snoc, then the loop runs in linear time. Even in this strict and persistent setting, there is a

clear need for some memoization in order to avoid such recomputation.

2.2 A Lazy BankersQueue using Streams
To obtain the optimal amortized time complexity of the Bankers Queue in a persistent setting, we

need to ensure that the result of the rebalancing is shared between all copies of the queue. Rather

than using lists, we use a variation of the streams from the introduction instead:

struct queue<a>
xs : stream<a> // the front stream
n : int // length of the front
ys : stream<a> // rear stream
m : int // length of the rear

However, unlike our streams from the introduction, we not only need an append operation, but

also a reverse operation:

type stream<a>
SNil
SCons(head : a, tail : stream<a>)

lazy SAppend(s1 : stream<a>, s2 : stream<a>) ->
match s1

SCons(x,xx) -> SCons(x,SAppend(xx,s2))
SNil -> s2

lazy SReverse(s : stream<a>, acc : stream<a>) -> // accumulating reverse
match s

SCons(x,xx) -> SReverse(xx, SCons(x,acc))
SNil -> acc

The implementation of the rebalancing function now uses the lazy constructors to defer and share

rebalancing:

fun balance(Queue(xs,n,ys,m)) : queue<a>
if n >= m

then Queue(xs,n,ys,m)
else Queue(SAppend(xs,SReverse(ys,SNil)), n + m, SNil, 0)

Since the only operations we need to rebalance the queue are append and reverse, we only need two

lazy constructors – SAppend and SReverse. Moreover, the definitions of snoc and uncons remain un-

changed as we never match on lazy constructors. The balance function introduces lazy constructors,

but defers the associated work. Consider the loop we saw previously:

val q = Queue(xs,n,xs,n)
for(1,1000, fn(i) snoc(q,i))

Each call to snoc simply creates a delayed computation for the rebalancing in constant time (as

SAppend(xs,SReverse(ys,SNil))), which only takes constant time. In contrast, the uncons operation

pattern matches on the front stream, which may trigger evaluation of the lazy constructors and

can thus take linear time. Still, Okasaki shows that this implementation of the bankers queue has

constant amortized time complexity.

2.3 Lazy Match
Unlike traditional implementations of laziness, lazy constructors remain first order. Consequently,

they can be printed for the sake of debugging:

> val xs = SCons(1,SCons(0,SNil))
> val q0 = Queue(xs,2,xs,2)
> val q = snoc(q,2)
> debug-show(q)
Queue(SAppend(SCons(1,SCons(0,SNil)),SReverse(SCons(2,SCons(1,SCons(0,SNil))))), 5, SNil, 0)

Of course, since q is persistent, we can uncons an element and still observe the original queue:

4

> val _ = uncons(q)
> debug-show(q)
Queue(SCons(1, SAppend(SCons(0,SNil),SReverse(SCons(2,SCons(1,SCons(0,SNil))))), 5, SNil, 0)

The reader may be startled at this point: clearly the queue q has changed! Doesn’t this break

referential transparency? The answer is no: though the stream has indeed changed, this cannot be

observed since any attempt to match on q never yields a lazy constructor. In fact, this is exactly

why any thunk can be overwritten with its value without breaking referential transparency.

However, it can be useful for debugging to peek under the hood during evaluation of a lazy data

structure: this is what the debug-show function does. This function is implemented using an additional

unsafe language primitive, lazy match, that is allowed to observe lazy constructors without forcing

evaluation.

The lazy match construct is used extensively to implement first-order laziness. In particular,

the Koka compiler inserts an additional eval call whenever a programmer matches on a data type

with lazy constructors. The compiler generated eval function evaluates the argument to weak head

normal form. The code corresponding to the uncons function becomes:

fun uncons(Queue(xs,n,ys,m))
match stream/eval(xs) // compiler inserts an ‘eval‘ automatically

SCons(x,xx) -> Just((x, balance(Queue(xx, n - 1, ys, m))))
SNil -> Nothing

The eval function uses the lazy match primitive, inserting the code associated with each lazy

constructor in the corresponding branch, roughly like:

// compiler generated
fun stream/eval(s : stream<a>)

lazy match s
SAppend(s1,s2) -> match s1

SCons(x,xx) -> lazy-update(s, SCons(x,SAppend(xx,s2)))
SNil -> lazy-update(s, eval(s2))

SReverse(s1,acc) -> match s1
SCons(x,xx) -> lazy-update(s, eval(SReverse(xx, SCons(x,acc))))
SNil -> lazy-update(s, eval(acc))

_ -> s

where the lazy-update primitive updates the root node with the result. In practice, we generate

a more efficient version where we do not use stack space unnecessarily. While this stream/eval

function uses the stack in the last three branches (where eval is not a tail-call), we will derive a

more efficient version in Section 5.

2.4 The BankersQueue with Logarithmic Worst-Case Time Complexity
While our Bankers Queue has constant amortized time complexity, its worst-case time complexity

is still linear in the size of the queue. The reversal is monolithic: once the SAppend is fully evaluated,

we need to completely reverse the second list to find the last element. How can we ensure that

these queues have better worst-case complexity?

Okasaki [1999] reimplements the Bankers Queue using rotations that combine appending with

reversal. However, our first-order lazy constructors support a simpler solution – albeit one that

requires further language support. The main idea is to evaluate at most one lazy constructor instead

of recursively evaluating up to weak head normal form. If we do this for the reversed tail each time

we evaluate an SAppend constructor, then we can ensure that by the time all SAppend’s are done, the

tail is fully reversed.

To evaluate only one lazy constructor, the compiler generates a second evaluation function,

called eval-one:

5

// compiler generated
fun stream/eval-one(s : stream<a>) : stream<a>

lazy match s
...
SReverse(s1,acc) -> match s1

SCons(x,xx) -> lazy-update(s, SReverse(xx, SCons(x,acc)))
SNil -> lazy-update(s, acc)

_ -> s

As we can see, it is almost equivalent to the eval function. The key difference is that eval-one is no

longer recursive. For example, if the first list is Nil, the eval-one function returns the accumulated

list – whether it is in weak head normal form or not.

Using this primitive, we can reduce the worst-case time complexity from linear to logarithmic,

by only adding a single line to the code associated with the SAppend constructor:

type stream<a>
...
lazy SAppend(s1 : stream<a>, s2 : stream<a>) ->

stream/eval-one(s2) // for each SAppend, evaluate also one SReverse
match s1

SCons(x,xx) -> SCons(x, SAppend(xx,s2))
SNil -> s2

The key here is that s2 always contains the SReverse constructor. In this fashion, we evaluate one

step of the reversal every time we invoke the SAppend constructor. As s2 is only one element longer

than s1 when we perform the rebalancing, by the time the SAppend hits the SNil case the SReverse is

almost done – we pay a little more during each SAppend step, but gain more predictable performance

overall.

2.5 Avoiding Stack Overflows from Recursive Evaluation
The code associated with the SAppend constructor seems entirely innocent. On closer inspection,

however, when there are nested occurrences of the SAppend constructor, this may trigger recursive

evaluation:

type stream<a>
...
lazy SAppend(s1 : stream<a>, s2 : stream<a>) ->

match s1 // may evaluate an SAppend recursively!
SCons(x,xx) -> SCons(x, SAppend(xx,s2))
SNil -> s2

As this call is not tail-recursive, it requires stack space. If the s1 stream is a long sequence of

unevaluated SAppend constructors, this may ultimately lead to a stack overflow.

This is not a purely theoretical concern. When working on our benchmarks, we discovered

that the Physicists Queue, Implicit Queue, and Binomial Heaps as presented by Okasaki [1999]

require stack space linear in the size of the queue. This can be a problem in practice: when two

million elements were subsequently inserted into the Physicists Queue, the stack overflowed in

both Koka 3.1.3 and OCaml 4.14.2
2
. We are not aware of any technique that avoids this problem

with traditional lazy thunks.

However, as we show in detail in Section 5.5, this problem can be resolved with lazy constructors.

As we compile a specialized eval function for each data type, we can specialize eval to evaluate nested

thunks tail-recursively using an in-place Schorr-Waite traversal [Leijen and Lorenzen 2023 2025;

Lorenzen et al. 2023; Schorr and Waite 1967], illustrated in Figure 1. If a programmers wants to

ensure that an argument of a lazy constructor is fully evaluated before the constructor is evaluated,

they can put an exclamation mark, e.g. !xs, before the name of the argument. This indicates that

2
As measured on an Apple M1 which has a hard limit for stack size of 65mb.

6

𝑆𝐴𝑝𝑝𝑒𝑛𝑑 (𝑥𝑠1, 𝑦𝑠1) 𝑆𝐴𝑝𝑝𝑒𝑛𝑑 (𝑅𝑜𝑜𝑡,𝑦𝑠1) 𝑆𝐴𝑝𝑝𝑒𝑛𝑑 (𝑅𝑜𝑜𝑡,𝑦𝑠1) 𝑆𝐶𝑜𝑛𝑠 (ℎ, 𝑡1)

𝑆𝐴𝑝𝑝𝑒𝑛𝑑 (𝑥𝑠2, 𝑦𝑠2) 𝑆𝐴𝑝𝑝𝑒𝑛𝑑 (𝑢𝑝1, 𝑦𝑠2) 𝑆𝐴𝑝𝑝𝑒𝑛𝑑 (𝑢𝑝1, 𝑦𝑠2) 𝑆𝐴𝑝𝑝𝑒𝑛𝑑 (𝑡2, 𝑦𝑠1)

𝑆𝐴𝑝𝑝𝑒𝑛𝑑 (𝑥𝑠3, 𝑦𝑠3) 𝑆𝐴𝑝𝑝𝑒𝑛𝑑 (𝑥𝑠3, 𝑦𝑠3) 𝑆𝐶𝑜𝑛𝑠 (ℎ, 𝑡3) 𝑆𝐴𝑝𝑝𝑒𝑛𝑑 (𝑡3, 𝑦𝑠2)

𝑆𝐶𝑜𝑛𝑠 (ℎ, 𝑡) 𝑆𝐶𝑜𝑛𝑠 (ℎ, 𝑡) 𝑆𝐴𝑝𝑝𝑒𝑛𝑑 (𝑡, 𝑦𝑠3) 𝑆𝐴𝑝𝑝𝑒𝑛𝑑 (𝑡, 𝑦𝑠3)

𝑥𝑠1 𝑡1

𝑥𝑠2

𝑢𝑝1 𝑢𝑝1

𝑡2

𝑥𝑠3

𝑢𝑝2

𝑥𝑠3 𝑡3

𝑢𝑝2

𝑡3

Fig. 1. In a Schorr-Waite traversal, we first descend and reverse the pointers until we find a normal constructor.
Then we evaluate the lazy constructors from the bottom-up. From left to right: (1) nested lazy constructors:
to force the topmost constructor we first have to force the ones below it, (2) the runtime has descended to
the bottom-most constructor and reversed the pointers, (3) the bottom-most constructor has been evaluated
and we follow the ‘up’ pointer, (4) the final result once evaluation is complete.

Koka’s runtime should force the argument before it begins to evaluate the lazy constructor
3
:

lazy SAppend(!xs : stream<a>, ys : stream<a>) -> ...

With the ! annotation, before the SAppend constructor is evaluated, the runtime first evaluates the xs

stream. This does not require any extra stack- or heap space, since eval can keep track of all lazy

constructors under evaluation using an in-place zipper [Huet 1997; Lorenzen et al. 2024] stored in

the lazy constructors themselves. In this fashion, we avoid allocating arbitrary stack space, even if

SAppend constructors are nested.

2.6 The RealtimeQueue with Constant Time Complexity
The Bankers Queue operations are amortized constant-time, but still have logarithmic worst-case

time complexity. When the queue rebalances, the front stream may start with another SAppend

constructor. If this is the case, rebalancing creates nested SAppend constructors. Fortunately, the

number of nested constructors is bounded: since we only rebalance when the front stream is shorter

than the rear stream, we know that the number of nested SAppend thunks is logarithmic in the

total length of the queue. A call to uncons may have to perform one step for each of the SAppend

constructors in the front stream, leading to a logarithmic worst-case time complexity.

To ensure our operations have constant worst-case time complexity, we need the front stream to

evaluate one step every time we perform an operation on the queue. Okasaki [1999] (Section 7.2)

proposes to do this by adding a ‘schedule parameter’. This schedule parameter is a suffix of the

front stream; the schedule starts with the only SAppend constructor in the entire stream. Maintaining

this invariant is the key ingredient to obtain constant worst-case time complexity.

struct queue<a>
front : stream<a>
rear : list<a>
sched : stream<a>

There are several other modifications to the queue type. Note that the rear queue is now a list rather

than a stream; rather than store the lengths of the front and rear stream, the schedule determines

when the queue must be rebalanced:

3
At the moment this is not yet implemented in Koka but we hope to have it working soon according to the rules in

Section 5.5.

7

fun balance(Queue(front,rear,sched) : queue<a>) : queue<a>
match sched

SCons(_,s) -> Queue(front,rear,s)
SNil -> val f = SAppend(front,SReverse(rear,SNil)) in Queue(f,Nil,f)

In each rebalancing operation, the schedule is evaluated to weak head normal form. If the schedule

is non-empty, its tail becomes the new schedule. Rebalancing happens when the schedule is empty

– and hence the front stream is fully evaluated. In that case, the new schedule is initialized to f,

shared with the new front of the queue. As the front stream is fully evaluated, f will never contain

nested SAppend constructors. This ensures the desired constant worst-case time complexity.

The only thing that remains to be done, is implement the snoc and uncons operations:

fun snoc(Queue(front,rear,sched) : queue<a>, x : a) : div queue<a>
balance(Queue(front, Cons(x,rear), sched))

fun uncons(Queue(front,rear,sched) : queue<a>) : div maybe<(a,queue<a>)>
match front

SCons(x,xx) -> Just((x, balance(Queue(xx,rear,sched))))
SNil -> Nothing

As both operation call balance, they are guaranteed to advance the schedule, as required. In the

previous examples we mostly relied on laziness to defer computation, but in the Realtime Queue we

also rely on the computation being shared – in this case between the front stream and the schedule.

3 ILLUMINATING FIRST-ORDER LAZINESS
To develop a deeper intuition for lazy constructors, we begin by showing how these arise naturally

as the defunctionalized version of explicit thunks. To do so, we recreate the stream definition used

in the previous section, starting from the more familiar implementation from the literature. We

begin by defining the standard stream interface, without using any lazy constructors, but instead

deferring computations with explicit thunks:

alias stream<a> = thunk<streamcell<a>>
type streamcell<a>

SCons(head : a, tail : stream<a>)
SNil

A stream is a list where the list cells are separated by lazy thunks (using the style of Wadler

et al. [1998] and Okasaki [1999, section 4.2]). This makes it possible to perform operations like

appending streams in constant time initially, where the linear-time append is only evaluated once

that part of the list is reached. Such delayed computations are encapsulated in thunks, which take

a closure that is only evaluated when needed. Thunks have the typical interface:

type thunk<a>
fun delay(f : () -> a) : thunk<a>
fun force(t : thunk<a>) : div a

The delay function creates a thunk from a computation and force evaluates the thunk. In Koka, we

use the div effect to indicate that forcing a thunk may diverge. Under the hood, the implementation

ensures that the computation is run at most once: after the first call to force, its result is memoized

and returned in constant time upon every subsequent call. We can use this API to implement the

familiar append and reverse functions on streams:

fun sappend(s1 : stream<a>, s2 : stream<a>) : div streamcell<a>
match s1.force

SCons(x,xx) -> SCons(x, append(xx,s2))
SNil -> s2.force

fun append(s1 : stream<a>, s2 : stream<a>) : div stream<a>
delay{ sappend(s1,s2) }

8

fun sreverse(s1 : stream<a>, s2 : stream<a>) : div streamcell<a>
match s1.force

SCons(x,xx) -> sreverse(xx, delay{ SCons(x,s2) })
SNil -> s2.force

fun reverse(s1 : stream<a>) : div stream<a>
delay{ sreverse(s1, delay{ SNil }) }

Lazy Function Syntax. Wadler et al. [1998] and Okasaki [1999, section 4.2] suggest a special

syntax for functions like append and reverse. They note that these functions typically contain a

top-level delay { ... } construct, followed by a match statement and forces in all branches. If their

syntax was implemented in Koka, we could write the append function as:

lazy fun append(s1 : stream<a>, s2 : stream<a>) : div stream<a>
match s1.force

SCons(x,xx) -> scons(x, append(xx,s2))
SNil -> s2

Here, we could omit the top-level delay construct and the force call on s2. However, we would still

need to force s1 manually. Unfortunately, the syntax adds a force call in the first branch, which

would require us to delay the constructor manually:

fun scons(x : a, xx : stream<a>) : stream<a>
delay{ SCons(x,xx) }

A sufficiently smart compiler could remove the immediate force of the delay in scons in the first

branch and compile this new append to the previous one. However, instead of supporting this syntax

in Koka directly, we will see that lazy constructors naturally lead us to a very similar syntax.

3.1 Lazy Constructors for Thunks
As the first step towards recreating the streams used in the previous section, we begin by imple-

menting the thunk<a> interface using lazy constructors:

type thunk<a>
Memo(v : a)
lazy Lazy(f : () -> a) ->

Memo(f())

This type has two constructors. The Memo constructor stores a value of type a. The Lazy constructor

is a lazy constructor that can be used to construct a values of type thunk<a>. Remember, the lazy

constructor is never observable in a match statement; any match on a value of type thunk<a> will

force evaluation of the corresponding expression, Memo(f()). Using this definition, we can easily

simulate the typical thunk interface from strict languages:

fun delay(f : () -> a) : thunk<a>
Lazy(f)

fun force(t : thunk<a>) : a
match t

Memo(v) -> v

The power of lazy constructors is that they allow us to specialize thunks to the computations they

contain. By analyzing the possible closures f that may be stored in Lazy, we can specialize the

higher-order thunk<a> type for our program. We define the first-order stream<a> type as:

type stream<a> =
Memo(v : streamcell<a>)
lazy SAppend(xs : stream<a>, ys : stream<a>) ->

Memo(sappend(xs, ys))
lazy SReverse(xs : stream<a>, acc : stream<a>) ->

Memo(sreverse(xs, acc))

We keep the Memo constructor from the definition of thunk<a> but specialize Lazy(f) to the two

computations that are used. This type now has two separate lazy constructors for these two

9

computations, but we can still define force as before. We do need to update the corresponding code

to append and reverse streams. The definition for sappend, for example, now reads:

fun sappend(s1 : stream<a>, s2 : stream<a>) : div streamcell<a>
match s1.force

SCons(x,xx) -> SCons(x,SAppend(xx,s2))
SNil -> s2.force

Here we still need to force each stream to a streamcell. Where the previous definition deferred the

recursive call to sappend, we now simply use the lazy SAppend constructor to the same effect.

3.2 The Cost of Laziness
Based on the last section, one might think that lazy constructors are just the defunctionalization of

explicit thunks. But, in fact, they are a bit more powerful than that and allow us to fix a performance

problem that arises when using explicit thunks. Let us consider a fully evaluated stream, such as:

> val nums = Memo(SCons(1, Memo(SCons(2, Memo(SCons(3, Memo(SNil)))))))

There is an indirection node between every pair of adjacent elements in the stream! This is a

consequence of the encoding of streams, where the elements of streamcell<a> and those of stream<a>

alternate. This means that traversing even a fully-evaluated stream will require twice as many

pointer lookups as traversing a list: all SCons and Memo nodes live in different cells linked by pointers.

In practice, languages like OCaml can mitigate this problem since they distinguish indirection

nodes from all other values, which makes it possible to omit indirection nodes when the stream is

fully evaluated on creation.

However, if a stream is the result of a lazy computation, the indirection nodes are unavoidable.

For example, if we append a stream to nums, the SAppend constructor has to be rewritten as a Memo

constructor to ensure that all references to app can share the memoized result:

> val nums’ = SAppend(nums, Memo(SNil))
> debug-show(force(nums’))
Memo(SCons(1, SAppend(Memo(SCons(2, Memo(SCons(3, Memo(SNil))))), Memo(SNil))))

This implies that once we fully evaluate the append, all Memo nodes in the stream are necessary:

> debug-show(forceall(nums’))
Memo(SCons(1, Memo(SCons(2, Memo(SCons(3, Memo(SNil)))))))

These indirections are typical for the traditional approach to laziness, but they may introduce a

significant performance cost compared to a strict program. Appending to a list of length n involves

only n allocations, but appending to a stream of length n requires 2n allocations to also create all

the indirection nodes in between. In fact, without defunctionalization, this is usually even more

expensive since each thunk involves another allocation for a closure and so 3n allocations can be

necessary.

Furthermore, the indirection nodes stay in the stream even once the thunks are fully evaluated,

where they introduce additional pointer lookups. Garbage collected languages like OCaml may

remove this indirection during GC runs, but this optimization is not available in reference counted

languages such as Koka [Leijen 2014] or Lean [Moura and Ullrich 2021].

This is one of the reasons why lazy data structures are often less efficient than their strict

counterparts. As we show in our benchmarks, the classic lazy data structures of Okasaki [1999] are

a factor of 2-3x less efficient than their strict counterparts when implemented using explicit thunks.

3.3 Fusing streams and stream cells
In contrast to traditional approaches to laziness, first-order lazy constructors allow us to remove

most of these indirections. To obtain a better version of stream<a> with fewer indirections, we inline

the definition of streamcell<a> in the type of streams:

10

type stream<a>
SNil
SCons(x : a, xx : stream<a>)
lazy SAppend(xs : stream<a>, ys : stream<a>) ->

sappend(xs, ys)
lazy SReverse(xs : stream<a>, acc : stream<a>) ->

sreverse(ys, acc)

Compared to the previous stream<a> declaration, we have replaced the Memo constructor with the SNil

and SCons constructors. Furthermore, we do not return Memo from SAppend and SReverse and instead

return the remaining stream immediately. This makes the structure of the type quite different: where

the previous definition would alternate SCons cells with thunks, we can nowmix normal and lazy con-

structors arbitrarily. For example, the fully evaluated stream SCons(1, SCons(2, SNil)) is a valid inhabi-

tant of this stream type, as is the stream containing lazy constructors SAppend(SAppend(SNil, SNil), SNil).

To complete this definition, however, we need to update our sappend and sreverse functions.

These no longer need to match on Memo constructors, but rather manipulate the streams directly. To

illustrate this point, we redefine both sreverse and sappend:

fun sreverse(s1 : stream<a>, s2 : stream<a>) : div stream<a>
match s1

SCons(x,xx) -> sreverse(xx, SCons(x,s2))
SNil -> s2

fun sappend(s1 : stream<a>, s2 : stream<a>) : div stream<a>
match s1
SCons(x,xx) -> SCons(x, SAppend(xx,s2))
SNil -> s2

Note that, unlike our previous definition, we now build the accumulator of sreverse as a sequence

of SCons cells with no more indirection nodes Memo in between.

Our new definitions of sappend and sreverse look quite similar to the lazy function definitions

in Section 3.0.0.1. The main difference is that we now use constructors in places where the lazy

function syntax uses (lazy) function calls that immediately delay their result. Our new definition is

even a bit shorter since we can avoid a call to force in the pattern-match.

But where did the indirections go? We still need to memoize the result of evaluating an SAppend

or SReverse. To ensure the results of evaluating these lazy constructors are still shared, Koka inserts

an implicit indirection into the lazy constructor above:

lazy SAppend(xs : stream<a>, ys : stream<a>) ->
Indirect(sappend(xs, ys))

When matching on a stream s it can now happen that s is an indirection node, pointing to some s’.

In that case the runtime follows the indirection and keeps matching on s’. These indirection nodes,

however, are only created when a lazy constructor is evaluated. For example, the accumulator built

in the sreverse function is completely free from indirections. This reduces the memory overhead

that typically arises from sharing lazy computations.

3.4 In-place Reuse of Lazy Constructors
As an additional optimization Koka avoids allocating an indirection node when it sees a constructor.

This is exactly what made our earlier thunk<a> type work:

type thunk<a>
Memo(v : a)
lazy Lazy(f : () -> a) ->

Memo(f())

Here, no implicit indirection node is created: instead the memory underlying the Lazy constructor

is rewritten to contain a Memo constructor during evaluation.

By inlining the definitions of sappend and sreverse into the definition of the stream data type, we

avoid indirection nodes altogether. The type of the SAppend constructor then becomes:

11

lazy SAppend(xs : stream<a>, ys : stream<a>) ->
match xs

SCons(x,xx) -> SCons(x, SAppend(xx,ys))
SNil -> ys

This definition makes explicit that the SAppend constructor evaluates to an SCons constructor if the

first branch is taken. Koka can detect this fact and will not create an indirection node in that

case: instead the memory cell holding the SAppend constructor is overwritten to contain the SCons

constructor. This is similar to how the original Spineless Tagless G-machine can sometimes perform

in-place updates of closures instead of creating indirections [Peyton Jones 1992].

In those branches where the tail position is not a constructor of an appropriate size, we still

generate an indirection node. In the SNil case above, we reuse the space of the SAppend constructor

for an indirection to ys. To get rid of them, we can inline the force and match on the second stream

ys:

lazy SAppend(xs : stream<a>, ys : stream<a>) ->
...

SNil -> match ys
SCons(y,yy) -> SCons(y,yy)
SNil -> SNil // an indirection is still necessary here

This rewrites SAppend into SCons in the first branch and only requires an indirection node in the last

case. However, if the old SCons in ys still has a reference it will stay around, which can increase

space usage [Peyton Jones 1992].

3.5 In-place Reuse with Reference Counting
It is important to note that our in-place reuse of lazy constructors is quite different to in-place reuse
using reference counting [Reinking, Xie et al. 2021; Schulte and Grieskamp 1992; Ullrich and de

Moura 2019]. In that setting, memory cells are reused in-place when their reference count is one.

In contrast, the memoization of lazy constructors does not require reference count at all. In fact,

memoization is only useful if the memory cell is shared among several references!

Nonetheless, the Koka compiler combines both techniques. Internally, the Koka compiler rewrites

the SAppend constructor to the following code snippet:

lazy SAppend(xs : stream<a>, ys : stream<a>) as _root ->
match xs

SCons(x, xx) as cell ->
reuse-always(_root, SCons(x, reuse-if-unique(cell, SAppend(xx,ys))))

SNil -> reuse-always(_root, Indirect(ys))

That is, the _root memory cell holding the SAppend constructor is overwritten with the SCons cell in

the first branch and the Indirect node in the second branch. This is independent of the reference

count of the stream cell. Conversely, if the reference count of the cell of the front stream happens

to be one (and only then), its memory location is reused for the new SAppend constructor.

When a programming languages combines lazy constructors with reference counting, this allows

programmers to write code that runs with no fresh allocations at all. This is a key advantage of the

first-order approach to laziness. Koka’s memory re-use based on reference counts is limited to first-

order data constructors: it cannot re-use memory locations associated with closures or traditional

thunks. Our approach paves the way for adding laziness to the fully in-place calculus [Lorenzen et

al. 2023], which promises to enable the first fully in-place lazy data structures.

3.6 Laziness with and without recursive forcing
As we could observe in the previous sections, lazy constructors differ from the laziness that is

typically present in strict language. Forcing the traditional thunk<a> type always returns an value of

type a. While a may itself be instantiated to the type thunk, the initial force operation will not

12

attempt to recursively force it. In contrast, even though a lazy constructor may return another lazy

value, the eval operation will always attempt to evaluate the result to a strict constructor – quite

similar to how lazy languages always force recursively to weak head normal form. This leads us to

distinguish two separate designs in our formalization.

Our first design, presented in Section 3.1 corresponds closely to the way laziness is typically

implemented in a strict language like OCaml. A rough translation of our terms to OCaml is given

in the following table:

Lazy Constructors OCaml

lazyF v lazy e (where F (v) = e)
match x { Memo v → . . . } match x with lazy v -> ... (match on lazy value)

step x Lazy.force x (one-step evaluation)

memo Forward_tag (memoized value)

locked Forcing_tag (lock during evaluation)

indirect N/A (indirection to other thunk)

Conversely, our second design, presented in Section 3.3, is more similar to the way laziness is

typically implemented in a lazy functional language such as Haskell. In Haskell, forcing a thunk

will always return a value in weak head normal form; just like matching on our (recursive) lazy

constructors. A rough translation is as follows:

Recursive Lazy Constructors Haskell

lazyF v e (where F (v) = e)
match x { Cons . . . } case x of Cons ... (match on whnf)

eval x; e Prelude.seq x e (evaluation to whnf)

N/A Control.Deepseq.force x (evaluate all thunks reachable from x)

memo Indirection (memoized value)

locked Black hole (lock during evaluation)

indirect Indirection (indirection to other thunk)

In our terminology, we avoid the term force altogether, since it has different meanings in Haskell

and OCaml. Furthermore, we use the term indirect only for indirections that lead to another thunk

(see Section 4.4) and use memo for indirections that lead directly to the memoized value
4
.

4 FORMALIZATION
In this section we formalize a high-level view on lazy constructors that abstracts from implementa-

tion concerns such as in-place updates. First, we consider a model of lazy constructors based on

Section 3.1, where forcing does not have to recurse. Our type A F B states that a lazy constructor

carrying A can be forced using the function F to yield a normal constructor of type B and will

be memoized. This model of lazy constructors is quite similar to traditional laziness and we can

adapt Launchbury [1993]’s semantic to reason about it. Similar to how normal data types can be

encoded as a sum-of-products, we propose to model lazy data types as a thunked-sum-of-products.

That is, a data type such as:

type example
A(a1 : A1, ..., ai : Ai)
B(b1 : B1, ..., bj : Bj)
lazy C(c1 : C1, ..., ck : Ck) -> e_c
lazy D(d1 : D1, ..., dl : Dl) -> e_d

can be encoded as

((C1 × . . . × Ck) + (𝐷1 × . . . × 𝐷l)) F ((A1 × . . . × Ai) + (B1 × . . . × Bj))

4
While Peyton Jones [1992] only writes indirections to values in whnf (like our memo), Marlow and Peyton Jones [2006]

propose to add indirection nodes pointing to unevaluated thunks during GC.

13

with: F (lv) = case lv { inl (c1, . . ., ck) → ec ; inr (d1, . . ., dl) → ed }.
However, this encoding only works if ec and ed are guaranteed to return one of the constructors

A or B. As described in Section 3.3, it can be beneficial to allow lazy constructors to also return other

lazy constructors. To model this, we wrap the lazy type into a recursive type:

𝜇𝛼. ((C1 × . . . × Ck) + (𝐷1 × . . . × 𝐷l)) F (((A1 × . . . × Ai) + (B1 × . . . × Bj)) + 𝛼)
This allows the function F to return either a normal constructor (inl) or another lazy constructor (inr).
As we will see in this section, we can perform more optimizations if we fuse the recursive type and

the lazy constructors into an abstract type of recursive lazy constructorsA F B := 𝜇𝛼. A F (B + 𝛼).
Our final encoding is then:

((C1 × . . . × Ck) + (𝐷1 × . . . × 𝐷l)) F ((A1 × . . . × Ai) + (B1 × . . . × Bj))

4.1 Core Calculus
Figure 2 shows the syntax and typing rules of a calculus with lazy constructors. The calculus is a

standard lambda calculus restricted to be first-order. As such, we include units, sums, products and

isorecursive types but not closures. We include top-level function declarations F (x) = e : A → B.
The restriction to first-order is not necessary for the soundness of lazy constructors (and indeed,

you can store closures in lazy constructors in Koka), but it emphasises our point that laziness can

exist in a purely first-order setting.

Tomodel lazy constructors, we add a new typeA F B. This type represents the lazy computation

that arises from applying the top-level function F to an argument of type A, evaluating to a value

of type B. We can create a new value of this type by supplying an already computed value v : B as

memo v or an input v : A to the computation as lazyF v. While these introduction forms are similar

to a sum type, the elimination form step v always returns a value of type B, either by evaluating the
computation F or by returning the memoized value. The introduction forms lazyF v and memo v
are not part of the syntax for values, since in the semantics they involve the side-effect of allocating

a new location in a store which can persist the result of the lazy evaluation.

4.2 Natural Semantics
In Figure 3, we present a big-step semantics for our calculus. The judgement Γ : e ⇓ Δ : v means

that under store Γ the expression e will evaluate to store Δ and value v. For the standard features

of our calculus, the big-step rules are straightforward and they do not modify the store.

Following the Natural Semantics for Lazy Evaluation [Launchbury 1993], we use a store Γ to

keep track of thunks. While Launchbury stores expressions e in the store, we store lazy constructors

of the form lazyF v. Assuming that it is known in advance what possible expressions can appear,

these representations correspond where F abstracts the expression e as e = F (v) with v = fv(e).
Launchbury stores a fully evaluated expression as a value w, whereas we use the more explicit

memo w.
The lazy rule then follows Launchbury’s Let-rule, where we create a new thunk in the store Γ

and return a new reference to it. Similar to how the Let-rule applies both to expressions and values

(since values are a subset of expressions), our lazy rule applies to all lazy values (both lazyF v and

memo v). The step rule follows Launchbury’s Variable-rule, where we remove x from the store,

evaluate the computation and store the result in the new store. In the Variable-rule, the computed

value is further transformed to rename all bound variables, but we can omit this step since our

values do not contain lambdas and thus no bound variables. If the thunk happens to be evaluated

already, we use the recall rule to access it.

14

Types:

A, B ::= 1 | A + B | A × B | 𝛼 | 𝜇𝛼. A | A F B

Values and Expressions:

v ::= x, y, z (variables) e ::= v | lv ((lazy) values)

| () (unit) | let x = e in e (let binding)

| inl v | inr v (sum) | case v { inl x → e; inr y → e } (case split)

| (v, v) (pair) | split v { (x, y) → e } (splitting pairs)

| fold v (fold rec. type) | unfold v (unfold rec. type)

lv ::= memo v (memoized value) | F v (application)

| lazyF v (lazy computation) | step v (single-step forcing)

Σ ::= ∅ | Σ, F (x) = e : A → B (recursive top-level functions)

Γ, x : A ⊢ x : A
var

Γ ⊢ v : Ai i ∈ {l, r}
Γ ⊢ ini v : Al + Ar

inl/inr

Γ ⊢ v : A Γ ⊢ w : B

Γ ⊢ (v, w) : A × B
pair

Γ ⊢ v : A[𝜇𝛼. A/𝛼]
Γ ⊢ fold v : 𝜇𝛼. A

fold

Γ ⊢ () : 1

unit

⊩ ∅
defbase

Γ ⊢ e1 : A Γ, x : A ⊢ e2 : B

Γ ⊢ let x = e1 in e2 : B
let

Γ ⊢ v : Al + Ar Γ, x : Ai ⊢ ei : C

Γ ⊢ case v { inl x → el ; inr y → er } : C
case

Γ ⊢ v : A × B Γ, x : A, y : B ⊢ e : C

Γ ⊢ split v { (x, y) → e } : C
split

Γ ⊢ v : 𝜇𝛼. A

Γ ⊢ unfold v : A[𝜇𝛼. A/𝛼]
unfold

F : A → B ∈ Σ Γ ⊢ v : A

Γ ⊢ F v : B
app

⊩ Σ x : A ⊢ e : B

⊩ Σ, F (x) = e : A → B
deffun

F : A→ B ∈ Σ Γ ⊢ v : A

Γ ⊢ lazyF v : A F B

F : A → B ∈ Σ Γ ⊢ v : B

Γ ⊢ memo v : A F B

Γ ⊢ v : A F B

Γ ⊢ step v : B

Fig. 2. Syntax and Types for a First-order Calculus with Lazy Constructors

4.3 Soundness
We show that our calculus is sound with respect to our semantics using a logical relation. We

include a step-indexing parameter k since our calculus includes isorecursive types and write ⇓k for
evaluations that can be performed in k steps. A store Δ extends Γ in k steps, written as Γ ⊑k Δ, if
Δ only contains more or more-evaluated thunks than Γ. Concretely, we take the reflexive-transitive
closure of the rules:

Γ ⊑1 Γ, x ↦→ lv
extend

Γ : F v ⇓k Δ : w

Γ, x ↦→ lazyF v ⊑k+1 Δ, x ↦→ memo w
eval

15

Γ : v ⇓ Γ : v
value

F (x) = e ∈ Σ
Γ : e[v/x] ⇓ Δ : w

Γ : F v ⇓ Δ : w
app

z fresh

Γ : lv ⇓ (Γ, z ↦→ lv) : z
lazy

z ↦→ memo v ∈ Γ

Γ : step z ⇓ Γ : v
recall

Γ : e1 ⇓ Δ : v Δ : e2 [v/x] ⇓ Θ : w

Γ : let x = e1 in e2 ⇓ Θ : w
let

Γ : e[v1/x, v2/y] ⇓ Δ : w

Γ : split (v1, v2) { (x, y) → e } ⇓ Δ : w
split

Γ : unfold (fold v) ⇓ Γ : v
unfold

Γ : ei [v/xi] ⇓ Δ : w

Γ : case (ini v) { inl xl → el ; inr xr → er } ⇓ Δ : w

Γ : F v ⇓ Δ : w

(Γ, x ↦→ lazyF v) : step x ⇓ (Δ, x ↦→ memo w) : w
step

Fig. 3. Natural Semantics for Lazy Constructors

As usual for logical relations we will argue that if an expression can evaluate to a value under a

store Γ then it evaluates to the same value for all stores that extend Γ. In this interpretation, the

lazy rule thus encodes the notion of referential transparency: evaluating arbitrary thunks in the

heap does not change whether (and to what) an expression evaluates.

Next, we define our meaning of valuesVkJAK and expressions Ek,ΔJAK. Since we are working
with a big-step semantics, we can not distinguish between stuck and diverging programs. However,

we will prove that if a well-typed program evaluates to a value, then the value will have the correct

type:

Ek, ΔJAK := { e | ∀j < k. ∀Θ, v. (Δ : e ⇓j Θ : v) ⇒ Δ ⊑j Θ and (Θ, v) ∈ Vk − jJ A K }
The interpretation of values is straightforward in all cases except for the lazy type. For a lazy value

lazyF v, we need both that v is valid for type A and that the thunk can be evaluated to a value of

type B at any time in the future:

VkJ 𝜇𝛼. A K := { (Δ, fold v) | ∀j < k. (Δ, v) ∈ VjJ A[𝜇𝛼. A/𝛼]K }
VkJ A F B K := { ((Δ, z ↦→ lazyF v), z) | (Δ, v) ∈ VkJ A K, ∀j ⩽ k, Θ. Δ ⊑j Θ ⇒

F v ∈ Ek − j, ΘJBK }
∪ { ((Δ, z ↦→ memo v), z) | (Δ, v) ∈ VkJ B K }

With this setup, we can prove:

Lemma 1. (Store extension preserves types.)
If (Δ, v) ∈ VkJ A K and Δ ⊑j Θ, then (Θ, v) ∈ Vk − jJ A K.
We connect our semantics to the type system by defining the semantic soundness relation Γ ⊨ e : A
which implies that for all substitutions 𝜎 of variables in Γ by values of the correct type that are

valid for k more steps, the evaluation of e will yield a value of type A in k steps (if it converges):

Γ ⊨ e : A := ∀k ⩾ 0, Δ, 𝜎 ∈ Gk,ΔJΓK. 𝜎 (e) ∈ Ek,ΔJAK
Then we obtain our type soundness result:

Theorem 1. (Type Soundness.)
If Γ ⊢ e : A, then Γ ⊨ e : A.

16

As an intermediate result from our soundness proof, we also see that evaluating the heap further

does not change the final computed value. This shows that the evaluation of lazy constructors in

the store in referentially transparent:

Theorem 2. (Lazy evaluation is referentially transparent.)
If Γ : e ⇓ Δ : v and Γ ⊑ Γ′, then Γ′ : e ⇓ Δ′

: v with Δ ⊑ Δ′
.

4.4 Recursive Lazy Constructors
To model a type like the stream, where SReverse can evaluate to another lazy constructor SReverse,

we need to encode lazy data types using iso-recursive types. In the style of a partiality monad [Al-

tenkirch et al. 2017; Capretta 2005; Chapman et al. 2019] or trampoline [Ganz et al. 1999], we can

define a type of recursive lazy constructors as:

A F B := 𝜇𝛼. A F (B + 𝛼)
where the eval function recursively steps the lazy constructors until we obtain a non-lazy construc-

tor:

eval x = case (step (unfold x)) { inl y → y; inr y → eval y }
This design is only a small extension of our first model of lazy constructors, yet allows us to encode

the full power of lazy constructors as in Section 3.3. However, while the definition above is a correct

description of recursive lazy constructors, it turns out that our implementation contains another

subtlety: it does not allow us to distinguish how many iterations eval had to perform.

Consider an inhabitant of this type like fold (memo (inr (fold (memo (inl v))))). At first glance,
it might appear that the outer indirection is unnecessary and that the value is in fact equivalent

to fold (memo (inl v)), since both values yield v when passed to eval. However, in the definition

above, there is no restriction that lazy constructors are always deconstructed using eval, which
makes it possible to distinguish the two values by simply case-splitting after a call to step. This is a
well-known problem for implementations of laziness that attempt to short-cut indirections. For

example, consider the following OCaml code:

let nested = lazy (lazy (raise Not_found))
let eval l = match l with lazy v -> ()
let () = eval nested; eval nested; ()

In this code, we evaluate the outer lazy twice and expect the exception not to be thrown. However,

after the first evaluation, the lazy is rewritten into an indirection. If the runtime system attempted

to short-cut the indirection, this would make nested point to the inner lazy value. Then the second

evaluation would throw the exception, thus changing the semantics of the program. In practice,

OCaml’s runtime system still tries to short-cut indirections, but guarantees that this does not

affect the semantics of the program; in particular, indirections are not removed if they lead to an

unevaluated lazy value
5
.

However, our example is a bit different from the OCaml example: while the two lazy values in

OCaml belong to different thunks, in our case the two indirections morally belong to the same

thunk. This suggests that if we were to make our encoding abstract, we could use this fact to

short-cut the indirection.

4.5 Short-cutting Indirections
To be able to short-cut indirections, we thus need to ensure that the encoding of recursive lazy

constructors stays abstract and make it a first-class type in our calculus. We introduce a new

type A F B and define its interpretation by fusing the A F B type with the iso-recursive type

5
https://github.com/ocaml/ocaml/blob/4.14/runtime/minor_gc.c#L236

17

wrapped around it:

VkJ A F B K := { ((Δ, z ↦→ lazyF v), z) | (Δ, v) ∈ VkJ A K, ∀j < k, Θ. Δ ⊑ Θ ⇒
F v ∈ Ek − j, ΘJ B + (A F B) K }

∪ { ((Δ, z ↦→ memo v), z) | (Δ, v) ∈ VkJ B K }
∪ { ((Δ, z ↦→ indirect v), z) | ∀j < k. (Δ, v) ∈ VjJ A F B K }

Compared to earlier, a lazy value now evaluates to B + (A F B), but memo still only contains

values of type B. Instead, if the lazy value evaluates to A F B, then we create an indirection node

pointing to the folded lazy constructor. The crucial aspect of this formalization is that we can now

shortcut indirections. We formalize this using the following two rules:

y ↦→ indirect z ∈ Γ

Γ, x ↦→ indirect y ⊑ Γ, x ↦→ indirect z
cuti

y ↦→ memo v ∈ Γ

Γ, x ↦→ indirect y ⊑ Γ, x ↦→ memo v
cutm

We do not allow shortcutting an indirection that points directly to a lazy constructor since that

could duplicate work: if the lazy constructor would be duplicated into a different location in the

store, its evaluation would be independent of the evaluation of the original location. Our referential

transparency theorem still holds for this calculus:

Theorem 3. (Short-cutting indirections is referentially transparent.)
If Γ : e ⇓ Δ : v and Γ ⊑ Γ′, then Γ′ : e ⇓ Δ′

: v with Δ ⊑ Δ′
.

5 IMPLEMENTATION
While Section 4 gives a high-level overview over lazy constructors, it does not give a direct strategy

for implementing lazy constructors efficiently. In this section, we instead take a more low-level

view. We propose several primitives that can be used to implement lazy constructors efficiently

and derive an efficient recursive evaluation algorithm. Unlike the high-level step function of the

previous section, our new low-level primitives do not preserve the referential transparency of

lazy evaluation and should thus be exposed only as unsafe or kept hidden in the underbelly of a

compiler.

In Section 2.3, we define a simple stream/eval function, but already noticed that it used too

much stack space. In this section, we will show how to derive a more efficient implementation of

stream/eval:

fun stream/eval(s : stream<a>)
lazy match s

SAppend(s1, s2) -> lazy-eval-sappend(s, s1, s2)
SReverse(s1, acc) -> lazy-eval-sreverse(s, s1, acc)
Indirect(ind) -> eval(ind)
_ -> s

fun lazy-eval-sappend(s : stream<a>, s1 : stream<a>, s2 : stream<a>)
match s1
SCons(x,xx) -> lazy-update(s, SCons(x, SAppend(xx, s2)))
SNil -> lazy-update(s, Indirect(s2)); eval(s2)

fun lazy-eval-sreverse(s : stream<a>, s1 : stream<a>, acc : stream<a>)
match s1
SCons(x,xx) -> lazy-eval-sreverse(s, xx, SCons(x, acc))
SNil -> lazy-update(s, Indirect(s2)); eval(s2)

Compared to our simpler implementation, we can see that we now write an indirection node if

a lazy constructor returns another lazy constructor. This allows us to keep evaluating without

using stack space, but means that we might have to follow an indirection chain from a previous

evaluation. Furthermore, our simpler version generated an eval(SReverse(xx, SCons(x,acc)))), where

a lazy constructor is created and immediatedly evaluated. In our new implementation, we instead

directly jump to the correct evaluation function lazy-eval-sreverse which saves a branch and writes

18

Expressions:

e ::= . . . (as before)

| lazy match v { lazyF l y → e; memo y → e } (lazy match and acquire lock)

| memoize l w (update cell and release lock)

Σ ::= . . . | Σ, F (l; x) = e : A→ B → C (top-level functions)

We keep all rules as in the high-level core calculus except step. We augment each rule with a linear

environment L of locations. For the introduction rules, unfold rule and app rule L is empty, the let

rule splits L among its antecedents while the case and split rules pass L to their antecedents.

Furthermore we add the rules:

⊩ Σ l : A | x : B ⊢ e : C

⊩ Σ, F (l; x) = e : A → B → C
deflapp

F : A→ B → C ∈ Σ ∅ | Γ ⊢ v : B

l : A | Γ ⊢ F l v : C
lapp

∅ | Γ ⊢ w : B

l : A F B | Γ ⊢ memoize l w : B
memoize

∅ | Γ ⊢ v : A F B L, l : A F B | x : A ⊢ e1 : C L | Γ, y : B ⊢ e2 : C

L | Γ ⊢ lazy match v { lazyF l x → e1; memo y → e2 } : C
lazymatch

Fig. 4. Low-level core calculus

to memory.

Unfortunately, it is tricky to show that our final implementation is in fact correct, where a lazy

constructor will be updated to the correct value. However, it turns out that we can derive this

version by equational reasoning from the simpler implementation, which corresponds more clearly

to our high-level calculus.

5.1 Implementation calculus
Our low-level calculus is a variation of the high-level calculus. We introduce two new primitives:

lazy match v { lazyF l x → e1; memo y → e2 } allows us to inspect the value of a lazy constructor.

In the first branch e1 we additionally get access to the location l of the lazy constructor. Our second

primitive memoize l w allows us to overwrite the cell l of a lazy constructor with memo w. A
location l : : A F B acts as a destination for a value of type B [Allain et al. 2025; Bagrel and

Spiwack 2025; Shaikhha et al. 2017], which can filled usingmemoize. In our semantics, all locations

l returned by lazy match are locked and thus can not be accessed until the lock is released by

memoize.
To ensure the soundness of the low-level calculus, we need to ensure that locked locations are

handled linearly. In particular, this guarantees that a locked location is overwritten using memoize
exactly once. We achieve this by adding a second environment L to the calculus that contains all

locked locations and ensure that no locked location can ever escape into a value held in Γ. The rules
of our high-level calculus can be modified to treat the L environment linearly in the usual way.

In further preparation, we add a new type of top-level function F (l; x) which also takes a location.

This is necessary, since locked locations may not be stored in values and so we can not represent

this by a product F ((l, x)). Despite taking two arguments a function F (l; x) has to be fully applied.

Given those primitive operations, we can implement the step operation as:

19

Store and evaluation context:

v : := a | . . . (heap cells)
𝜑 : := memo v | lazyF v | locked
S : := ∅ | S, a ↦→𝜑

E : := □ | let x = E in e

S | e1 −→ S′ | e2
S | E[e1] ↦−→ S′ | E[e2]

step

Evaluation steps:

(let) S | let x = v in e −→ S | e[v/x]
(app) S | F v −→ S | e[v/x] where F (x) = e ∈ Σ
(split) S | split (v1, v2) { (x, y) → e } −→ S | e[v1/x, v2/y]
(case) S | case (ini v) { inl xl → el ; inr xr → er } −→ S | ei [v/xi]
(unfold) S | unfold (fold v) −→ S | v
(lazy) S | lazyF v −→ S, a ↦→ lazyF v | a a fresh
(memo) S | memo v −→ S, a ↦→memo v | a a fresh
(memoize) S, a ↦→ locked | memoize a w −→ S, a ↦→memo w | w
(lazy match) S, a ↦→v | lazy match a { lazyF l x → e1; memo y → e2 }

−→ S, a ↦→ locked | e1 [a/l,w/x] if v = lazyF w
−→ S, a ↦→memo w | e2 [w/y] if v = memo w

Fig. 5. Small-step semantics of implementation

step x = lazy match x
lazyF l v → memoize l (F v)
memo y → y

It is easy to see that with this implementation of step, the original step rule of the high-level

calculus becomes derivable. In particular, our low-level calculus strictly extends the high-level

calculus:

Lemma 2. (The low-level calculus implements the high-level calculus)
If Γ ⊢ e : A, then ∅ | Γ ⊢ e : A.

5.2 Small-step semantics
In Figure 5, we describe a small-step semantics for lazy constructors. As in the natural semantics, we

only keep lazy constructors in the store. Each memory cell is either a lazy ormemo value or locked.
The small-semantics of the derived step function corresponds directly to the natural semantics of

the primitive step: while the big-step semantics removes the cell x from the heap entirely during

evaluation, the small-step semantics keeps it in the heap as locked and thus inaccessible. This

allows us to prove that the small-step semantics faithfully implements the big-step semantics:

Lemma 3. (The small-step semantics implements high-level semantics.)
If Γ : e ⇓ Δ : v, then Γ | e ↦−→∗ Δ | v.
Would it also be possible to show the reverse direction? In general this is not possible, since the

implementation calculus allows us to memoize any value of the correct type, while the high-level

calculus only allows us to memoize values that are produced by the evaluation of a lazy constructor.

However, for expressions that can be checked in the high-level calculus, the small-step semantics

and the big-step semantics are equivalent.

Our description of cells under evaluation as “locked” mirrors our implementation: If Koka

detects that a lazy constructor is thread-shared (recorded using reference counts [Ullrich and

de Moura 2019]), Koka will use an atomic compare-and-swap to overwrite the tag of the lazy

constructor with a special tag that indicates that the cell is being evaluated. The lazy match

20

primitive acquires this lock during matching and the memoize primitive releases it. This ensures

that a cell is evaluated at most once, even in the presence of multiple threads. However, as in other

implementations of laziness, the evaluation of a lazy constructor may deadlock if it tries to evaluate

itself. Haskell and OCaml can detect this case and throw an exception.

5.3 Tail-recursive Evaluation
Using our new primitives, we can obtain a faster implementation of the lazy evaluation function.

As before, we can define the recursive forcing function as:

eval x = case (step (unfold x)) { inl y → y; inr y → eval y }
= lazy match (unfold x)

lazyF l v → case (memoize l (F v)) { inl y → y; inr y → eval y }
memo y → case y { inl y → y; inr y → eval y }

In the first branch of the lazy-match we run F v, memoize its result and then case-split to find out

if the result can be returned (inl) or is a lazy constructor that needs to be evaluated further.

It turns out that we can often avoid the case-split if we specialize the eval function to the concrete

function F that is evaluated in the lazy constructor. To achieve this we will use equational reasoning

in the style of [Leijen and Lorenzen 2023 2025]. First, we define the translation JeKl of an expression

e as:
JeKl = case (memoize l e) { inl y → y; inr y → eval y }

For the function F that is evaluated in eval, we define a specialized function F ′
with the definition:

F ′(l; v) = JF vKl
and we can use it in our eval function as:

eval x = lazy match (unfold x)
lazyF l v → F ′ l v
memo v → case v { inl y → y; inr y → eval y }

So far, nothing has happened: our new evaluation function corresponds exactly to the previous

version. However, we have shifted the position of the case-split from the eval function into the

translation. The key insight is now that we can improve the translation JeKl by specializing it

to different syntactic constructs. For example, several syntactic constructs permute with both

memoize l and case:
Jlet y = e1 in e2Kl = let y = e1 in Je2Kl
Jcase v { inl y → e1; inr y → e2 }Kl = case v { inl y → Je1Kl ; inr y → Je2Kl }
Jsplit v { (y, z) → e }Kl = split v { (y, z) → JeKl }

This means that we can push down the memoization and case-split into the return values of the

computation F . If the translated expression e is well-typed, there are few possible return values to

F . For variables (and unfolds of variables), we have to perform the memoization and case-split. But

in some cases we can do better:

Jinl wKl = memoize l (inl w); w
Jinr wKl = memoize l (inr w); eval w

If the function F ends in inl w, the evaluation ends at this point. We can thus memoize this result

and return w without an extra case-split. If the function F ends in inr w, we also memoize the

intermediate result and directly continue evaluating it.

In our implementation, these two cases enable the in-place update of lazy constructors: Since we

know the size of the data that is memoized, we can often avoid creating an indirection node memo
and instead write the data directly into the lazy cell.

Another interesting special case is if we can already see syntactically what the next lazy thunk

will be. This happens for example when a SReverse constructor is evaluated to another SReverse. In

21

∅ | Γ ⊢ w : B

l : A F B | Γ ⊢ memoize l w : B

∅ | Γ ⊢ w : A F B

l : A F B | Γ ⊢ indirect l w : A F B

∅ | Γ ⊢ v : A F B L, l : A F B | x : A ⊢ e1 : C
𝐿 | Γ, y : A F B ⊢ e2 : C L | Γ, z : B ⊢ e3 : C

L | Γ ⊢ lazy match v { lazyF l x → e1; indirect y → e2; memo z → e3 } : C
lazymatch

Evaluation steps:

(memoize) S, a ↦→ locked | memoize a w −→ S, a ↦→memo w | w
(indirect) S, a ↦→ locked | indirect a w −→ S, a ↦→ indirect w | w
(lazy match) S, a ↦→v | lazy match a { lazyF l x → e1; indirect y → e2; memo z → e3 }

−→ S, a ↦→ locked | e1 [a/l,w/x] if v = lazyF w
−→ S, a ↦→ indirect y | e2 [w/y] if v = indirect w
−→ S, a ↦→memo w | e3 [w/z] if v = memo w

Fig. 6. Short-cutting indirections

that case, we can specialize the call to eval further:
Jinr (fold (lazyF v))Kl = case (memoize l (inr (fold (lazyF v)))) { inl y → y; inr y → eval y }

= let y = lazyF v in memoize l (inr (fold y)); eval (fold y)
= let y = lazyF v in memoize l (inr (fold y)); lazy match y

lazyF l v → F ′ l v
memo v → case v { inl y → y; inr y → eval y }

= let y = lazyF v in memoize l (inr (fold y)); lock y in F ′ y v
In the last line, we now create a new lazy cell, memoize it in l and then immediately jump to F ′

.

Since F ′
expects y to be locked, we use the macro:

lock y in e := lazy match y { lazyF y _ → e; memo v → impossible }
However, this might seem slightly wasteful: Why do we write the result into a new cell y and

write an indirection into l when we could just write the result into l? This is not quite possible so
far, since we do not consider indirections specially and thus run into the problem of Section 4.4.

However, by considering indirections as proposed in Section 4.5, we can use an additional reasoning

step to reduce the last line to just F ′ l v.

5.4 Short-cuts during evaluation
To be able to short-cut indirections, we change our memoize and lazy match primitives and add

a new indirect primitive as in Figure 6. The indirect instruction acts like memoize but puts an

indirect into the store that can be safely shortcut as shown in Section 4.5. On the locations l we
now have to record the full type of the lazy constructor, where a location of type of type A F B
can be filled either with an indirection to another value of type A F B or with the memoized

result B. Given those primitive operations, we can refine the eval operation from Section 5.3 as:

eval x = lazy match x
lazyF l v → case (F v) { inl y → memoize l y; inr y → eval (indirect l y) }
indirect y → eval y
memo y → y

We can now repeat the calculation from the previous section. The cases for let-bindings, case-

statements and split-statements are the same and for inl w and inr w we obtain similar terms.

22

Expressions:

e ::= . . . (as before)

| link l (l′, v) in e (link cells and keep lock)

| unlink { inl () → e; inr (l, x) → e } (unlink locked cells)

𝜑 : := memo v | lazyF v | locked | locked (z, v)
(link) S, a ↦→ locked | link a (a′, v) in e −→ S, a ↦→ locked (a′, v) | e

(unlink) S, a ↦→v | unlink a { inl () → e1; inr (l, x) → e2 }
−→ S, a ↦→ locked | e1 if v = locked
−→ S, a ↦→ locked | e2 [a′/l,w/x] if v = locked (a′, w)

∅ | Γ ⊢ v : A L, l : �A B | Γ ⊢ e : C

L, l : B, l′ : �A B | Γ ⊢ link l (l′, v) in e : C
link

L | Γ ⊢ e1 : C L, l : B, l′ : �A B | Γ, x : A ⊢ e2 : C

L, l : �A B | Γ ⊢ unlink l { inl () → e1; inr (l′, x) → e2 } : C
unlink

Fig. 7. Linking cells

The main difference is in the special inr (lazyF v) case. After calling F ′ y v, y points to a chain of

indirections ending in a memo. The cutm and cuti short-cutting rules give us the laws:

indirect l y; memoize y z = memoize l z; memoize y z
indirect l y; indirect y z = indirect l z; indirect y z

This allows us to replace the evaluation of F ′ y v by F ′ l v:

Jinl wKl = memoize l w
Jinr wKl = indirect l w; eval w
Jinr (lazyF v)Kl = let y = lazyF v in indirect l y; lock y in F ′ y v

= let y = lazyF v in lock y in indirect y l; F ′ l v
= F ′ l v

In the last case, we are creating an indirection in y that points to l. But then the cell y is unused

and we can avoid allocating it altogether.

In practice, we also short-cut indirections in the indirect case of the lazy match construct. This is

quite important in practice to avoid long chains of indirections, which could change the time com-

plexity of programs if traversed repeatedly. We discuss in more detail in our tech report [Lorenzen

et al. 2025].

5.5 Linking cells for Schorr-Waite traversal
Leading up to our discussion of the Schorr-Waite traversal, we make another addition to our

calculus. While we have so far represented locked cells by the value locked, our implementation

actually only sets a flag in the header to indicate that they are locked. This means that the storage

space of the cell remains available even while it is in a locked state. In our calculus, we use a new

value locked (l, v) to indicate that a cell is in a locked state but contains both another location l
and a value v.

We can write to a locked cell l using the link l (l′, v) in e construct and we can check whether a

locked cell l contains a value using the unlink l construct. Cells that may contain a value have type

�A B, which means they contain a linked value of type A and are a destination for type B. To create
a linked chain in the first place, we assume that there is a cell null : �A B in the environment

(corresponding to a NULL pointer in the implementation).

23

5.6 Schorr-Waite Evaluation of Lazy Constructors
As we saw in Section 2.5, the evaluation of thunks can lead to stack overflow, if there are recursive

calls to eval in F . We can avoid this by further transforming the lazy evaluation function as JeKz,l
with an additional zipper z that is stored in the lazy cells themselves.

For the i-th call to eval in F , we write Ei to denote its evaluation-context. Let Ai be the product

type of the free variables of Ei. We define the zipper as the sum type of the Ai and define an unroll
function that for a given zipper extracts the correct evaluation context to continue:

unroll l v = unlink l
inr (z, 𝛼) → case 𝛼 { ini 𝛼 i → JEi [v]Kz,l }
inl () → v }

Then we can extend our translation to find such evaluation contexts, construct the zipper and call

the correct unroll function:
JEi [eval v]Kz,l = link l (z, ini 𝛼 i) in unroll l (eval v) where 𝛼 i = fv(Ei)

Again, we see that nothing has changed: the call to unroll can be inlined to yield the left-hand-side,

since the unlink in unroll just extract what we just linked into l. But this setup now provides us

with a technique for making the call to eval tail-recursive. We define a new forcing function that

includes the unroll:
eval′ z x = unroll z (eval x)

= unroll z (case (step (unfold x)) { inl y → y; inr y → eval y })
= case (step (unfold x)) { inl y → unroll z y; inr y → unroll z (eval y) }
= case (step (unfold x)) { inl y → unroll z y; inr y → eval′ z y }
= lazy match (unfold x)

lazyF l v → case (memoize l (F v)) { inl y → unroll z y; inr y → eval′ z y }
memo y → case y { inl y → unroll z y; inr y → eval′ z y }

This suggests that we change our interpretation function to:

JeKz,l = case (memoize l e) { inl y → unroll z y; inr y → eval′ z y }
which yields our tail-recursive forcing function:

eval′ z x = lazy match (unfold x)
lazyF l v → F ′ z l v
memo y → case y { inl y → unroll z y; inr y → eval′ z y }

eval x = eval′ null x
As before we have:

Jlet y = e1 in e2Kz,l = let y = e1 in Je2Kz,l
Jcase v { inl y → e1; inr y → e2 }Kz,l = case v { inl y → Je1Kz,l ; inr y → Je2Kz,l }
Jsplit v { (y, z) → e }Kz,l = split v { (y, z) → JeKz,l }

But now our bases cases are:

Jinl wKz,l = memoize l (inl w); unroll z w
Jinr wKz,l = memoize l (inr w); eval′ z w
Jinr (lazyF v)Kz,l = let y = lazyF v in memoize l (inr (fold y)); lock y in F ′ z y v

Compared to our previous calculation, little has changed: we only pass the zipper on to eval′ and
call unroll once evaluation is finished. In the remaining indirection in the last case can be short-cut

to just F ′ z l v as discussed in Section 5.4.

24

𝑙𝑖𝑠𝑡 [0] 𝑙𝑖𝑠𝑡 [1] ... 𝑙𝑖𝑠𝑡 [𝑛]

𝑁𝑒𝑥𝑡 (_) 𝑁𝑒𝑥𝑡 (_) ... 𝐷𝑜𝑛𝑒 (1)

𝑙𝑖𝑠𝑡 [0] 𝑙𝑖𝑠𝑡 [1] ... 𝑙𝑖𝑠𝑡 [𝑛]

𝐼𝑛𝑑𝑖𝑟𝑒𝑐𝑡 (_) 𝐼𝑛𝑑𝑖𝑟𝑒𝑐𝑡 (_) ... 𝐷𝑜𝑛𝑒 (1)

Fig. 8. The chain before and after evaluation.

6 COMPRESSING INDIRECTIONS
Our implementation differs from typical implementations of laziness in the way it memoizes thunks.

While most implementations use the stack to remember which thunks need to be memoized, we

write indirection nodes. This has the advantage of yielding constant stack usage, but it can lead to

cases where long chains of indirection nodes are present in memory. This can be problematic for

performance, especially if these long chains are traversed repeatedly. In fact, this can even lead

to cases where code using lazy constructors has worse asymptotic complexity than code using

traditional thunks. In this section, we discuss this problem and propose a solution.

To motivate our discussion, we define a chain of lazy constructors. A Next node points to another

element of the chain, which ends in a Done node. We also define the helper functions next and eval,

which we will instantiate with different implementations later:

type chain
Done(v : int)
lazy Next(c : chain) -> c

fun done(v : int)
Done(v)

fun next(c : chain)
Next(c)

fun eval(c : chain)
match c

Done(v) -> v

We can use this interface to build a list of lazy constructors where each element of the list points to

the next element:

fun build(i : int)
if i == 0

then Cons(done(1), Nil)
else

val xs = build(i - 1)
Cons(next(head(xs)), xs)

The function build(n) returns a list of length n+1, where each element of the list except the last

points to a Next constructor that itself points to the next element in the list (see the left side of

Figure 8). To evaluate the lazy constructor n elements from the end of the list, we have to evaluate

n other lazy constructors. This becomes a problem when we try to traverse the list, for example by

summing all elements:

fun traverse(n : int)
sum(map(build(n), eval))

Despite looking like a linear-time function, traverse will take quadratic time. The problem here

is that each Next is rewritten to an indirection node, which gives us a chain of indirection nodes

of length n, see the right side of Figure 8. Each call to eval takes time linear in the length of

the remaining list, and map matches on all elements in the list. The total cost of traverse is thus

(n + 1) + n + . . . 2 + 1 ∈ O(n2).

6.1 Traditional Thunks
We can replicate this issue using traditional thunks, when we model the chain by alternating

chaincell and thunk similar to streams:

25

type chaincell { Done(v : int); Next(next : chain) }
alias chain = thunk<chaincell>

fun done(v : int)
delay { Done(v) }

fun next(c : chain)
delay { Next(c) }

fun eval(c : chain)
match c.force()

Done(v) -> v
Next(n) -> eval(n)

Here, it is obvious that the eval function takes time linear in the length of the remaining chain.

This is true even in a runtime that short-cuts indirections (like OCaml), since the Next elements

themselves take linear time to traverse. But similar to our implementation, this example only

uses constant stack space: each c.force() call returns immediately and can easily be memoized.

Furthermore, eval can be a tail-call: the Next constructors function as indirections similar to our

implementation.

We can fix the asymptotic behaviour of our example by not using Next constructors at all. Instead,

we just use a single thunk and force the next element of the chain in next:

type chaincell { Done(v : int) }
alias chain = thunk<chaincell>

fun done(v : int)
delay { Done(v) }

fun next(c : chain)
delay { c.force() }

fun eval(c : chain)
c.force().v

In this version eval is a constant-time operation, and traverse will take linear time. However, we

pay for this in stack-usage: unlike the previous two version, this version has linear stack usage. The

eval function calls force on a thunk generated by next, which will call force again on the next thunk.

While force is in tail-position in next, the evaluation of the thunk itself is not a tail-call. Looking

back at our implementation of force, we see that the call to f() has to be followed by the overwrite

of Lazy with Memo:

type thunk<a>
Memo(v : a)
lazy Lazy(f : () -> a) ->
Memo(f())

fun force(t : thunk<a>) : a
match t
Memo(v) -> v

In fact, it is necessary that force uses the stack here we have to memoize the result of f() after it

is run. This seems to put us in a bind: we can either have constant stack usage and suffer from

quadratic time complexity in this example. Or we can obtain the correct time complexity, but at the

cost of linear stack usage.

6.2 Laziness in the STG Machine
Haskell’s evalation strategy of laziness corresponds to the latter option. The Haskell code for our

example is:

26

build 0 = [1]
build i = (head xs) : xs

where xs = build (i-1)

traverse n = foldl’ (+) 0 (build n)

In practice, this code takes linear time, but also uses linear stack space. This happens since the STG

machine writes an update frame on the stack each time it enters a thunk, which is then overwritten

with the result of the evaluation [Peyton Jones 1992]. To force the first thunk of the list, Haskell

has to force all thunks in the list, recursively pushing update frames on the stack. However, once

the first thunk is forced, all other thunks have been updated to the final result as well and so the

rest of the list can be summed without any further lazy evaluation.
6

To illustrate the difference between our implementation and the STG machine, consider our

implementation of eval from Section 5.4:

eval x = lazy match x
lazyF l v → case (F v) { inl y → memoize l y; inr y → (indirect l y; eval y) }
indirect y → eval y
memo y → y

If we find a new lazy thunk after evaluating F v, we write an indirection node and keep evaluating.

We can replace the indirection node with a stack frame, by first evaluating and then memoizing the

result:

eval x = lazy match x
lazyF l v → case (F v) { inl y → memoize l y; inr y → memoize l (eval y) }
indirect y → eval y
memo y → y

or equivalently, moving out the memoize:

eval x = lazy match x
lazyF l v → memoize l (case (F v) { inl y → y; inr y → eval y })
indirect y → eval y
memo y → y

This version of eval is much closer to the typical implementation strategy of laziness. Just like

the STG machine, it first pushes an update frame on the stack (memoize l), then runs the thunk

(F v), checks if the result is still a thunk (case . . . { inl y → y; inr y → eval y }) and if so keeps

evaluating it.

6.3 Compression of Indirections
However, we would like to keep the constant stack usage of our original implementation. We can

achieve this by compressing long chains of indirection nodes once we traverse them again. That is

we keep our old eval function, but just change the indirect y case to compress the chain:

eval x = lazy match x
lazyF l v → case (F v) { inl y → memoize l y; inr y → (indirect l y; eval y) }
indirect y → compress y
memo y → y

To state the compression function, we need to extend our syntax slightly by allowing lazy match to

6
While the STG machine only creates indirection chains of length one, Marlow and Peyton Jones [2006] note that the stack

usage can be reduced by rewriting stack frames into an indirection chain:

at garbage collection time [..] a useful optimisation is to collapse sequences of adjacent update frames into a single
frame, by choosing one of the objects to be updated and making all the others be indirections to it.

This would have the effect of creating indirection chains whose length is bounded by the number of GCs that have occurred

during the creation of the chain. They do not describe how those indirection chains are shortened to length one.

27

return the location of an indirection node. Then we can define the compression function as follows:

compress x = lazy match x
indirect l v → memoize l (compress v)
memo v → v

Note that we do not give a case for lazyF here, since an indirection chain is guaranteed to end in a

memoized value.

Of course, we have gained little: while the original evaluation of the chain uses constant stack

space, the traversal of the indirection chain now uses linear stack space. The advantage of this

approach is that it enables us to improve the compress function to use constant stack space as well.

6.4 Stackless Compression
Our compression problem for indirection chains is similar to the problem of path compression in

disjoint-set data structures [Leeuwen and Weide 1977; Tarjan and Van Leeuwen 1984; Weide 1980].

This allows us to use common solutions for the path compression problem for the indirection

compression problem. In particular, we consider the three algorithms given in Section 3 of [Tarjan

and Van Leeuwen 1984]:

6.4.1 Explicit Scans. In the naive compression algorithm, we use the stack to update the indirection

nodes in reverse order of the chain. But actually, there is no requirement on the order in which we

update the indirection nodes. The insight of the explicit scans algorithm is that we can traverse

the chain twice: first to find the memoized value at the end of the chain and then to update all

indirection nodes in the chain. Crucially, both traversals can be done in a tail-recursive manner.

compress x = replace x (find x)

find x = lazy match x
indirect v → find v
memo v → v

replace x w = lazy match x
indirect l v → memoize l w; replace v w
memo v → v

A counter-point to the explicit scans algorithm is that it traverses the chain twice. However, the

naive compression algorithm also traverses the chain twice: first to enter all indirection nodes and

then, unrolling the stack, to update them. However, we can get away with a single traversal of the

chain by using the path splitting or path halving algorithms.

6.4.2 Path splitting. The path splitting algorithm shortens the path from each node to thememoized

value by short-cutting each indirection node by one step. The name of the algorithm comes from

the property that it splits the indirection chain into two shorter chains: one of all the even nodes

and one of all the odd nodes. Each odd node is updated to point to the next odd node, while each

even node is updated to point to the next even node:

compress x = lazy match x
indirect l v → lazy match v

indirect w → indirect l w; compress v
memo w → memoize l w

memo v → v
Unlike the two previous algorithms, the path splitting algorithm traverses the chain only once.

But a possible objection to this algorithm is that many indirections remain in the chain. Indeed,

28

as Figure 8 of Tarjan and Van Leeuwen [1984] shows, this algorithm may use n log(n) steps to
compress a chain of length n, whereas the two previous algorithms use 2n steps.

6.4.3 Path halving. A slight improvement on the path splitting algorithm can be achieved by only

applying it to all odd nodes in the chain. As soon as one short-cut is applied, we immediately

continue compressing the chain from the next odd node:

compress x = lazy match x
indirect l v → lazy match v

indirect w → indirect l w; compress w
memo w → memoize l w

memo v → v
This algorithm also halves the length of the chain, but it has the advantage of using fewer writes

to memory. Furthermore, it avoids splitting the chain into two. This is particularly helpful in our

running example, since it means that repeated traversals of the chain from different nodes can

benefit from the compression. We conjecture that unlike the path splitting algorithm, this algorithm

runs in linear time, but leave this as an open problem.

7 BENCHMARKS
To test the runtime performance of lazy constructors, we have implemented all the lazy queues and

heaps presented by Okasaki [1999], both using the standard approach with lazy thunks and with

our new approach using lazy constructors. We benchmark them in a sequential setting without

sharing of the persistent data structures. Since the laziness has no performance benefits in this

setting (even in a theoretical or amortized sense), this allows to isolate the performance overhead

of laziness itself. We compare the following systems and implementations:

• Koka (lazy): Koka 3.1.3 (-O2 –no-debug) using the implementation given by Okasaki with Koka’s

traditional lazy type.

• Koka (strict): Same as Koka (lazy) but with all laziness removed from the implementations.

• Koka (lazy cons): Same as Koka (lazy) but using our custom implementation with lazy

constructors.

• OCaml (lazy): OCaml 4.14.2 (-O2, OCAMLRUNPARAM="s=16M") using the implementations as given

by Okasaki using the Lazy.t type.

• OCaml (strict): Same as OCaml (lazy), but with all laziness removed from the implementations.

• Haskell (lazy): GHC 9.10.1 (-O2 -threaded -fworker-wrapper-cbv and +RTS -N8 -A32M -qb0) using

the implementations given by Okasaki.

• Haskell (strict): Same as Haskell (lazy) but compiled using -XStrict.

• Koka (no reuse): As we discuss in the next section, reuse analysis [Lorenzen and Leijen 2022;

Reinking, Xie et al. 2021] has a large impact on the performance of the benchmarks in Koka,

so we also test the Koka benchmarks with the –fno-reuse flag which disables reuse analysis.

For queues, we iterate the following procedure 1000 times: we snoc 100 000 integers into a queue,

where in the first iteration we generate the integers at random and in the following iterations

we uncons the elements out of the previous queue. This setup means that at any time the memory

contains up to two queues with about 100 000 elements combined. This keeps the RSS of the

program stable over the course of a benchmark run which particularly helps garbage collected

languages. For heaps, we use the same method where we deleteMin from one heap and insert into

the next, but we only do this for 100 heaps.

The benchmarks results are shown in Figure 9 where we normalize against the run time of the

strict versions. The figure shows from top-to-bottom the benchmarks for Koka, Koka with no-reuse,

OCaml, and Haskell. The results support our three main claims:

29

B
a
n
k
e
r
s
Q
u
e
u
e

P
h
y
s
i
c
i
s
t
s
Q
u
e
u
e

R
e
a
l
t
i
m
e
Q
u
e
u
e

I
m
p
l
i
c
i
t
Q
u
e
u
e

B
o
o
t
s
t
r
a
p
p
e
d
Q
.

B
i
n
o
m
i
a
l
H
e
a
p

L
a
z
y
p
a
i
r
i
n
g
H
.

S
c
h
e
d
u
l
e
d
H
.

0x

1x

2x

(1
.6
1s
)

(2
.4
3s
)

(1
.9
1s
)

(3
.7
1s
)

(1
.8
6s
)

(1
.5
1s
)

(0
.6
9s
)

(3
.0
9s
)

1.
19
x

2.
12
x

1.
21
x

1.
35
x

1.
00
x

1.
11
x

2.
26
x

1.
53
x

5.
60
x

2.
70
x

3.
61
x

2.
37
x

1.
00
x 1.
33
x

2.
56
x

2.
16
x

re
la
ti
ve

ti
m
e
(lo

w
er

is
be
tt
er
)

Koka (strict) Koka (lazy cons) Koka (lazy)

0x

1x

2x

(3
.1
8s
)

(3
.4
0s
)

(3
.2
9s
)

(4
.6
0s
)

(3
.3
0s
)

(2
.0
2s
)

(1
.3
7s
)

(3
.4
1s
)

1.
05
x

1.
71
x

0.
89
x

1.
48
x

1.
01
x

1.
02
x 1.
36
x

1.
54
x

2.
88
x

2.
05
x

2.
17
x

2.
24
x

1.
00
x

1.
13
x

1.
91
x

2.
03
x

re
la
ti
ve

ti
m
e
(lo

w
er

is
be
tt
er
)

Koka (strict; no reuse) Koka (lazy cons; no reuse) Koka (lazy; no reuse)

0x

1x

2x

(3
.2
3s
)

(3
.6
7s
)

(2
.7
1s
)

(4
.4
2s
)

(4
.0
9s
)

(1
.2
4s
)

(0
.8
3s
)

(2
.2
5s
)

2.
63
x

2.
85
x

4.
71
x

1.
95
x

1.
86
x

1.
73
x

3.
23
x

1.
57
x

re
la
ti
ve

ti
m
e
(lo

w
er

is
be
tt
er
)

OCaml (strict) OCaml (lazy)

0x

1x

2x

(6
.9
2s
)

(7
.2
6s
)

(7
.7
1s
)

(5
.3
5s
)

(6
.3
6s
)

(1
.7
8s
)

(0
.9
9s
)

(2
.6
4s
)

2.
45
x 3.
06
x

2.
02
x

19
.0
8x

2.
69
x

1.
91
x

3.
11
x

2.
24
x

re
la
ti
ve

ti
m
e
(lo

w
er

is
be
tt
er
)

Haskell (strict) Haskell (lazy)

Fig. 9. Benchmarks on Apple M1 for Okasaki’s queues and heaps in a sequential setting. Each graph shows
results relative to the strict version of the benchmark. From top-to-bottom, the results are for Koka, Koka
with no-reuse, OCaml, and Haskell.

30

(1) Compared to the strict version, traditional lazy thunks have a significant average perfor-

mance overhead of 150% in Koka, 110% in OCaml, and 140% in Haskell. In contrast, lazy

constructors have a smaller average overhead of just 43% in Koka.

(2) Lazy constructors are always faster than traditional lazy thunks.

(3) In some benchmarks, the performance overhead of lazy constructors is less than 25%, thus

yielding lazy data structures that are close in performance to their strict counterparts, while

maintaining superior theoretical properties.

7.1 Reuse analysis and laziness
We have split our analysis of Koka’s performance into two parts: one with reuse analysis enabled

and one with it disabled. Reuse analysis significantly improves the performance of strict data

structures in Koka. However, it is much less useful in a lazy setting. To see this, consider the

realtime queue, where we perform a lazy rotation using a stream type:

alias stream<a> = thunk<streamcell<a>>
type streamcell<a> =

SNil
SCons(x : a, xs : stream<a>)

fun rotate(front : stream<a>, rear : list<a>, sched : stream<a>) : pure stream<a>
match (front.eval(), rear)

(SNil, Cons(y,_)) -> memo(SCons(y,sched))
(SCons(x,xs), Cons(y,ys)) -> delay{ SCons(x, rotate(xs,ys,memo(SCons(y,sched)))) }

Here, memo creates a thunk from an existing value, while delay creates a thunk from a computation.

Crucially, while reuse analysis can reuse the space from the Cons cell for the SCons cell passed to

memo in the first branch, it does not apply to the constructors in the closure passed to delay. This is

because reuse analysis never considers reuse opportunities under closures, since closures can be

run arbitrarily often (although, in this case, this is a missing optimization since the delay function

guarantees that the closure is only called once).

In contrast, when laziness is removed, the stream becomes a simple list and both the front and

rear list can now be reused for the final result:

fun rotate(front : list<a>, rear : list<a>, sched : list<a>) : pure list<a>
match (front, rear)

(Nil, Cons(y,_)) -> Cons(y, sched)
(Cons(x,xs), Cons(y,ys)) -> Cons(x, rotate(xs,ys,Cons(y,sched)))

In practice, reuse analysis can significantly speed-up both the strict version of this data structure

and our version with lazy constructors, while the traditional lazy version remains mostly unaffected.

8 RELATEDWORK

Codata. A lazy constructor can be viewed as a codefinition [Abel et al. 2013; Hagino 1989] for

its lazy data type which combines with its strict constructors the codata operation eval. However,

codefinitions are usually not memoized and we do not include an explicit function pointer in the

runtime representation of lazy constructors.

Quotient Types. Lazy constructors A F B can be viewed as a quotient type obtained by quoti-

enting the sum-type A + B by the step function, while recursive lazy constructors A F B are

the sum type quotiented by eval. In general, it is possible to mutate quotient types under the hood,

where one element of an equivalence class can be swapped with any other element of the same

class without breaking referential transparency. This trick was proposed by Selsam et al. [2020]

and was a major inspiration for this work. They show how to implement pointer equality and

hash-based memoization under a quotient so that they can be used in pure code, but do not consider

31

the interaction with recursive types.

Semantics of Laziness. Nailing down the semantics of lazinesswas a longstanding problem. Launch-

bury [1993] was the first to give a natural semantics for lazy evaluation. The key insight was

to require all function arguments to be let-bound; whenever an argument was evaluated, the

corresponding heap location was updated. Sestoft [1997] has derived an abstract machine from

Launchbury’s lazy semantics. Even though the resulting machine is first order, it still needs to

handle arbitrary lazy closures. Deriving a similar machine from our semantics for lazy constructors

would be interesting further work. More recently, Nakata and Hasegawa [2009] have given an

alternative small-step and big-step semantics for laziness, that has been proven to be equivalent to

the original natural semantics by Launchbury.

Laziness in OCaml. OCaml short-cuts indirection nodes during GC when the indirection points

to a strict value. If the indirection node points to a lazy value or another indirection, it can not be

short-cut to preserve the soundness of lazy pattern matching. In recent versions of OCaml, the

short-cutting of indirection nodes is disabled when using instrumentation [Dolan 2018] and during

major GC [Dolan 2021]. However, in practice, it appears that most lazy values are either forced

early and their indirection short-cut during minor GC or not forced at all [Scherer et al. 2021].

OCaml’s implementation of laziness currently does not support multicore [Scherer et al. 2021].

Laziness in Haskell. In Haskell, laziness is pervasive: all function arguments are evaluated lazily by

default. As such, Haskell compilers use sophisticated techniques to make this efficient [Hartel 1991;

Johnsson 1984; Marlow and Peyton Jones 2004 2006; Marlow et al. 2007; Peyton Jones 1992]. Just like

our lazy constructors, early GHC implementations based on Spineless Tagless G-Machine [Peyton

Jones 1992] used to update closures in-place if the closure was large enough. This approach was later

abandoned [Marlow and Peyton Jones 1998,page 12] in favor of a more uniform return convention.

As we showed in Section 5.3, we need to be careful to preserve lazy semantics when applying

optimizations, and the GHC compiler takes great care to preserve laziness during its many program

transformations [Peyton Jones and Lester 1991; Peyton Jones et al. 1996].

9 LIMITATIONS AND FUTUREWORK
The Global Nature of Defunctionalization. One drawback of lazy constructors is that they have to

be declared up-front in the data type definition. This means that our approach does not support

adding lazy constructors to a data type defined in a different module or library. To enable users

of a library to define their own thunks, its author may add special lazy constructors such as

lazy SLazy(f : () -> stream<a>) -> f() to their types. Users can then use these lazy constructors

to define their own thunks, but they will be based on closures and not defunctionalized. To also

benefit from defunctionalization, a programming language could combine lazy constructors with

open data types [Löh and Hinze 2006]. However, open lazy constructors would have to carry a

function pointer to their evaluation function, which makes it harder to see where reuse happens

and we expect the performance may be slightly worse due to the indirect call.

GADTs and Effects. As typical for defunctionalized programs [Pottier and Gauthier 2004], some

thunks can only be expressed as lazy constructors if the language supports GADTs [Cheney

and Hinze 2003; Xi et al. 2003]. Koka currently assumes that for a type like stream<a>, all lazy

constructors return a stream<a> and not, for example, a stream<int>. To lift this restriction, we would

have to implement GADTs, so that the branches of the lazy match construct can make use of this

type information. Furthermore, Koka assumes that lazy constructors perform no effects except

divergence. We could allow lazy constructors to perform other effects (eg. throw an exception,

write to a reference, I/O), but then every function that matches on a lazy data type would have to

be annotated by those effects, leading to the expression problem if a new lazy constructor is added

32

later.

Concurrency. Since Koka’s reference counting scheme makes it possible to efficiently determine

whether a thunk is thread-shared or not [Reinking, Xie et al. 2021; Ullrich and de Moura 2019], our

implementation can use a fast-path and does not have to acquire or release locks in single-threaded

programs. For thread-shared thunks, we implement blackholing using an atomic compare-and-swap

operation, where other threads will busy-wait until the evaluation of the lazy constructor is complete.

This is an inefficient strategy, which is likely to be slower than more advanced schemes [Harris

et al. 2005]. However, we plan to change the implementation in the future to block threads an a

mutex. In particular, any lazy constructor has at least one field (to hold a possible indirection) and

while being black-holed, we can use that field to store a mutex on which other threads block.

Syntax. Inspired by the syntax of lazy functions [1999, section 4.2; Wadler et al. 1998], we could

define lazy constructors outside of data types:

lazy fun SAppend(s1 : stream<a>, s2 : stream<a>) : div stream<a>
match s1

SCons(x,xx) -> SCons(x, SAppend(xx,s2))
SNil -> s2

But this syntax is more challenging to compile, since we need to assign a unique tag number to

each lazy constructor and thus need to collect them from different parts of the file. In particular,

lazy constructors defined in this manner outside of the file where their data type is defined could

only be compiled using open data types.

Productivity. We are interested in understanding better under which circumstances lazy construc-

tors are productive. All lazy constructors discussed in this paper recurse on their arguments and

can thus easily be seen to be productive. But it is easy to come up with lazy constructors that are

co-recursive and when we mix recursive and co-recursive lazy constructors, we can write programs

that are no longer productive.

ACKNOWLEDGEMENTS
We are grateful to the anonymous reviewers for many helpful comments and suggestions. Our

benchmarking setup was inspired by previous discussions with Stephen Dolan and András Kovács.

Sam Lindley was supported by UKRI Future Leaders Fellowship “Effect Handler Oriented Program-

ming” (MR/T043830/1 and MR/Z000351/1).

REFERENCES
Andreas Abel, Brigitte Pientka, David Thibodeau, and Anton Setzer. “Copatterns: Programming Infinite Structures by

Observations.” ACM SIGPLAN Notices 48 (1). ACM New York, NY, USA: 27–38. 2013.

Clément Allain, Frédéric Bour, Basile Clément, François Pottier, and Gabriel Scherer. “Tail Modulo Cons, OCaml, and

Relational Separation Logic.” Proc. ACM Program. Lang. 9 (POPL). Association for Computing Machinery, New York, NY,

USA. Jan. 2025. doi:10.1145/3704915.

Thorsten Altenkirch, Nils Anders Danielsson, and Nicolai Kraus. “Partiality, Revisited: The Partiality Monad as a Quotient

Inductive-Inductive Type.” In International Conference on Foundations of Software Science and Computation Structures,
534–549. Springer. 2017.

Thomas Bagrel, and Arnaud Spiwack. Destination Calculus: A Linear Lambda-Calculus for Purely Functional Memory Writes.
Arxiv. Mar. 2025.

Richard S. Bird. “Using Circular Programs to Eliminate Multiple Traversals of Data.” Acta Informatica 21. Springer: 239–250.
1984.

Venanzio Capretta. “General Recursion via Coinductive Types.” Logical Methods in Computer Science 1. Episciences. org.
2005.

James Chapman, Tarmo Uustalu, and Niccolò Veltri. “Quotienting the Delay Monad by Weak Bisimilarity.” Mathematical
Structures in Computer Science 29 (1). Cambridge University Press: 67–92. 2019.

James Cheney, and Ralf Hinze. First-Class Phantom Types. Cornell University. 2003.

33

https://dx.doi.org/10.1145/3704915

Stephen Dolan. “AFL Stability Fixes for Objects (MPR#7725) and Lazy Values.” 2018. https://github.com/ocaml/ocaml/
pull/1754.

Stephen Dolan. “Speed up GC by Prefetching during Marking.” 2021. https://github.com/ocaml/ocaml/pull/10195.
Steven E Ganz, Daniel P Friedman, and Mitchell Wand. “Trampolined Style.” In Proceedings of the Fourth ACM SIGPLAN

International Conference on Functional Programming, 18–27. 1999.
Jeremy Gibbons. “Turner, Bird, Eratosthenes: An Eternal Burning Thread.” Journal of Functional Programming 35. Cambridge

University Press: e5. 2025.

Andy Gill. “Debugging Haskell by Observing Intermediate Data Structures.” In Haskell, 1. Citeseer. 2000.
Tatsuya Hagino. “Codatatypes in ML.” Journal of Symbolic Computation 8 (6). Elsevier: 629–650. 1989.

Tim Harris, Simon Marlow, and Simon Peyton Jones. “Haskell on a Shared-Memory Multiprocessor.” In Proceedings of the
2005 ACM SIGPLAN Workshop on Haskell, 49–61. 2005.

Pieter H Hartel. “Performance of Lazy Combinator Graph Reduction.” Software: Practice and Experience 21 (3). Wiley Online

Library: 299–329. 1991.

Gérard Huet. “The Zipper.” Journal of Functional Programming 7 (5): 549–554. 1997. doi:10.1017/S0956796897002864.

Thomas Johnsson. “Efficient Compilation of Lazy Evaluation.” In Proceedings of the 1984 SIGPLAN Symposium on Compiler
Construction, 58–69. 1984.

John Launchbury. “A Natural Semantics for Lazy Evaluation.” In Proceedings of the 20th ACM SIGPLAN-SIGACT
Symposium on Principles of Programming Languages, 144–154. POPL ’93. Charleston, South Carolina, USA. 1993.

doi:10.1145/158511.158618.

Jan van Leeuwen, and R van der Weide. “Alternative Path Compression Techniques.” Unknown Publisher. 1977.

Daan Leijen. “Koka: Programming with Row Polymorphic Effect Types.” In MSFP’14, 5th Workshop on Mathematically
Structured Functional Programming. 2014. doi:10.4204/EPTCS.153.8.

Daan Leijen, and Anton Lorenzen. “Tail Recursion Modulo Context: An Equational Approach.” Proc. ACM Program. Lang. 7
(POPL). Jan. 2023. doi:10.1145/3571233.

Daan Leijen, and Anton Lorenzen. Tail RecursionModulo Context: An Equational Approach (extended Version). MSR-TR-2022-18.

Microsoft Research. Jan. 2025.

Anton Lorenzen, and Daan Leijen. “Reference Counting with Frame Limited Reuse.” In Proceedings of the 27th ACM
SIGPLAN International Conference on Functional Programming (ICFP’2022). ICFP’22. Ljubljana, Slovenia. Sep. 2022.
doi:10.1145/3547634.

Anton Lorenzen, Daan Leijen, and Wouter Swierstra. “FP
2
: Fully in-Place Functional Programming.” In Proceedings of the

28th ACM SIGPLAN International Conference on Functional Programming (ICFP’2023). ICFP’23. Seattle,USA. Sep. 2023.
Anton Lorenzen, Daan Leijen, Wouter Swierstra, and Sam Lindley. “The Functional Essence of Imperative Binary Search

Trees.” Proceedings of the ACM on Programming Languages 8 (PLDI). ACM New York, NY, USA: 518–542. 2024.

Anton Lorenzen, Daan Leijen, Wouter Swierstra, and Sam Lindley. First-Order Laziness. Apr. 2025. https://antonlorenzen.
de/lazycons.pdf.

Andres Löh, and Ralf Hinze. “Open Data Types and Open Functions.” In Proceedings of the 8th ACM SIGPLAN International
Conference on Principles and Practice of Declarative Programming, 133–144. 2006.

Simon Marlow, and Simon Peyton Jones. “The New GHC/Hugs Runtime System.” Jan. 1998. https://www.microsoft.com/
en-us/research/publication/the-new-ghchugs-runtime-system/.

Simon Marlow, and Simon Peyton Jones. “Making a Fast Curry: Push/enter vs. Eval/apply for Higher-Order Languages.”

ACM SIGPLAN Notices 39 (9). ACM New York, NY, USA: 4–15. 2004.

Simon Marlow, and Simon Peyton Jones. “Making a Fast Curry: Push/enter vs. Eval/apply for Higher-Order Languages.”

Journal of Functional Programming 16 (4-5). Cambridge University Press: 415–449. 2006.

Simon Marlow, Alexey Rodriguez Yakushev, and Simon Peyton Jones. “Faster Laziness Using Dynamic Pointer Tagging.”

Acm Sigplan Notices 42 (9). ACM New York, NY, USA: 277–288. 2007.

Leonardo de Moura, and Sebastian Ullrich. “The Lean 4 Theorem Prover and Programming Language.” In Automated
Deduction – CADE 28, edited by André Platzer and Geoff Sutcliffe, 625–635. 2021.

Keiko Nakata, and Masahito Hasegawa. “Small-Step and Big-Step Semantics for Call-by-Need.” Journal of Functional
Programming 19 (6). Cambridge University Press: 699–722. 2009.

Chris Okasaki. Purely Functional Data Structures. Colombia University, New York. Jun. 1999.

Melissa O’Neill. “The Genuine Sieve of Eratosthenes.” Journal of Functional Programming 19 (1). Cambridge University Press:

95–106. 2009.

Simon Peyton Jones. “Implementing Lazy Functional Languages on Stock Hardware: The Spineless Tagless G-Machine.”

Journal of Functional Programming 2 (2). Cambridge University Press: 127–202. 1992.

Simon Peyton Jones, and David Lester. “A Modular Fully-Lazy Lambda Lifter in Haskell.” Software: Practice and Experience
21 (5). Wiley Online Library: 479–506. 1991.

Simon Peyton Jones, Will Partain, and André Santos. “Let-Floating: Moving Bindings to Give Faster Programs.” In Proceedings
of the First ACM SIGPLAN International Conference on Functional Programming, 1–12. 1996.

34

https://github.com/ocaml/ocaml/pull/1754
https://github.com/ocaml/ocaml/pull/1754
https://github.com/ocaml/ocaml/pull/10195
https://dx.doi.org/10.1017/S0956796897002864
https://dx.doi.org/10.1145/158511.158618
https://dx.doi.org/10.4204/EPTCS.153.8
https://dx.doi.org/10.1145/3571233
https://dx.doi.org/10.1145/3547634
https://antonlorenzen.de/lazycons.pdf
https://antonlorenzen.de/lazycons.pdf
https://www.microsoft.com/en-us/research/publication/the-new-ghchugs-runtime-system/
https://www.microsoft.com/en-us/research/publication/the-new-ghchugs-runtime-system/

François Pottier, and Nadji Gauthier. “Polymorphic Typed Defunctionalization.” ACM SIGPLAN Notices 39 (1). ACM New

York, NY, USA: 89–98. 2004.

Reinking, Xie, de Moura, and Leijen. “Perceus: Garbage Free Reference Counting with Reuse.” In Proceedings of the 42nd
ACM SIGPLAN International Conference on Programming Language Design and Implementation, 96–111. PLDI 2021. ACK,
New York, NY, USA. 2021. doi:10.1145/3453483.3454032.

Gabriel Scherer, Guillaume Bury, Xavier Leroy, Yotam Barnoy, Guillaume Munch-Maccagnoni, Leo White, KC Sivaramakr-

ishnan, Daniel Bünzli, and Alain Frisch. “Discussing the Design of Lazy under Multicore.” 2021. https://github.com/
ocaml-multicore/ocaml-multicore/issues/750.

Herbert Schorr, and William M Waite. “An Efficient Machine-Independent Procedure for Garbage Collection in Various List

Structures.” Communications of the ACM 10 (8). ACM New York, NY, USA: 501–506. 1967. doi:10.1145/363534.363554.

Wolfram Schulte, and Wolfgang Grieskamp. “Generating Efficient Portable Code for a Strict Applicative Language.” In

Declarative Programming, Sasbachwalden 1991, 239–252. Springer. 1992. doi:10.1007/978-1-4471-3794-8_16.
Daniel Selsam, Simon Hudon, and Leonardo de Moura. “Sealing Pointer-Based Optimizations behind Pure Functions.”

Proceedings of the ACM on Programming Languages 4 (ICFP). ACM New York, NY, USA: 1–20. 2020.

Peter Sestoft. “Deriving a Lazy Abstract Machine.” Journal of Functional Programming 7 (3): 231–264. 1997.

doi:10.1017/S0956796897002712.

Amir Shaikhha, Andrew Fitzgibbon, Simon Peyton Jones, and Dimitrios Vytiniotis. “Destination-Passing Style for Efficient

Memory Management.” In Proceedings of the 6th ACM SIGPLAN International Workshop on Functional High-Performance
Computing, 12–23. 2017.

Robert E Tarjan, and Jan Van Leeuwen. “Worst-Case Analysis of Set Union Algorithms.” Journal of the ACM (JACM) 31 (2).
ACM New York, NY, USA: 245–281. 1984.

Sebastian Ullrich, and Leonardo de Moura. “Counting Immutable Beans – Reference Counting Optimized for Purely

Functional Programming.” In Proceedings of the 31st Symposium on Implementation and Application of Functional Languages
(IFL’19). Singapore. Sep. 2019. doi:10.1145/3412932.3412935.

Philip Wadler, Walid Taha, and David MacQueen. “How to Add Laziness to a Strict Language without Even Being Odd.” In

SML’98, The SML Workshop. 1998.
Theodorus Petrus van der Weide. Datastructures: An Axiomatic Approach and the Use of Binomial Trees in Developing and

Analyzing Algorithms. Mathematisch Centrum. 1980.

Hongwei Xi, Chiyan Chen, and Gang Chen. “Guarded Recursive Datatype Constructors.” In Proceedings of the 30th ACM
SIGPLAN-SIGACT Symposium on Principles of Programming Languages, 224–235. 2003.

35

https://dx.doi.org/10.1145/3453483.3454032
https://github.com/ocaml-multicore/ocaml-multicore/issues/750
https://github.com/ocaml-multicore/ocaml-multicore/issues/750
https://dx.doi.org/10.1145/363534.363554
https://dx.doi.org/10.1007/978-1-4471-3794-8_16
https://dx.doi.org/10.1017/S0956796897002712
https://dx.doi.org/10.1145/3412932.3412935

A FURTHER EXAMPLES OF LAZY CONSTRUCTORS
A.1 Sieve of Eratosthenes
The Sieve of Eratosthenes is a classic example of a lazy algorithm. A simple implementation is

featured on the Haskell homepage:

primes = filterPrime [2..] where
filterPrime (p:xs) =

p : filterPrime [x | x <- xs, x ‘mod‘ p /= 0]

In the program, primes is an infinite list of all prime numbers. It is generated by searching the

numbers from 2 to infinity, where every time a prime number is found, all multiples of that number

are filtered out of the list.

In Koka, we can implement this algorithm by defining a type for the lazy thunks that are involved

in the computation above. We start by creating a type for infinite lists of prime numbers:

type primes
Prime(x : int, xs : primes)

So far this type is relatively useless: Since this is an inductive definition, it is not possible to create

an inhabitant of this type. However, we can use a lazy constructor to create an infinite stream:

lazy From(n : int, _p : pad) ->
Prime(n, From(n + 1, Pad))

This lazy constructor creates the infinite list of numbers starting from n and incrementing by 1

each time. Crucially, we can now create an inhabitant of the primes type by calling From(2, Pad). We

pass Pad : pad as a dummy value to ensure that the space of the From constructor can be reused for

the Prime constructor.

While From(2, Pad) is an infinite list of numbers, it is not yet an infinite list of prime numbers. To

filter out the non-prime numbers, we can define a Filter constructor:

lazy Filter(p : int, xs : primes) ->
match xs

Prime(x, xs) ->
if x % p != 0
then Prime(x, Filter(p, xs))
else Filter(p, xs)

This constructor mirrors the common filter function, where the usual recursive calls to filter are

replaced by re-constructions of the Filter constructor. Finally, we can define the Sieve constructor

as the defunctionalization of the filterPrime function above:

lazy Sieve(xs : primes, _p : pad) ->
match xs

Prime(p, xs) ->
Prime(p, Sieve(Filter(p, xs), Pad))

Then we can define the infinite list of primes as val primes = Sieve(From(2, Pad), Pad).

Compared to the Haskell definition, our implementation is significantly more verbose. Partly

this is due to a lack of syntax: From and Filter have special support in Haskell by the [2..] syntax

and list comprehensions. In contrast, the Sieve constructor is not more verbose than the filterPrime

function in Haskell.

An advantage of our implementation is that it is more explicit about the laziness involved in

the computation. For example, we can easily print the primes stream after evaluating the first five

prime numbers:

Prime(2, Prime(3, Prime(5, Prime(7, Prime(11,
Sieve(Filter(11, Filter(7, Filter(5, Filter(3, Filter(2, From(12))))))))))))

As you can see, the Sieve constructor accumulates a list of filters that are applied to the remaining From

stream. That means that every time we try to evaluate another prime number, our implementation

has to traverse as many filters as the number of primes we have already found. This makes our

implementation of the sieve rather inefficient. However, the same issue is also present in the Haskell

36

version; just hidden by the opaqueness of implicit laziness [Gibbons 2025; O’Neill 2009].

A.2 Repmin
The classic repmin problem concerns the challenge of replacing all elements in a tree with the

minimum element in the tree in a single pass [Bird 1984]. Consider a tree such as:

type tree
Leaf(n : elem)
Node(l : tree, r : tree)

type elem
Elem(n : int)

One might ask why we make elem its own type instead of just using int directly in the tree. The

reason for this has to do with its memory representation: in order to replace all elements in the tree

with the minimum element, we need to be able to write a pointer into each leaf that points to a

writable memory location. Later on, we can then update this memory location with the minimum

element. This would not be possible if we used int directly in the tree, since then we would have to

know the minimum element on the first pass already.

The repmin function is a simple traversal of the tree that writes m into each leaf and returns the

minimum element:

fun repmin(m : elem, t : tree) : (elem, tree)
match t

Leaf(n) -> (n, Leaf(m))
Node(l, r) ->

val (nl, l’) = repmin(m, l)
val (nr, r’) = repmin(m, r)
(min(nl, nr), Node(l’, r’))

The crucial part of the problem is now to connect m to the return value of repmin. Typically, this is

done by “typing the knot”, where we create a cyclic definition:

fun replace-min(t1 : tree) : tree
val (m, t2) = repmin(m, t1)
t2

However, Koka does not support cyclic definitions and thus tying the knot directly, which makes

our replace-min function invalid. Instead, we can use references to tie (Landin’s) knot. We create

a new lazy constructor RepMin in elem, which is passed a reference to the minimum element. We

evaluate the lazy constructor by reading from the reference:

lazy type elem<h>
Elem(n : int)
lazy RepMin(m : ref<h,elem<h>>) ->

unsafe-total { !m }

fun replace-min(t : tree<h>) : <div,st<h>> tree<h>
val r = ref(Elem(0))
val (m, t) = repmin(RepMin(r), t)
set(r, m)
t

Koka uses a type parameter h for reference cells (akin to Haskell’s ST monad). Functions reading or

writing from a reference get the st<h> effect. We use unsafe-total in RepMin since lazy constructors

are currently restricted in the algebraic effects they may use and thus can not read from references.

This is an important design choice to prevent lazy constructors from performing IO operations, but

we are working on loosening this restriction.

37

B REWRITING LAZINESS DURING REDUCTION
Let’s return to our stream type:

type stream<a>
SNil
SCons(head : a, tail : stream<a>)

lazy SAppend(s1 : stream<a>, s2 : stream<a>) ->
match s1

SCons(x,xx) -> SCons(x,SAppend(xx,s2))
SNil -> s2

lazy SReverse(s : stream<a>, acc : stream<a>) ->
match s

SCons(x,xx) -> SReverse(xx, SCons(x,acc))
SNil -> acc

The constructors of streams have several algebraic laws:

(1) SAppend(xs, SNil) = xs

(2) SAppend(SAppend(xs, ys), zs) = SAppend(xs, SAppend(ys, zs))

(3) SAppend(SReverse(xs, ys), zs) = SReverse(xs, SAppend(ys, zs))

(4) SReverse(SAppend(xs, ys), zs) = SReverse(ys, SReverse(xs, zs))

(5) SReverse(SReverse(xs, ys), zs) = SReverse(ys, SAppend(xs, zs))

These laws make for excellent rewrite rules:

(1) This law can be used to avoid the append altogether.

(2) This law can be used to reduce the left-nesting of SAppend. The first | xs | -times that the left-

hand side is forced, we have to recursively force the inner SAppend. The cost of the left-hand

side is thus 2∗ | xs | + | ys | , while the cost of the right-hand side is just | xs | + | ys | .
(3) This law reduces the left-nesting similar to the first.

(4) This law makes the computation less monolithic: the right-hand side produces its first

elements as soon as ys has been reversed, while the left-hand side produces elements only

once both xs and ys have been reversed. This reduces pause-times from forcing laziness

and can also save work if the reversal of xs is not needed.
(5) This law also makes the computation less monolithic and even saves the double reversal of

xs.
In many functional programming languages, these rewrite rules can be applied at compile-time.

But sometimes, a compile-time pass will miss optimizations and lazy computations will end up

looking like a left-hand side at runtime. Can we apply such a rewrite rule at runtime?

It turns out that lazy constructors allow this! We can implement the stream<a> type as follows:

type stream<a>
SNil
SCons(head : a, tail : stream<a>)

lazy SAppend(s1 : stream<a>, s2 : stream<a>) ->
lazy match s2

SNil -> s1
_ -> lazy match s1

SCons(x,xx) -> SCons(x,SAppend(xx,s2))
SNil -> s2
SAppend(ys, zs) -> SAppend(ys,SAppend(zs, s2))
SReverse(ys, zs) -> SReverse(ys,SAppend(zs, s2))

lazy SReverse(s : stream<a>, acc : stream<a>) ->
lazy match s

SCons(x,xx) -> SReverse(xx, SCons(x,acc))
SNil -> acc
SAppend(xs, ys) -> SReverse(ys, SReverse(xs, acc))
SReverse(xs, ys) -> SReverse(ys, SAppend(xs, acc))

38

The SAppend constructor checks dynamically at runtime whether s2 is SNil and in that case simply

returns s1 as suggested the first law above (we use lazy match s2 instead of match s2 here to avoid

forcing s2 if it is lazy). Furthermore, it checks whether s1 is a SAppend or SReverse constructor and if

so, it applies the second or third law. The SReverse constructor checks dynamically whether s is

SAppend or SReverse and if so applies the fourth or fifth law respectively.

Dangers abound. If we got the laws wrong, this implementation would not be referentially

transparent. For example, there is nothing stopping us from falsely returning SNil instead of s1 from

SAppend if s2 is SNil. But then SAppend(SCons(1,SNil),SNil)would not be equal to SAppend(SCons(1,SNil), SAppend(SNil, SNil)),

since the first would return SNil while the second would return SCons(1, SAppend(SNil, SNil)). That

is, evaluating an argument to a lazy constructor could change the output of the program.

Furthermore, this implementation can duplicate work. For example, consider:

let s1 = SAppend(xs, ys); s2 = SReverse(s1, zs) in (s1, s2)

Here, any work that is performed on evaluating s1 can be shared with the computation s2. But if we

apply the third law to s2, then we lose the sharing with s1 and might have to perform more work.

In practice, the Bankers Queue benefits slightly from using our new rewriting stream<a> type.

This seems to be partly since the front stream of the Bankers Queue consists of a sequence of

left-nested SAppend constructors, which are flattened by the second law. Furthermore, the SReverse

constructor always contains a strict stream and thus benefits from avoiding the force call inherent

to match by instead using lazy match.

39

C DATA STRUCTURES WITH LAZY CONSTRUCTORS
C.1 BankersQueue

// Bankers queue (see "Purely Functional Data Structures" by Chris Okasaki, Sect. 6.3.2)
// - worst-case O(n), persistent O(n)
// - amortized O(1), persistent O(1)
module queue/bankers

import queue

lazy type stream<a>
SNil
SCons(head : a, tail : stream<a>)
lazy SAppRev(pre : stream<a>, post : list<a>) ->

match pre
SNil -> sreverse(post)
SCons(x,xx) -> SCons(x,SAppRev(xx,post))

fun sreverse-acc(xs : list<a>, acc : stream<a>) : stream<a>
match xs
Cons(x,xx) -> sreverse-acc(xx, SCons(x,acc))
Nil -> acc

fun sreverse(xs : list<a>) : stream<a>
sreverse-acc(xs,SNil)

pub fun list(s : stream<a>) : div list<a>
match s
SCons(x,xx) -> Cons(x,xx.list)
SNil -> Nil

fun stream(start : int, end : int)
if (start>end) then SNil else SCons(start,stream(start+1,end))

pub fun test1()
SAppRev(stream(1,3),[6,5,4]).list.println

struct bqueue<a>
front : stream<a>
front-len : int
rear : list<a>
rear-len : int

val bankers/empty = Bqueue(SNil, 0, Nil, 0)

fun is-empty(^q : bqueue<a>) : bool
q.front-len==0

fun size(^q : bqueue<a>) : int
q.front-len + q.rear-len

fun check(Bqueue(front, front-len, rear, rear-len) : bqueue<a>) : bqueue<a>
if (front-len >= rear-len)
then Bqueue(front, front-len, rear, rear-len)
else Bqueue(SAppRev(front,rear), front-len + rear-len, Nil, 0)

fun snoc(Bqueue(front,front-len,rear,rear-len) : bqueue<a>, x : a) : bqueue<a>
Bqueue(front, front-len, Cons(x,rear), rear-len+1).check

fun uncons(Bqueue(front,front-len,rear,rear-len) : bqueue<a>) : div maybe2<a,bqueue<a>>
match front
SCons(x,xx) -> Just2(x, Bqueue(xx,front-len - 1,rear,rear-len).check)
SNil -> Nothing2

pub fun main()
benchmain(QueueI(bankers/empty, snoc, uncons))

C.2 PhysicistsQueue
module physicists-stack

import queue

40

lazy type thunk<a>
Done(xs : list<a>, _p : pad)
lazy Tail(thunk : thunk<a>, _p : pad) ->

match thunk
Done(xs, p) -> Done(xs.tail, p)

lazy AppRev(pre : list<a>, post : list<a>) ->
Done(list/(++)(pre, reverse(post)), Pad)

fun whnf(xs : thunk<a>) : div list<a>
match xs
Done(xs’, _) -> xs’

type queue<a>
Queue(working : list<a>, lenf : int, front : thunk<a>, lenr : int, rear : list<a>)

fun checkw(q : queue<a>) : div queue<a>
match q
Queue(working, lenf, front, lenr, rear) ->

match working
Nil -> Queue(front.whnf(), lenf, front, lenr, rear)
working -> Queue(working, lenf, front, lenr, rear)

val physicists/empty = Queue(Nil, 0, Done(Nil, Pad), 0, Nil)

fun isEmpty(^q : queue<a>) : bool
match q

Queue(_, lenf, _, _, _) -> lenf == 0

fun size(^q : queue<a>) : int
match q
Queue(_, lenf, _, lenr, _) -> lenf + lenr

fun check(q : queue<a>) : div queue<a>
match q
Queue(_, lenf, front, lenr, rear) ->

if (lenr <= lenf) then checkw(q)
else

val front’ = front.whnf()
checkw(Queue(front’, lenf + lenr, AppRev(front’, rear), 0, Nil))

fun snoc(q : queue<a>, x : a) : div queue<a>
match q

Queue(working, lenf, front, lenr, rear) ->
check(Queue(working, lenf, front, lenr + 1, Cons(x, rear)))

fun uncons(q : queue<a>) : div maybe2<a,queue<a>>
match q
Queue(working, lenf, front, lenr, rear) ->

match working
Nil -> Nothing2
Cons(x, xs) -> Just2(x, check(Queue(xs, lenf - 1, Tail(front, Pad), lenr, rear)))

pub fun main()
benchmain(QueueI(physicists/empty, snoc, uncons))

C.3 RealtimeQueue
// Realtime queue (see "Purely Functional Data Structures" by Chris Okasaki, Sect. 7.2)
// - worst-case O(1), persistent O(1)
// - amortized O(1), persistent O(1)
module queue/realtime
import std/core/unsafe
import queue

type stream<a>
SNil
SCons(head : a, tail : stream<a>)

41

// ‘SRotate(pre,post,acc) == pre ++ reverse post ++ acc‘ with ‘|pre| + 1 == |post|‘
lazy SRotate(pre : stream<a>, post : list<a>, acc : stream<a>) ->

match pre
SCons(x,xx) -> match post

Cons(y,yy) -> SCons(x, SRotate(xx, yy, SCons(y,acc)))
Nil -> impossible("SRotate(SCons,Nil)")

SNil -> match post
Cons(y,_) -> SCons(y, acc)
Nil -> impossible("SRotate(SNil,SNil)")

struct queue<a>
front : stream<a>
rear : list<a>
sched : stream<a>

val realtime/empty = Queue(SNil,Nil,SNil)

// evaluate one step into the front (by evaluating the schedule one step at a time)
fun queue(front : stream<a>, rear : list<a>, sched : stream<a>) : div queue<a>

match sched
SCons(_,s) -> Queue(front,rear,s)
SNil -> val f = SRotate(front,rear,SNil) in Queue(f,Nil,f)

fun snoc(Queue(front,rear,sched) : queue<a>, x : a) : div queue<a>
queue(front, Cons(x,rear), sched)

fun uncons(Queue(front,rear,sched) : queue<a>) : div maybe2<a,queue<a>>
match front
SCons(x,xx) -> Just2(x, queue(xx,rear,sched))
SNil -> Nothing2

pub fun main()
benchmain(QueueI(realtime/empty, snoc, uncons))

C.4 ImplicitQueue
module implicit-stack

import std/core/unsafe
import queue

type digit<a>
Zero
One(x : a, p1 : pad, p2 : pad)
Two(x : a, y : a, p : pad)

reference type pair3<a>
Pair3(x : a, y : a, p : pad)

lazy type queue<a>
Shallow(d : digit<a>, p1 : pad, p2 : pad)
Deep(front : digit<a>, middle : queue<pair3<a>>, rear : digit<a>)

lazy Tail(q : queue<a>, p1 : pad, p2 : pad) ->
match q

Shallow(One(_, _, _), _, _) -> Shallow(Zero, p1, p2)
Deep(Two(_, y, p), middle, rear) -> Deep(One(y, Pad, p), middle, rear)
Deep(One(_, _, _), middle, rear) ->

if isEmpty(middle)
then Shallow(rear, p1, p2)
else

val Pair3(y, z, _) = head(middle)
Deep(Two(y, z, Pad), Tail(middle, Pad, Pad), rear)

_ -> unsafe-total { canthappen() }

42

lazy Snoc(middle : queue<a>, y : a, p : pad) ->
match middle

Shallow(Zero, p1, p2) ->
Shallow(One(y, Pad, Pad), p1, p2)

Shallow(One(x, _, p), p1, p2) ->
Deep(Two(x, y, p), Shallow(Zero, p1, p2), Zero)

Deep(front, middle’, Zero) ->
Deep(front, middle’, One(y, Pad, Pad))

Deep(front, middle’, One(x, _, p)) ->
Deep(front, Snoc(middle’, Pair3(x, y, p), Pad), Zero)

_ -> unsafe-total { canthappen() }

val implicit/empty = Shallow(Zero, Pad, Pad)

fun isEmpty(^q : queue<a>) : div bool
match queue/lazy-force(q)
Shallow(Zero) -> True
_ -> False

fun snoc(q : queue<a>, y : a) : div queue<a>
lazy-step(Snoc(q, y, Pad))

fun head(^q : queue<a>) : div a
match queue/lazy-force(q)
Shallow(One(x, _, _), _, _) -> x
Deep(One(x, _, _), _, _) -> x
Deep(Two(x, _, _), _, _) -> x
_ -> impossible()

fun uncons(q : queue<a>) : div maybe2<a, queue<a>>
match queue/lazy-force(q)
Shallow(Zero) -> Nothing2
Shallow(One(x), p1, p2) ->

Just2(x, Shallow(Zero, p1, p2))
Deep(One(x), middle, rear) ->

if isEmpty(middle)
then Just2(x, Shallow(rear, Pad, Pad))
else

val Pair3(y, z, p) = head(middle)
Just2(x, Deep(Two(y, z, p), Tail(middle, Pad, Pad), rear))

Deep(Two(x, y, p), middle, rear) ->
Just2(x, Deep(One(y, Pad, p), middle, rear))

_ -> canthappen()

pub fun main()
benchmain(QueueI(implicit/empty, snoc, uncons))

C.5 BootstrappedQueue
module bootstrapped

import queue

lazy type thunk<a>
Done(x : list<a>)
lazy Reverse(xs : list<a>) ->
Done(reverse(xs))

fun whnf(xs : thunk<a>) : div list<a>
match xs
Done(xs’) -> xs’

type queue<a>
Empty
Queue(lenfm : int, front : list<a>, m : queue<thunk<a>>, lenr : int, rear : list<a>)

val bootstrapped/empty = Empty

43

fun isEmpty(^q : queue<a>) : bool
match q

Empty -> True
_ -> False

fun size(^q : queue<a>) : int
match q
Empty -> 0
Queue(lenfm, _, _, lenr, _) -> lenfm + lenr

fun checkQ(q : queue<a>) : div queue<a>
match q
Empty -> Empty
Queue(lenfm, front, m, lenr, rear) ->

if lenr <= lenfm then
Queue(lenfm, front, m, lenr, rear)

else
Queue(lenfm + lenr, front, snoc(m, Reverse(rear)), 0, Nil)

fun checkF(q : queue<a>) : div queue<a>
match q

Empty -> Empty
Queue(lenfm, front, m, lenr, rear) ->

match front
Nil ->

match uncons(m)
Nothing2 ->

Empty
Just2(f, m’) ->

Queue(lenfm, f.whnf(), m’, lenr, rear)
front -> Queue(lenfm, front, m, lenr, rear)

fun snoc(q : queue<a>, x : a) : div queue<a>
match q

Empty -> Queue(1, Cons(x, Nil), Empty, 0, Nil)
Queue(lenfm, front, m, lenr, rear) ->

checkQ(Queue(lenfm, front, m, lenr + 1, Cons(x, rear)))

fun uncons(q : queue<a>) : div maybe2<a,queue<a>>
match q
Empty -> Nothing2
Queue(lenfm, front, m, lenr, rear) ->

match front
Nil -> Nothing2 // impossible, queue would be Empty
Cons(x, front’) ->

Just2(x, checkF(checkQ(Queue(lenfm - 1, front’, m, lenr, rear))))

pub fun main()
benchmain(QueueI(bootstrapped/empty, snoc, uncons))

C.6 Binomial Heap
module binomial-stack

import heap

alias elem = int

type tree
Node(r : int, x : elem, c : list<tree>)

fun rank(^t : tree) : int
match t
Node(r, _, _) -> r

fun root(^t : tree) : elem
match t
Node(_, x, _) -> x

44

fun link(t1 : tree, t2 : tree, u : unit2) : tree
match (t1, t2)

(Node(r1, x1, c1), Node(r2, x2, c2)) ->
if x1 <= x2 then

Node(r1 + 1, x1, Cons(Node(r2, x2, c2), c1))
else

Node(r1 + 1, x2, Cons(Node(r1, x1, c1), c2))

fun insTree(t : tree, ts : list<tree>, u : unit2) : list<tree>
match ts

Nil -> Cons(t, Nil)
Cons(t’, ts’) ->

if rank(t) < rank(t’) then
Cons(t, Cons(t’, ts’))

else
insTree(link(t, t’, Unit2(Pad, Pad)), ts’, u)

fun mrg(ts1 : list<tree>, ts2 : list<tree>) : div list<tree>
match (ts1, ts2)

(ts, Nil) -> ts
(Nil, ts) -> ts
(Cons(t1, ts1’), Cons(t2, ts2’)) ->

if rank(t1) < rank(t2) then
Cons(t1, mrg(ts1’, Cons(t2, ts2’)))

else if rank(t2) < rank(t1) then
Cons(t2, mrg(Cons(t1, ts1’), ts2’))

else
insTree(link(t1, t2, Unit2(Pad, Pad)), mrg(ts1’, ts2’), Unit2(Pad, Pad))

fun removeMinTree(ts : list<tree>) : div maybe2<tree, list<tree>>
match ts

Nil -> Nothing2
Cons(t, Nil) -> Just2 (t, Nil)
Cons(t, ts) ->

match removeMinTree(ts)
Just2 (t’, ts’) ->

if root(t) <= root(t’) then
Just2 (t, ts)

else
Just2 (t’, Cons(t, ts’))

Nothing2 -> Nothing2

lazy type heap
Heap(ts : list<tree>, p : pad)
lazy Insert(x : elem, ts : heap) ->

match ts
Heap(ts, _) ->

Heap(insTree(Node(0, x, Nil), ts, Unit2(Pad, Pad)), Pad)
lazy Merge(ts1 : heap, ts2 : heap) ->
match ts1

Heap(ts1, _) ->
match ts2

Heap(ts2, _) ->
Heap(mrg(ts1, ts2), Pad)

lazy MergeRev(ts1 : list<tree>, ts2 : list<tree>) ->
Heap(mrg(ts1.reverse(), ts2), Pad)

val binomial/empty = Heap(Nil, Pad)

fun isEmpty(h : heap) : pure bool
match h
Heap(Nil) -> True
_ -> False

fun insert(x : elem, ts : heap) : heap
Insert(x, ts)

45

fun merge(ts1 : heap, ts2 : heap) : heap
Merge(ts1, ts2)

fun splitMin(a : heap) : pure maybe2<elem, heap>
match a

Heap(ts, _) ->
match removeMinTree(ts)

Just2 (Node(_, x, ts1), ts2) ->
Just2 (x, MergeRev(ts1, ts2))

Nothing2 -> Nothing2

pub fun main()
benchmain(HeapI(binomial/empty, insert, splitMin))

C.7 Lazypairing Heap
module lazypairing

import heap

alias elem = int

lazy type heap
Empty
Heap(x : elem, h1 : heap, h2 : heap)
lazy Link(a : heap, b : heap, m : heap) ->
merge(merge(a, b), m)

val pairing/empty = Empty

fun isEmpty(^h : heap) : div bool
match heap/lazy-force(h)
Empty -> True
_ -> False

type neheap
NEHeap(x : elem, h1 : heap, h2 : heap)

fun merge(a : heap, b : heap) : div heap
match a
Empty -> b
Heap(x, a1, a2) ->

match b
Empty -> a
Heap(y, b1, b2) ->

if x <= y then
link(NEHeap(x, a1, a2), Heap(y, b1, b2))

else
link(NEHeap(y, b1, b2), Heap(x, a1, a2))

fun link(xbm : neheap, a : heap) : div heap
match xbm

NEHeap(x, b, m) ->
match heap/lazy-force(b)

Empty -> Heap(x, a, m)
b’ -> Heap(x, Empty, Link(a, b’, m))

fun insert(x : elem, a : heap) : div heap
merge(Heap(x, Empty, Empty), a)

fun splitMin(a : heap) : pure maybe2<elem, heap>
match a

Empty -> Nothing2
Heap(x, a, m) -> Just2 (x, merge(a, m))

pub fun main()
benchmain(HeapI(pairing/empty, insert, splitMin))

C.8 Scheduled Heap
module scheduled

import heap

46

alias elem = int

type tree
Node(x : elem, c : list<tree>)

lazy type stream
SNil
One(t : pair2<tree, pad>, xs : stream)
Zero(p : pad, xs : stream)
lazy InsTree(t : tree, p : pair2<stream, pad>) ->

match p
Pair2(ds, _) ->

// equivalent to: go_insTree(t, ds, Unit2(Pad, Pad), Unit2(Pad, Pad))
// To get the best overwriting behaviour, we inline
// go_insTree to rewrite InsTree into the head constructor
match ds

SNil ->
One(Pair2(t, Pad),SNil)

Zero(_, ds’) ->
One(Pair2(t, Pad), ds’)

One(Pair2(t’, _), ds’) ->
val t” = link(t, t’, Unit2(Pad, Pad))
Zero(Pad, InsTree(t”, Pair2(ds’, Pad)))

lazy Mrg(ts1 : stream, ts2 : stream) ->
go_mrg(ts1, ts2)

value type heap
Heap(working : stream, schedule : list<stream>)

val scheduled/empty = Heap(SNil, Nil)

fun isEmpty(h : heap) : div bool
match stream/lazy-force(h.working)
SNil -> True
_ -> False

fun root(^t : tree) : elem
match t
Node(x, _) -> x

fun link(t1 : tree, t2 : tree, u : unit2) : tree
match (t1, t2)
(Node(x1, c1), Node(x2, c2)) ->

if x1 <= x2 then
Node(x1, Cons(Node(x2, c2), c1))

else
Node(x2, Cons(Node(x1, c1), c2))

fun go_insTree(t : tree, ts : stream, u1 : unit2, u2 : unit2) : div stream
match stream/lazy-force(ts)

SNil -> One(Pair2(t, Pad),SNil)
Zero(_, xs) -> One(Pair2(t, Pad), xs)
One(Pair2(t’, _), ds) ->

Zero(Pad, InsTree(link(t, t’, Unit2(Pad, Pad)), Pair2(ds, Pad)))

47

fun go_mrg(ts1 : stream, ts2 : stream) : div stream
match stream/lazy-force(ts1)

SNil -> ts2
Zero(p, ts1’) ->

match stream/lazy-force(ts2)
SNil -> Zero(p, ts1’)
Zero(_, ts2’) ->

Zero(p, Mrg(ts1’, ts2’))
One(t2, ts2’) ->

One(t2, Mrg(ts1’, ts2’))
One(Pair2(t1, p), ts1’) ->

match stream/lazy-force(ts2)
SNil -> One(Pair2(t1, p), ts1’)
Zero(_, ts2’) ->

One(Pair2(t1, p), Mrg(ts1’, ts2’))
One(Pair2(t2, _), ts2’) ->

Zero(Pad, InsTree(link(t1, t2, Unit2(Pad, p)), Pair2(Mrg(ts1’, ts2’), Pad)))

fun normalize(s : stream) : div ()
match stream/lazy-force(s)

SNil -> ()
Zero(_, xs) -> normalize(xs)
One(_, xs) -> normalize(xs)

fun exec(sched : list<stream>) : div list<stream>
match sched
Nil -> Nil
Cons(s, sched’) ->

match stream/lazy-force(s)
Zero(_, job) -> Cons(job, sched’)
_ -> sched’

fun insert(x : elem, h : heap) : div heap
match h

Heap(ds, sched) ->
val ds’ = go_insTree(Node(x, Nil), ds, Unit2(Pad, Pad), Unit2(Pad, Pad))
Heap(ds’, exec(exec(Cons(ds’, sched))))

fun merge(h1 : heap, h2 : heap) : div heap
match (h1, h2)
(Heap(ds1, _), Heap(ds2, _)) ->

val ds’ = go_mrg(ds1, ds2)
normalize(ds’)
Heap(ds’, Nil)

fun removeMinTree(ts : stream) : div maybe2<tree, stream>
match stream/lazy-force(ts)
SNil -> Nothing2
Zero(_, ds) ->

match removeMinTree(ds)
Just2 (t’, ds’) ->

Just2 (t’, Zero(Pad, ds’))
Nothing2 -> Nothing2

One(Pair2(t, p), ds) -> match stream/lazy-force(ds)
SNil -> Just2 (t, SNil)
_ ->

match removeMinTree(ds)
Just2 (t’, ds’) ->

if root(t) <= root(t’) then
Just2 (t, Zero(Pad , ds))

else
Just2 (t’, One(Pair2(t, p), ds’))

Nothing2 -> Nothing2

48

fun listToStream(ts : list<tree>) : stream
match ts

Nil -> SNil
Cons(t, ts’) -> One(Pair2(t, Pad), listToStream(ts’))

fun mrgWithList(ts : list<tree>, ds : stream) : div stream
match ts
Nil ->

normalize(ds); ds
Cons(t1, ts1) ->

match stream/lazy-force(ds)
SNil -> listToStream(ts)
Zero(_, ds’) ->

One(Pair2(t1, Pad), mrgWithList(ts1, ds’))
One(Pair2(t2, _), ds’) ->

Zero(Pad, go_insTree(link(t1, t2, Unit2(Pad, Pad)),
mrgWithList(ts1, ds’),
Unit2(Pad, Pad),
Unit2(Pad, Pad)))

fun splitMin(h : heap) : pure maybe2<elem, heap>
match h

Heap(ds, _) ->
match removeMinTree(ds)

Just2 (Node(x, ts1), ts2) ->
Just2 (x, Heap(mrgWithList(ts1.reverse(), ts2), Nil))

Nothing2 -> Nothing2

pub fun main()
benchmain(HeapI(scheduled/empty, insert, splitMin))

D BENCHMARK
D.1 Queue

module queue

import std/core/undiv
import std/core/unsafe
import std/os/env
import std/num/random
import std/num/int32
import std/num/int64

pub reference type unit2
Unit2(a : pad, b : pad)

pub reference type unit3
Unit3(a : pad, b : pad, c : pad)

pub reference type unit4
Unit4(a : pad, b : pad, c : pad, d : pad)

pub reference type pair2<a,b>
Pair2(a : a, b : b)

pub fip fun canthappen(?kk-file-line : string) : div a
impossible("canthappen")

pub alias rndstate = sfc
alias rndres = sfc-result

fun rnd-step(r : rndstate) : rndres
sfc-step(r)

fun rnd-init(s0 : int, s1 : int) : rndstate
(sfc-init32(s0.int32,s1.int32))

pub value struct queueI<q>
qempty : q
qsnoc : (q,int) -> div q
quncons : q -> div maybe2<int,q>

49

fun bench-snoc(i : int32, qi : queueI<q>, rs : rndstate, queue : q) : div q
if i > 0.int32 then

val step = rnd-step(rs)
val q’ = (qi.qsnoc)(queue, step.rnd.int)
bench-snoc(i - 1.int32, qi, step.rstate, q’)

else queue

fun bench-pass-on(i : int32, from : q, to : q, qi : queueI<q>) : div q
if i > 0.int32 then

match (qi.quncons)(from)
Just2(x, from’) ->

val to’ = (qi.qsnoc)(to, x)
bench-pass-on(i - 1.int32, from’, to’, qi)

Nothing2 -> impossible("uncons failed")
else
to

fun bench-uncons(i : int32, queue : q, qi : queueI<q>, acc = 0.int32) : div int32
if i > 0.int32 then
match (qi.quncons)(queue)

Just2(x, q) -> bench-uncons(i - 1.int32, q, qi, acc + i*x.int32)
Nothing2 -> impossible("uncons failed")

else acc

fun bench-iterate(i : int32, n : int32, queue : q, qi : queueI<q>) : div int32
if n > 1.int32 then
val q = bench-pass-on(i, queue, qi.qempty, qi)
bench-iterate(i, n - 1.int32, q, qi)

else
bench-uncons(i, queue, qi)

pub fun bench(ops : int32, n : int32, qi : queueI<q>) : div int32
val q = bench-snoc(ops, qi, rnd-init(42,43), qi.qempty)
bench-iterate(ops, n, q, qi)

pub fun benchmain(qi : queueI<q>, ops : int = 100000, queues : int = 100) : io ()
val n = get-args().head("").parse-int.default(queues).int32
val sum = bench(ops.int32, n * 10.int32, qi) - 1097638789.int32
println("Checksum: " ++ show(sum))

D.2 Heap
module heap

import std/core/undiv
import std/core/unsafe
import std/os/env
import std/num/random
import std/num/int32
import std/num/int64

pub ref type unit2
Unit2(a : pad, b : pad)

pub ref type unit3
Unit3(a : pad, b : pad, c : pad)

pub ref type unit4
Unit4(a : pad, b : pad, c : pad, d : pad)

pub ref type pair2<a,b>
Pair2(a : a, b : b)

pub fip fun canthappen() : div a
canthappen()

pub alias rndstate = sfc
alias rndres = sfc-result

fun rnd-step(r : rndstate) : rndres
sfc-step(r)

50

fun rnd-init(s0 : int, s1 : int) : rndstate
(sfc-init32(s0.int32,s1.int32))

pub value struct heapI<h>
empty : h
insert : (int,h) -> pure h
splitMin : h -> pure maybe2<int,h>

fun bench-insert(i : int32, hi : heapI<h>, rs : rndstate, heap : h) : pure h
if i > 0.int32 then

val step = rnd-step(rs)
val h’ = (hi.insert)(step.rnd.int, heap)
bench-insert(i - 1.int32, hi, step.rstate, h’)

else
heap

fun bench-pass-on(i : int32, from : h, to : h, hi : heapI<h>) : pure h
if i > 0.int32 then
match (hi.splitMin)(from)

Just2(x, from’) ->
val to’ = (hi.insert)(x, to)
bench-pass-on(i - 1.int32, from’, to’, hi)

Nothing2 -> throw("splitMin failed")
else
to

fun bench-splitMin(i : int32, heap : h, hi : heapI<h>, acc = 0.int32) : pure int32
if i > 0.int32 then
match (hi.splitMin)(heap)

Just2(x, heap’) -> bench-splitMin(i - 1.int32, heap’, hi, acc + i*x.int32)
Nothing2 -> throw("splitMin failed")

else
acc

fun bench-iterate(i : int32, n : int32, heap : h, hi : heapI<h>) : pure int32
if n > 1.int32 then
val h = bench-pass-on(i, heap, hi.empty, hi)
bench-iterate(i, n - 1.int32, h, hi)

else
bench-splitMin(i, heap, hi)

pub fun bench(ops : int32, n : int32, hi : heapI<h>) : pure int32
val h = bench-insert(ops, hi, rnd-init(42,43), hi.empty)
bench-iterate(ops, n, h, hi)

pub fun benchmain(hi : heapI<h>) : io ()
val n = get-args().head("").parse-int.default(1).int32
val ops = 100000.int32
val sum = bench(ops, n, hi) + 1973053443.int32
println("Checksum: " ++ show(sum))

51

E PROOFS
E.1 Soundness of Formalization
E.1.1 Steps. Since we use a step-indexed logical relation, we have to annotate our natural semantics

with a step count. This is straightforward, although note that evaluating a lazy constructor can take

between 1 step to recall the result or k + 1 steps to evaluate it. Since we allow the store extension

relation Γ ⊑ Δ to evaluate lazy constructors, we also need to add a step count to it.

Γ : v ⇓0 Γ : v
value

F (x) = e ∈ Σ
Γ : e[v/x] ⇓k Δ : w

Γ : F v ⇓k+1 Δ : w
app

z fresh

Γ : lv ⇓1 (Γ, z ↦→ lv) : z
lazy

z ↦→ memo v ∈ Γ

Γ : step z ⇓1 Γ : v
recall

Γ : e1 ⇓k Δ : v Δ : e2 [v/x] ⇓j Θ : w

Γ : let x = e1 in e2 ⇓k+j+1 Θ : w
let

Γ : e[v1/x, v2/y] ⇓k Δ : w

Γ : split (v1, v2) { (x, y) → e } ⇓k+1 Δ : w
split

Γ : unfold (fold v) ⇓1 Γ : v
unfold

Γ : ei [v/xi] ⇓ki Δ : w

Γ : case (ini v) { inl xl → el ; inr xr → er } ⇓ki + 1 Δ : w

Γ : F v ⇓k Δ : w

(Γ, x ↦→ lazyF v) : step x ⇓k+1 (Δ, x ↦→ memo w) : w
step

Γ ⊑k Γ
refl

Γ ⊑k Δ Δ ⊑j Θ

Γ ⊑k+j Θ
trans

Γ ⊑1 Γ, x ↦→ lv
extend

Γ : F v ⇓k Δ : w

Γ, x ↦→ lazyF v ⊑k+1 Δ, x ↦→ memo w
eval

E.1.2 Store extension.
Lemma 4. (Store extension is reflexive.)
For all stores Γ, Γ ⊑0 Γ.

Proof. By the refl rule.

Lemma 5. (Store extension is transitive.)
If Γ ⊑k Δ and Δ ⊑j Θ, then Γ ⊑k+j Θ.

Proof. By the trans rule.

Lemma 6. (Store extension may take more steps)
If Γ ⊑k Δ then Γ ⊑k+1 Δ.

Proof. Use the refl rule to obtain Γ ⊑1 Γ and then the trans rule to obtain the result.

Lemma 7. (Growing the store does not change evaluation)
If Γ : e ⇓k Δ : v, then (Γ, x ↦→ lv) : e ⇓k (Δ, x ↦→ lv) : v for any x ̸∈ Γ.

Proof. By induction on Γ : e ⇓k Δ : v, where we note that dom(Δ) \ dom(Γ) consists only of

fresh variables.

Lemma 8. (Growing the store does not change store extension.)
If Γ ⊑k Δ, then (Γ, x ↦→ lv) ⊑k (Δ, x ↦→ lv) for any x ̸∈ Δ.

52

Proof. By induction on Γ ⊑k Δ.

Case refl: Use the refl rule with the extra binding.

Case extend: Use the extend rule with the extra binding.

Case trans: Directly using the inductive hypothesis.

Case eval: By Lemma 7.

Lemma 9. (Memos stay memos during evaluation)
If Γ : e ⇓k Δ : v and x ↦→ memo w ∈ Γ, then x ↦→ memo w ∈ Δ.

Proof. By induction on k and case-split on Γ : e ⇓k Δ : v where we note that no variables are

removed from the store except those pointing to a lazyF w.
Lemma 10. (Memos stay memos in the store)
If Γ ⊑k Δ and x ↦→ memo v ∈ Γ, then x ↦→ memo v ∈ Δ.

Proof. By induction on Γ ⊑k Δ using 9.

Lemma 11. (Removing lazies from the store does not change evaluation)
If (Γ, x ↦→ lazyF v) : e ⇓k (Δ, x ↦→ lazyF v) : w, then Γ : e ⇓k Δ : w.
Proof. By induction on (Γ, x ↦→ lazyF v) : e ⇓k (Δ, x ↦→ lazyF v) : v, where we note that only
recall and step check for the existence of a value in the store, but recall only fires for lazy values

and step replaces them with a memo that stays in the store by Lemma 9.

Lemma 12. (Removing lazies from the store does not change store extension.)
If (Γ, x ↦→ lazyF v) ⊑k (Δ, x ↦→ lazyF v), then Γ ⊑k Δ.

Proof. By induction on Γ ⊑k Δ.

Case refl: Use the refl rule without the extra binding.

Case extend: Use the extend rule without the extra binding.

Case trans: Directly using the inductive hypothesis.

Case eval: By Lemma 11.

Lemma 13. (Evaluation extends the store)
If Γ : e ⇓k Δ : v, then Γ ⊑k Δ.

Proof. By induction on k.We use the inductive hypothesis that for all Γ, e and j < k, Γ : e ⇓j Δ : v
implies Γ ⊑j Δ. If k = 0, then only value applies, which corresponds to refl. If k > 0:

Case lazy: By extend.

Case unfold: By refl.

Case recall: By refl.

Case let: By the inductive hypothesis and trans.

Case app: By the inductive hypothesis.

Case split: By the inductive hypothesis.

Case case: By the inductive hypothesis.

Case step: By eval.

53

E.1.3 Logical relation. Our logical relation is formally defined as:

VkJ 1 K := { (Δ, ()) }
VkJ A + B K := { (Δ, inl v) | (Δ, v) ∈ VkJ A K } ∪ { (Δ, inr v) | (Δ, v) ∈ VkJ B K }
VkJ A × B K := { (Δ, (v, w)) | (Δ, v) ∈ VkJ A K, (Δ, w) ∈ VkJ B K }
VkJ 𝜇𝛼. A K := { (Δ, fold v) | ∀j < k. (Δ, v) ∈ VjJ A[𝜇𝛼. A/𝛼]K }
VkJ A F B K := { ((Δ, z ↦→ lazyF v), z) | (Δ, v) ∈ VkJ A K, ∀j ⩽ k, Θ. Δ ⊑j Θ ⇒ F v ∈ Ek − j, ΘJBK }

∪ { ((Δ, z ↦→ memo v), z) | (Δ, v) ∈ VkJ B K }
Ek, ΔJAK := { e | ∀j < k. ∀Θ, v. (Δ : e ⇓j Θ : v) ⇒ Δ ⊑j Θ and (Θ, v) ∈ Vk − jJ A K }
Gk,ΔJ ∅ K := { ·}
Gk,ΔJ Γ, x : A K := { 𝜎 [x ↦→ v] | 𝜎 ∈ Gk,ΔJΓK, (Δ, v) ∈ VkJAK }
We have the usual properties:

Lemma 14. (Values are sound expressions.)
If (Δ, v) ∈ VkJAK, then v ∈ Ek,ΔJAK.
Proof.
Δ : v ⇓0 Δ : v (1), by value

Δ ⊑0 Δ (2), by Lemma 21

(Δ, v) ∈ Vk − 0J A K (3), by assumption

v ∈ Ek,ΔJAK (4), by (1), (2), (3)

Lemma 15. (On values, the expression denotation is the value denotation.)
If v ∈ Ek,ΔJAK, then (Δ, v) ∈ VkJAK.
Proof.
Δ : v ⇓0 Δ : v (1), by value

(Δ, v) ∈ Vk − 0J A K (3), by assumption

Lemma 16. (Downward closure)
If (Δ, v) ∈ VkJAK, then (Δ, v) ∈ VjJAK for all j ⩽ k.
Proof. By induction on k. If k = 0, then obvious. Else: induction on A.
Case A = 1: Obvious

Case A = A′ + B or A = A′ × B: Follows directly from the inner inductive hypothesis.

Case A = 𝜇𝛼. A′
: Follows directly from the outer inductive hypothesis.

Case A = A′
F B. Let (Δ, z) ∈ VkJAK with z ↦→ memo v ∈ Δ. Then the claim follows directly

from the inner inductive hypothesis.

Case A = A′
F B. Let (Δ, z) ∈ VkJAK with z ↦→ lazyF v ∈ Δ.

(Δ, z) ∈ VkJ A′
F B K (1), by assumption

z ↦→ lazyF v ∈ Δ (2), by assumption

(Δ, v) ∈ VkJ A K (3), by (1) and (2)

∀j ⩽ k, Θ. Δ ⊑j Θ ⇒ F v ∈ Ek − j, ΘJBK (4), by (1) and (2)

j′ ⩽ k (5), by assumption

(Δ, v) ∈ Vj′J A K (6), apply inner inductive hypothesis to (3) and (5)

∀j ⩽ j′, Θ. Δ ⊑j Θ ⇒ F v ∈ Ek − j, ΘJBK (7), by (4) and (5)

(Δ, z) ∈ Vj′J A′
F B K (8), by (6) and (7)

Lemma 17. (Growing the Store preserves types.)
If (Δ, v) ∈ VkJ A K, then ((Δ, x ↦→ lv), v) ∈ VkJ A K for any x ̸∈ Δ.

Proof. By induction on k and then on A.
Case A = 1 or A = A′ + B or A = A′ × B: Follows directly from the inner inductive hypothesis.

54

Case A = 𝜇𝛼. A′
: Follows directly from the outer inductive hypothesis.

Case A = A′
F B: Follows from the inner inductive hypothesis and by using the extend rule to

obtain Δ ⊑ (Δ, x ↦→ lv).
Lemma 18. (Evaluation preserves types.)
If ((Γ, x ↦→ lazyF v

′), v) ∈ VkJ A K and Γ : F v ′ ⇓j Δ : w for j < k and∀v. (Γ, v) ∈ VkJAK ⇒ (Δ, v) ∈ Vk − jJ A K,
then ((Δ, x ↦→ memo w), v) ∈ Vk − jJ A K.
Proof. By induction on k and then on A.
Case A = 1 or A = A′ + B or A = A′ × B: Follows directly from the inner inductive hypothesis.

Case A = 𝜇𝛼. A′
: Follows directly from the outer inductive hypothesis.

Case A = A′
F B: Let v = z. Case x = z:

((Γ, x ↦→ lazyF v
′), x) ∈ VkJ A′

F B K (1), by assumption

(Γ, v ′) ∈ VkJ A′ K (2), by (1)

∀j ⩽ k, Θ. Γ ⊑j Θ ⇒ F v ′ ∈ Ek − j, ΘJBK (3), by (1)

F v ′ ∈ Ek, ΓJBK (4), instantiate (3)

∀j < k. ∀Δ, v. (Γ : F v ′ ⇓j Δ : w) ⇒ Γ ⊑j Δ and (Δ, w) ∈ Vk − jJ B K (5), unroll (4)

(Δ, w) ∈ Vk − jJ B K (6), simplify (5)

((Δ, x ↦→ memo w), x) ∈ Vk − jJ A′
F B K (7), by definition with (6)

Case x ≠ z:
((Γ, x ↦→ lazyF v

′, z ↦→ lazyF v
′′), z) ∈ VkJ A′

F B K (1), by assumption

((Γ, x ↦→ lazyF v
′), v ′′) ∈ VkJ A′ K (2), by (1)

((Δ, x ↦→ lazyF v
′), v ′′) ∈ Vk − jJ A′ K (3), by (2) and inductive hypothesis

∀l ⩽ k, Θ. (Γ, x ↦→ lazyF v
′) ⊑l Θ ⇒ F v ∈ Ek − l, ΘJBK (4), by (1)

Γ ⊑j Δ (5), by Lemma 13

(Γ, x ↦→ lazyF v
′) ⊑j (Δ, x ↦→ lazyF v

′) (6), by Lemma 24

∀l ⩽ k, Θ. (Δ, x ↦→ lazyF v
′) ⊑l Θ ⇒ (Γ, x ↦→ lazyF v

′) ⊑j+l Θ (7), by Lemma 22

∀l ⩽ k, Θ. (Δ, x ↦→ lazyF v
′) ⊑l Θ ⇒ F v ∈ Ek − j − l, ΘJBK (8), by (4) and (7)

((Δ, x ↦→ lazyF v
′, z ↦→ lazyF v

′′), z) ∈ Vk − jJ A′
F B K (4), by definition with (3) and (8)

Lemma 19. (Store extension preserves types.)
If (Δ, v) ∈ VkJ A K and Δ ⊑j Θ, then (Θ, v) ∈ Vk − jJ A K.
Proof. By induction on j and then on Δ ⊑j Θ.

Case refl: Follows from Lemma 29.

Case trans:

Δ ⊑j Δ′ ⊑l Θ (1), by assumption

(Δ′, v) ∈ Vk − jJ A K (2), by outer inductive hypothesis

(Θ, v) ∈ Vk − j − lJ A K (3), by outer inductive hypothesis

Case extend: Follows from Lemma 30.

Case eval:

Γ, x ↦→ lazyF v
′ ⊑j+1 Δ, x ↦→ memo w (1), by assumption

((Γ, x ↦→ lazyF v
′), v) ∈ VkJ A K (1), by assumption

Γ : F v ′ ⇓j Δ : w (3), by (1)

Γ ⊑j Δ (4), by (3) and Lemma 13

∀v. (Γ, v) ∈ VkJAK ⇒ (Δ, v) ∈ Vk − jJ A K (5), by (4) and outer inductive hypothesis

((Δ, x ↦→ memo w), v) ∈ Vk − jJ A K (6), by Lemma 31

55

E.1.4 Type Soundness.
Γ ⊨ e : A := ∀k ⩾ 0, Δ, 𝜎 ∈ Gk,ΔJΓK. 𝜎 (e) ∈ Ek,ΔJAK
Theorem 4. (Semantic Type Soundness.)
If ∅ ⊨ e : A and ∅ : e ⇓k Δ : v, then (Δ, v) ∈ VjJAK for any j > 0.

Proof. Let Γ = ∅. We have · ∈ Gk+j,ΓJ ∅ K. Then ∅ ⊨ e : A implies that ·(e) = e ∈ Ek+j,ΓJAK.
Then ∅ ⊑k Δ and (Δ, v) ∈ VjJ A K.
Theorem 5. (Type soundness of Environment.)
If ⊩ Σ, then for all F (x) = e : A → B ∈ Σ, k ⩾ 0 and Δ, we have that (Δ, v) ∈ VkJAK implies

e[v/x] ∈ Ek,ΔJBK and F v ∈ Ek,ΔJBK.
Proof. By induction on Σ.

Case defbase: Obvious.

Case deffun: The first claim follows by:

⊩ Σ (1), by assumption

x : A ⊢ e : B (2), by assumption

x : A ⊨ e : B (3), by Lemma 6 below

(Δ, v) ∈ VkJAK (4), by assumption

𝜎 = [x ↦→ v] ∈ Gk,ΔJx : AK (5), by (4)

𝜎 (e) = e[v/x] ∈ Ek,ΔJBK (6), by (3) and (5)

The second claim follows by:

(Δ, v) ∈ VkJAK (1), by assumption

e[v/x] ∈ Ek,ΔJBK (2), as before

j < k, Θ, w. (Δ : F v ⇓j Θ : w) (3), assume

Δ : e[v/x] ⇓j−1 Θ : w (4), by (3) and app

Δ ⊑j−1 Θ (5), by (2) and (4)

(Θ, w) ∈ Vk − j − 1J B K (6), by (2) and (4)

Δ ⊑j Θ (6), by (5) and Lemma 23

(Θ, w) ∈ Vk − jJ B K (7), by (6) and Lemma 29

F v ∈ Ek,ΔJBK (8), by (7)

Theorem 6. (Type soundness.)
If Γ ⊢ e : A, then Γ ⊨ e : A.
Proof. By induction on Γ ⊢ e : A.
Case var:

Γ, x : A ⊢ x : A (1), by assumption

𝜎 [x ↦→ v] ∈ Gk,ΔJΓ, x : AK (2), assume

𝜎 ∈ Gk,ΔJΓK (3), by (2)

(Δ, v) ∈ VkJAK (4), by (2)

v ∈ Ek,ΔJAK (5), by (2) and Lemma 27

(𝜎 [x ↦→ v]) (x) ∈ Ek,ΔJAK (6), by (5)

Γ, x : A ⊨ x : A (7), by (6)

Case [inl/inr]:

56

Γ ⊢ ini v : Al + Ar (1), by assumption

Γ ⊨ v : Ai (2), by assumption

𝜎 ∈ Gk,ΔJΓK (3), assume

𝜎 (v) ∈ Ek,ΔJAiK (4), by (2)

(Δ, 𝜎 (v)) ∈ VkJAiK (5), by (4) and Lemma 28

(Δ, ini 𝜎 (v)) ∈ VkJAl + ArK (6), by (5) and definition

(Δ, 𝜎 (ini v)) ∈ VkJAl + ArK (7), by (6)

𝜎 (ini v) ∈ Ek,ΔJAl + ArK (8), by (7) and Lemma 27

Γ ⊨ ini v : Al + Ar (9), by (8)

Case pair:

Γ ⊢ (v, w) : A × B (1), by assumption

Γ ⊨ v : A (2), by assumption

Γ ⊨ w : B (3), by assumption

𝜎 ∈ Gk,ΔJΓK (4), assume

𝜎 (v) ∈ Ek,ΔJAK (5), by (2)

(Δ, 𝜎 (v)) ∈ VkJAK (6), by (5) and Lemma 28

𝜎 (w) ∈ Ek,ΔJBK (7), by (2)

(Δ, 𝜎 (w)) ∈ VkJBK (8), by (7) and Lemma 28

(Δ, (𝜎 (v), 𝜎 (w))) ∈ VkJA × BK (9), by (6),(8) and definition

(Δ, 𝜎 ((v, w))) ∈ VkJA × BK (10), by (9)

𝜎 ((v, w)) ∈ Ek,ΔJA × BK (11), by (10) and Lemma 27

Γ ⊨ (v, w) : A × B (12), by (11)

Case fold:

Γ ⊢ fold v : 𝜇𝛼. A (1), by assumption

Γ ⊨ v : A[𝜇𝛼. A/𝛼] (2), by assumption

𝜎 ∈ Gk,ΔJΓK (3), assume

𝜎 ∈ Gj,ΔJΓK (4), by (3) and Lemma 29

𝜎 (v) ∈ Ej,ΔJA[𝜇𝛼. A/𝛼]K (5), by (2)

(Δ, 𝜎 (v)) ∈ VjJA[𝜇𝛼. A/𝛼]K (6), by (5) and Lemma 28

(Δ, fold 𝜎 (v)) ∈ VkJ𝜇𝛼. AK (7), by (6) and definition

(Δ, 𝜎 (fold v)) ∈ VkJ𝜇𝛼. AK (8), by (7)

𝜎 (fold v) ∈ Ek,ΔJ𝜇𝛼. AK (9), by (8) and Lemma 27

Γ ⊨ fold v : 𝜇𝛼. A (10), by (9)

Case unit:

Γ ⊢ () : 1 (1), by assumption

𝜎 ∈ Gk,ΔJΓK (2), assume

(Δ, ()) ∈ VkJ1K (3), by definition

() ∈ Ek,ΔJ1K (4), by (3) and Lemma 27

𝜎 (()) ∈ Ek,ΔJAK (5), by (4)

Γ ⊨ () : 1 (6), by (5)

Case let:

57

Γ ⊢ let x = e1 in e2 : B (1), by assumption

Γ ⊨ e1 : A (2), by (1)

Γ, x : A ⊨ e2 : B (3), by (1)

𝜎 ∈ Gk+j+1,ΔJΓK (4), assume

let x = e1 in e2 ⇓k+j+1 Θ : w (5), assume

Δ : e1 ⇓k Δ′
: v (6), by let

Δ′
: e2 [v/x] ⇓j Θ : w (7), by let

𝜎 (e1) ∈ Ek+j+1,ΔJAK (8), by (2)

Δ ⊑k Δ′
(9), by (2) and (6)

(Δ′, v) ∈ Ek+j+1 − jJAK (10), by (2) and (6)

𝜎 ∈ Gk+1,Δ′JΓK (11), by (4) and Lemma 36

𝜎 [x ↦→ v] ∈ Gk+1,Δ′JΓ, x : AK (12), by (11) and (10)

𝜎 [x ↦→ v] (e2) ∈ Ek+1,ΔJBK (13), by (3) and (12)

𝜎 (e2 [v/x]) ∈ Ek+1,ΔJBK (14), by (13)

𝜎 (let x = e1 in e2) ∈ Ek,ΔJBK (15), by (14)

Γ ⊨ let x = e1 in e2 : B (16), by (15)

Case case:

Γ ⊢ case v { inl x → el ; inr y → er } : C (1), by assumption

Γ ⊨ v : Al + Ar (2), by (1)

Γ, x : Ai ⊨ ei : C (3), by (1)

𝜎 ∈ Gk,ΔJΓK (4), assume

Γ : case (ini v) { inl xl → el ; inr xr → er } ⇓ki + 1 Δ : w (5), assume

𝜎 (v) ∈ Ek,ΔJAl + ArK (6), by (2)

(Δ, 𝜎 (v)) ∈ VkJAl + ArK (7), by (6) and Lemma 28

𝜎 (v) = ini 𝜎 (w) (8), by (7)

(Δ, 𝜎 (w)) ∈ VkJAiK (9), by (7)

𝜎 ′ = 𝜎 [x ↦→ 𝜎 (w)] ∈ Gk,ΔJΓ, x : AiK (10), by (4), (9)

𝜎 ′(ei) ∈ Ek,ΔJCK (11), by (3),(9)

𝜎 (case v { inl x → el ; inr y → er }) ∈ Ek,ΔJCK (12), by (10)

Γ ⊨ case v { inl x → el ; inr y → er } : C (13), by (12)

Case split:

Γ ⊢ split v { (x, y) → e } : C (1), by assumption

Γ ⊨ v : A × B (2), by (1)

Γ, x : A, y : B ⊨ e : C (3), by (1)

𝜎 ∈ Gk,ΔJΓK (4), assume

Γ : split (v1, v2) { (x, y) → e } ⇓k′+1 Δ : w (5), assume

𝜎 (v) ∈ Ek,ΔJA × BK (6), by (2)

(Δ, 𝜎 (v)) ∈ VkJA × BK (7), by (6) and Lemma 28

𝜎 (v) = (𝜎 (v1), 𝜎 (v2)) (8), by (7)

(Δ, 𝜎 (v1)) ∈ VkJAK (9), by (7)

(Δ, 𝜎 (v2)) ∈ VkJBK (10), by (7)

𝜎 ′ = 𝜎 [x ↦→ 𝜎 (v1), y ↦→ 𝜎 (v2)] ∈ Gk,ΔJΓ, x : A, y : BK (11), by (4), (9), (10)

𝜎 ′(e) ∈ Ek,ΔJCK (12), by (3),(11)

𝜎 (split v { (x, y) → e }) ∈ Ek,ΔJCK (13), by (12)

Γ ⊨ split v { (x, y) → e } : C (14), by (13)

Case unfold:

58

Γ ⊢ unfold v : A[𝜇𝛼. A/𝛼] (1), by assumption

Γ ⊨ v : 𝜇𝛼. A (2), by (1)

𝜎 ∈ Gk,ΔJΓK (3), assume

Γ : unfold (fold v) ⇓1 Γ : v (4), assume

𝜎 (v) ∈ Ek,ΔJ𝜇𝛼. AK (5), by (2)

(Δ, 𝜎 (v)) ∈ VkJ𝜇𝛼. AK (6), by (4) and Lemma 28

𝜎 (v) = fold w (7), by (6)

(Δ, 𝜎 (w)) ∈ Vk−1JA[𝜇𝛼. A/𝛼]K (8), by (6)

unfold (fold 𝜎 (v)) ∈ Ek−1JA[𝜇𝛼. A/𝛼]K (9), by (8)

Γ ⊨ unfold v : A[𝜇𝛼. A/𝛼] (10), by (9)

Case app:

Γ ⊢ F v : B (1), by assumption

F : A→ B ∈ Σ (2), by (1)

Γ ⊨ v : A (3), by (1)

𝜎 ∈ Gk,ΔJΓK (4), assume

𝜎 (v) ∈ Ek,ΔJAK (5), by (2)

(Δ, 𝜎 (v)) ∈ VkJAK (6), by (5) and Lemma 28

F 𝜎 (v) ∈ Ek,ΔJBK (7), by (6) and Lemma 5

Γ ⊨ F v : B (8), by (7)

Case lazy:

Γ ⊢ lazyF v : A F B (1), by assumption

Γ ⊨ v : A (2), by assumption

∀k ⩾ 0, Δ, w. (Δ, w) ∈ VkJAK =⇒ F w ∈ Ek,ΔJBK (3), by Lemma 5

𝜎 ∈ Gk,ΔJΓK (4), assume

𝜎 (v) ∈ Ek,ΔJAK (5), by (2)

(Δ, 𝜎 (v)) ∈ VkJAK (6), by (5) and Lemma 28

(Θ, 𝜎 (v)) ∈ Vk − jJAK (7), by (6) and Lemma 36

F w ∈ Ek − j, ΘJBK (8), by (7) and (3)

((Δ, z ↦→ lazyF 𝜎 (v)), z) ∈ VkJA F BK (9), by (5) and (8)

Δ : 𝜎 (lazyF v) ⇓1 (Δ, z ↦→ lazyF 𝜎 (v)) : z (10), by lazy

Δ ⊑1 (Δ, z ↦→ lazyF 𝜎 (v)) (11), by extend

Γ ⊨ lazyF v : A F B (12), by (9),(10),(11)

Case memo:

Γ ⊢ memo v : A F B (1), by assumption

Γ ⊨ v : B (2), by assumption

𝜎 ∈ Gk,ΔJΓK (3), assume

𝜎 (v) ∈ Ek,ΔJBK (4), by (2)

(Δ, 𝜎 (v)) ∈ VkJBK (5), by (4) and Lemma 28

((Δ, z ↦→ memo 𝜎 (v)), z) ∈ VkJA F BK (6), by (5)

Δ : 𝜎 (memo v) ⇓1 (Δ, z ↦→ memo 𝜎 (v)) : z (7), by lazy

Δ ⊑1 (Δ, z ↦→ memo 𝜎 (v)) (8), by extend

Γ ⊨ memo v : A F B (9), by (8)

Case step:

59

Γ ⊢ step v : B (1), by assumption

Γ ⊨ v : A F B (2), by assumption

𝜎 ∈ Gk,ΔJΓK (3), assume

𝜎 (v) ∈ Ek,ΔJA F BK (4), by (2)

(Δ, 𝜎 (v)) ∈ VkJA F BK (5), by (4) and Lemma 28

Case 𝜎 (v) = z and Δ = Δ′, z ↦→ lazyF v
′
:

(Δ′, v ′) ∈ VkJ A K (6), by unfolding (5)

∀j ⩽ k, Θ. Δ′ ⊑j Θ ⇒ F v ′ ∈ Ek − j, ΘJBK (7), by unfolding (5)

(Δ′, z ↦→ lazyF v
′) : step z ⇓k+1 (Θ, z ↦→ memo w) : w (8), by eval

Δ′
: F v ′ ⇓k Θ : w (9), by (8)

Δ′ ⊑0 Δ′
(10), by refl

F v ′ ∈ Ek, Δ′JBK (11), by (7) and (10)

Δ′ ⊑k Θ (12), by (9) and (11)

(Θ, w) ∈ V0JBK (13), by (9) and (11)

Δ ⊑k+1 (Θ, z ↦→ memo w) (14), by (12) and extend

(Θ, z ↦→ memo w, w) ∈ V0JBK (15), by (13) and Lemma 30

step v ∈ EkJBK (16), by (14) and (15)

Γ ⊨ step v : B (17), by (16)

Case 𝜎 (v) = z ↦→ memo v ′ ∈ Δ:

(Δ, v ′) ∈ VkJ B K (6), by unfolding (5)

v ′ ∈ Ek,ΔJ B K (7), by (6) and Lemma 27

Γ : step z ⇓1 Γ : v ′ (8), by recall

Γ ⊑1 Γ (9), by refl

step z ∈ Ek,ΔJ B K (10), by (7)

sigma(step v) ∈ Ek,ΔJ B K (11), by (9) and (10)

Γ ⊨ step v : B (12), by (11)

E.1.5 Referential Transparency.
Lemma 20. (Evaluation in store extension)
If (Γ, x ↦→ lazyF v) ⊑k (Δ, x ↦→ memo w), then there are stores Γ′, Δ′

such that Γ′ : F v ⇓j Δ′
: w

and j ⩽ k and (Γ, x ↦→ lazyF v) ⊑ (Γ′, x ↦→ lazyF v) ⊑ (Δ′, x ↦→ memo w) ⊑ (Δ, x ↦→ memo w).
Proof. By induction on (Γ, x ↦→ lazyF v) ⊑k (Δ, x ↦→ memo w).
Case refl: Impossible.

Case extend: Impossible.

Case trans: Let (Γ, x ↦→ lazyF v) ⊑k Δ ⊑j (Θ, x ↦→ memo w). If Δ = Δ1, x ↦→ lazyF v:
(Γ, x ↦→ lazyF v) ⊑k (Δ1, x ↦→ lazyF v) ⊑j (Θ, x ↦→ memo w) (1), by assumption

(Δ1, x ↦→ lazyF v) ⊑j (Θ, x ↦→ memo w) (2), restrict (1)

Γ′ : F v ⇓j Δ′
: w and j ⩽ k (3), by the inductive hypothesis

(Δ1, x ↦→ lazyF v) ⊑ (Γ′, x ↦→ lazyF v) ⊑ (Δ′, x ↦→ memo w) ⊑ (Θ, x ↦→ memo w) (4), by inductive hypothesis

(Γ, x ↦→ lazyF v) ⊑ (Γ′, x ↦→ lazyF v) ⊑ (Δ′, x ↦→ memo w) ⊑ (Θ, x ↦→ memo w) (5), by (4) and transitivity

If Δ = Δ1, x ↦→ memo w:
(Γ, x ↦→ lazyF v) ⊑k (Δ1, x ↦→ memo w) ⊑j (Θ, x ↦→ memo w) (1), by assumption

(Γ, x ↦→ lazyF v) ⊑k (Δ1, x ↦→ memo w) (2), restrict (1)

Γ′ : F v ⇓j Δ′
: w and j ⩽ k (3), by the inductive hypothesis

(Γ, x ↦→ lazyF v) ⊑ (Γ′, x ↦→ lazyF v) ⊑ (Δ′, x ↦→ memo w) ⊑ (Δ1, x ↦→ memo w) (4), by inductive hypothesis

(Γ, x ↦→ lazyF v) ⊑ (Γ′, x ↦→ lazyF v) ⊑ (Δ′, x ↦→ memo w) ⊑ (Θ, x ↦→ memo w) (5), by (4) and transitivity

60

Case eval: The statement follow directly from the eval rule with Γ = Γ′ and Δ = Δ′
.

Theorem 7. (Lazy constructors are referentially transparent.)
If Γ : e ⇓k Δ : v and Γ ⊑j Γ′, then Γ′ : e ⇓l Δ′

: v with Δ ⊑l′ Δ′
.

Proof. By induction on k and then case-split on the evaluation. If k = 0, then only value applies.

Then the claim follows directly. If k > 0:

Case unfold: The claim follows directly.

Case let: By the inductive hypothesis.

Case app: By the inductive hypothesis.

Case split: By the inductive hypothesis.

Case case: By the inductive hypothesis.

Case lazy:

Γ : lv ⇓1 (Γ, z ↦→ lv) : z (1), by lazy

Γ ⊑j Γ′ (2), by assumption

Γ′ : lv ⇓1 (Γ′, z ↦→ lv) : z (3), by lazy

(Γ, z ↦→ lv) ⊑j (Γ′, z ↦→ lv) (4), by (2) and Lemma 24

Case recall:

Γ : step z ⇓1 Γ : w (1), by recall

z ↦→ memo w ∈ Γ (2), by recall

Γ ⊑j Γ′ (3), by assumption

z ↦→ memo w ∈ Γ′ (4), by (3) and Lemma 25

Γ′ : step z ⇓1 Γ′ : w (5), by (4) and recall

Case step: We have Γ = Γ1, z ↦→ lazyF v and Δ = Δ1, z ↦→ memo w. If Γ′ = Γ′
1
, z ↦→ lazyF v:

Γ : step z ⇓k+1 Δ : w (1), by step

Γ1 : F v ⇓k Δ1 : w (2), by step

Γ′
1
: F v ⇓l Δ′

1
: w (3), by the inductive hypothesis

Δ1 ⊑ Δ′
1

(4), by the inductive hypothesis

Γ′
1
, z ↦→ lazyF v : step z ⇓1 Δ′

1
, z ↦→ memo w : w (5), by (3) and step

Δ ⊑ Δ′
1
, z ↦→ memo w (6), by (4) and Lemma 24

Else Γ′ = Γ′
1
, z ↦→ memo w:

Γ : step z ⇓k+1 Δ : w (1), by step

Γ1 : F v ⇓k Δ1 : w (2), by step

Γ′′
1

: F v ⇓j Δ′
1
: w ′

(3), by Lemma 37

Γ ⊑ (Γ′′
1
, z ↦→ lazyF v) ⊑ (Δ′

1
, z ↦→ memo w) ⊑ Γ′ (4), by Lemma 37

Γ1 ⊑ Γ′′
1

(5), by Lemma 26

Γ′′
1

: F v ⇓j Δ′
1
: w (6), by the inductive hypothesis

Δ1 ⊑ Δ′
1

(7), by the inductive hypothesis

Δ ⊑ (Δ′
1
, z ↦→ memo w) (8), by Lemma 24

Δ ⊑ Γ′ (9), by transitivity

E.2 Lazy Constructors
E.2.1 Typing rules. We extend the typing rules as follows:

F : A → B + (A F B) ∈ Σ Γ ⊢ v : A

Γ ⊢ lazyF v : A F B
lazy

61

F : A → B + (A F B) ∈ Σ Γ ⊢ v : B

Γ ⊢ memo v : A F B
memo

Γ ⊢ v : A F B

Γ ⊢ eval v : B
eval

E.2.2 Store extension. We extend the store relation with:

y ↦→ indirect z ∈ Γ

Γ, x ↦→ indirect y ⊑1 Γ, x ↦→ indirect z
cuti

y ↦→ indirect z ∈ Γ

Γ, x ↦→ indirect z ⊑1 Γ, x ↦→ indirect y
indi

y ↦→ memo v ∈ Γ

Γ, x ↦→ indirect y ⊑1 Γ, x ↦→ memo v
cutm

y ↦→ memo v ∈ Γ

Γ, x ↦→ memo v ⊑1 Γ, x ↦→ indirect y
indm

Lemma 21. (Store extension is reflexive.)
For all stores Γ, Γ ⊑0 Γ.

Lemma 22. (Store extension is transitive.)
If Γ ⊑k Δ and Δ ⊑j Θ, then Γ ⊑k+j Θ.

Lemma 23. (Store extension may take more steps)
If Γ ⊑k Δ then Γ ⊑k+1 Δ.

Lemma 24. (Growing the store does not change store extension.)
If Γ ⊑k Δ, then (Γ, x ↦→ lv) ⊑k (Δ, x ↦→ lv) for any x ̸∈ Δ.

Proof. By induction on Γ ⊑k Δ.

Case cutm: Use the cutm rule with the extra binding.

Case cuti: Use the cuti rule with the extra binding.

Case indm: Use the indm rule with the extra binding.

Case indi: Use the indi rule with the extra binding.

Lemma 25. (Memos stay memos in the store)
If Γ ⊑k Δ and x ↦→ memo v ∈ Γ, then x ↦→ memo v ∈ Δ.

Proof. By induction on Γ ⊑k Δ using 9.

Lemma 26. (Removing lazies from the store does not change store extension.)
If (Γ, x ↦→ lazyF v) ⊑k (Δ, x ↦→ lazyF v), then Γ ⊑k Δ.

Proof. By induction on Γ ⊑k Δ.

Case cutm: Use the cutm rule without the extra binding.

Case cuti: Use the cuti rule without the extra binding.

Case indm: Use the indm rule without the extra binding.

Case indi: Use the indi rule without the extra binding.

E.2.3 Logical relation. We extend the logical relation with:

VkJ A F B K := { ((Δ, z ↦→ lazyF v), z) | (Δ, v) ∈ VkJ A K, ∀j < k, Θ. Δ ⊑ Θ ⇒
F v ∈ Ej, ΘJ B + (A F B) K }

∪ { ((Δ, z ↦→ memo v), z) | (Δ, v) ∈ VkJ B K }
∪ { ((Δ, z ↦→ indirect v), z) | ∀j < k. (Δ, v) ∈ VjJ A F B K }

We maintain the properties from before:

Lemma 27. (Values are sound expressions.)
If (Δ, v) ∈ VkJAK, then v ∈ Ek,ΔJAK.

62

Lemma 28. (On values, the expression denotation is the value denotation.)
If v ∈ Ek,ΔJAK, then (Δ, v) ∈ VkJAK.
Lemma 29. (Downward closure)
If (Δ, v) ∈ VkJAK, then (Δ, v) ∈ VjJAK for all j ⩽ k.
Proof. By induction on k. If k = 0, then obvious. Else: induction on A.
Case A = A′

F B. Let (Δ, z) ∈ VkJAK with z ↦→ memo v ∈ Δ. Then the claim follows directly

from the inner inductive hypothesis.

Case A = A′
F B. Let (Δ, z) ∈ VkJAK with z ↦→ indirect v ∈ Δ. Then the claim follows di-

rectly from the outer inductive hypothesis.

Case A = A′
F B. Let (Δ, z) ∈ VkJAK with z ↦→ lazyF v ∈ Δ.

(Δ, z) ∈ VkJ A′
F B K (1), by assumption

z ↦→ lazyF v ∈ Δ (2), by assumption

(Δ, v) ∈ VkJ A K (3), by (1) and (2)

∀j ⩽ k, Θ. Δ ⊑j Θ ⇒ F v ∈ Ek − j, ΘJB + (A′
F B)K (4), by (1) and (2)

j′ ⩽ k (5), by assumption

(Δ, v) ∈ Vj′J A K (6), apply inner inductive hypothesis to (3) and (5)

∀j ⩽ j′, Θ. Δ ⊑j Θ ⇒ F v ∈ Ek − j, ΘJB + (A′
F B)K (7), by (4) and (5)

(Δ, z) ∈ Vj′J A′
F B K (8), by (6) and (7)

Lemma 30. (Growing the Store preserves types.)
If (Δ, v) ∈ VkJ A K, then ((Δ, x ↦→ lv), v) ∈ VkJ A K for any x ̸∈ Δ.

Proof. By induction on k and then on A.
Case A = A′

F B: Follows from the inner inductive hypothesis and by using the extend rule to

obtain Δ ⊑ (Δ, x ↦→ lv).
Lemma 31. (Evaluation preserves types.)
If ((Γ, x ↦→ lazyF v

′), v) ∈ VkJ A K and Γ : F v ′ ⇓j Δ : w for j < k and∀v. (Γ, v) ∈ VkJAK ⇒ (Δ, v) ∈ Vk − jJ A K,
then ((Δ, x ↦→ memo w), v) ∈ Vk − jJ A K.
Proof. By induction on k and then on A.
Case A = A′

F B: Let v = z. Case x = z:
((Γ, x ↦→ lazyF v

′), x) ∈ VkJ A′
F B K (1), by assumption

(Γ, v ′) ∈ VkJ A′ K (2), by (1)

∀j ⩽ k, Θ. Γ ⊑j Θ ⇒ F v ′ ∈ Ek − j, ΘJB + (A′
F B)K (3), by (1)

F v ′ ∈ Ek, ΓJB + (A′
F B)K (4), instantiate (3)

∀j < k. ∀Δ, v. (Γ : F v ′ ⇓j Δ : w) ⇒ Γ ⊑j Δ and (Δ, w) ∈ Vk − jJ B + (A′
F B) K (5), unroll (4)

(Δ, w) ∈ Vk − jJ B + (A′
F B) K (6), simplify (5)

(Δ, w ′) ∈ Vk − jJ B K (7), case (6)

((Δ, x ↦→ memo w ′), x) ∈ Vk − jJ A′
F B K (8), by definition with (7)

(Δ, w ′) ∈ Vk − jJ A′
F B K (7), case (6)

((Δ, x ↦→ indirect w ′), x) ∈ Vk − jJ A′
F B K (8), by definition with (7)

Case x ≠ z:

63

((Γ, x ↦→ lazyF v
′, z ↦→ lazyF v

′′), z) ∈ VkJ A′
F B K (1), by assumption

((Γ, x ↦→ lazyF v
′), v ′′) ∈ VkJ A′ K (2), by (1)

((Δ, x ↦→ lazyF v
′), v ′′) ∈ Vk − jJ A′ K (3), by (2) and inductive hypothesis

∀l ⩽ k, Θ. (Γ, x ↦→ lazyF v
′) ⊑l Θ ⇒ F v ∈ Ek − l, ΘJB + (A′

F B)K (4), by (1)

Γ ⊑j Δ (5), by Lemma 13

(Γ, x ↦→ lazyF v
′) ⊑j (Δ, x ↦→ lazyF v

′) (6), by Lemma 24

∀l ⩽ k, Θ. (Δ, x ↦→ lazyF v
′) ⊑l Θ ⇒ (Γ, x ↦→ lazyF v

′) ⊑j+l Θ (7), by Lemma 22

∀l ⩽ k, Θ. (Δ, x ↦→ lazyF v
′) ⊑l Θ ⇒ F v ∈ Ek − j − l, ΘJB + (A′

F B)K (8), by (4) and (7)

((Δ, x ↦→ lazyF v
′, z ↦→ lazyF v

′′), z) ∈ Vk − jJ A′
F B K (4), by definition with (3) and (8)

Lemma 32. (Short-cutting to memo preserves value denotation.)
((Γ, x ↦→ indirect y), v) ∈ VkJ A K and y ↦→ memo w ∈ Γ ((Γ, x ↦→ memo w), v) ∈ Vk − 1J A K
Proof. By induction on k. If k = 0, then obvious. Else: induction on A.
Case A = 1: Obvious

Case A = A′ + B or A = A′ × B: Follows directly from the inner inductive hypothesis.

Case A = 𝜇𝛼. A′
: Follows directly from the outer inductive hypothesis.

CaseA = A′
F B, z ≠ x. If z ↦→ memo w ′ ∈ (Γ, x ↦→ indirect y), then the claim follows from

the inner inductive hypothesis. If z ↦→ indirect w ′ ∈ (Γ, x ↦→ indirect y), then the claim follows

from the outer inductive hypothesis. If z ↦→ lazyF w
′ ∈ (Γ, x ↦→ indirect y), then the claim fol-

lows from the inner inductive hypothesis and applying cutm to Δ ⊑ Θ.

Case A = A′
F B, z = x.

((Γ, x ↦→ indirect y), x) ∈ VkJ A K (1), by assumption

(Γ, y) ∈ Vk − 1J A′
F B K (2), by (1)

Γ = Γ1, y ↦→ memo w (3), by assumption

(Γ1, w) ∈ Vk − 1J B K (4), by (2) and (3)

(Γ, w) ∈ Vk − 1J B K (5), by Lemma 30

((Γ, x ↦→ memo w), x) ∈ Vk − 1J A′
F B K (6), by (5)

Lemma 33. (Indirecting to memo preserves value denotation.)
((Γ, x ↦→ memo w), v) ∈ VkJ A K and y ↦→ memo w ∈ Γ ((Γ, x ↦→ indirect y), v) ∈ Vk − 1J A K
Proof. By induction on k. If k = 0, then obvious. Else: induction on A.
Case A = 1: Obvious

Case A = A′ + B or A = A′ × B: Follows directly from the inner inductive hypothesis.

Case A = 𝜇𝛼. A′
: Follows directly from the outer inductive hypothesis.

Case A = A′
F B, z ≠ x. If z ↦→ memo w ′ ∈ (Γ, x ↦→ memo w), then the claim follows from

the inner inductive hypothesis. If z ↦→ indirect w ′ ∈ (Γ, x ↦→ memo w), then the claim follows

from the outer inductive hypothesis. If z ↦→ lazyF w
′ ∈ (Γ, x ↦→ memo w), then the claim follows

from the inner inductive hypothesis and applying indm to Δ ⊑ Θ.

Case A = A′
F B, z = x.

((Γ, x ↦→ memo w), x) ∈ VkJ A K (1), by assumption

(Γ, w) ∈ VkJ B K (2), by (1)

Γ = Γ1, y ↦→ memo w (3), by assumption

(Γ, y) ∈ VkJ A′
F B K (4), by (2) and (3)

(Γ, y) ∈ VjJ A′
F B K (5), for j < k + 1, by Lemma 29

((Γ, x ↦→ indirect y), x) ∈ Vk + 1J A′
F B K (6), by (5)

((Γ, x ↦→ indirect y), x) ∈ Vk − 1J A′
F B K (7), by (6) and Lemma 29

64

Lemma 34. (Short-cutting to indirect preserves value denotation.)
((Γ, x ↦→ indirect y), v) ∈ VkJ A K and y ↦→ indirect w ∈ Γ ((Γ, x ↦→ indirect w), v) ∈ Vk − 1J A K
Proof. By induction on k. If k = 0, then obvious. Else: induction on A.
Case A = 1: Obvious

Case A = A′ + B or A = A′ × B: Follows directly from the inner inductive hypothesis.

Case A = 𝜇𝛼. A′
: Follows directly from the outer inductive hypothesis.

CaseA = A′
F B, z ≠ x. If z ↦→ memo w ′ ∈ (Γ, x ↦→ indirect y), then the claim follows from

the inner inductive hypothesis. If z ↦→ indirect w ′ ∈ (Γ, x ↦→ indirect y), then the claim follows

from the outer inductive hypothesis. If z ↦→ lazyF w
′ ∈ (Γ, x ↦→ indirect y), then the claim fol-

lows from the inner inductive hypothesis and applying cuti to Δ ⊑ Θ.

Case A = A′
F B, z = x.

((Γ, x ↦→ indirect y), x) ∈ VkJ A K (1), by assumption

(Γ, y) ∈ Vk − 1J A′
F B K (2), by (1)

Γ = Γ1, y ↦→ indirect w (3), by assumption

(Γ1, w) ∈ Vk − 2J A′
F B K (4), by (2) and (3)

(Γ, w) ∈ Vk − 2J A′
F B K (5), by Lemma 30

((Γ, x ↦→ indirect w), x) ∈ Vk − 1J A′
F B K (6), by (5)

Lemma 35. (Indirecting to indirect preserves value denotation.)
((Γ, x ↦→ indirect w), v) ∈ VkJ A K and y ↦→ indirect w ∈ Γ ((Γ, x ↦→ indirect y), v) ∈ Vk − 1J A K
Proof. By induction on k. If k = 0, then obvious. Else: induction on A.
Case A = 1: Obvious

Case A = A′ + B or A = A′ × B: Follows directly from the inner inductive hypothesis.

Case A = 𝜇𝛼. A′
: Follows directly from the outer inductive hypothesis.

Case A = A′
F B, z ≠ x. If z ↦→ memo w ′ ∈ (Γ, x ↦→ indirect w), then the claim follows

from the inner inductive hypothesis. If z ↦→ indirect w ′ ∈ (Γ, x ↦→ indirect w), then the claim

follows from the outer inductive hypothesis. If z ↦→ lazyF w
′ ∈ (Γ, x ↦→ indirect w), then the

claim follows from the inner inductive hypothesis and applying indi to Δ ⊑ Θ.

Case A = A′
F B, z = x.

((Γ, x ↦→ indirect w), x) ∈ VkJ A K (1), by assumption

(Γ, w) ∈ VjJ A′
F B K (2), for j < k, by (1)

Γ = Γ1, y ↦→ indirect w (3), by assumption

(Γ, y) ∈ VkJ A′
F B K (4), by (2) and (3)

((Γ, x ↦→ indirect y), x) ∈ Vk + 1J A′
F B K (5), by (4)

((Γ, x ↦→ indirect y), x) ∈ Vk − 1J A′
F B K (6), by (5) and Lemma 29

Lemma 36. (Store extension preserves types.)
If (Δ, v) ∈ VkJ A K and Δ ⊑j Θ, then (Θ, v) ∈ Vk − jJ A K.
Proof. By induction on j and then case-split on Δ ⊑j Θ.

Case cutm:

Γ, x ↦→ indirect y ⊑1 Γ, x ↦→ memo w (1), by assumption

y ↦→ memo w ∈ Γ (2), by (1)

((Γ, x ↦→ indirect y), v) ∈ VkJ A K (3), by assumption

((Γ, x ↦→ memo w), v) ∈ Vk − 1J A K (4), by Lemma 32

Case cuti:

65

Γ, x ↦→ indirect y ⊑1 Γ, x ↦→ indirect z (1), by assumption

y ↦→ indirect z ∈ Γ (2), by (1)

((Γ, x ↦→ indirect y), v) ∈ VkJ A K (3), by assumption

((Γ, x ↦→ indirect z), v) ∈ Vk − 1J A K (4), by Lemma 34

Case indm:

Γ, x ↦→ memo w ⊑1 Γ, x ↦→ indirect y (1), by assumption

y ↦→ memo w ∈ Γ (2), by (1)

((Γ, x ↦→ memo w), v) ∈ VkJ A K (3), by assumption

((Γ, x ↦→ indirect y), v) ∈ Vk − 1J A K (4), by Lemma 33

Case indi:

Γ, x ↦→ indirect z ⊑1 Γ, x ↦→ indirect y (1), by assumption

y ↦→ indirect z ∈ Γ (2), by (1)

((Γ, x ↦→ indirect z), v) ∈ VkJ A K (3), by assumption

((Γ, x ↦→ indirect y), v) ∈ Vk − 1J A K (4), by Lemma 35

E.2.4 Referential Transparency.
Lemma 37. (Evaluation in store extension)
If (Γ, x ↦→ lazyF v) ⊑k (Δ, x ↦→ memo w), then there are stores Γ′, Δ′

such that Γ′ : F v ⇓j Δ′
: w

and j ⩽ k and (Γ, x ↦→ lazyF v) ⊑ (Γ′, x ↦→ lazyF v) ⊑ (Δ′, x ↦→ memo w) ⊑ (Δ, x ↦→ memo w).
Proof. By induction on (Γ, x ↦→ lazyF v) ⊑k (Δ, x ↦→ memo w).
Case cutm: Impossible.

Case cuti: Impossible.

Case indm: Impossible.

Case indi: Impossible.

Theorem 8. (Short-cutting indirections is referentially transparent.)
If Γ : e ⇓k Δ : v and Γ ⊑j Γ′, then Γ′ : e ⇓l Δ′

: v with Δ ⊑l′ Δ′
.

Proof. By induction on k and then case-split on the evaluation. If k = 0, then only value applies.

Then the claim follows directly. If k > 0:

Case unfold: The claim follows directly.

Case let: By the inductive hypothesis.

Case app: By the inductive hypothesis.

Case split: By the inductive hypothesis.

Case case: By the inductive hypothesis.

Case lazy:

Γ : lv ⇓1 (Γ, z ↦→ lv) : z (1), by lazy

Γ ⊑j Γ′ (2), by assumption

Γ′ : lv ⇓1 (Γ′, z ↦→ lv) : z (3), by lazy

(Γ, z ↦→ lv) ⊑j (Γ′, z ↦→ lv) (4), by (2) and Lemma 24

Case recall:

Γ : step z ⇓1 Γ : w (1), by recall

z ↦→ memo w ∈ Γ (2), by recall

Γ ⊑j Γ′ (3), by assumption

z ↦→ memo w ∈ Γ′ (4), by (3) and Lemma 25

Γ′ : step z ⇓1 Γ′ : w (5), by (4) and recall

66

Case step: We have Γ = Γ1, z ↦→ lazyF v and Δ = Δ1, z ↦→ memo w. If Γ′ = Γ′
1
, z ↦→ lazyF v:

Γ : step z ⇓k+1 Δ : w (1), by step

Γ1 : F v ⇓k Δ1 : w (2), by step

Γ′
1
: F v ⇓l Δ′

1
: w (3), by the inductive hypothesis

Δ1 ⊑ Δ′
1

(4), by the inductive hypothesis

Γ′
1
, z ↦→ lazyF v : step z ⇓1 Δ′

1
, z ↦→ memo w : w (5), by (3) and step

Δ ⊑ Δ′
1
, z ↦→ memo w (6), by (4) and Lemma 24

Else Γ′ = Γ′
1
, z ↦→ memo w:

Γ : step z ⇓k+1 Δ : w (1), by step

Γ1 : F v ⇓k Δ1 : w (2), by step

Γ′′
1

: F v ⇓j Δ′
1
: w ′

(3), by Lemma 37

Γ ⊑ (Γ′′
1
, z ↦→ lazyF v) ⊑ (Δ′

1
, z ↦→ memo w) ⊑ Γ′ (4), by Lemma 37

Γ1 ⊑ Γ′′
1

(5), by Lemma 26

Γ′′
1

: F v ⇓j Δ′
1
: w (6), by the inductive hypothesis

Δ1 ⊑ Δ′
1

(7), by the inductive hypothesis

Δ ⊑ (Δ′
1
, z ↦→ memo w) (8), by Lemma 24

Δ ⊑ Γ′ (9), by transitivity

E.3 Soundness of Implementation
E.3.1 Implementation calculus. In this section, we give the full rules for the Implementation

Calculus.

∅ | Γ, x : A ⊢ x : A
var

∅ | Γ ⊢ v : Ai

∅ | Γ ⊢ ini v : Al + Ar
inl/inr

∅ | Γ ⊢ v : A ∅ | Γ ⊢ w : B

∅ | Γ ⊢ (v, w) : A × B
pair

∅ | Γ ⊢ v : A[𝜇𝛼. A/𝛼]
∅ | Γ ⊢ fold v : 𝜇𝛼. A

fold

∅ | Γ ⊢ () : 1

unit

⊩ ∅
defbase

F : A→ B ∈ Σ ∅ | Γ ⊢ v : A

∅ | Γ ⊢ lazyF v : A F B

L1 | Γ ⊢ e1 : A L2 | Γ, x : A ⊢ e2 : B

L1, L2 | Γ ⊢ let x = e1 in e2
let

∅ | Γ ⊢ v : Al + Ar L | Γ, x : Ai ⊢ ei : C

L | Γ ⊢ case v { inl x → el ; inr y → er } : C
case

∅ | Γ ⊢ v : A × B L | Γ, x : A, y : B ⊢ e : C

L | Γ ⊢ split v { (x, y) → e } : C
split

∅ | Γ ⊢ v : 𝜇𝛼. A

∅ | Γ ⊢ unfold v : A[𝜇𝛼. A/𝛼]
unfold

F : A → B ∈ Σ ∅ | Γ ⊢ v : A

∅ | Γ ⊢ F v : B
app

⊩ Σ x : A ⊢ e : B

⊩ Σ, F (x) = e : A → B
deffun

F : A→ B ∈ Σ ∅ | Γ ⊢ v : B

∅ | Γ ⊢ memo v : A F B

⊩ Σ l : A | x : B ⊢ e : C

⊩ Σ, F (l; x) = e : A → B → C
deflapp

F : A→ B → C ∈ Σ ∅ | Γ ⊢ v : B

l : A | Γ ⊢ F l v : C
lapp

67

∅ | Γ ⊢ w : B

l : B | Γ ⊢ memoize l w : B
memoize

∅ | Γ ⊢ v : A F B L, l : B | x : A ⊢ e1 : C L | Γ, y : B ⊢ e2 : C

L | Γ ⊢ lazy match v { lazyF l x → e1; memo y → e2 } : C
lazymatch

E.3.2 Soundness of Implementation Calculus.
Lemma 38. (The low-level calculus implements the high-level calculus)
If Γ ⊢ e : A, then ∅ | Γ ⊢ e : A.
Proof. By induction on Γ ⊢ e : A. Obvious for any rule except step. We define:

step x = lazy match x
lazyF l v → let w = F v in memoize l w
memo y → y

F : A→ B ∈ Σ (1), by assumption

∅ | v : A ⊢ F v : B (2), by app

l : B | v : A, w : B ⊢ memoize l w : B (3), by memoize

l : B | v : B ⊢ let w = F v in memoize l w : B (4), by let

y : B ⊢ y : B (5), by var

x : A F> B ⊢ x : A F B (6), by var

∅ | x : A F B ⊢ lazy match x { . . . } : B (7), by lazymatch

⊩ step(x) = lazy match x { . . . } : (A F B) → B (8), by deffun

Lemma 39. (The small-step semantics implements high-level semantics.)
If Γ : e ⇓k Δ : v, then Γ | e ↦−→∗ Δ | v.
Proof. By induction on k and case-split on Γ : e ⇓k Δ : v.
Case value:

Γ : v ⇓0 Γ : v (1), by assumption

Γ | v ↦−→∗ Γ | v (2), since reduction is finished

Case app:

Γ : F v ⇓k+1 Δ : w (1), by assumption

F (x) = e ∈ Σ (2), by (1)

Γ : e[v/x] ⇓k Δ : w (3), by (2)

Γ | e[v/x] ↦−→∗ Δ | w (4), by the inductive hypothesis

Γ | F v −→ Γ | e[v/x] (5), by (app)
Γ | F v ↦−→∗ Δ | w (6), by (4) and (5)

Case lazy: If lv = lazyF v:
Γ : lazyF v ⇓1 (Γ, z ↦→ lazyF v) : z (1), by assumption

Γ | lazyF v −→ (Γ, z ↦→ lazyF v) | z (2), by (lazy)
If lv = memo w:
Γ : memo w ⇓1 (Γ, z ↦→ memo w) : z (1), by assumption

Γ | memo w −→ (Γ, z ↦→ memo w) | z (2), by (memo)
Case let:

68

Γ : let x = e1 in e2 ⇓k+j+1 Θ : w (1), by assumption

Γ : e1 ⇓k Δ : v (2), by (1)

Δ : e2 [v/x] ⇓j Θ : w (3), by (1)

Γ | e1 ↦−→∗ Δ | v (4), by the inductive hypothesis

Δ | e2 [v/x] ↦−→∗ Θ | w (5), by the inductive hypothesis

Δ | let x = v in e2 −→ Δ | e2 [v/x] (6), by (let)
Γ | let x = e1 in e2 ↦−→∗ Θ | w (7), by (4),(5),(6)

Case split:

Γ : split (v1, v2) { (x, y) → e } ⇓k+1 Δ : w (1), by assumption

Γ : e[v1/x, v2/y] ⇓k Δ : w (2), by (1)

Γ | e[v1/x, v2/y] ↦−→∗ Δ | w (3), by the inductive hypothesis

Γ | split (v1, v2) { (x, y) → e } −→ Δ | e[v1/x, v2/y] (4), by (split)
Γ | split (v1, v2) { (x, y) → e } ↦−→∗ Δ | w (5), by (3),(4)

Case unfold:

Γ : unfold (fold v) ⇓1 Γ : v (1), by assumption

Γ | unfold (fold v) ↦−→∗ Γ | v (2), by (unfold)
Case case:

Γ : case (ini v) { inl xl → el ; inr xr → er } ⇓ki + 1 Δ : w (1), by assumption

Γ : ei [v/xi] ⇓ki Δ : w (2), by (1)

Γ | ei [v/xi] ↦−→∗ Δ | w (3), by the inductive hypothesis

Γ | case (ini v) { inl xl → el ; inr xr → er } −→ Δ | ei [v/xi] (4), by (case)
Γ | case (ini v) { inl xl → el ; inr xr → er } ↦−→∗ Δ | w (5), by (3),(4)

Case recall:

Γ : step z ⇓1 Γ : v (1), by assumption

z ↦→ memo v ∈ Γ (2), by (1)

Γ | step z −→ Γ | lazy match z { lazyF l v → let w = F v in memoize l w; memo y → y } (3), by (app)
Γ | step z −→ Γ | y [v/y] (4), by (lazymatch) and (2)

Γ | step z ↦−→∗ Γ | v (5), by (4)

Case step:

(Γ, x ↦→ lazyF v) : step x ⇓k+1 (Δ, x ↦→ memo w) : w (1), by assumption

Γ : F v ⇓k Δ : w (2), by (1)

Γ | F v ↦−→∗ Δ | w (3), by the inductive hypothesis

(Γ, x ↦→ locked) | F v ↦−→∗ (Δ, x ↦→ locked) | w (4), by (3) and monotonicity

(Γ, z ↦→ lazyF v) | step z −→ (Γ, z ↦→ lazyF v) | lazy match z { lazyF l v → let w = F v in memoize l w; memo y → y } (5), by (app)
(Γ, z ↦→ lazyF v) | step z −→ (Γ, z ↦→ locked) | let w = F v in memoize z w (6), by (lazymatch)
(Γ, z ↦→ lazyF v) | step z ↦−→∗ (Γ, z ↦→ locked) | memoize z w (7), by (4)

(Γ, z ↦→ lazyF v) | step z ↦−→∗ (Γ, z ↦→ memo w) | w (8), by (memoize)

E.3.3 Short-cutting.
Lemma 40. (The low-level calculus implements the high-level calculus)
If Γ ⊢ e : A, then ∅ | Γ ⊢ e : A.
Proof. By induction on Γ ⊢ e : A. Obvious for any rule except eval. We define:

eval x = lazy match x
lazyF l v → let w = F v in case w { inl y → memoize l y; inr y → (indirect l y; eval y) }
indirect y → eval y
memo y → y

69

F : A→ B + (A F B) ∈ Σ (1), by assumption

∅ | v : A ⊢ F v : B + (A F B) (2), by app

l : A F B | y : B ⊢ memoize l y : B (3), by memoize

∅ | z : A F B ⊢ eval z : B (4), by app

l : A F B | y : A F B ⊢ indirect l y : B (5), by indirect

l : A F B | y : A F B ⊢ let z = indirect l y in eval z : B (6), by let

l : A F B | w : B + (A F B) ⊢ case w { . . . } (7), by case

l : A F B | v : A ⊢ let w = F v in case w { . . . } (8), by let

∅ | y : A F B ⊢ eval y : B (9), by app

∅ | y : B ⊢ y : B (10), by var

∅ | x : A F B ⊢ lazy match x { . . . } : B (11), by lazymatch

⊩ eval(x) = lazy match x { . . . } : (A F B) → B (7), by deffun

E.3.4 Tail-recursive Evaluation. We use typical equational reasoning laws as given in e.g. Leijen

and Lorenzen [2023]. Our translation function is:

JeKl = case (memoize l e) { inl y → y; inr y → eval y }
which yields the calculations:

Jlet y = e1 in e2Kl = case (memoize l (let y = e1 in e2)) { inl y → y; inr y → eval y }
= case (let y = e1 in memoize l e2) { inl y → y; inr y → eval y }
= let y = e1 in case (memoize l e2) { inl y → y; inr y → eval y }
= let y = e1 in Je2Kl

Jcase v { inl y → e1; inr y → e2 }Kl
= case (memoize l (case v { inl y → e1; inr y → e2 })) { inl y → y; inr y → eval y }
= case (case v { inl y → memoize l e1; inr y → memoize l e2 }) { inl y → y; inr y → eval y }
= case v { inl y → case (memoize l e1) { inl y → y; inr y → eval y }; inr y → case (memoize l e2) { inl y → y; inr y → eval y } }
= case v { inl y → Je1Kl ; inr y → Je2Kl }

Jsplit v { (y, z) → e }Kl
= case (memoize l (split v { (y, z) → e })) { inl y → y; inr y → eval y }
= case (split v { (y, z) → memoize l e }) { inl y → y; inr y → eval y }
= split v { (y, z) → case (memoize l e) { inl y → y; inr y → eval y } }
= split v { (y, z) → JeKl }

Jinl wKl = case (memoize l (inl w)) { inl y → y; inr y → eval y }
= let v = memoize l (inl w) in case v { inl y → y; inr y → eval y }
= memoize l (inl w); case (inl w) { inl y → y; inr y → eval y }
= memoize l (inl w); w

Jinr wKl = case (memoize l (inr w)) { inl y → y; inr y → eval y }
= let v = memoize l (inr w) in case v { inl y → y; inr y → eval y }
= memoize l (inr w); case (inr w) { inl y → y; inr y → eval y }
= memoize l (inr w); eval w

Jinr (fold (lazyF v))K
= case (memoize l (inr (fold (lazyF v)))) { inl y → y; inr y → eval y }
= let y = lazyF v in memoize l (inr (fold y)); eval (fold y)
= let y = lazyF v in memoize l (inr (fold y)); lazy match y

lazyF l v → F ′ l v
memo v → case v { inl y → y; inr y → eval y }

= let y = lazyF v in memoize l (inr (fold y)); lock y in F ′ y v

70

where

lock y in e := lazy match y { lazyF y _→ e; memo v → impossible }

E.3.5 Short-cutting. With the short-cutting primitives, we use the modified evaluation function:

eval x = lazy match x
lazyF l v → case (F v) { inl y → memoize l y; inr y → (indirect l y; eval y) }
indirect y → eval y
memo y → y

and thus the translation:

JeKl = case e { inl y → memoize l y; inr y → (indirect l y; eval y) }
which yields the calculations:

Jlet y = e1 in e2Kl = case (let y = e1 in e2) { inl y → memoize l y; inr y → (indirect l y; eval y) }
= let y = e1 in case e2 { inl y → memoize l y; inr y → (indirect l y; eval y) }
= let y = e1 in Je2Kl

Jcase v { inl y → e1; inr y → e2 }Kl
= case (case v { inl y → e1; inr y → e2 }) { inl y → memoize l y; inr y → (indirect l y; eval y) }
= case v { inl y → case (e1) { inl y → memoize l y; inr y → (indirect l y; eval y) }; inr y → case (e2) { inl y → memoize l y; inr y → (indirect l y; eval y) } }
= case v { inl y → Je1Kl ; inr y → Je2Kl }

Jsplit v { (y, z) → e }Kl
= case (split v { (y, z) → e }) { inl y → memoize l y; inr y → (indirect l y; eval y) }
= split v { (y, z) → case (e) { inl y → memoize l y; inr y → (indirect l y; eval y) } }
= split v { (y, z) → JeKl }

Jinl wKl = case (inl w) { inl y → memoize l y; inr y → (indirect l y; eval y) }
= memoize l w

Jinr wKl = case (inr w) { inl y → memoize l y; inr y → (indirect l y; eval y) }
= indirect l w; eval w

Jinr (lazyF v)K
= case (inr (lazyF v)) { inl y → memoize l y; inr y → (indirect l y; eval y) }
= let y = lazyF v in case (inr y) { inl y → memoize l y; inr y → (indirect l y; eval y) }
= let y = lazyF v in indirect l y; eval y
= let y = lazyF v in indirect l y; lazy match y

lazyF l v → F ′ l v
memo v → case v { inl y → y; inr y → eval y }

= let y = lazyF v in indirect l y; lock y in F ′ y v
After F ′ y v, y points to a chain of indirections ending in a memo. The cutm short-cutting rule

gives us the law indirect l y; memoize y z = memoize l z; memoize y z, while the cuti rule yields
indirect l y; indirect y z = indirect l z; indirect y z. Then we can replace the evaluation of F ′ y v

71

by F ′ l v. Finally, the cell y becomes unused altogether and we can remove it:

let y = lazyF v in indirect l y; lock y in F ′ y v
= let y = lazyF v in indirect l y; lock y in case (F y v)

inl z → memoize y z
inr z → (indirect y z; eval z)

= let y = lazyF v in lock y in indirect l y; case (F y v)
inl z → memoize y z
inr z → (indirect y z; eval z)

= let y = lazyF v in lock y in case (F y v)
inl z → (indirect l y; memoize y z)
inr z → (indirect l y; indirect y z; eval z)

= let y = lazyF v in lock y in case (F y v)
inl z → (memoize l z; memoize y z)
inr z → (indirect l z; indirect y z; eval z)

= let y = lazyF v in lock y in case (F y v)
inl z → (memoize l z; memoize y z)
inr z → (indirect l z; indirect y z; eval z)

= let y = lazyF v in lock y in case (F y v)
inl z → (memoize y z; memoize l z)
inr z → (indirect y z; indirect l z; eval z)

= let y = lazyF v in lock y in case (F y v)
inl z → (indirect y l; memoize l z)
inr z → (indirect y l; indirect l z; eval z)

= let y = lazyF v in lock y in indirect y l; case (F y v)
inl z → memoize l z
inr z → (indirect l z; eval z)

= let y = lazyF v in lock y in indirect y l; F ′ l v
= F ′ l v

E.3.6 Schorr-Waite Evaluation of Lazy Constructors. We use the translation function:

JeKz,l = case (memoize l e) { inl y → unroll z y; inr y → eval′ z y }
which yields the calculations:

Jlet y = e1 in e2Kz,l = case (memoize l (let y = e1 in e2)) { inl y → unroll z y; inr y → eval′ z y }
= case (let y = e1 in memoize l e2) { inl y → unroll z y; inr y → eval′ z y }
= let y = e1 in case (memoize l e2) { inl y → unroll z y; inr y → eval′ z y }
= let y = e1 in Je2Kz,l

Jcase v { inl y → e1; inr y → e2 }Kz,l
= case (memoize l (case v { inl y → e1; inr y → e2 })) { inl y → unroll z y; inr y → eval′ z y }
= case (case v { inl y → memoize l e1; inr y → memoize l e2 }) { inl y → unroll z y; inr y → eval′ z y }
= case v { inl y → case (memoize l e1) { inl y → unroll z y; inr y → eval′ z y }; inr y → case (memoize l e2) { inl y → unroll z y; inr y → eval′ z y } }
= case v { inl y → Je1Kz,l ; inr y → Je2Kz,l }

Jsplit v { (y, z) → e }Kz,l
= case (memoize l (split v { (y, z) → e })) { inl y → unroll z y; inr y → eval′ z y }
= case (split v { (y, z) → memoize l e }) { inl y → unroll z y; inr y → eval′ z y }
= split v { (y, z) → case (memoize l e) { inl y → unroll z y; inr y → eval′ z y } }
= split v { (y, z) → JeKz,l }

72

Jinl wKz,l = case (memoize l (inl w)) { inl y → unroll z y; inr y → eval′ z y }
= let v = memoize l (inl w) in case v { inl y → unroll z y; inr y → eval′ z y }
= memoize l (inl w); case (inl w) { inl y → unroll z y; inr y → eval′ z y }
= memoize l (inl w); unroll z w

Jinr wKz,l = case (memoize l (inr w)) { inl y → unroll z y; inr y → eval′ z y }
= let v = memoize l (inr w) in case v { inl y → unroll z y; inr y → eval′ z y }
= memoize l (inr w); case (inr w) { inl y → unroll z y; inr y → eval′ z y }
= memoize l (inr w); eval′ z w

Jinr (fold (lazyF v))K
= case (memoize l (inr (fold (lazyF v)))) { inl y → unroll z y; inr y → eval′ z y }
= let y = lazyF v in memoize l (inr (fold y)); eval′ z (fold y)
= let y = lazyF v in memoize l (inr (fold y)); lazy match (unfold x)

lazyF l v → F ′ z l v
memo y → case y { inl y → unroll z y; inr y → eval′ z y }

= let y = lazyF v in memoize l (inr (fold y)); lock y in F ′ z y v

Created with Madoko.net.

73

https://www.madoko.net

	Abstract
	1 Introduction
	2 Programming with First-Order Laziness
	2.1 A Strict Bankers Queue using Lists
	2.2 A Lazy Bankers Queue using Streams
	2.3 Lazy Match
	2.4 The Bankers Queue with Logarithmic Worst-Case Time Complexity
	2.5 Avoiding Stack Overflows from Recursive Evaluation
	2.6 The Realtime Queue with Constant Time Complexity

	3 Illuminating First-Order Laziness
	3.1 Lazy Constructors for Thunks
	3.2 The Cost of Laziness
	3.3 Fusing streams and stream cells
	3.4 In-place Reuse of Lazy Constructors
	3.5 In-place Reuse with Reference Counting
	3.6 Laziness with and without recursive forcing

	4 Formalization
	4.1 Core Calculus
	4.2 Natural Semantics
	4.3 Soundness
	4.4 Recursive Lazy Constructors
	4.5 Short-cutting Indirections

	5 Implementation
	5.1 Implementation calculus
	5.2 Small-step semantics
	5.3 Tail-recursive Evaluation
	5.4 Short-cuts during evaluation
	5.5 Linking cells for Schorr-Waite traversal
	5.6 Schorr-Waite Evaluation of Lazy Constructors

	6 Compressing Indirections
	6.1 Traditional Thunks
	6.2 Laziness in the STG Machine
	6.3 Compression of Indirections
	6.4 Stackless Compression
	6.4.1 Explicit Scans
	6.4.2 Path splitting
	6.4.3 Path halving

	7 Benchmarks
	7.1 Reuse analysis and laziness

	8 Related Work
	9 Limitations and Future work
	References
	A Further Examples of Lazy Constructors
	A.1 Sieve of Eratosthenes
	A.2 Repmin

	B Rewriting Laziness during Reduction
	C Data structures with Lazy Constructors
	C.1 Bankers Queue
	C.2 Physicists Queue
	C.3 Realtime Queue
	C.4 Implicit Queue
	C.5 Bootstrapped Queue
	C.6 Binomial Heap
	C.7 Lazypairing Heap
	C.8 Scheduled Heap

	D Benchmark
	D.1 Queue
	D.2 Heap

	E Proofs
	E.1 Soundness of Formalization
	E.1.1 Steps
	E.1.2 Store extension
	E.1.3 Logical relation
	E.1.4 Type Soundness
	E.1.5 Referential Transparency

	E.2 Lazy Constructors
	E.2.1 Typing rules
	E.2.2 Store extension
	E.2.3 Logical relation
	E.2.4 Referential Transparency

	E.3 Soundness of Implementation
	E.3.1 Implementation calculus
	E.3.2 Soundness of Implementation Calculus
	E.3.3 Short-cutting
	E.3.4 Tail-recursive Evaluation
	E.3.5 Short-cutting
	E.3.6 Schorr-Waite Evaluation of Lazy Constructors

