
1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

High-level effect handlers in C

MARIO ALVAREZ-PICALLO, Huawei Research Centre, United Kingdom

TEODORO FREUND, Huawei Research Centre, United Kingdom

DAN R. GHICA, Huawei Research Centre, United Kingdom

SAM LINDLEY, The University of Edinburgh, United Kingdom

Effect handlers are an expressive language feature allowing the programmer to define custom computational

effects in a compositional and principled way. We introduce libseff, a library that brings the power of effect

handlers to C. In contrast to other existing effect handler libraries, libseff is designed to be used directly from
C by C programmers writing idiomatic, direct-style code. Through a series of examples and benchmarks we

demonstrate the expressiveness that effect handlers can bring without sacrificing readability or performance.

1 INTRODUCTION
Effect handlers [25] are an increasingly popular programming feature that empowers programmers

to define and use custom computational effects, ranging from exceptions to generators to lightweight

threads, in a structured way. With an effect handler oriented programming language or library the

programmer can define custom effectful operations whose semantics is specified later by a suitable

effect handler. The power of handlers lies in their ability to support fine-grained customisation (a

given effectful computation can be handled by different handlers that give it different behaviours,

such as implementing a different scheduling strategy), and their composability (handlers can be

composed to allow using multiple different effects in the same program).

A central aspect of effect handlers is that when handling an operation they are provided with

an explicit representation of the continuation of the code that performed the operation (that is

the rest of the computation from that point up to the point at which the handler was installed). A

continuation is a first-class object that can be resumed immediately, aborted entirely, or delayed

for later execution. In this sense, effect handlers can be seen as providing a form of first-class

resumable exceptions, and allow for the implementation of sophisticated forms of control flow,

such as async/await, exceptions, generators and varied forms of lightweight concurrency, entirely

as user-defined libraries.

Though effect handlers are often deployed in the context of high-level functional programming

languages such as OCaml [28], we believe that lower-level languages also stand to gain much from

such features. Indeed, if one enumerates all of the features that are enabled by the introduction of

effect handlers, the only language in common use today to lack all of these is C. On the other hand,

the C ecosystem is rife with ad-hoc implementations of complex control-flow operators that are

intended to support exactly these features, often on a per-project basis.

There already exist two effect handler libraries for C, libhandler [18] and libmpeff [19].

However, they are both geared towards compiler writers, with the explicit goal of providing a

compilation target for high-level languages with effects, rather than being used directly from C

by C programmers. In contrast, in this paper we introduce and evaluate libseff, a small effect

handler library designed to be used as part of a C codebase to write efficient code that looks and

feels as much as possible like idiomatic C.

The libseff library differs from prior approaches in several respects:

• Unlike libhandler which relies on stack-copying (unsafe in C as there may be pointers

into the stack) and libmpeff which relies on virtual memory (not feasible for embedded

systems), libseff supports segmented stacks for resizing stacks. (Stack resizing is often

important for applications such as web servers that spawn many lightweight threads, each

of which needs its own stack.)

1

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

Mario Alvarez-Picallo, Teodoro Freund, Dan R. Ghica, and Sam Lindley

• Unlike traditional effect handler implementations libseff is oriented around mutable

coroutine objects rather than immutable continuation objects. This offers a simple way of

avoiding allocating a new continuation object every time an effectful operation (such as

yielding to another thread) is performed. Moreover, it provides a more familiar interface for

C programmers, who may treat libseff like a conventional coroutine library and integrate
the effectful features as necessary.

• Unlike traditional effect handler implementations there is no special form for dispatching

on effects. Instead performed effects are reified as request objects which are then typically

dispatched on using a standard switch statement.

The main contributions of this paper are the following:

• The design of libseff, illustrated through a series of examples that introduce techniques

for programming with effects and handlers in C using libseff (§2).
• The implementation of libseff, including a description which details the runtime repre-

sentation, low-level primitives, and stack-management strategy (§3).

• An empirical evaluation of the performance profile of libseff through a series of bench-

marks that demonstrate that the abstraction and expressiveness offered by effect handlers

can be implemented in C in concert with competitive performance (§4).

§5 discusses related work and §6 concludes and outlines planned improvements for libseff.
The supplementary material includes an appendix with a formal calculus and abstract machine

that specifies the semantics of the variant of effect handlers underlying the design of libseff.

2 DESIGN
We introduce libseff and motivate its design by way of a series of examples that illustrate the

features and common idioms of the library.

2.1 Mutable state
To illustrate the core features of the library we begin with mutable state as a simple, albeit somewhat

artificial (C has built-in support for mutable state), example. The following code declares two new

effects for reading and writing an integer state value.

1 DEFINE_EFFECT(get, 0, int64_t, {});

2 DEFINE_EFFECT(put, 1, void, { int64_t new_value; });

In order to define an effect we use the macro DEFINE_EFFECT(name, tag, ret_ty, { param_decls... }),

which takes an effect name (name), a tag (tag), a return type (ret_ty), and a possibly empty collection

of parameter declarations (param_decls). The snippet above declares effect get, which returns a value

of type int64_t and takes no parameters, and an effect put, which does not return a value and takes

a single parameter new_value of type int64_t. At this stage these effects have type signatures, but no

implementation. Together they can be thought of as providing an interface to integer state.

Tags. As C macros do not provide a mechanism for generating fresh numeric tags, we require

the user to manually provide a tag for each defined effect. It is the responsibility of the user to

ensure that no two effects are assigned the same tag. In fact, different effects with identical tags

may be used safely, provided that no code performs one effect within the scope of a handler for

another effect that is assigned the same tag. Due to libseff’s use of 64-bit wide bitsets to represent
handled effects, only numbers 0-63 may be used as effect tags.

Terminology. More properly, get and put are effect operations and conceptually we might group

them together to form an interface for a single integer state effect. However, as in OCaml 5 [28]

2

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

High-level effect handlers in C

libseff does not explicitly group such operations, and we refer to each individual effect operation

as an effect. Elsewhere effect operations are sometimes referred to as commands [3, 9].
The following code uses the get and put effects to implement a countdown loop.

5 void* counter(void* parameter) {

6 int64_t counter;

7 do {

8 counter = PERFORM(get);

9 printf("Counter is %ld\n", counter);

10 PERFORM(put, counter - 1);

11 } while (counter > 0);

12 return NULL;

13 }

As C lacks closures and parametric polymorphism, any handled code must be defined inside a

top-level function (here counter) conforming to the prototype void* fn(void*). In order to perform

an effect, we use the PERFORM(name, {arg...}) macro, which takes an effect name and a possibly

empty collection of arguments. This macro provides a convenient wrapper over the lower-level,

untyped seff_perform primitive which we describe in detail in §3.2. From the perspective of an

end-user of libseff, an invocation of PERFORM looks much like a function call whose parameter

and return types match those declared by the corresponding DEFINE_EFFECT macro. In particular, the

parameter and return types are checked by the C compiler.

If we were to call counter directly as a normal function at the top level, then this would result in

a runtime error when line 8 is reached as it performs the get effect outside the scope of a handler

for get (analogous to raising an exception outside the scope of an exception handler). The following

code illustrates how to handle the effects inside counter by instantiating counter as a coroutine and

then repeatedly resuming the coroutine inside an event loop that handles the performed effects.

14 int main(void) {

15 effect_set handles_state = HANDLES(get) | HANDLES(put);

16 seff_coroutine_t *k = seff_coroutine_new(counter, NULL);

17 seff_request_t req = seff_handle(k, NULL, handles_state);

18 int64_t state = 100;

19 bool done = false;

20 while (!done) {

21 switch (req.effect) {

22 CASE_EFFECT(req, get, { req = seff_handle(k, (void *)state, handles_state); break; })

23 CASE_EFFECT(req, put, {

24 state = payload.new_value; req = seff_handle(k, NULL, handles_state);

25 break; })

26 CASE_RETURN(req, {

27 printf("The handled code has finished executing\n"); done = true;

28 break; })

29 }

30 }

31 seff_coroutine_delete(k);

32 return 0;

33 }

The handles_state effect set encapsulates the ability to handle the get and put effects. The call

seff_coroutine_new(counter, NULL) allocates a new coroutine object pointed to by k which when

resumed will run the counter function with the argument NULL. The call seff_coroutine(k, NULL,

handle_state) resumes the coroutine pointed to by k and handles the get and put effects. In fact, it

3

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

Mario Alvarez-Picallo, Teodoro Freund, Dan R. Ghica, and Sam Lindley

only handles them to the extent that if performed, the coroutine will be suspended and they will be

packaged up in the returned request object req. The actual handling code appears in the enclosing

context, here an event loop which dispatches on req.effect. The mutable integer state is stored in

the state variable. Inside the switch statement there is one clause (expressed using the CASE_EFFECT

macro) for each of the possible effects that the coroutine may perform and a distinguished return

clause (expressed using the CASE_RETURN macro) for the case where the coroutine returns normally

without performing any effects. A get effect is handled by resuming the coroutine, passing in the

current state (recall that the return type of get is int64_t). A put effect is handled by updating the

current state and resuming the coroutine with a NULL argument (recall that the return type of put is

void). The special payload variable contains the new state passed to the put effect. If the coroutine

returns without performing an effect then a message is printed and the event loop is exited. Finally

the coroutine object is deleted using seff_coroutine_delete.

Decoupling effect interception from handling code. Formally, the handler is simply the code that

intercepts effects in the given effect set, yielding a corresponding request object. However, it is

natural to refer to the code in the surrounding context that dispatches on the request object as a

handler and we frequently do so. Conventional effect handlers fuse these two phases together, much

like exception handlers, but we opt for a decoupled approach in libseff in order to circumvent

the awkwardness of encoding a bespoke dispatch mechanism in C.

Function signatures. Type signatures for the three primitive functions seen so far are as follows.

seff_coroutine_t *seff_coroutine_new(void *(*fn)(void*), void *arg);

void seff_coroutine_delete(seff_coroutine_t* k);

seff_request_t seff_handle(seff_coroutine_t* k, void* arg, effect_set handled);

The API does not differentiate between starting and resuming a coroutine. However, when called

on a coroutine for the first time arg is ignored (the underlying function has already been applied to

an argument supplied to seff_coroutine_new), whereas on subsequent calls the continuation of the

coroutine is applied to arg, which corresponds to the value returned by the effect.

Coroutines as mutable continuations. Traditional accounts of effect handlers do not take coroutines
as primitive, but rather continuations. A continuation (also sometimes called a resumption) is an

immutable object that represents the rest of a computation. In effect a continuation is like an

immutable seff_coroutine_t, but in libseff we always manipulate coroutines as pointers to a

mutable seff_coroutine_t object which is updated in place whenever an effect is handled.

Handlers in libseff are sheep handlers. Traditional effect handlers are classified as deep or

shallow [13]. A deep handler implicitly wraps itself around the continuation of a suspended effect,

ensuring that all effects in a computation must be handled uniformly; a shallow handler does not.

Following WasmFX [24], handlers in libseff are a hybrid sometimes called sheep handlers. Sheep

handlers are: like shallow handlers in that the original handler need not be installed each time a

continuation is resumed; and like deep handlers in that some handler (though not necessarily the

original one) must be installed every time a continuation is resumed. In libseff this behaviour
manifests as the need to supply an effect set every time we call seff_handle on a coroutine.

2.2 Lightweight concurrency
A much more compelling application of effect handlers, and the central motivation behind the

initial development of libseff, is lightweight concurrency. We begin by defining two effects.

1 DEFINE_EFFECT(fork, 0, void, { void *(*fn)(void *); void *arg; });

2 DEFINE_EFFECT(yield, 1, void, {});

4

197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

225

226

227

228

229

230

231

232

233

234

235

236

237

238

239

240

241

242

243

244

245

High-level effect handlers in C

The fork effect takes a function pointer (fn) and an argument to apply it to (arg); it spawns a new

thread that invokes fn(arg). (In a language with closures we would typically implement fork as a

one argument effect.) The yield effect suspends the current thread.

We write a small example application that initialises a root thread which is responsible for

spawning 10 worker threads. These threads then each print 10 messages to the screen.

1 void *root(void *param) {

2 for (int64_t i = 1; i <= 10; i++) PERFORM(fork, worker, (void *)(i));

3 return NULL;

4 }

5 void *worker(void *param) {

6 int64_t id = (int64_t)param;

7 for (int64_t iteration = 0; iteration < 10; iteration++) {

8 printf("Worker %ld, iteration %ld\n", id, iteration);

9 PERFORM(yield);

10 }

11 return NULL;

12 }

To run this code, we need to define a handler for the yield and fork effects which amounts to

implementing a custom scheduler. The ability of effect handlers to describe APIs to communicate

with a scheduler is at the heart of effect handlers’ applications to concurrency [6, 7, 9, 24, 28, 29].

1 void with_scheduler(seff_coroutine_t *initial_coroutine) {

2 effect_set handles_scheduler = HANDLES(yield) | HANDLES(fork);

3 tl_queue_t queue;

4 tl_queue_init(&queue, 5);

5 tl_queue_push(&queue, initial_coroutine);

6 while (!tl_queue_empty(&queue)) {

7 seff_coroutine_t *next = (seff_coroutine_t *)tl_queue_steal(&queue);

8 seff_request_t req = seff_handle(next, NULL, handles_scheduler);

9 switch (req.effect) {

10 CASE_EFFECT(req, yield, {

11 tl_queue_push(&queue, (struct task_t *)next); break; })

12 CASE_EFFECT(req, fork, {

13 tl_queue_push(&queue, (struct task_t *)next);

14 seff_coroutine_t *new = seff_coroutine_new(payload.fn, payload.arg);

15 tl_queue_push(&queue, (struct task_t *)new);

16 break; })

17 CASE_RETURN(req, {

18 seff_coroutine_delete(next);

19 break; })

20 }

21 }

22 }

23 int main(void) { with_scheduler(seff_coroutine_new(root, (void*)0)); return 0; }

As in §2.1, the body of the handler is a switch statement nested inside a loop. The main difference

with the state example is that now a variable number of coroutines are managed simultaneously by

the scheduler, and these are stored in the task queue queue. On each iteration, the scheduler pops

a coroutine off the head of the queue and proceeds to resume it with seff_handle. A fork or yield

request is handled by pushing the suspended coroutine to the back of the queue. The CASE_RETURN

clause is responsible for releasing the coroutine structures as they finish execution.

5

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

261

262

263

264

265

266

267

268

269

270

271

272

273

274

275

276

277

278

279

280

281

282

283

284

285

286

287

288

289

290

291

292

293

294

Mario Alvarez-Picallo, Teodoro Freund, Dan R. Ghica, and Sam Lindley

One-shot continuations. In performance-oriented implementations of effect handlers [24, 28] it is

common to restrict continuations to be invoked at most once. This restriction simplifies the runtime

system by precluding the duplication of continuations (which would involve creating a copy of

the stack frame captured by the continuation). A similar limitation applies in libseff, which
provides no facilities to copy stack frames. Doing so in C is inherently unsafe, as programmers often

manipulate pointers into the stack which would be invalidated if the stack was copied elsewhere.

However, in libseff there is no way to resume a continuation twice, as continuations per se are

not exposed by the API — each time we handle a coroutine its continuation changes. On the other

hand, a new kind of bug can occur if a coroutine pointer is copied accidentally (recall that we

always refer to coroutines via a seff_coroutine_t pointer). For example, in the scheduler code above,

if the programmer duplicated line 11 by accident, the coroutine next would be enqueued twice. This

would not cause an immediate crash, but would lead to surprising behaviour: every time a thread

were to yield it would subsequently be scheduled to run twice as often. However, once finished its

coroutine object would be deleted and further attempts to dereference the other copy of the pointer

in the queue would fail. It is important with libseff for the programmer to take care to manually

manage the lifetime of coroutines, but this is quite standard for heap-allocated objects in C.

2.3 Resources
One technique supported by handlers, which we have thus far not seen, is the ability to “delay”

a computation to be performed after an effect has been handled. This can be done by having the

handler explicitly maintain a stack keeping track of all the effects that have been handled so far

which is then “unwound” after a coroutine finishes execution. A more elegant approach is to write

our handler as a recursive function, rather than a direct imperative loop, and writing additional

code after the recursive call.

As a motivating example, we implement scoped resource handling using a single defer effect,

whose purpose is to schedule a clean-up function defer_fn to be called with argument defer_arg

when the enclosing coroutine ends its execution. We will also define our own variants of resource-

allocating primitives (for this example, malloc and fopen), which immediately perform the defer

effect to ensure that the corresponding clean-up function is called in a timely fashion.

1 DEFINE_EFFECT(defer, 0, void, { void (*defer_fn)(void*); void *defer_arg; });

2 void *malloc_scoped(size_t size) {

3 void *ptr = malloc(size); PERFORM(defer, free, ptr); return ptr;

4 }

5 FILE *fopen_scoped(const char *path, const char *mode) {

6 FILE *f = fopen(path, mode); PERFORM(defer, fclose, f); return f;

7 }

These functions may be used as drop-in replacements for malloc and fopen, the only caveat being

that any code that uses them must be run inside a coroutine that handles the defer effect.

1 void *uses_resources(void *arg) {

2 ... void *ptr1 = malloc_scoped(256); ... void *ptr2 = malloc_scoped(512);

3 ... FILE *f = fopen_scoped("example", "r"); ...

4 }

Calling any of these scoped resource acquisition functions will result in the defer effect being

performed, communicating the need for resource clean-up to any installed handler. One possible

implementation for such a handler is given by the recursive function handle_defer below.

1 void *handle_defer(seff_coroutine_t *k) {

2 seff_request_t req = seff_handle(k, NULL, HANDLES(defer));

6

295

296

297

298

299

300

301

302

303

304

305

306

307

308

309

310

311

312

313

314

315

316

317

318

319

320

321

322

323

324

325

326

327

328

329

330

331

332

333

334

335

336

337

338

339

340

341

342

343

High-level effect handlers in C

3 switch (req.effect) {

4 CASE_EFFECT(req, defer, {

5 void *result = handle_defer(k);

6 // Run the clean-up function

7 payload.defer_fn(payload.defer_arg);

8 return result; })

9 CASE_RETURN(req, { return payload.result; })

10 }

11 }

Observe that the structure is similar to a recursive version of the event loop of §2.2, with the crucial

difference that the recursive call does not take place in tail position; instead, it is followed by a call

to the deferred function. At runtime, the call stack of handle_defer will match the order in which

the different invocations of defer were performed, and the corresponding clean-up functions will

be called starting from the last.

We abstract away the creation and management of the coroutine object inside a helper function

which takes as an argument the function pointer to be run within the scope of the defer handler.

We can now run uses_resources like so:

1 void *run_with_handle_defer(void *(*fn)(void*), void *arg) {

2 seff_coroutine_t *k = seff_coroutine_new(fn, arg); handle_defer(k); seff_coroutine_delete(k);

3 }

4 int main(void) { run_with_handle_defer(uses_resources, NULL); }

2.4 Composition
An important property of effect handlers is their composability [13][11, Chapter 2]. This allows

different libraries to define different effects which programmers can then mix within the same

function. To illustrate effect handler composition, we use the defer effect from the previous section

together with a new effect for defining generators. Throughout the rest of this subsection we

assume that all the definitions from §2.3 are still in scope.

A generator is a function that yields a stream of multiple values, suspending its execution each

time a value is produced and resuming from the same place next time it is invoked.. In languages

without native support for generators, they can be simulated by a global transformation. With

effect handlers we can implement them directly using a single effect.

1 DEFINE_EFFECT(yield_str, 1, void, { char *elt; });

In this case, the yield_str effect yields a string. As we wish to compose it with defer (whose id is 0)

we have taken care to give it the id 1.

Any function can now be turned into a generator by having it perform the yield_str effect. For

example, we now define a generator that yields squares up to a certain number, formatted as

heap-allocated strings. We use the previously-defined malloc_scoped function to reserve memory.

1 void *squares(void *arg) {

2 int64_t limit = (size_t)arg;

3 for (int64_t i = 0; i < limit; i++) {

4 char *str = malloc_scoped(32);

5 sprintf(str, "%5lu", i * i);

6 PERFORM(yield_str, str);

7 }

8 return NULL;

9 }

7

344

345

346

347

348

349

350

351

352

353

354

355

356

357

358

359

360

361

362

363

364

365

366

367

368

369

370

371

372

373

374

375

376

377

378

379

380

381

382

383

384

385

386

387

388

389

390

391

392

Mario Alvarez-Picallo, Teodoro Freund, Dan R. Ghica, and Sam Lindley

In order to access the elements of this generator, wemust define a handler for it. Amore sophisticated

generator library could provide iteration combinators for consuming the elements of a generator.

Here we simply define a print_all function that prints every element produced by this generator in

sequence.

1 void *print_all(void *arg) {

2 seff_coroutine_t *k = seff_coroutine_new(squares, arg);

3 while (true) {

4 seff_request_t req = seff_handle(k, NULL, HANDLES(yield_str));

5 switch (req.effect) {

6 CASE_EFFECT(req, yield_str, { puts(payload.elt); break; })

7 CASE_RETURN(req, { seff_coroutine_delete(k); return NULL; })

8 }

9 }

10 }

If we run print_all directly, then it crashes on the first call to malloc_scoped, as there is no handler

for defer in scope. Instead, we use the run_with_handle_defer combinator from §2.3.

1 int main(void) { run_with_handle_defer(print_all, (void*)50); }

This code prints the squares of all integers from 0 to 50, while also ensuring that all of the memory

allocated by the underlying generator is freed. Notice that the handlers for the yield_str and defer

are completely independent — they can be defined in separate modules and combined freely by the

programmer.

2.5 Overriding and default handlers
An effect eff is always handled by the innermost handler whose effect set includes eff. In contrast

to function calls, where the callee is determined statically at compile-time, this allows us to redefine

the handling of effects at runtime, providing a form of dynamic binding.

Consider a print effect for printing strings, along with a function print_point that formats a point

given by two coordinates and prints it, and an example function that prints two points.

1 DEFINE_EFFECT(print, 0, void, { char *msg; });

2 void print_point(int64_t x, int64_t y) {

3 char buffer[256];

4 sprintf(buffer, "{ x: %ld, y: %ld }");

5 PERFORM(print, buffer);

6 }

7 void *example(void *arg) { print_point(0, 0); print_point(1, 2); }

If print was simply a function then the behaviour would be fixed, but because it is an effect we can

substitute in different implementation as runtime.

As an example, we define one handler that simply prints to standard output, and another one that

redirects all output to a designated buffer. However, it would be cumbersome and inefficient if we had

to install a handler every time we print. In this case, there is a reasonable default way to implement

print: simply send the payload to stdout. The libseff library supports default handlers [7] which
are functions of type void *(*)(void *) that handle a given effect if no other handler is in scope.

Default handlers, however, do not interrupt normal control flow of execution; instead, they are

executed exactly as a normal function would, with control returning to the caller code immediately

after executing the body of the handler. We now define a function default_print that is used as the

default handler, as well as a more sophisticated handler that stores all output in a buffer instead.

1 void *default_print(void *print_payload) {

8

393

394

395

396

397

398

399

400

401

402

403

404

405

406

407

408

409

410

411

412

413

414

415

416

417

418

419

420

421

422

423

424

425

426

427

428

429

430

431

432

433

434

435

436

437

438

439

440

441

High-level effect handlers in C

2 EFF_PAYLOAD_T(print) payload = *(EFF_PAYLOAD_T(print) *)(print_payload);

3 fputs(payload.msg, stdout);

4 return NULL;

5 }

6 void *with_output_to_buffer(char *buffer, void *(*fn)(void*), void *arg) {

7 seff_coroutine_t *k = seff_coroutine_new(fn, arg);

8 while (true) {

9 seff_request_t req = seff_handle(k, NULL, HANDLES(print));

10 switch (req.effect) {

11 CASE_EFFECT(req, print, {

12 strcpy(buffer, payload.msg); buffer += strlen(payload.msg); break; })

13 CASE_RETURN(req, { seff_coroutine_delete(k); return payload.result; })

14 }

15 }

16 }

Note that the API for establishing default handlers is not type-safe: the payload of the handled effect

is passed as a void pointer that must be manually cast to the correct type through the EFF_PAYLOAD_T

macro, which desugars to the payload type of the given effect tag.

We can install default_print as a default handler by calling seff_set_default_handler and providing

the id of the effect to be handled. For convenience, we provide the EFF_ID macro which expands to

the id of the given effect.

1 int main(void) {

2 seff_set_default_handler(EFF_ID(print), default_print);

3 example(NULL);

4 char buffer[256];

5 with_output_to_buffer(buffer, example, NULL);

6 }

After installing the default handler, the direct call to example prints its output to the screen, whereas

the call inside with_output_to_buffer is instead output to buffer.

3 IMPLEMENTATION
This section provides an overview of the implementation strategy for libseff, and some of the

tradeoffs involved. Unlike other implementations [9, 17, 28] libseff does not keep a separate stack
of handlers, but instead handlers coincide with coroutines: the context that resumed a coroutine

becomes the handler for any effects that may be performed within the coroutine. As a coroutine

executes, it keeps a pointer to its parent coroutine, creating a runtime configuration where the

currently active coroutine acts as the top of a linked list of coroutines. This list plays a role analogous

to the handler stack in other implementations, obviating the bookkeeping and additional allocations

involved in keeping track of both continuations and handlers.

3.1 Runtime representation
During the execution of the program, any effectful computation is instantiated as an object of type

seff_coroutine_t, which keeps track of the execution state of the coroutine and its environment as

well as the set of effects that can be handled from it. More in detail, each coroutine object contains:

• The state of the coroutine, which can be one of RUNNING, SUSPENDED or FINISHED. These names

are somewhat misleading and the values should be understood as preconditions to the

libseff API: a value of SUSPENDED indicates that a coroutine can be resumed via seff_handle

and a value of RUNNING indicates only that a coroutine can be suspended; multiple coroutines

9

442

443

444

445

446

447

448

449

450

451

452

453

454

455

456

457

458

459

460

461

462

463

464

465

466

467

468

469

470

471

472

473

474

475

476

477

478

479

480

481

482

483

484

485

486

487

488

489

490

Mario Alvarez-Picallo, Teodoro Freund, Dan R. Ghica, and Sam Lindley

can simultaneously be in the RUNNING state even in single-threaded applications despite only

one of them being executed at a given point in time (This can happen when a coroutine

spawns and resumes another coroutine: at this point, both parent and child are in the RUNNING

state). Similarly, the child of a coroutine in the SUSPENDED state can itself be in the RUNNING

state, indicating that it could suspend.

• The set of handled effects, which should not be understood as the effects that can be handled

by this coroutine, but instead as the effects that can be handled by suspending this coroutine.

• A pointer to a parent coroutine used when performing an effect, to locate the corresponding

handler.

• A resumption state containing the execution state when the coroutine was last resumed or

suspended. More precisely, when the coroutine is in the RUNNING state, this field contains the

execution state of the context that last resumed it, and is used for suspending the coroutine.

When the coroutine is in the SUSPENDED state, this field instead holds the execution state

of the coroutine at the moment of suspending, and is used for resuming it. The specific

contents of the execution context are architecture-dependent but for x86-64 Linux, the only

architecture currently supported, it consists of the instruction, stack and frame pointers as

well as all callee-saved registers according to the standard System V calling convention.

• A pointer to a region in the heap containing the allocated stack space for the coroutine.
As we shall explain in more detail in §3.3, libseff can use multiple approaches to stack

management, depending on which this may be a pointer to a fixed-size, heap-allocated

stack, or to a linked list of heap-allocated “stacklets”.

A pointer to the coroutine being currently executed (if any), as well as a pointer to the location

of the system stack are also stored in global (thread-local, more precisely) variables. As we shall

explain in §3.3.2, this information is used for avoiding allocating larger stack frames when calling

library code from a coroutine. For a concrete example, consider the following code.

1 DEFINE_EFFECT(eff1, 0, void, {});

2 DEFINE_EFFECT(eff2, 1, void, {});

3 void *g(void *arg) { PERFORM(eff1); PERFORM(eff2); }

4 void *f(void *arg) {

5 seff_coroutine_t *k2 = seff_coroutine_new(g, NULL);

6 seff_request_t req1 = seff_handle(k2, NULL, HANDLES(eff2)); seff_request_t req2 = seff_handle(

k2, NULL, HANDLES(eff2));

7 }

8 void main() {

9 seff_coroutine_t *k1 = seff_coroutine_new(f, NULL);

10 seff_request_t req1 = seff_handle(k1, NULL, HANDLES(eff1) | HANDLES(eff2));

11 seff_request_t req2 = seff_handle(k1, NULL, HANDLES(eff1) | HANDLES(eff2));

12 }

It sets up two nested coroutines and performs effects eff1, eff2 from the innermost one. After both

coroutines have been created and started, and immediately before the call to PERFORM(eff1), the

state of the system is as depicted in Figure 1. Both coroutines have been instantiated and are in the

RUNNING state, with the current_coroutine variable pointing to k2. Since both k1 and k2 are currently

running, the resumptions stored in them contain the program state immediately before they were

started (the resumption for k1 points to the state right before the seff_handle call in line 11, and the

resumption for k2 to that in line 6).

When performing eff1, the linked list of coroutines is traversed upwards, starting at k2, to locate

a suitable handler. In this case, eff1 is featured in the handled effect set of k1, so PERFORM(eff1)

immediately suspends k1 and relinquishes control to its environment, which is then responsible

10

491

492

493

494

495

496

497

498

499

500

501

502

503

504

505

506

507

508

509

510

511

512

513

514

515

516

517

518

519

520

521

522

523

524

525

526

527

528

529

530

531

532

533

534

535

536

537

538

539

High-level effect handlers in C

current_coroutine

system_stack

main

Free space

Free space

k1

k2

RUNNING

RUNNING

eff1, eff2

eff2
parent

parent

resumption

resumption

stack

stack

f

g

NULL

Fig. 1. Before PERFORM(eff1)

current_coroutine

system_stack

main

Free space

Free space

k1

k2

SUSPENDED

RUNNING

eff1, eff2

eff2
parent

parent

resumption

resumption

stack

stack

f

g

NULL

Fig. 2. After PERFORM(eff1)

current_coroutine

system_stack

main

Free space

Free space

k1

k2 SUSPENDED

RUNNING

eff1, eff2

eff2
parent

parent

resumption

resumption

stack

stack

f

g

NULL

Fig. 3. After PERFORM(eff2)

for handling the effect. The system state at this point is depicted in Figure 2: coroutine k1 is now

suspended, and its resumption stores the program state immediately preceeding the call to PERFORM(

eff1), inside the stack frame of the call to g. Note that k2 remains unchanged and is still considered

to be in a running state.

After the effect eff1 has been (trivially) handled, execution of the suspended k1 is resumed in

line 12 and continues until the call to PERFORM(eff2) is reached. At that point, the stack of active

coroutines is traversed again until a handler for eff1 is reached; in this case, this effect can be

handled directly by k2, and so k2 is suspended and control is transferred back to line 6 in f. This

corresponds to the diagram in Figure 3. Note how the resumption for k1 is updated to hold the

program state of the now-paused coroutine.

In order to make it efficient to perform an effect, libseff takes particular care when passing

the payload of a command from the coroutine that performs the effect to the context that handles

it. Effect payloads are marshalled, together with an effect tag, into a seff_request_t struct which

effectively functions as an untyped discriminated union. In many high-level languages, creating

such a data structure would involve allocating memory on the heap and thus incur a significant

performance overhead. To avoid this, libseff uses two low-level tricks: first, the effect payload is

allocated directly on the stack of the coroutine performing it, and the handler receives a pointer into

this stack-allocated payload, which also saves the overhead of copying. Second, the seff_request_t

struct consists of only two 64-bit fields, namely the tag and a pointer to the aforementioned payload,

hence it can be returned from seff_handle directly via processor registers.

3.2 Primitives
Throughout the examples in the previous section, we have shown only the higher-level interface

provided by libseff, which is intended for general use and provides convenience and some degree

11

540

541

542

543

544

545

546

547

548

549

550

551

552

553

554

555

556

557

558

559

560

561

562

563

564

565

566

567

568

569

570

571

572

573

574

575

576

577

578

579

580

581

582

583

584

585

586

587

588

Mario Alvarez-Picallo, Teodoro Freund, Dan R. Ghica, and Sam Lindley

of compiler checking of input and output types. Internally, operations such as the PERFORM macro

are implemented in terms of a simpler set of primitives, that we describe here.

At the lowest level, we have three primitives for performing context-switching. These have the

single task of resuming or suspending an active coroutine and are written directly in assembly.

1 seff_request_t seff_handle(seff_coroutine_t *k, void *arg, effect_set handled);

2 void *seff_yield(seff_coroutine_t *self, effect_id effect, void *payload);

3 void seff_exit(seff_coroutine_t *self, effect_id effect, void *payload);

We have already discussed seff_handle. seff_yield is responsible for suspending the given corou-

tine self and returning control to the point where this coroutine was last resumed. The coroutine

to be suspended is provided as an explicit argument to this function, and the caller is responsible

for ensuring that, at the moment of invoking seff_yield, the coroutine to be suspended is either

the current coroutine or an ancestor of it, otherwise the call to seff_yield will result in undefined

behaviour
1
. seff_exit behaves similarly to seff_yield, with the difference that a coroutine that is

suspended via seff_exit is considered terminated and can no longer be resumed. This means that

the execution context does not need to be saved, and so seff_exit is more efficient in general.

Note that both of the functions seff_yield, seff_exit take an effect_id argument, which is used

to construct the seff_request_t object that will result from suspending the coroutine. However, this

argument is not used to locate an appropriate handler. Instead, control is always relinquished to

the last resumer of the given coroutine, whether or not it is able to handle the given effect.

A separate set of primitives is provided for looking up the appropriate handler in scope (if any)

when selecting which coroutine to suspend.

1 seff_coroutine_t *seff_locate_handler(effect_id effect);

2 void *seff_perform(effect_id effect, void *payload);

3 void seff_throw(effect_id effect, void *payload);

Dynamic dispatch is taken care of by seff_locate_handler, which walks through the stack of

currently active coroutines until it finds the first whose handled_effects bitset covers the effect

effect. As explained before, this indicates the context which resumed that coroutine last is able to

handle the corresponding effect.

seff_perform and seff_throw are analogous to seff_yield and seff_exit, except that they use the

given effect_id to select which coroutine to suspend. Effectively, seff_perform(e, p) is equivalent

to seff_yield(seff_locate_handler(e), e, p), with the only difference that, if no appropriate handler

can be found in scope, seff_perform will invoke a default handler, whereas the seff_yield version

will dereference a null pointer.

The PERFORM macro (illustrated in §2) is the preferred method of performing an effect. It is defined

as a thin wrapper over seff_perform. A call to PERFORM(eff, args...) simply constructs a payload

object of type EFF_PAYLOAD_T(eff) on the current stack frame and initialises it with the provided

arguments, then calls seff_perform with the effect and a pointer to the stack-allocated payload.

Unlike in other systems with resizable stacks [23, 31], libseff guarantees that the stack area for a

given coroutine always remains at the same location, hence pointers into the stack of a coroutine

will remain valid while the coroutine is suspended.

3.3 Stack management
One of the most important technical decisions when implementing stackful coroutines is how stack

frames are allocated and, most importantly, resized. When designing libseff, we considered four

1
It is possible to check this condition at runtime and fail gracefully if it is not satisfied, by traversing the list of coroutines

and ensuring that the coroutine that is being suspended is reachable from the currently active one, but this would impose a

prohibitive overhead.

12

589

590

591

592

593

594

595

596

597

598

599

600

601

602

603

604

605

606

607

608

609

610

611

612

613

614

615

616

617

618

619

620

621

622

623

624

625

626

627

628

629

630

631

632

633

634

635

636

637

High-level effect handlers in C

different approaches, which we detail below. Currently, the first two (fixed and segmented stacks)

are implemented and can be switched between via a build flag (but should not be mixed together in

the same project). The third approach (overcommiting) is planned but currently unimplemented

and we have deemed the last (stack copying) to be unsuitable for our target setting.

3.3.1 Fixed-size stacks. The simplest approach to stack management is to reserve a fixed-size block

of memory to hold the coroutine stack. This has the dual advantages of being simple to implement

and introducing no any additional runtime overhead. However, it can result in a significant waste

of memory. Given that it is hard to determine in advance how much stack space a given program

will eventually need, the programmer must preemptively allocate larger stacks than necessary in

order to mitigate against the risk of stack overflow.

3.3.2 Segmented stacks. Segmented stacks, also called split stacks, replace the traditional con-

tiguous fixed-size stack area by a linked list of stack segments or “stacklets”. The compiler then

instruments every function with a small prelude that checks whether the current stack is large

enough to accommodate the stack frame of the current function. If not, a new stacklet is allocated

to hold the new frame.

Conveniently, support for segmented stacks is provided by both GCC and Clang via the -fsplit-

stack flag, which will add stack overflow checks to every function preamble. As shown in Figure 4,

the compiler-generated prelude checks for a potential stack overflow and, if required, calls a routine

__morestack which is responsible for allocating a new segment, copying any parameters that were

passed through the stack, and setting the return address to point to an epilogue that frees the

newly-allocated stacklet. A simple implementation of this routine is provided by Clang, but libseff
defines its own instead in order to give us finer-grained control over memory allocation.

1 lea -0x108(%rsp),%r11

2 cmp %fs:0x70,%r11

3 ja 8

4 mov $0x108,%r10d

5 mov $0x0,%r11d

6 call <__morestack>

7 ret

8 push %rbp

9 mov %rsp,%rbp

10 ...

11 pop %rbp

12 ret

Stack overflow check

Segment and argument size

1 void split_stack() {
2 char buffer[256];
3 ...
4 }

Fig. 4. Segmented stack prelude in Clang-12

Though they enable the programmer to

write code without concerning themselves

with stack frame sizes, segmented stacks are

not without disadvantages. If nomemory needs

to be allocated, the overhead of the function

prelude is mostly negligible; however, it is pos-

sible for a function call inside a tight loop to

require the repeated allocation and dealloca-

tion of a large segment, resulting in a signifi-

cant slowdown. This is sometimes known as

the “hot split” problem and caused Go to move

away from segmented stacks [23]. libseffmit-

igates this issue by holding its stacklets in a

doubly-linked list; when a stacklet is no longer

necessary, instead of being released immedi-

ately it is simply kept at the end of this list.

Then, if a later function call requires the allocation of additional stack memory, this stacklet can

be recycled, avoiding the need for an additional allocation. As we shall see in §4.1.2, with this

optimisation, the cost of calling a function inside a hot split loop is 9x the cost of a normal function

call.

We argue that, in practice, this is not a significant problem: if the cost of the hot split overhead

dominates the execution time of the called function, then it is likely that this is a small function

that should get inlined by the compiler. Even then, there is a lot of space for further improvement:

micro-optimisations such as lowering the segment reuse code path to assembly, analysis-based

13

638

639

640

641

642

643

644

645

646

647

648

649

650

651

652

653

654

655

656

657

658

659

660

661

662

663

664

665

666

667

668

669

670

671

672

673

674

675

676

677

678

679

680

681

682

683

684

685

686

Mario Alvarez-Picallo, Teodoro Freund, Dan R. Ghica, and Sam Lindley

optimisations like preemptively inlining functions that are likely to cause a hot split, or even more

sophisticated runtime detection of these cases [21].

One more concern about code using segmented stacks is interoperability with library code. The

use of segmented stacks relies on instrumenting every function with an overflow check, but any

functions that are compiled separately (including the standard library, unless the user builds it from

scratch with support for segmented stacks enabled) will lack this prelude and any stack overflow

will cause a crash or, in the worst case scenario, silent memory corruption. To avoid this issue,

Clang’s implementation of segmented stacks conservatively requests a much larger amount of

stack space if a function calls any other functions that have been compiled without segmented

stack support. This is a sensible compromise, but it can lead to much higher memory consumption

than necessary.

When using libseff, this overhead can usually be avoided: a function that was not compiled

with segmented stacks enabled cannot make use of the context-switching features of libseff,

therefore it can be run directly on the system stack instead of the stack of whichever coroutine

happens to be executing. This obviates the need to preemptively allocate a larger segment. For this

purpose, libseff defines the MAKE_SYSCALL_WRAPPER macro, which wraps a given function in code

that handles switching to and from the system stack.

1 MAKE_SYSCALL_WRAPPER(int, puts, const char *s);

2 // Expands to:

3 int __attribute__((no_split_stack)) puts_syscall_wrapper(const char *c);

4 __asm__("puts_syscall_wrapper:"

5 "movq %rsp, %fs:_seff_paused_coroutine_stack@TPOFF;"

6 "movq %fs:_seff_system_stack@TPOFF, %rsp;"

7 "movq %fs:0x70, %rax;"

8 "movq %rax, %fs:_seff_paused_coroutine_stack_top@TPOFF;"

9 "movq $0, %fs:0x70;"

10 "callq puts;"

11 "movq %fs:_seff_paused_coroutine_stack@TPOFF, %rsp;"

12 "movq %fs:_seff_paused_coroutine_stack_top@TPOFF, %rcx;"

13 "movq %rcx, %fs:0x70;"

14 "retq;");

In the example above, a new function puts_syscall_wrapper is defined which has the same interface

as the standard library function puts but will switch to the system stack instead of allocating a stack

segment. We warn the user that this macro is only correct when the wrapped function takes all

parameters and returns its result through processor registers. In addition, the wrapped function

must only be called from within a coroutine (outside a coroutine, the original function should be

called instead).

3.3.3 Overcommiting. Another approach to avoid stack overflow without the need for physically

resizing a coroutine’s stack is to use overcommitting and reserve a large amount of (virtual) memory

for each coroutine, leaving it to the operating system to allocate physical memory as necessary.

This approach is used by libmprompt, striking an excellent balance between performance and

convenience in systems that support it. However, we intend libseff to be also deployable in

embedded systems, which do not necessarily provide virtual memory or a large address space.

Thus, while we are planning to eventually provide virtual memory-based stack management for

libseff, it is not among our top priorities.

3.3.4 Stack copying. Finally, a popular approach in managed languages is stack copying: coroutines
are initialised with a small, fixed-size stack and dynamic checks for stack overflow are inserted

14

687

688

689

690

691

692

693

694

695

696

697

698

699

700

701

702

703

704

705

706

707

708

709

710

711

712

713

714

715

716

717

718

719

720

721

722

723

724

725

726

727

728

729

730

731

732

733

734

735

High-level effect handlers in C

(much like in the case of segmented stacks). However, whenever a coroutine requires more stack

space than is available, instead of initialising a new segment, an entire contiguous region is allocated

to serve as the new stack and the contents of the old stack are copied onto it. This approach avoids

the hot split problem, although it incurs the extra cost of stack copying when a resize is needed.

However, it is unsuitable for a low-level language like C since the process of copying the stack

necessarily invalidates any pointers into it.

Other solutions exist. Go automatically rewrites any pointers into the stack as it is being copied,

but this relies on an amount of runtime information which is simply not available to a C program.

4 EVALUATION
We evaluate libseff on a range of benchmarks comparing it to other effect handler implementa-

tions as well as other concurrency mechanisms. All benchmarks were run on an Intel
®
Xeon

®
Gold

6154 x86-64 running Ubuntu 20.04, with the clang 12.0.0 compiler. Except when stated otherwise

we used libseff with segmented stacks.

4.1 Microbenchmarks
All benchmarks in this section are single-threaded.

4.1.1 State. Our first microbenchmark is based on the mutable state example of §2.1.

1 void *stateful(void *depth) {

2 if (depth == 0){ for (int i = PERFORM(get); i > 0; i = PERFORM(get)) PERFORM(put, i - 1);

3 } else {

4 seff_coroutine_t *k = seff_coroutine_new(stateful, (void *)(uintptr_t)(depth - 1));

5 seff_handle(k, NULL, HANDLES(error)); seff_coroutine_delete(k);

6 }

7 return NULL;

8 }

The stateful function recursively builds a stack of nested handlers for the error effect up to a

specified depth. In the base case a counter, implemented using get and put, is decremented in a loop.

In any effect handler framework, performing an effect involves two steps: (a) locating the

appropriate handler; and (b) transferring control to the handler. This benchmark measures the cost

of both steps and how they scale depending on the number of times an effect is performed and the

depth of the target handler.

In order to separate out the cost of locating the handler from that of transferring control to the

handler, we implement two versions of the benchmark. The first is the one above, where every

execution of an effect triggers a search for its handler. The second is an optimised version that

arises from observing that the handlers for the get and put effects never change during execution of

the loop, which allows us to locate the handlers once and then yield directly to the coroutine that

handles them. This is shown in the code below, where YIELD wraps seff_yield, in the same way that

PERFORM wraps seff_perform. If libseff were used as a backend for a higher-level language with

effects, a compiler could apply this optimisation.

3 seff_coroutine_t *put_handler = seff_locate_handler(EFF_ID(put));

4 seff_coroutine_t *get_handler = seff_locate_handler(EFF_ID(get));

5 for (int i = YIELD(get_handler, get); i > 0; i = YIELD(get_handler, get))

6 YIELD(put_handler, put, i - 1);

We compare against several libraries. For each library we implement a general case and an

optimal case to compare against both of our implementations: native is plain C without effect

15

736

737

738

739

740

741

742

743

744

745

746

747

748

749

750

751

752

753

754

755

756

757

758

759

760

761

762

763

764

765

766

767

768

769

770

771

772

773

774

775

776

777

778

779

780

781

782

783

784

Mario Alvarez-Picallo, Teodoro Freund, Dan R. Ghica, and Sam Lindley

(a) General case (b) Optimal case (c) Optimal case, depths up to 10

Fig. 5. State benchmark results.

Multiplications 0 5 10 15 20

native 1.30 1.00 1.00 1.00 1.00

libseff fixed 1.00 1.00 1.00 1.00 1.00

libseff baseline 1.10 1.00 1.00 1.00 1.00

libseff hot split 9.00 1.83 1.06 1.00 1.00

libseff dealloc 32.22 6.47 3.68 2.50 2.08

(a) Relative execution time of the hot split benchmark.

(b)
Fig. 6. Hot split results

handlers or any kind of dynamic dispatching of operations; cpp-effects [9] is a C++ library for

effect handlers; libhandler [17, 18] and libmpeff [19] are other C libraries for effect handlers.

The cpp-effects optimal avoids handler lookups in a similar fashion to libseff, but it also
eliminates context switching by requiring that handler for get and put resume immediately and do

not need to capture a continuation. The libmpeff and libhandler optimal cases also similarly

avoid context switches, but they do not allow for caching handler lookups.

Figure 5a shows the general case. All effect handler implementations degrade significantly as the

number of installed handlers increases, with libseff consistently the fastest. Figure 5b shows the

optimal case. The elimination of traversing the stack of handlers gives libseff and cpp-effects a
distinct advantage. For both libhandler and libmpeff the optimal case is still affected by the level

of recursion. Whereas libhandler speeds up by avoiding copying the stack in this case, libmpeff
shows little improvement over the general implementation when nested handlers are introduced.

Figure 5c shows the optimal case with depth smaller than 10. Whereas, libmpeff and libhandler
are initially faster than both cpp-effects and libseff, the cost of searching for handlers quickly

becomes a bottleneck, becoming slower than libseff after depth 3.

4.1.2 Hot Split. The next benchmark is designed to quantify the cost of the hot split problem, as

discussed in §3.3.2. It forces a function call to require more stack space than available in the current

segment, and therefore request a larger one every time it is called. This function is then repeatedly

called from a tight loop executing 10
8
times.

We compare four different configurations for libseff against the optimal case in plain C without

segmented stacks, where a function call translates to exactly one assembly call operation. We vary

the called function slightly to include a number of floating point multiplications, ranging from 0 and

20. Figure 7 shows the resulting compiled code for the native case, where the movsd instructions

are only present if there is at least one multiplication and in between there is a fixed number of

16

785

786

787

788

789

790

791

792

793

794

795

796

797

798

799

800

801

802

803

804

805

806

807

808

809

810

811

812

813

814

815

816

817

818

819

820

821

822

823

824

825

826

827

828

829

830

831

832

833

High-level effect handlers in C

mulsd operations. Lines 1 and 9 reserve and release a large array on the stack. When using libseff
with segmented stacks, this function includes runtime checks similar to those of Figure 4.

1 sub $0x788,%rsp

2 movsd 0x191(%rip),%xmm0

3 movsd 0x2099(%rip),%xmm1

4 mulsd %xmm0,%xmm1

5 ...

6 mulsd %xmm0,%xmm1

7 movsd %xmm1,0x2041(%rip)

8 lea -0x80(%rsp),%rax

9 add $0x788,%rsp

10 retq

Repeated m times

Only present when m > 0

Fig. 7. Hot-split function body in assembly. 𝑚 is
the number of multiplications

Table 6a shows the results, comparing native
with four different variations on libseff. Baseline
performs the same function call, repeatedly check-

ing that there is enough space but never requesting

a larger segment; fixed uses libseff with a fixed-

size stack (§3.3), which yields exactly the code in

Figure 7; hot split is the case we are most interested

in, where a new segment is requested every time

the function is called; and dealloc is a special case
where each segment is freed after it is used instead

of being recycled (§3.3.2).

The results show that the hot split problem is

observable in libseff, causing a call to an empty

function to be 9 times slower. However, as we in-

crease the number of operations executed by, the function the relative overhead incurred by the

segment switching rapidly diminishes. The cost of a mere 10 multiplications dominates this over-

head, and the difference in cost of the function call becomes negligible, as shown in Figure 6b.

The results for dealloc illustrate the significant performance difference that recycling segments

provides.

When no multiplications are inserted, we observed that changing the position of the functions in

the compiled code, by adding a few nop instructions, could affect performance by up to 40%, which

explains why both fixed and baseline are faster than native. A similar behaviour was noted in [28].

when evaluating the cost of low level operations.

It is worth noting that the hot split problem is only observable at all if functions are not inlined

or completely optimised away. Modern compilers invariably do inline functions that are simple

enough that the call is the dominant cost. To force the compiler to generate the code from Figure

7 without writing the assembly instructions by hand, we had to deliberately disable inlining and

introduce empty inline assembly blocks so it would still compile both the function and the actual

call.

4.2 Macrobenchmarks
In this section we benchmark libseff against other systems running whole applications.

4.2.1 HTTP Server. Our first macrobenchmark is a simple HTTP server as used to benchmark

OCaml 5 (formerly Multicore OCaml) [28, 30]. The server receives GET requests and respond to

them asynchronously with a text/plain message. It serves each request with a single coroutine that

is released when the connection is closed.

We compare against three alternative implementations:

• nethttp_go is built using Go’s net/http package.

• rust_hyper is a server built on top of Hyper, a highly performant HTTP library for Rust for

the Tokio runtime, a state of the art runtime for Rust async/await concurrency.

• cohttp_eio is a server implemented for OCaml 5 over an effect based I/O library [29] and an

HTTP library built on top of it [22].

The three variants are rather diverse in that they include an extremely simple to implement

server (nethttp_go), a low-level highly performant server (rust_hyper), and a server built on top of

effect handlers like ours (cohttp_eio).

17

834

835

836

837

838

839

840

841

842

843

844

845

846

847

848

849

850

851

852

853

854

855

856

857

858

859

860

861

862

863

864

865

866

867

868

869

870

871

872

873

874

875

876

877

878

879

880

881

882

Mario Alvarez-Picallo, Teodoro Freund, Dan R. Ghica, and Sam Lindley

(a) 1 OS thread (b) 8 OS threads (c) 16 OS threads

Fig. 8. Requests per second served per offered, with 1000 live connections.

(a) 1 OS thread (b) 8 OS threads (c) 16 OS threads

Fig. 9. Maximum memory consumed, with 800000 requests offered per second.

Figure 8 shows the speeds running on 1, 8, and 16 OS threads. Both libseff and rust_hyper
perform consistently better than nethttp_go and cohttp_eio, regardless of the number of OS threads.

Figure 9 shows maximum memory consumption. We observe the maximum memory used by each

implementation by varying the number of live connections, which coincide with the maximum

number of coroutines spawned by each implementation.

The libseff implementation is built on top of a multi-threaded work-stealing scheduler based

on effect handlers that takes advantage of the fact that libseff’s coroutines can be safely moved

between OS threads. We used async I/O functions built on top of that scheduler and a small but

complete HTTP request parser [26].

Fig. 10. Prefetch benchmark results.
Large shapes mark the fastest exe-
cution for each framework.

4.2.2 Prefetching. Our next benchmark, inspired by Jonathan

et al. [12], uses C++’s coroutines to improve performance of

memory heavy applications by alternating multiple concurrent

runs and prefetching memory locations to cache before execut-

ing reads. The application executes multiple binary searches of

different values over the same array. The array is big enough to

not fit entirely in cache, and accesses to memory are not linear,

making cache misses a significant part of the cost.

The naïve version executes searches sequentially; both the

C++ coroutine implementation and the libseff implementation

interleave multiple searches. Each search hints to the CPU to

prefetch some address from memory and then, in a round-robin

manner, moves on to the next search. Before execution returns to

the coroutine that requested the prefetch, the values will already

be stored in the cache and ready to be read, minimising cache

18

883

884

885

886

887

888

889

890

891

892

893

894

895

896

897

898

899

900

901

902

903

904

905

906

907

908

909

910

911

912

913

914

915

916

917

918

919

920

921

922

923

924

925

926

927

928

929

930

931

High-level effect handlers in C

misses. By varying the number of concurrent searches we can minimise the waiting time between

execution returning to the search and the read being completed.

Whereas the C++’s coroutine implementation is explicit about prefetching, then yielding execu-

tion, and finally reading the memory upon return, ours considers dereferencing a memory location

to be an effect; it is the responsibility of the handler to prefetch the memory location, suspend the

coroutine for some time and eventually provide it with the contents of the memory.

1 bool seff_binary_search(int const *first, size_t len, int val) {

2 while (len > 0) {

3 size_t half = len / 2; int x = PERFORM(deref, first + half);

4 if (x < val) { first += half + 1; len = len - half - 1; }

5 else { len = half; }

6 if (x == val) return true;

7 }

8 return false;

9 }

This code is a simplified version of binary search from the libseff benchmark. The main difference

from regular binary search is the effectful computation of the dereference operation PERFORM(deref,

first + half). Figure 10 shows the results. They show that libseff incurs an overhead over the

naïve sequential implementation whenever too few or too many streams are used but significantly

improves upon it at its best point, taking around 2/3 of the time. The version with C++ coroutines

is noticeably faster and allows for more concurrent searches to be executed simultaneously; this

is unsurprising as C++ stackless coroutines have full compiler support and leverage a smaller

memory footprint and stack allocation for better cache locality. Nonetheless, these results show

that libseff effects are lightweight and efficient enough to materialise performance gains from

cache prefetching, without these being obscured by context-switching overhead.

5 RELATEDWORK
Effect handlers for C and C++. The libhandler [17, 18] and libmpeff [19] are existing effect

handlers libraries for C. Unlike libseff they are designed as targets for compiler writers rather

than for writing code directly in C. Each of these C libraries uses a different stack-management

strategy: libhandler copies stacks into a temporary structure before restoring them on resumption,

libmpeff uses virtual memory to allow stacks to grow without moving in memory, and libseff
uses segmented stacks. The cpp-effects library [9] is a C++ effect handlers library which heavily

relies on C++ features both in its implementation and its API.

Coroutines in C/C++. There exist many different coroutine libraries for C and C++, including

Boost coroutines [2], libco [31], libmill [1], and C++20 stackless coroutines.

Varieties of coroutine. de Moura and Ierusalimschy [5] give a comprehensive classifications of

the different notions of coroutine. The kind of coroutines provided by libseff are asymmetric
first-class stackful coroutines. Moreover, libseff provides stacks that are guaranteed not to be

moved and coroutines that can migrate between system threads.

Effect handlers as coroutines. A distinctive aspect of effect handlers in libseff is their foundation
on mutable asymmetric coroutines rather than immutable continuations. Nonetheless, the close

connections between asymmetric coroutines and effect handlers have been exploited, in a somewhat

different way, elsewhere. Kawahara and Kameyama [15] show how to translate one-shot effect

handlers into asymmetric coroutines. Phipps-Costin et al. [24] exploit essentially the same encoding

19

932

933

934

935

936

937

938

939

940

941

942

943

944

945

946

947

948

949

950

951

952

953

954

955

956

957

958

959

960

961

962

963

964

965

966

967

968

969

970

971

972

973

974

975

976

977

978

979

980

Mario Alvarez-Picallo, Teodoro Freund, Dan R. Ghica, and Sam Lindley

to implement effect handlers on top of the Wasmtime Fiber API [4], which implements coroutines

for the Wasmtime engine for WebAssembly.

Optimising effect handlers. Much of the research on effect handlers has focused on programming

and reasoning about them. Nonetheless, there have also been various attempts to compile effect

handlers to efficient code. Kammar et al. [13] take advantage of Haskell’s aggressive inlining of

type classes to speed up an implementation based on a continuation monad. Wu and Schrijvers [32]

explain the essence of this optimisation as an instance of fusion. Kiselyov and Ishii [16] introduce

so-called “Freer monads” as another means to speed up implementations of effect handlers in

Haskell. Karachalias et al. [14] optimise effect handler code by aggressively inlining as many

handlers as possible. Schuster et al. [27] achieve a similar end by way of staged computation. Xie

and Leijen [33] and Ghica et al. [9] apply an instance of the optimisation we describe in Section 4 to

avoid searching the handler stack, or indeed context-switching at all, when a handler is known to

be “tail-resumptive” meaning that it immediately invokes the continuation in tail-position. Another

optimisation performed by both of the latter two systems is for the case in which the continuation

is never invoked (as in exception handlers).

6 CONCLUSION AND FUTUREWORK
We have described the design and implementation of libseff, a library for effect handlers in

C. While other effect handlers for C exist, these are primarily designed as targets for compilers,

whereas libseff is the first library to provide an idiomatic interface for programming with effect

handlers in C. The key challenge we had to overcome is C’s lack of modern features, especially

closures and generics. This led us to a design based on sheep handlers, coroutines, and explicit

request objects, which enables writing handlers as simple, direct-style loops that should be familiar

to any C developer.

Our benchmarks demonstrate that effect handler programs, even without special compiler

support, can be compiled to efficient code that is competitive with other state-of-the-art approaches,

notably Rust’s stackless coroutines. The libseff library outperforms most other libraries in this

space due to simpler handler dispatch logic and hand-written context-switching code. It is also, to

our knowledge, the first such C library to offer a choice of stack management strategies, currently

supporting both segmented and fixed-size stacks, with planned support for a third approach based

on overcommitting of virtual memory.

We are currently actively working on porting libseff to other architectures including ARM

and 32-bit Intel processors. We also plan to support more approaches to stack management: both

virtual memory and some form of arena allocation of stack segments are under consideration.

Perhaps unsurprisingly for a C library, the interface provided by libseff is prone to certain

kinds of errors: using coroutines non-linearly or performing unhandled effects, can crash the

program at runtime. The C type system is not rich enough to encode the necessary constraints to

avoid these errors, but we would like to developing a set of Rust bindings on top of libseff that
will leverage Rust’s rich type system and borrow checker to ensure safety at compile time.

Finally, we plan to explore further low-level improvements to the libseff implementation. A

common optimisation in other effect handler libraries is to avoid creating new continuations or

stack frames for certain effects where the continuation is either never invoked (such as exceptions)

or invoked immediately at the end of the handler (such as mutable state or dynamic binding). This

promises significant additional performance for such use-cases allowing us to efficiently take fuller

advantage of the expressive power of effect handlers.

20

981

982

983

984

985

986

987

988

989

990

991

992

993

994

995

996

997

998

999

1000

1001

1002

1003

1004

1005

1006

1007

1008

1009

1010

1011

1012

1013

1014

1015

1016

1017

1018

1019

1020

1021

1022

1023

1024

1025

1026

1027

1028

1029

High-level effect handlers in C

REFERENCES
[1] [n. d.]. libmill. https://github.com/sustrik/libmill.

[2] Boost. [n. d.]. Boost.coroutine library. https://www.boost.org/doc/libs/1_83_0/libs/coroutine/doc/html/index.html.

[3] Lukas Convent, Sam Lindley, Conor McBride, and Craig McLaughlin. 2020. Doo bee doo bee doo. J. Funct. Program. 30
(2020), e9.

[4] Alex Crichton. 2021. Wasmtime Fiber API. https://docs.wasmtime.dev/api/wasmtime_fiber/index.html. Accessed

2023-11-15.

[5] Ana Lúcia de Moura and Roberto Ierusalimschy. 2009. Revisiting coroutines. ACM Trans. Program. Lang. Syst. 31, 2
(2009), 6:1–6:31.

[6] KC Sivaramakrishnan Deepali Ande, Sudha Parimala. 2023. Effectively Composing Concurrency Libraries. Draft. https:

//kcsrk.info/papers/composable_concurrency.pdf.

[7] Stephen Dolan, Spiros Eliopoulos, Daniel Hillerström, Anil Madhavapeddy, KC Sivaramakrishnan, and Leo White.

2017. Concurrent System Programming with Effect Handlers. In TFP (Lecture Notes in Computer Science, Vol. 10788).
Springer, 98–117.

[8] Matthias Felleisen and Daniel P. Friedman. 1986. Control Operators, the SECD-machine, and the 𝜆-Calculus. In Formal
Description of Programming Concepts III. Elsevier, 193–217.

[9] Dan R. Ghica, Sam Lindley, Marcos Maroñas Bravo, and Maciej Piróg. 2022. High-level effect handlers in C++. Proc.
ACM Program. Lang. 6, OOPSLA2 (2022), 1639–1667.

[10] Daniel Hillerström, Sam Lindley, and Robert Atkey. 2020. Effect handlers via generalised continuations. J. Funct.
Program. 30 (2020), e5.

[11] Daniel Hillerström. 2021. Foundations for Programming and Implementing Effect Handlers. Ph. D. Dissertation. School
of Informatics, The University of Edinburgh, Scotland, UK.

[12] Christopher Jonathan, Umar Farooq Minhas, James Hunter, Justin J. Levandoski, and Gor V. Nishanov. 2018. Exploiting

Coroutines to Attack the "Killer Nanoseconds". Proc. VLDB Endow. 11, 11 (2018), 1702–1714. https://doi.org/10.14778/

3236187.3236216

[13] Ohad Kammar, Sam Lindley, and Nicolas Oury. 2013. Handlers in action. In ICFP. ACM, 145–158.

[14] Georgios Karachalias, Filip Koprivec, Matija Pretnar, and Tom Schrijvers. 2021. Efficient compilation of algebraic effect

handlers. Proc. ACM Program. Lang. 5, OOPSLA (2021), 1–28.

[15] Satoru Kawahara and Yukiyoshi Kameyama. 2020. One-Shot Algebraic Effects as Coroutines. In TFP (Lecture Notes in
Computer Science, Vol. 12222). Springer, 159–179.

[16] Oleg Kiselyov and Hiromi Ishii. 2015. Freer monads, more extensible effects. In Haskell. ACM, 94–105.

[17] Daan Leijen. 2017. Implementing Algebraic Effects in C — "Monads for Free in C". In APLAS (Lecture Notes in Computer
Science, Vol. 10695). Springer, 339–363.

[18] Daan Leijen. 2019. libhandler. https://github.com/koka-lang/libhandler.

[19] Daan Leijen and KC Sivamarakrishnan. 2023. libmprompt and libmpeff. https://github.com/koka-lang/libmprompt.

[20] Paul Blain Levy, John Power, and Hayo Thielecke. 2003. Modelling environments in call-by-value programming

languages. Inf. Comput. 185, 2 (2003), 182–210.
[21] Zhiyao Ma and Lin Zhong. 2023. Bringing Segmented Stacks to Embedded Systems. In Proceedings of the 24th

International Workshop on Mobile Computing Systems and Applications, HotMobile 2023, Newport Beach, California,
February 22-23, 2023. ACM, 117–123. https://doi.org/10.1145/3572864.3580344

[22] Mirage. [n. d.]. Eio. https://github.com/mirage/ocaml-cohttp.

[23] Daniel Morsing. [n. d.]. How Stacks are Handled in Go.

[24] Luna Phipps-Costin, Andreas Rossberg, Arjun Guha, Daan Leijen, Daniel Hillerström, KC Sivaramakrishnan, Matija

Pretnar, and Sam Lindley. 2023. ContinuingWebAssembly with Effect Handlers. Proc. ACM Program. Lang. 7, OOPSLA2
(2023), 460–485.

[25] Gordon D. Plotkin and Matija Pretnar. 2013. Handling Algebraic Effects. Logical Methods in Computer Science 9, 4
(2013).

[26] The H20 Project. [n. d.]. PicoHTTPParser. https://github.com/h2o/picohttpparser.

[27] Philipp Schuster, Jonathan Immanuel Brachthäuser, and Klaus Ostermann. 2020. Compiling effect handlers in

capability-passing style. Proc. ACM Program. Lang. 4, ICFP (2020), 93:1–93:28.

[28] KC Sivaramakrishnan, Stephen Dolan, Leo White, Tom Kelly, Sadiq Jaffer, and Anil Madhavapeddy. 2021. Retrofitting

effect handlers onto OCaml. In PLDI. ACM, 206–221.

[29] OCaml Multicore team. [n. d.]. Eio. https://github.com/ocaml-multicore/eio.

[30] OCaml Multicore team. 2021. Multicore OCaml HTTP benchmarks. https://github.com/ocaml-multicore/retro-httpaf-

bench.

[31] Tencent. [n. d.]. libco. https://github.com/Tencent/libco.

21

https://github.com/sustrik/libmill
https://www.boost.org/doc/libs/1_83_0/libs/coroutine/doc/html/index.html
https://docs.wasmtime.dev/api/wasmtime_fiber/index.html
https://kcsrk.info/papers/composable_concurrency.pdf
https://kcsrk.info/papers/composable_concurrency.pdf
https://doi.org/10.14778/3236187.3236216
https://doi.org/10.14778/3236187.3236216
https://github.com/koka-lang/libhandler
https://github.com/koka-lang/libmprompt
https://doi.org/10.1145/3572864.3580344
https://github.com/mirage/ocaml-cohttp
https://github.com/h2o/picohttpparser
https://github.com/ocaml-multicore/eio
https://github.com/ocaml-multicore/retro-httpaf-bench
https://github.com/ocaml-multicore/retro-httpaf-bench
https://github.com/Tencent/libco

1030

1031

1032

1033

1034

1035

1036

1037

1038

1039

1040

1041

1042

1043

1044

1045

1046

1047

1048

1049

1050

1051

1052

1053

1054

1055

1056

1057

1058

1059

1060

1061

1062

1063

1064

1065

1066

1067

1068

1069

1070

1071

1072

1073

1074

1075

1076

1077

1078

Mario Alvarez-Picallo, Teodoro Freund, Dan R. Ghica, and Sam Lindley

[32] Nicolas Wu and Tom Schrijvers. 2015. Fusion for Free - Efficient Algebraic Effect Handlers. In MPC (Lecture Notes in
Computer Science, Vol. 9129). Springer, 302–322.

[33] Ningning Xie and Daan Leijen. 2021. Generalized evidence passing for effect handlers: efficient compilation of effect

handlers to C. Proc. ACM Program. Lang. 5, ICFP (2021), 1–30.

22

1079

1080

1081

1082

1083

1084

1085

1086

1087

1088

1089

1090

1091

1092

1093

1094

1095

1096

1097

1098

1099

1100

1101

1102

1103

1104

1105

1106

1107

1108

1109

1110

1111

1112

1113

1114

1115

1116

1117

1118

1119

1120

1121

1122

1123

1124

1125

1126

1127

High-level effect handlers in C

A SEMANTICS
In this appendix we give an abstract characterisation of the variant of effect handlers that libseff
is based on. Following the approach of Hillerström et al. [10] we do so by way of a CEK [8] abstract

machine for a fine-grain call-by-value [20] lambda calculus. Our calculus is untyped whereas theirs

is simply-typed. Other than that, the only substantive difference between our account and that of

Hillerström et al. [10] is the treatment of effects and handlers. We return to these differences after

presenting our calculus and abstract machine. Again following Hillerström et al. [10], we diverge

somewhat from libseff by basing the effect handlers in this section on continuations rather than

coroutines. We make no attempt here to prevent continuations from being invoked more than once

in the abstract machine, but it would be entirely straightforward to do so.

The syntax of our calculus is given by the following grammar.

Values 𝑉 ,𝑊 ::= 𝑥 | 𝑘 | 𝑐 | 𝜆𝑥. 𝑀 | rec 𝑓 𝑥 .𝑀 | ⟨⟩ | ⟨𝑉 ,𝑊 ⟩ | injℓ 𝑉
Computations 𝑀, 𝑁 ::= 𝑉 𝑊 | let ⟨𝑥,𝑦⟩ = 𝑉 in 𝑁 | case 𝑉 {injℓ 𝑥 ↦→ 𝑀 ;𝑦 ↦→ 𝑁 }

| return 𝑉 | let 𝑥 ← 𝑀 in 𝑁

| newcont 𝑉 | resume L 𝑉 𝑊 | perform ℓ 𝑉

We let𝑉 range over value terms,𝑀 range of computation terms, 𝑥 range over value term variables,

𝑘 range of literals, 𝑐 range of primitive operations (e.g. addition), ℓ range over individual effects,

and L range over sets of effects. Being fine-grained, there are different productions for value and

computation terms. Apart from newcont, resume, and perform computation term constructors,

everything else is standard.

The term newcont 𝑉 converts a function value 𝑉 into a continuation value. It is an idealised

analogue of seff_coroutine_new(f, NULL), where 𝑉 represents f. The term resume L 𝑉 𝑊 resumes

continuation 𝑉 with argument𝑊 handling effects L. It is an idealised analogue of seff_handle(k,

arg, effs) where L represents effs, 𝑉 represents k, and𝑊 represents arg. The term perform ℓ 𝑉

performs effect ℓ with argument 𝑉 . It is an idealised analogue of seff_perform(eff, arg) where ℓ

represents eff and 𝑉 represents arg.

Before giving the transition relation for the machine we spell out the grammar for abstract

machine syntax.

Configurations C ::= ⟨𝑀 | 𝛾 | 𝜅⟩
Environments 𝛾 ::= ∅ | 𝛾 [𝑥 ↦→ 𝑣]
Machine values 𝑣,𝑤 ::= 𝑥 | 𝑘 | 𝑐 | (𝛾, 𝜆𝑥 . 𝑀) | (𝛾, rec 𝑓 𝑥 . 𝑀) | ⟨⟩ | ⟨𝑣,𝑤⟩ | injℓ 𝑣 | (𝜅, 𝜎)
Continuations 𝜅 ::= [] | (𝜎,L) :: 𝜅
Pure continuations 𝜎 ::= [] | (𝛾, 𝑥, 𝑁) :: 𝜎
The configurations (C) of a CEK machine are triples: C (here ranged over by𝑀, 𝑁) stands for

control (the program, that is, current computation term), E (here ranged over by 𝛾) for environment

(a mapping from variables to machine values), K (here ranged over by 𝜅) for kontinuation (what to

do next).

The machine values are mostly quite standard, including corresponding forms for each basic

term value form. Indeed, we define an interpretation J𝑉 K𝛾 for value term 𝑉 as a machine value,

where free variables are given by the environment 𝛾 .

J𝑥K𝛾 = 𝛾 (𝑥)
J𝑘K𝛾 = 𝑘

J𝑐K𝛾 = 𝑐

J𝜆𝑥 .𝑀K𝛾 = (𝛾, 𝜆𝑥 .𝑀)
Jrec 𝑓 𝑥 .𝑀K𝛾 = (𝛾, rec 𝑓 𝑥 .𝑀)

J⟨⟩K𝛾 = ⟨⟩
J⟨𝑉 ,𝑊 ⟩K𝛾 = ⟨J𝑉 K𝛾, J𝑊 K𝛾⟩
Jinjℓ 𝑉 K𝛾 = injℓ (J𝑉 K𝛾)

In particular, anonymous function terms and named recursive function terms are interpreted using

closures. The final machine value form (𝜅, 𝜎) is used to represent a continuation value (as returned

23

1128

1129

1130

1131

1132

1133

1134

1135

1136

1137

1138

1139

1140

1141

1142

1143

1144

1145

1146

1147

1148

1149

1150

1151

1152

1153

1154

1155

1156

1157

1158

1159

1160

1161

1162

1163

1164

1165

1166

1167

1168

1169

1170

1171

1172

1173

1174

1175

1176

Mario Alvarez-Picallo, Teodoro Freund, Dan R. Ghica, and Sam Lindley

by newcont or when performing an effect). Let us defer explaining why continuation values are

represented this way to the point at which we consider the transition rules.

Following Hillerström et al. [10] a continuation (𝜅) is a list (stack) of pairs of pure continuations

𝜎 and handlers L (here actually effects sets which denote the effects handled by a handler). A pure

continuation (𝜎) is a list (stack) of let-binding closures. (A traditional CEK machine for coarse-

grained call-by-value would need many more. The advantage of fine-grain call-by-value — or ANF

or SSA or CPS — is that because the result of every intermediate step must be explicitly named we

know that pure computation can only proceed through another let-binding.)

Now we present the transition relation for the abstract machine.

M-Lam ⟨𝑉 𝑊 | 𝛾 | 𝜅⟩ −→ ⟨𝑀 | 𝛾 ′ [𝑥 ↦→ J𝑊 K𝛾] | 𝜅⟩,
if J𝑉 K𝛾 = (𝛾 ′, 𝜆𝑥 . 𝑀)

M-Rec ⟨𝑉 𝑊 | 𝛾 | 𝜅⟩ −→ ⟨𝑀 | 𝛾 ′ [𝑓 ↦→ (𝛾 ′, rec 𝑓 𝑥 .𝑀),
𝑥 ↦→ J𝑊 K𝛾] | 𝜅⟩,

if J𝑉 K𝛾 = (𝛾 ′, rec 𝑓 𝑥 .𝑀)
M-Const ⟨𝑉 𝑊 | 𝛾 | 𝜅⟩ −→ ⟨return (⌜𝑐⌝ (J𝑊 K𝛾)) | 𝛾 | 𝜅⟩,

if J𝑉 K𝛾 = 𝑐

M-Split ⟨let ⟨𝑥,𝑦⟩ = 𝑉 in 𝑁 | 𝛾 | 𝜅⟩ −→ ⟨𝑁 | 𝛾 [𝑥 ↦→ 𝑣,𝑦 ↦→ 𝑤] | 𝜅⟩,
if J𝑉 K𝛾 = ⟨𝑣,𝑤⟩

M-CaseMatch case 𝑉 {injℓ 𝑥 ↦→ 𝑀 ;𝑦 ↦→ 𝑁 } | 𝛾 | 𝜅 −→ ⟨𝑀 | 𝛾 [𝑥 ↦→ 𝑣] | 𝜅⟩,
if J𝑉 K𝛾 = injℓ 𝑣

M-CaseDef case 𝑉 {injℓ 𝑥 ↦→ 𝑀 ;𝑦 ↦→ 𝑁 } | 𝛾 | 𝜅 −→ ⟨𝑁 | 𝛾 [𝑦 ↦→ injℓ ′ 𝑣] | 𝜅⟩,
if J𝑉 K𝛾 = injℓ ′ 𝑣 and ℓ ≠ ℓ ′

M-Let ⟨let 𝑥 ← 𝑀 in 𝑁 | 𝛾 | (𝜎,L) :: 𝜅⟩ −→ ⟨𝑀 | 𝛾 | ((𝛾, 𝑥, 𝑁) :: 𝜎,L) :: 𝜅⟩
M-RetCont ⟨return 𝑉 | 𝛾 | ((𝛾 ′, 𝑥, 𝑁) :: 𝜎,L) :: 𝜅⟩ −→ ⟨𝑁 | 𝛾 ′ [𝑥 ↦→ J𝑉 K𝛾] | (𝜎,L) :: 𝜅⟩

M-NewCont ⟨newcont 𝑉 | 𝛾 | 𝜅⟩ −→ ⟨return 𝑥 | 𝛾 [𝑥 ↦→ ([], [(𝛾,𝑦,𝑉 𝑦)])] | 𝜅⟩
M-Resume ⟨resume L 𝑉 𝑊 | 𝛾 | 𝜅⟩ −→ ⟨return𝑊 | 𝛾 | 𝜅′ ++ [(𝜎 ′,L)] ++ 𝜅⟩,

if J𝑉 K𝛾 = (𝜅′, 𝜎 ′)
M-Perform ⟨perform ℓ 𝑉 | 𝛾 | 𝜅⟩ −→ ⟨return (injℓ ⟨𝑉 , 𝑥⟩) | 𝛾 [𝑥 ↦→ (𝜅′, 𝜎 ′)] | 𝜅′′⟩

if 𝜅 handles ℓ at ((𝜅′, 𝜎 ′), 𝜅′′)
M-RetHandler ⟨return 𝑉 | 𝛾 | ([],L) :: 𝜅⟩ −→ ⟨return (injret 𝑉) | 𝛾 | 𝜅⟩

The first six rules are routine. We write ⌜𝑐⌝ for the function that implements 𝑐 on machine values.

TheM-Let rule reifies a let-binding at the head of the current pure continuation. TheM-RetCont

rule binds a returned value in the body of the reified let-binding at the head of the current pure

continuation.

TheM-NewCont rule allocates a new continuation value, binding it in the environment. This

continuation value simply applies the function 𝑉 to its argument. The M-Resume rule resumes

a continuation value by concatenating it onto the front of the continuation component of the

configuration. It is now that we see why a continuation value comprises a pair of a continuation

and a pure continuation. Really (𝜅′, 𝜎 ′) represents a continuation 𝜅′ ++ [(𝜎 ′, 𝑋)] with a hole 𝑋 in it

that is here replaced by the effect set L. The M-Perform rule performs an effect by reifying it as a

labelled variant value containing a pair of the payload and the continuation. The auxiliary relation

𝜅 handles ℓ at ((𝜅′, 𝜎 ′), 𝜅′′) splits the current continuation 𝜅 into two parts where (𝜅′, 𝜎 ′) is the
continuation object up to the handler for ℓ and 𝜅′′ is the remainder of the continuation.

ℓ ∈ L
(𝜎,L) :: 𝜅 handles ℓ at (([], 𝜎), 𝜅)

ℓ ∉ L 𝜅 handles ℓ at ((𝜅′, 𝜎 ′), 𝜅′′)
(𝜎,L) :: 𝜅 handles ℓ at ((𝜎,L) :: 𝜅′, 𝜎 ′), 𝜅′′)

24

1177

1178

1179

1180

1181

1182

1183

1184

1185

1186

1187

1188

1189

1190

1191

1192

1193

1194

1195

1196

1197

1198

1199

1200

1201

1202

1203

1204

1205

1206

1207

1208

1209

1210

1211

1212

1213

1214

1215

1216

1217

1218

1219

1220

1221

1222

1223

1224

1225

High-level effect handlers in C

The M-RetHandler rule reifies a top-level return as a labelled variant value with a special ret
label which denotes that the computation returned normally.

Comparison with standard effect handler calculi and abstract machines. Whereas the calculus

of Hillerström et al. [10] includes both deep and shallow handlers ours provides hybrid sheep

handlers [24]. A deep handler automatically wraps the original handler around the body of each

suspended continuation. A shallow handler does not. A sheep handler does not automatically

wrap the original handler around the body of each continuation, but does require a handler to be

explicitly installed whenever the continuation is resumed. Sheep handlers guarantee that some

handler must be installed whenever a continuation is resumed, but not necessarily the original one.

The other substantive difference between our calculus and more classical ones like that of

Hillerström et al. [10] is that although resume specifies the effect set for a handler, there is no

special construct for specifying a handler by dispatching on the effect. Instead the result of resume
(either a normal return or a performed effect) is wrapped up in a variant value and the dispatch is

implemented using case.

25

	Abstract
	1 Introduction
	2 Design
	2.1 Mutable state
	2.2 Lightweight concurrency
	2.3 Resources
	2.4 Composition
	2.5 Overriding and default handlers

	3 Implementation
	3.1 Runtime representation
	3.2 Primitives
	3.3 Stack management

	4 Evaluation
	4.1 Microbenchmarks
	4.2 Macrobenchmarks

	5 Related Work
	6 Conclusion and Future Work
	References
	A Semantics

