Rows and Capabilities as Modal Effects

WENHAQO TANG, The University of Edinburgh, UK
SAM LINDLEY, The University of Edinburgh, UK

Effect handlers allow programmers to model and compose computational effects modularly. Effect systems
statically guarantee that all effects are handled. Several recent practical effect systems are based on either
row polymorphism or capabilities. However, there remains a gap in understanding the precise relationship
between effect systems with such disparate foundations. The main difficulty is that in both row-based and
capability-based systems, effect tracking is typically entangled with other features such as functions.

We propose a uniform framework for encoding, analysing, and comparing effect systems. Our framework
exploits and generalises modal effect types, a recent novel effect system which decouples effect tracking
from functions via modalities. Modalities offer fine-grained control over when and how effects are tracked,
enabling us to express different strategies for effect tracking. We give encodings as macro translations from
existing row-based and capability-based effect systems into our framework and show that these encodings
preserve types and semantics. Our encodings reveal the essence of effect tracking mechanisms in different
effect systems, enable a direct analysis on their differences, and provide practical insights on language design.

CCS Concepts: » Theory of computation — Type structures; Type theory; Control primitives.

Additional Key Words and Phrases: effect handlers, effect types, modal types

1 Introduction

Effect handlers [34] provide a powerful abstraction to define and compose computational effects
including state, concurrency, and probability. Effect systems statically ensure that all effects used
in a program are handled. The literature includes much work on effect systems for effect handlers
based on a range of different theoretical foundations. Two of the most popular and well-studied
approaches are row-based effect systems [16, 24, 28] and capability-based effect systems [5-7].
Row-based effect systems, as in the languages Koka [24, 41], Links [16], and Frank [28], follow
the traditional monadic reading of effects: effects are what computations do when they run. They
treat effect types as a row of effects and annotate each function arrow with an effect row. For
modularity, they implement parametric effect polymorphism via row polymorphism [23, 36]. For
example, a standard application function in System F¢ [40], a core calculus of Koka, has type:

Ve.(Int > 1) - Int -1

It is polymorphic in its effects ¢, which must agree with the effect performed by its first argument.

Capability-based effect systems, as in the language Effekt [6, 7] and an extension to Scala 3 [5],
adopt a contextual reading of effects: effects are capabilities provided by the context. Treating
effects as capabilities enables a notion of contextual effect polymorphism [7] which allows effect-
polymorphic reuse of functions without effect variables. For example, an uncurried application
function in System C [6], a core calculus of Effekt, has type:

(f:Int=11Int) =1

The argument f is a capability. It is a second-class function that cannot be returned as a value. It
can use any capabilities the context provides. We write = for second-class functions. For a curried

Authors’ Contact Information: Wenhao Tang, wenhao.tang@ed.ac.uk, The University of Edinburgh, UK; Sam Lindley,
sam.lindley@ed.ac.uk, The University of Edinburgh, UK.

This work is licensed under a Creative Commons Attribution 4.0 International License.

https://orcid.org/0009-0000-6589-3821
https://orcid.org/0000-0002-1360-4714
https://orcid.org/0009-0000-6589-3821
https://orcid.org/0000-0002-1360-4714
https://creativecommons.org/licenses/by/4.0
https://creativecommons.org/licenses/by/4.0

32:2 Wenhao Tang and Sam Lindley

application function, which requires returning a function, we must capture capabilities in types:
(f:Int = 1) = (Int > 1at {f})

Its result has type (Int = 1 at {f}). As well as specifying an argument and result types as usual,
this type also includes a capture set {f} which records that the returned function may use the
capability f bound by the argument type (f : Int = 1).

Though row-based and capability-based effect systems are both well-studied, their relationship
is not. In this paper, we aim to bridge this gap in the literature by encoding both styles of effect
systems into a uniform framework. Yoshioka et al. [43] propose a parameterised calculus which
can be instantiated to various row-based effect systems, but they point out that it is challenging
future work to extend their approach to capability-based effect systems. Row-based and capability-
based effect systems differ significantly in both theoretical foundations and interpretations of
effects. Moreover, their mechanisms for tracking effects are entangled with other features such as
functions. For instance, as we have seen above, a function arrow in System F€ is not only a standard
function type but also provides effect annotations. Similarly, a function arrow in System C may
bind capabilities. The entanglement of effect tracking with such features is the central challenge in
analysing the differences between such effect systems.

An alternative foundation for effect systems has recently emerged in the form of modal effect
types (MET) [38], a novel approach to effect systems based on multimodal type theory [14, 15, 21].
MET decouples effect tracking from standard type and term constructs via modalities. For instance,
an application function in MeT has a plain function type (Int — 1) — Int — 1. This type imposes
no restriction on how effects from the context may be used. To control the use of effects, we
can add modalities to the type. For example, the type [yield](Int — 1) — Int — 1 restricts the
argument function to use only the operation yield by wrapping it with the absolute modality [yield]
(modalities have higher precedence than function arrows); the type [|(Int — 1) — [[(Int — 1)
restricts both the argument and result functions to be pure.

Tang et al. [38] focus on the pragmatics of MET, especially how modalities enable concise
type signatures of higher-order functions without losing modularity. In this paper we exploit the
observation that the decoupling of effect tracking via modalities leads to a tangible increase in
flexibility and expressivity compared to typical effect systems whose effect tracking is entangled
with other features. Such decoupling allows us to encode a range of effect systems, including those
based on rows and capabilities, in a uniform framework.

We introduce MEeT(X), a System F-style core calculus with modal effect types parameterised by
an effect structure X. The effect structure is our main extension to MeT [38]. An effect structure,
inspired by prior work on abstracting row and effect types [17, 30, 43], defines the structure of effect
collections. MeT hardwires the underlying effect structure to scoped rows [23]. In contrast, MeT(X)
allows us to smoothly account for the different treatments of effect collections adopted by different
effect systems, such as sets [1, 6], simple rows [30], and scoped rows [23, 24, 28]. Parameterising
by the effect structure enables us to separate the bureaucracy of managing effect collections from
our main concern which is how to use modalities to encode different effect tracking mechanisms.

MET(X) has two further extensions to MeT. The first extension is modality-parameterised handlers.
This is a natural generalisation of effect handlers to be parameterised by a modality which is used
to wrap continuations. This extension is crucial for the encodings of System F€ and System C as
we will see in Section 2.5. The second extension is local labels, a minimal extension which allows
us to dynamically generate operation labels [11]. This extension is crucial for encoding named
handlers [4, 7, 44] (also called lexically-scoped handlers) as adopted in some languages, especially
those with capability-based effect systems like Effekt.

Rows and Capabilities as Modal Effects 32:3

As the main novelty of this paper, we encode, as macro translations [12], various effect systems
based on rows and capabilities into our uniform framework MeT(X). We prove that our encodings
preserve typing and operational semantics. Our encodings do not heavily alter the structure of
programs but mostly merely insert terms for manipulating modalities; our semantics preservation
theorems establish a strong correspondence between the behaviours of source calculi and their
translations. Our primary case studies are encodings of System F¢ [40], a core calculus of Koka with
a row-based effect system, and of System C [6], a core calculus of Effekt with a capability-based
effect system. By encoding effect systems into a uniform framework, we can directly reason about
the differences the effect tracking mechanisms of different effect systems (Sections 2.4 and 2.5.4).
Our encodings also offer practical insights for language designers (Section 6.3).

Beyond analysing differences between effect systems, MeT(X) opens up interesting future re-
search directions. First, MET(X) gives a uniform intermediate representation for different effect
systems which enables us to design type-directed optimisations without restricting ourselves to a
specific effect system. Second, MET(X) allows us to design a new effect system by directly giving its
encoding into MET(X) instead of starting from scratch. Type soundness and effect safety of MET(X)
guarantee the corresponding properties hold for the new effect system.

The main contributions of this paper are as follows.

e We give a high-level overview of MeT(X) and a high-level overview of how to encode row-
based and capability-based effect systems into MeT(X) which we use to compare row-based
and capability-based effect systems (Section 2).

o We formally define MeT(X) (Section 3) including our three extensions to MET: effect struc-
tures, modality-parameterised handlers, and local labels. We prove type soundness and effect
safety of MET(X) for any effect structure X satisfying certain natural validity conditions.

e We formally define the encoding of System F¢, a core calculus with a row-based effect
system a la Koka, into MET(R,,) with the theory R, for scoped rows (Section 4). We prove
the encoding preserves types and semantics.

o We formally define the encoding of System C, a core calculus with a capability-based effect
system a la Effekt, into MET(S) with the theory S for sets (Section 5). We prove the encoding
preserves types and semantics.

e We discuss encodings of further effect systems, practical insights for language design
provided by our encodings, as well as potential extensions to MeT(X) (Section 6).

Section 7 discusses related and future work. The full specifications, proofs, and appendices can be
found in the extended version of the paper [37].

2 Overview

In this section we give a high-level overview of the main ideas of the paper. We begin with a
brief introduction to modal effects [38] in MET(X) and examples of effect theories X. We briefly
describe the row-based effect system of System F€ [40] and the capability-based effect system of
System C [6] along with their encodings into MET(X). We use these encodings to directly compare
the different systems in a uniform framework. We specifically consider encodings of the different
kinds of effect handlers provided by the different systems. We also briefly discuss the results of
encoding other effect systems in MeT(X).

32:4 Wenhao Tang and Sam Lindley

2.1 Modal Effects and MeT(X)

MET(X) is a System F-style core calculus. Every well-typed term in System F is also well-typed in
MET(X). For example, we may define a higher-order application function as follows.

aPPMer(X) = A= XTI Fx - (Int > 1) - Int — 1
We use meta-level macros defined by = in red to refer to code snippets.

2.1.1 Effect Contexts. MET(X) adopts a contextual reading of effects. Effectful operations are
ascribed a type signature, either globally or locally. For our examples we begin by assuming global
operations yield : Int —» 1 and ask : 1 — Int. Typing judgements include an ambient effect context
which tracks the operations that may be performed. Consider the following function.

FgeNper(x) = AxI" doyieldx : Int > 1 @ yield

It has type Int — 1. When applied it performs the yield operation using the do syntax. The
judgement specifies the effect context with the syntax @ yield, which tracks the possibility of
performing yield. We can now apply appye.(x) t0 gerny,(y, and 42 as follows.

AL A f x) (Ax™".do yieldx) 42 : 1 @ vyield
There is a natural notion of subeffecting on effect contexts. The following judgement is also valid.
F AxI" . do yieldx : Int > 1 @ yield,ask

2.1.2 Absolute Modalities. Effect contexts specified by @ E belong to typing judgements instead
of types. As discussed in Section 1, MET(X) uses modalities to track effects in types. An absolute
modality [E] allows us to specify a new effect context E in types different from the ambient one.
For example, consider the following typing derivation.

ﬂlyiew F AxI"t.do yieldx : Int —> 1 @ yield

F gen’MET(X) = modyietd (Ax™"t.do yield x) : [yield](Int > 1) @ F

This term has type [yield](Int — 1). We highlight modalities in blue when they appear in types.
The syntax mod|yje1q4] introduces an absolute modality [yield] which specifies a singleton effect
context of yield and uses it to override the ambient effect context F. The typing judgement of the
premise uses the new effect context yield as its ambient effect context. The lock @y;c14] tracks the
switch of the effect context and controls the accessibility of variables on the left of it. Only variables
that are known not to use effects other than yield may be used. This is important to ensure effect
safety. For example, consider the following invalid judgement.

f:Int > 1 ¥ modpyieta] (AX™".fx) : [yield|(Int > 1) @ ask

This program is unsafe as f may invoke ask which we must not use under effect context yield
specified by the modality [yield]. MET(X) rejects this judgement as it relies on the following invalid
judgement for the inner function.

f:Int > La@jiew) ¥ MM fx s Int > 1 @ yield

This typing judgement is invalid as the lock @i 14] prevents the use of f. To make it valid, we can
annotate the binding of f with the modality [yield] as f :[yic1q] Int — 1. This annotation tracks
that the function f may only use the operation yield. Such annotated bindings are introduced by
modality elimination. For instance, we can eliminate the modality of gen’y, . y, and then apply it
via the let mod syntax as follows (where we elide the typing of the bound term).

fiyietq Int > 1+ f42 : 1 @ yield

b let mod[yictd) f = mod|yierq) (Ax™"t . do yield x) in f42 : 1 @ yield

Rows and Capabilities as Modal Effects 32:5

The term AxI"t.do yield x inside the modality [yield] is bound to f. The binding of f is annotated
with this absolute modality. Consequently, the use of f in f 42 requires the ambient effect context
to contain the operation yield. In general, whether a variable binding f :, A can be used after a
lock @, is controlled by a modality transformation relation which we will introduce in Section 3.3.

2.1.3 Relative Modalities. As well as being able to specify a fresh effect context from scratch with
an absolute modality, MeT(X) also has relative modalities (D) which allow us to extend the ambient
effect context with an extension D. For instance, consider the following derivation.

& ic) F Ax™" . do yield (do ask ()) : Int » 1 @ yield,ask
F mod(yjetq) (Ax™"t.do yield (do ask ())) : (yield)(Int —» 1) @ ask

The relative modality (yield) extends the ambient effect context ask with the operation yield.
Consequently, the inside function can use both operations. Relative modalities are especially useful
for giving composable types to effect handlers. We refer to Tang et al. [38] for further details. We
use relative modalities in the encoding of System C as we will see in Section 2.3.

2.1.4 Effect Structures. Improving on MET, we parameterise MET(X) by an effect structure X which
defines the well-formedness relations and equivalence relations for extensions and effect contexts
as well as a subeffecting relation E < F. In the remainder of the overview, we will use two effect
structures: S, which models effect collections as sets of operations, to encode capability sets in
System C, and Rscp, which models effect collections as scoped rows of operations, to encode effect
rows in System F€. Sets are unordered and allow only one occurrence of each label, whereas scoped
rows allow repeated labels and identify rows up to reordering of non-identical labels. Both theories
support effect variables. Theory S allows arbitrary numbers of effect variables while theory R,
only allows at most one effect variable in each row following row polymorphism [23, 36].

2.2 Rows as Modal Effects

Koka [25] has an effect system based on scoped rows [23]. System F€ [40] is a core calculus
underlying Koka. To encode System F€, we use the effect structure R, of scoped rows.
Function types in System F€ have the form A —F B, where E is an effect row that specifies the
effects that the function may use. Effect types in System F€ are entangled with function types. The
key idea of our encoding is to decouple the effect type E from the function arrow via an absolute
modality in MET(Rcp). Writing [-] for translations, we translate a function type as follows.

[A —* B = [[E]1([A] — [BI)

An effectful function in System F€ is decomposed into an absolute modality and a standard function
in MET(Rscp). For instance, consider the following first-order effectful function in System F€ which
invokes the operation yield from Section 2.1.

genge = AYUXINt do yield x @ Int —Yield 1

(Each A-abstraction in System F€ is annotated with an effect row.) The translation of gen,. is exactly
the function gen’y, . v, defined in Section 2.1.2. We repeat its definition here for easy reference.

[gene] = modicia) (Ax".do yield x) : [yield](Int — 1)

On the term level, we insert a modality introduction mod|y;e14) for the A-abstraction, corresponding
to the type-level modality [yield]. We colour mod in grey in the translations. The black parts
remain terms with valid syntax and provide intuitions on the translation. Remember that the
modality [yield] is a first-class type constructor and not part of the function type.

32:6 Wenhao Tang and Sam Lindley

As a more non-trivial example including both higher-order functions and function application,
consider the effect-polymorphic application function in System F€ from Section 1.

apppe = AeFfect AN Qe Int £ 0 Ve (Int —¢ 1) — Int —° 1

This function abstracts over an effect variable ¢ which stands for the effects performed by the
argument f. Both f and the inner A-abstraction are annotated with ¢ as f is invoked so the effects
must match up. The outer A-abstraction is pure as partial application is pure. The encoding of app;.
in MET(Rp) is as follows.

lappec] = Aeffect.mod; | (A= imod |, (AxItlet mod (.| f/ = fin f" x))
o VeEffeet [1([¢](Int — 1) — [¢](Int — 1))

Each function arrow is associated with an absolute modality reflecting the effects performed by
that function. For the pure function arrow in the middle, we use the empty absolute modality [].
The type abstraction Ae and quantifier Ve are preserved. We omit kinds when obvious. In the term,
in addition to modality introduction, we also insert a modality elimination for f before applying it
to x. The use of f” requires that the effect variable ¢ is present in the effect context.

Our term translation from System F¢ to MET(R,p) explicitly decouples the effect tracking
mechanism of System F¢ from function abstraction and application. This reveals the essence of
effect tracking in System F¢. Each A-abstraction Afx.M in System F€ is encoded in MET(Rscp)
by inserting a modality introduction mod|[g]). This demonstrates that a function in System F¢
carries its effects. Each function application V W in System F€ is encoded by inserting a modality
elimination let mod g} f = [V] in f [W] for function V of type A —¥ B. This demonstrates
that when a function is invoked in System F¢, we need to provide all effects it may use, as the
elimination of [[E]] and use of f together require [E] to be present in the effect context.

We give the full encoding of System F€ into MET(R,,) in Section 4.

2.3 Capabilities as Modal Effects

Effekt [8] has an effect system based on capabilities. System C [6] is a core calculus underlying
Effekt. Since System C tracks capabilities as sets, we use the effect structure S of sets to encode it.

Functions in System C are called blocks. Blocks are second-class in that they must be fully applied
and cannot be returned. Capabilities are introduced as block variables. Unlike row-based effect
systems which have a separate notion of operation labels, System C interprets effects as capabilities
provided by the context. A capability can only be used if it is in scope.

2.3.1 First-Order Blocks. Let us start with a simple example. Supposing we have a capability
v : Int = 1 (for yielding integers) in the context, we can construct the following block.

yFInt=11+F gen. = {(x:Int) = y(x)} : Int=1 | {y}

The star * on the binding of y indicates that this block variable is a capability. Braces delimit blocks.
Arguments are wrapped in parentheses. Double arrows emphasise that blocks are second-class.
The block applies the capability y from the context to the argument x. The typing judgement tracks
a capability set {y}, which contains all capabilities that the block may use. The block arrow itself
has no capability annotation. The above block is simply encoded as a A-abstraction in MeT(S).!

y* i Effect, y: [y](Int > 1), 95, Int > 1 F [gens] = AxM™yx : Int>1 @ »°

The most interesting aspect of the encoding is how we encode the capability y : Int = 1 in the
context. A capability y in System C can appear as both a type and a term. We introduce an effect

1f we strictly follow the encoding of System C in Section 5.2, there would be an extra identity modality for the translated
function. This modality is crucial for keeping the encoding systematic. We omit such identity modalities in the overview.

Rows and Capabilities as Modal Effects 32:7

variable y* of kind Effect to represent it at the type level. We omit kinds in the context when obvious.
We encode the capability y itself as a term variable of type [y*](Int — 1), where the absolute
modality makes sure that whenever y is invoked the effect variable y* must be present in the
effect context. To avoid repeatedly writing modality eliminations, the modality of y is immediately
eliminated and bound to y after y is introduced. The translation of the block body directly applies
¥ to x. The effect variable y* must be in the effect context specified by @ y* because j is used.

2.3.2 Boxes. In System C we can turn a second-class block into a first-class value by boxing it.
yFInt=>1+F gen' = box {(x:Int) = y(x)} : Int = lat{y}

This typing judgement has no capability set as it is for values which are always pure in System C.
The value has type Int = 1 at {y}, which means it is a boxed block of type Int = 1 with capability
set {y}. The block may only use the capability y. We can unbox a boxed block V via unbox V which
gives back a second-class block. We simply encode boxing and unboxing as modality introduction
and elimination in MeT(S). For instance, we encode gen’ - as follows.

Y.y [V (Int > 1), 9 Int > 1k [gen’] = mod),) (A9 x) : [y [(Int > 1) @ -

The capability set annotation at {y} in the type is encoded as the absolute modality [y*]. The
encoding shows the connection between boxes of System C and modalities, supporting the claim
of Brachthiuser et al. [6] that boxes of System C are inspired by modal connectives [9].

2.3.3 Higher-Order Blocks. The situation become more involved when we consider higher-order
blocks that take other blocks as arguments. This is because System C entangles the introduction
and tracking of capabilities with blocks, especially their construction and application.

Let us consider the uncurried and curried application functions (blocks) introduced in Section 1.

appe = {(x:Int, f:Int = 1) = f(x)} S (IntfrInt=1) =1
app’ - = {(f : Int = 1) = box {(x : Int) = f(x)}} : (f:Int = 1) = (Int = 1 at {f})

These are block constructions. The first block app binds the integer parameter x first because
System C requires value parameters like x to appear before blocks parameters like f in a parameter
list. In addition to behaving like standard A-abstractions, block constructions also play an important
role in capability tracking. Specifically:

(1) Both app and app’~ bind a capability f : Int = 1 for their block bodies. This capability f
can also be used in the type as shown in the type of app’ .

(2) For soundness, System C assumes that this new capability f is called directly at least once in
the block body even if f may actually not be used. (The capability f is indeed called directly
in app but not so in app, as being boxed.) Consequently, the capability f is always added
to the capability set of the block body tracked by the typing judgement.

(3) In addition to the new capability f, both app- and app’ allow any capability from the
context to be called as well.

Our encoding of block constructions in MET(S) takes account of these three constraints and exposes
them explicitly via modalities. For instance, app. is encoded as follows.

lappe] = Af*.mod oy Ax™EAF1ISD) fet mod) f = fin f x)
VP (It — (£ (Int — 1) — 1)
For (1), in order to allow the term variable f to appear in types, we introduce an effect variable f*
and wrap the type Int — 1 of the argument f with an absolute modality [f*]. The effect variable
7 represents the term variable f at the level of types. Additionally, we immediately eliminate the
modality of f to f . As a result, in the context of the application f x we have three bindings of f*,

32:8 Wenhao Tang and Sam Lindley

f,and f , consistent with the translation of capability y as shown in Section 2.3.1. For (2) and (3),
we use a relative modality (f*) to wrap the whole function type. The relative modality adds the
effect variable f* to the ambient effect context for the function to use, in accordance with (2). The
relative modality also still allows the function to use effects from the ambient effect context as we
have seen in Section 2.1.3, in accordance with (3).

The translation of app’ - is similar.

lapp'c] = Af*.mod s (Af[f“](lntal).let mod; If:f in mod /| (Ax.f X))
VO 1(Ent = 1) = [f7](Int — 1))

In general, the translation of block types from System C to MET(S) is as follows, where we let A
and B range over value types and let T range over block types.

[(Af:T) = B] = Vf*(7)(IA] - [/'][T] - [BD)
A block type is decomposed into a standard function type with extra modalities and type quantifiers,
which makes explicit exactly how System C introduces and tracks capabilities.

2.3.4 Block Calls. Blocks must be fully applied. Assuming we have a capability y : Int = 1 in the
context, we can apply the blocks app and app’ - to the block gen, as follows.

yFInt =1 F app-(gens,42) : 1 [{y}
yFInt=1+F app’(gens) : Int=1lat{y} | {y}

(As blocks must be fully applied, we must additionally pass an integer to app — in this case
42.) These are block calls. Similar to block constructions, block calls in System C not only pass
arguments to a block but also play an important role in capability tracking. Specifically:

(1) Recall that both app and app’ - bind a capability f. Consequently, when calling them with
geng, System C substitutes f with the capability set {y} of gen, in types. This is reflected
by at {y} in the type of calling app’ - (before substitution it was at {f}).

(2) Recall that System C assumes the capability f bound by app and app’ - is called directly.
Consequently, the capability set of the whole block call must be extended with the capability
set {y} of the argument gen,.. This is reflected by the fact that both typing judgements track
the capability sets {y} even though the application of app’ - does not call y directly.

Our encoding of block calls in MET(S) takes account of these two constraints and exposes them
explicitly via modalities. For instance, our example application of app is encoded as follows.

Y5y [](ant = 1),y Int > 1k
let mod,) f = [appc] y* in f 42 (mod | [genc]) : 1 @

For (1), recall that in the translation [app] we bind an effect variable f* to represent the capability
f and wrap the argument type with an absolute modality [f*]. Thus for the application of [app.].
we instantiate the effect variable f* with y* and box the argument [gen] with the absolute modality
[»*]. For (2), the elimination of the relative modality (y*) of [app.] ¥* and the use of f ensure that
y* must be present in the effect context.

The translation of the call of app’ - is similar.

Y5y [V I(Int = 1),y Int > 1+
let mod,) f = [app’c] y" in f (mod, [genc]) = [y'](Int = 1) @ »°
As with the encoding of Section 2.2, the encoding of System C in MeT(S) helps elucidate exactly
how the capability tracking of System C is entangled with constructs like block constructions and
calls. Modality introduction and elimination reveal the hidden mechanisms.
We give the full encoding of System C into MeT(S) in Section 5.

Rows and Capabilities as Modal Effects 32:9

2.4 Comparing Rows and Capabilities

As a uniform framework, MET(X) allows us to directly compare how effect tracking differs in
different effect systems without dealing with the subtleties in their typing and reduction rules.

For instance, let us compare the encoding of function types and polymorphic types in System F¢
with the encoding of block types and box types in System C.

System F€ to MET(Rscp) : [A —F B] = [[E]]([A] — [B])
[Ve.A] = Ve.[A]
System Cto MET(S): [(A f:T) = B] =Vf*(f)([A] = [f1[T] — [B])
[T at C = [[C]][T]
From the encodings we can immediately observe two key differences of System F¢ and System C.

(1) The encoding of function types in System F€ is wrapped with an absolute modality, whereas
the encoding of a block type in System C is wrapped with a relative modality. The encoding
of box types in System C is wrapped with an absolute modality. The different modalities
reveal a fundamental difference between the meanings of functions in System F€ and blocks in
System C: functions in System F€ can only use those effects specified in their types, whereas
blocks in System C can use arbitrary effects from the context unless they are boxed.

(2) The encoding of block types in System C binds a list of effect variables and wraps each
block argument type with an absolute modality of the corresponding effect variable, whereas
the encoding of a function type in System F¢ is much less involved. Only the encoding of
polymorphic types in System F¢ binds effect variables. The difference in the treatment of
argument types reveals that capabilities in System C act as an implicit form of parametric
polymorphism, abstracting the capabilities used by each block variable. This explains why
capability-based effect systems do not require explicit effect variables in many cases where
row-based effect systems do.

2.5 Encoding Effect Handlers

We have seen how effectful functions in System F¢ and System C are encoded in MeT(X). These are
the most important parts of our encodings, as most effect systems track effects by giving different
intepretations to functions. Though all effect systems discussed in this paper support effect handlers,
the same ideas apply equally to traditional effect systems for languages with only built-in effects.
Nonetheless, the encodings of effect handlers in System F€ and System C are interesting and reveal
fundamental differences between the typing and semantics of effect handlers in these two calculi.
In this section, we first briefly review what effect handlers are and then show how effect handlers
in System F€ and System C are encoded.

2.5.1 Effect Handlers in MeT(X). Effect handlers allow us to customise how to handle effectful
operations. For instance, we can write a handler to handle the yield operation defined in Section 2.1
by summing up all yielded integers as follows.

sumpmer(x) = handle (do yield 42;do yield 37;0) with {yieldpr— p+r ()}

The computation do yield 42;do yield 37;0 is handled by the handler {yield p r — p+r ()}.
The handler consists of one operation clause for the operation yield. In this operation clause, the
variable p of type Int is bound to the parameter of the yield operation, and the variable r of type
1 — Intis bound to its recursively-handled continuation. (This kind of recursive handling is known
as deep handlers [20] in the literature.) For instance, when the first yield operation is handled, p
is 42 and r is the continuation Ay!.handle (do yield 37;0) with {yield p r — p +r ()}. The
handler clause adds the yielded integer p to the result of the continuation r, thus returning the

32:10 Wenhao Tang and Sam Lindley

sum of all handled operations. The above program reduces to 79. Effect handlers also have a return
clause which we omit here, but describe in Section 3.

2.5.2 Encoding Effect Handlers in System F°. System F€ does not use the handle with syntax.
Instead, a handler in System F€ is defined as a handler value, which is a function that takes an
argument to handle. Consider the following polymorphic handler for the yield operation.

sumpe = Aehandler {yieldpri p+r ()} : Ve.(1 —Y¥€W# Int) —¢ Int

The term sumg< is polymorphic over other effects ¢ that it does not handle. The handler syntax
defines a handler, which is a function that takes an argument of type 1 —Y1€'4¢ 1nt, calls this
argument with unit and handles the yield operation. The continuation r has type 1 —¢ Int as it
may use effects abstracted by ¢. For instance, we can apply sumpe as follows which reduces to 79.

sumpe E (Ax.do yield 42;do yield 37;0)

We can easily encode sumpe in MET(Ryp) as a polymorphic function whose body uses the
handle with syntax to handle the argument. The main difficulty is that for the handler clause, the
continuation r should have type [1 —¢ Int] = [¢](1 — Int) following the translation of function
types in Section 2.2. However, the typing rule of handlers in Tang et al. [38] only allows us to give
a function type to r with no modality. To solve this problem, we introduce modality-parameterised
handlers. In MET(X), the handler syntax is annotated with a modality y as handle’ M with H.
The continuation r in the handler clause of H now has type /(A — B) for some types A and B.
With the modality-parameterised handler, we can translate sumge as follows, omitting the details
of the translation of the handler clause, which we name H’.

[sume] = Aemod),| (Af1V1e19<1A=100) pandlel®! (let mod|,i1s,) f' = f in £’ () with H')
: Ve le|([yield, e](1 — Int) — Int)

We eliminate the modality of the argument f before applying and handling it. The type translation
follows the translation given in Section 2.2. We give full details of our modality-parameterised
handlers in Section 3.5 and formally define the translation of handlers in Section 4.2.

2.5.3 Encoding Effect Handlers in System C. System C adopts named handlers. Instead of using
operation labels to identify which operation we want to invoke and handle, in System C each
handler binds a fresh capability in the scope of the handler and handles the use of this capability.
For instance, we can define a named handler and use it to handle a computation as follows.

Fosume = try {ylntﬁ1 = y(42); y(37); 0t with {p r » p+r(())} : Int | C

Handlers in System C use the try with syntax. This handler introduces a capability y of type
Int = 1 in the scope between try and with. We use the capability y to yield integers 42 and 37.
These two uses of y are handled by the handler, whose operation clause is similar to what we have
seen before, except it uses a capability in place of an operation label.

The semantics of named handlers in System C differs from that of the standard effect handlers
of Plotkin and Pretnar [34]. Named handlers have a generative semantics [4] which dynamically
generates a fresh runtime label for each capability introduced by a handler. Dynamic generation
guarantees the uniqueness of runtime labels, which ensures that all uses of a capability must be
handled by the handler that introduces the capability.

To encode the named handlers of System C into MET(X), we need to resolve this semantic gap.
Adding named handlers to MET(X) would work but is rather heavyweight. We observe that the
essence of named handlers is actually a way to dynamically generate labels. We introduce local labels
to MeT(X), which decouple dynamic generation of labels from named handlers. This extension is
inspired by the local effects of Biernacki et al. [3], dynamic labels of de Vilhena and Pottier [11], and

Rows and Capabilities as Modal Effects 32:11

fresh labels of the Links language [19]. The syntax local £ : A — B in M introduces a local label in
the scope of M. The type system ensures the local label ¢ cannot escape from M. The semantics
generates a fresh label to replace the local label £. We provide the details in Section 3. With local
labels, we can encode sumc as follows, omitting the handler H’, which contains an operation clause
for ¢, translated from the handler of sumc.

F [sumc] = local £, : Int — 1in handle![€]]
(Ay! 61N fet mod ;| § =y in § 42; 7 37;0) (mod, | (AxI".do ¢, x)) with H' : Int @ [C]

We introduce a local label ¢, for the handler. We use the term mod |, | (Ax™"*.do ¢, x) which
invokes the operation ¢, to simulate the capability introduced by the named handler in sumc. The
translation of the handled computation binds this function to y, eliminates the modality of y to j,
and uses ¥ to yield integers 42 and 37. As in the encoding of effect handlers in System F¢, we also
use our modality-parameterised handlers here and annotate handle with the modality [[C]].

Our translation [sumc] is simplified for clarity; it is actually the result of reducing the full
translation of sumc by a few steps. We give the full translation in Section 5.2.

2.5.4 Comparing Encodings of Effect Handlers. Our encodings of System F€ and System C effect
handlers elucidate how effect handlers differ in these two effect systems.

(1) The System C encoding requires local labels, whereas the System F¢ encoding does not, which
reveals the syntactic difference that capabilities in System C have scopes whereas operation
labels in System F€ do not, and the semantic difference that System C generates fresh runtime
labels for effect handlers, whereas System F¢ does not.

(2) The System F¢ encoding performs operations directly, whereas the System C encoding wraps
operation invocations into a function (such as the term mod;, ;(Ax™"*.do ¢, x) in [sumc])
and passes this function to the handled computation. This difference shows how in a capability-
based effect system such as System C operations are not directly invoked via their labels but
are instead invoked and passed around as blocks explicitly at the term level.

2.6 More Encodings

The encodings of System F¢ and System C illustrate the core idea of using modalities to encode
and compare effect systems with different foundations in MeT(X). However, MET(X) can be used
for much more than encoding these two effect systems. In Section 6, we will discuss two more
representative encodings of effect systems into MET(X), including

e System E [7], an early core calculus for Effekt based on capabilities, and
e System F€*" [41], a core calculus formalising scope-safe named handlers of Koka.

These results further demonstrate the expressiveness of MeT(X) as a general framework to encode,
compare, and analyse effect systems. We further discuss practical language design insights arising
from our encodings in Section 6.3.

3 The Core Calculus MET(X)

MET(X) is a System F-style call-by-value core calculus with modal effect types parameterised by an
effect structure X. In addition to the effect structure, MET(X) also extends MET with local labels
and modality-parameterised handlers. We aim to be self-contained about modal effect types in this
paper and refer to Tang et al. [38] for a more complete introduction.

32:12 Wenhao Tang and Sam Lindley

3.1 Syntax

The syntax of MeT(X) is as follows. We highlight syntax relevant to modal effect types and our
extensions of local labels and modality-parameterised handlers in grey.

Types AB:=1|A—B| jA Terms M,N:u=()|x|AxAM|MN

| a|VaK.A | AaK.V|MA| mod,V
Modalities wv== [E] | (D) | lety mod, x=VinM
Extensions Du=-|¢D|eD | do¢ M| local £: A —» Bin M
Effect Contexts E,F = | £,E| ¢, E | handle® M with H
Kinds K == Abs | Any | Effect Values V,W = () | x| AxAM | AaK.V | mod, V
Contexts Fu=-|La:K|T, &, | VAllet, mod, x=VinW

| I,x:y, A|T,{:A—+B Handlers H == {return x — N, pr +— M}
Label Contexts X u=-|3,f:A— B

We have two kinds Abs and Any for value types and one kind Effect for extensions and effect
contexts. By convention, we usually write « for type variables of values and ¢ for effect variables.
We omit kinds when obvious. We let A range over both value types A and effect contexts E, and let
a range over type variables for them in type abstraction AaX.V and type application M A.

Unlike Tang et al. [38], we omit masking, as it is not used by our encodings. We discuss future
extensions to MET(X), including masking, in Section 6.4.

For simplicity, we assume that each handler only handles one operation, and fix a global context
3 which associates each global operation label with its type. An entry ¢ : A — B indicates that
the operation ¢ takes an argument of type A and returns a value of type B. We also support local
labels which are introduced by local ¢ : A — B in M and maintained in the context I'. We do not
distinguish between local and global labels syntactically.

Values include type application and modality elimination whose subterms are restricted to be
values, following the notion of complex values in call-by-push-value [26]. Such complex values are
convenient as we adopt a value restriction [39] for type abstraction and modality introduction.

3.2 Effect Structures

An effect structure defines the structure of effect collections, that is, extensions and effect contexts in
MEeT(X). Extensions D and effect contexts E are both syntactically defined as lists of labels and effect
variables. We overload commas for list concatenation, e.g., D, E and E, F are both list concatenation.
As usual, list concatenation is associative but not commutative. The kinding, equivalence, and
subtyping (or subeffecting) relations for them are determined by an effect structure X.

Definition 3.1 (Effect structure). An effect structure X is a tuple (:, =) of two relations.
o I' + D : Effect is a kinding relation which defines well-formed extensions and is preserved

by concatenation D, D’. That is, if T + D : Effect and I + D’ : Effect, then T + D, D’ : Effect.
e '+ D = D’ is an equivalence relation for well-formed extensions.

Our definition of an effect structure X is minimal and only includes the definitions of kinding and
equivalence relations for extensions D. We can naturally derive the kinding relation T + E : Effect,
equivalence relation I' - E = E’, and subeffecting relation T + E < E’ for effect contexts as follows.

I > ¢: Effect T+ D : Effect T+ E : Effect
I+ -: Effect T+ ¢: Effect T+ D,E : Effect
I'+Dy =D, T'+E,=E, FFE,E’EF

r'r.=- I'te=e I'+ D,E; =D, E, IT'+tELF

Rows and Capabilities as Modal Effects 32:13

The kinding and equivalence relations for effect contexts are defined inductively. The subeffecting
relation is more interesting. We have E < F if there exists an effect context E’ such that E, E’ is
well-formed and E, E’ = F. It is easy to verify that this subeffecting relation is a preorder. We often
write : y, <x, and =x to denote which specific effect structure we refer to. We sometimes omit the
context I' for the equivalence and subeffecting for brevity.

We give three examples of effect structures, among which R, and S are used for the encoding
of System F¢ and System C in Sections 4.2 and 5.2, respectively.

Definition 3.2 (Simple Rows). Rsimp = (:Rymp> =Ramp» defines effect collections as simple rows [30]
of operation labels. Well-formed extensions consist of distinct labels without any effect variable.
D = D’ if D is identical to D’ modulo reordering of labels.

Definition 3.3 (Scoped Rows). Rscp = (iR, =R,,,) defines effect collections as scoped rows [23] of
operation labels. Well-formed extensions comprise potentially duplicated labels without any effect
variable. D = D’ if D is identical to D’ modulo reordering of distinct labels.

Definition 3.4 (Sets). S = (:s,=s) defines effect collections as sets. Well-formed extensions are
sets of labels and effect variables. The equivalence relation is set equivalence.

Full formal definitions of these effect structures are given in ??. The effect structure Ry, cor-
responds to the treatment of effect collections as scoped rows used in MeT, modulo the fact that
MET has presence types for labels in effect contexts, whereas we choose not to for simplicity. We
discuss extending MeT(X) with presence types and richer effect kinds in Section 6.4.

Following Yoshioka et al. [43], an effect structure that intuitively characterises the notion of a
collection of effects should satisfy the following validity conditions.

Definition 3.5 (Validity Conditions). Validity conditions for an effect structure X are
(1) if E<x - thenE = -, and
(2) ift <y ¢ ,Eand?{ # ¢’ thent <x E.

The validity conditions together ensure that if a label ¢ is a subtype of an effect context E, then it
must syntactically appear in the effect context E. The first condition prevents us from claiming
that some label is contained in the empty effect context. The second condition prevents us from
identifying two syntactically different label as the same one. All effect structures given above
satisfy the validity conditions. Our type soundness and effect safety theorems in Section 3.7 are
parameterised by any effect structure satisfying the validity conditions.

3.3 Modalities
Modalities manipulate effect contexts as follows.
[E](F) = E (D)(F) = D,F
The absolute modality [E] completely replaces the effect context F with E. The extension modality

(D) extends the effect context F with D. Following MEeT [38], we write up as a meta-level notation
for the pair of modality p and effect context F where F is the effect context that ;s manipulates.

Modality Composition. We define the composition of modalities as follows.
po[E] = [E] [E] o (D) = [D, E] (D1) © (Dy) = (D2, D1)

Composition is from left to right, for consistency with MET. First, an absolute modality fully
determines the new effect context E no matter what p does before. Second, setting the effect context
to E followed by extending E with D is equivalent to directly setting the effect context to D, E.
Third, relative modalities can be composed into one by combining the extensions. Composition is

32:14 Wenhao Tang and Sam Lindley

well-defined as we have (u o v)(E) = v(u(E)). We also have associativity (o v) o & =po (vo¢)
and identity () o y = p o () = p. All of these properties are independent of the effect structure X.

Modality Transformation. We define a modality transformation judgement, which determines
the coercion of modalities, controlling the accessibility of variables as mentioned in Section 2.1.2
where we disallow the usage of the variable f : Int — 1. Given a variable binding f :,. A (which
means f is introduced by eliminating the modality y of some value of type /A at effect context F),
we can access it after a lock @, if the modality transformation relation T + g = v @ F holds. The
modality transformation judgement is defined as follows.

T'+E< pu(F) T'+D1,F <Dy FforallEF

MT-ABs ——MMMm™™— MT-EXTEND
T+H[E]=>p@F I'+(D1) = (D3) @FE

Both rules make sure that we do not lose any effects after transformation. Rule MT-ABs allows
us to transform an absolute modality [E] to any other modality p as long as E < p(F). Rule
MT-EXTEND allows us to transform an extension modality (D) to another extension modality (D;)
as long as for any effect context F larger than E, we have Dy, F < D,, F. We need to quantify over all
effect contexts F which are larger than the ambient effect context E because the new effect context
that a relative modality gives us depends on the ambient effect context. For instance, consider the
following judgement which coerces the modality (D) of V to (D,).

I'+let mod(p,y x =V in mod(p,) x : (D;)(Int — Int) @E

In its derivation tree we need the transformation relation (D;) = (D;) @ E. To preserve the
judgement after upcasting E to a larger F, the transformation requires Dy, F < Dy, F for any E < F.

Our MT-EXTEND rule is suitable for any effect structure, while the corresponding rule MT-UpcAsT
in Tang et al. [38] is specific to the treatment of effect collections as scoped rows in MEeT. Given a
specific effect structure, we can usually find an easier-to-compute representation of MT-EXTEND
without universal quantification (as is the case for the MT-UpcaAsT rule in MEeT).

3.4 Kinds and Contexts

The kinding relations for extensions and effect contexts are provided by the effect structure X in
Section 3.2. For value types, we have two kinds where Abs is a subkind of Any. A type has kind Abs
if all function types appearing as syntactic subterms of the type are wrapped in absolute modalities.
For example, (1 — 1) — 1 does not have kind Abs whereas [|((1 — 1) — 1) does. Intuitively,
values whose types have kind Abs do not depend on the ambient effect context. For any operation
¢ : A — B, types A and B should have kind Abs to avoid effect leakage following Tang et al. [38].
The kinding and type equivalence rules of MET(X) are given in ??.

Contexts are ordered. We write I' (@ E when context I' is well-formed at effect context E, that is,
the types of the variables are well-kinded, and the variables and locks are compatible with E. For
instance, the following context is well-formed at effect context E.

X g Al,y g Az, n[EJ,., Z iy A3,W ZA4 @)E

Let us read from right to left. Variable w is at effect context E (it is technically tagged with an
identity modality () which is omitted). Variable z is tagged with modality g, which means it is
not at effect context E but actually at effect context £(E). Lock @z, changes the effect context to
E from F. Variables y and x are at effect contexts v(F) and p(F), respectively. Each modality in the
context carries an index of the effect context it manipulates, making switching of effect contexts
explicit. We frequently omit the index when it is clear what it must be. Formal definitions of kinding
and context well-formedness rules are in ??. We define locks(—) to compose all the modalities on

Rows and Capabilities as Modal Effects 32:15

‘FF(H,A)=>V@F‘ T+A:Abs Trp=>v@F
I'r (p,A) =>v@F Tr(pA) =>v@F
TFM:AQ@E
T-LETMOD
T-VAR T-Mobp L&, +V:uA@v(F)
T+ (g, A) = locks(T’) @ F I8, +V:A@uF) L,% {(you)y ArM:B@F
L,x:p, AT Fx:A@E T'+mod,V:yA@F Tt+let,mod, x=VinM:B@F
T-Arp T-TArp
T-ABs TrM:A—B@FE TTABs TrM:YaKAGE
I'x:A+rM:B@E 't N:A@E Ila:K+V:A@E T'+B:K
TFAx*M:A>BGE TFMN:B@EF T+AKV:VaKA@E T+MB:A[B/a] @F
T-Do T-LocALEFFECT
T-Unit »I5¢:A»B TrN:A@CE [,¢:A>»BrM:A @F
I'r():1@E 'tdo¢t!N:B@tlE T'tlocal f:A—»BinM:A" @E

T-HANDLE
u(F)=E Trp=>{)@F Trpu=pop@F I8, 8, rM:A@tE
>I's¢:A - B I‘,n#r,x: (Lo (£))Ar N:B@E I“,nyp,p :A',r:py(BP > B)FN' :B@E

T + handle* M with {return x > N,£pr+— N'}:B@F

Fig. 1. Typing rules and auxiliary rules of MET(X).

the locks in a context.
locks(+) = () locks(T, &@,,) = locks(T) o p locks(T, x ., A) = locks(T')
We identify contexts up to the following two equations.

r.&, '’ @E=TT" @F r.a,8, I @E=T8,.,.' @F

ips

3.5 Typing

Figure 1 gives the typing rules for MET(X). As before, we highlight rules relevant to modal effect
types and our extensions in grey. The typing judgement T’ v M : A @ E means that the term M has
type A under context I' and effect context E with well-formedness condition I' @ E.

Modality Introduction and Elimination. Rule T-Mob introduces a modality y to the conclusion,
puts a lock into the context of the premise, and changes the effect context. Rule T-LETMOD eliminates
a modality y and moves it to the variable binding. We have seen examples that rely on these rules
in Section 2.1. There is another modality v in T-LETMoD which is needed for technical reasons
to support sequential elimination. For instance, given a variable x : viA with two modalities, to
eliminate both v and y, we can first eliminate v to y :, /A and then to z :,., A as follows.

let mod, y = x in let, mod, z=y in M

We restrict mod, and let, mod,, to values to avoid effect leakage, as in MEeT [29, 38]. Otherwise,
for example, if we were to allow a computation mod|yie1q] (do yield 42), this term would be
well-typed in the empty effect context but get stuck as yield is not handled (note that we do not
want mod to suspend computations as it could be confusing to programmers).

32:16 Wenhao Tang and Sam Lindley

Accessing Variables. Locks control the accessibility of variables as we have shown in Section 2.1.
Rule T-VAR uses the auxiliary judgement I' + (p, A) = locks(I”) @ F (also defined in Figure 1)
to check whether we can access a variable x :,. A given all locks in I''. When A has kind Abs,
we can always use x as it does not depend on the effect context. Otherwise we need to make
sure the coercion from p to locks(I”) is safe by checking the modality transformation relation
I+ p = locks(I”) @ F where locks(I'") composes the modalities on locks in I''. We have seen an
example in Section 2.1.2 that the variable f : Int — 1 cannot be used while f :yic14) Int — 1 can.
As another example, x 1,y 1 — 1, @[, F x : 1 — 1 @ ¢’ is ill-typed since we cannot transform the
modality (¢) to [¢']. It would be well-typed if x had type Int.

Local Labels. Rule T-LocaLEFFECT binds a fresh local label ¢ with type signature A — B (we
adopt the Barendregt convention for local labels.) Well-formedness of type A" and effect context E
under I' ensures that £ cannot appear in A’ or E. Rule T-Do may use any label from ¥ and I'. The
operational semantics (Section 3.6) generates runtime labels to substitute local labels.

Modality-Parameterised Handlers. Rule T-HANDLE defines a handler and uses it to handle a
computation M. Let us first ignore all occurrences of the modality . A handler of operation ¢
extends the effect context with ¢ as indicated by the lock @), in the typing judgement of M. The
return value of M is bound to the variable x in the return clause return x — N. The type of x also
has the modality (¢) since x may use the operation ¢, e.g., when M returns a function Ax.do ¢ x.

We generalise the handlers of Tang et al. [38] to be parameterised by a modality y. The modality
1 transforms the effect context F to pu(F) = E for the whole term as witnessed by the addition of
the lock @, to the context of each premise. Since both the handled computation and the handler
clauses are well-typed under the lock @, , we can wrap the continuation r, which captures the
handled computation and the handler, into the modality p. The return value x is also wrapped in
the modality y as it is returned from M whose context contains the lock @,,,.. This is in contrast to
the handler rule of Tang et al. [38], as shown below, which just gives r the function type B — B.

>ITs¢:A » B T,ﬂ(l;)HI-M:A@[,E ILx:{({)A+rN:B@E F,p:A',r:B'—>BI—N/:B((DE
T + handle M with {return x — N, pr+— N'}:B@E

To recover the original handler construct of Tang et al. [38], we just need to instantiate the modality
1 to the identity modality () as shown by the following syntactic sugar.

handle M with {return x — N, pr — N’}
= handle" M with {return x — N, p r — let mod, r =rin N’}

Having a modality p for the continuation r allows us to have more fine-grained control over
effect tracking for the continuation. As discussed in Section 2.5, the extra expressiveness provided
by this rule is especially useful for a unified framework to encode other effect systems with support
for effect handlers, as different encodings typically require translating a function type into a type
with some modalities. We give an example of an effect handler annotated with the empty absolute
modality [] in MET(X) based on the handler sumyg(x) in Section 2.5.1.

handle!! (do yield 42;do yield 37;0) with {return x — let mod[yjec1q] X’ = x in x’,
yieldpri—letmodr' =rinp+7r ()}

As a result of the annotation [], the continuation r has type [](1 — Int) instead of 1 — Int. In the
return clause we eliminate the modality [] o (yield) = [yield] of x. In contrast, the omitted return
clause of sumper(x) is return x — let modyie1q) X’ = x in x’.

The new handler rule requires the modality p to have a comonadic structure as specified by
the conditionsT + = () @ Fand T + p = po u @ F. These conditions are important because

Rows and Capabilities as Modal Effects 32:17

Value normal forms U ==x | Ax4.M | AaX.V | mod, U
Evaluation Contexts Eu=[]|EN|UE|E A|mod, & | lety mod, x =& in M
| do ¢ & | handle & with H

E-App (AxA.M) U ~ M[U/x]
E-TApp (AaK U) A~ U[A/a]
E-LeTmoD let, mod;, x = mod, U in M ~> M[U/x]
E-GEN local £:A—»BinM|Q~ M[£'/t] | Q,¢':A—» B where ¢’ freshin Q and X
E-RET handle/ U with H ~ N[(mod sy U)/x],

where H = {return x — N,f pr+— N’}
E-Op handle” E[do ¢ U] with H ~> N[U/p, (mod, (Ay.handle &E[y] with H))/r]

where £ ¢ bl(8) and H> (¢ p r — N)

E-LIFT E[M] ~ E[N] if M~ N

Fig. 2. Operational semantics of MET(X).

semantically a handler for operation £ may not be used (when ¢ is not invoked) or be used multiple
times (when ¢ is invoked multiple times). Intuitively, each use of the handler consumes one modality
4. The condition g = () @ F makes sure that when the handler is not used, we can transform
away the modality p at effect context F. The condition g = p1 o y @ F makes sure that when the
handler is used multiple times, we can duplicate the modality i each time the handlers is used.
For example, the identity modality () trivially satisfies the comonadic structure, and the absolute
modality [E] satisfies the comonadic structure at F with E < F.

3.6 Operational Semantics

We adopt the generative semantics of Biernacki et al. [4] for local labels. Each local label ¢ introduced
by local £ : A — B in M is replaced by a fresh label generated at runtime. We manage these
labels in a context defined as Q ::= - | Q,¢ : A — B. We do not syntactically distinguish runtime
generated labels from static labels; runtime labels are tracked in Q. We define value normal forms
U which cannot reduce further. The definitions for all new syntax and the operational semantics
are given in Figure 2. The reduction relation has the form M | Q ~ N | Q’. We omit Q when it is
unchanged. Only E-GEN extends Q. We do not restrict M and N to be closed terms. All judgements
defined previously are also straightforwardly extended with Q. For instance, typing judgements
are of form Q |T' + M : A @ E for runtime terms.

The operational semantics mostly follows MEeT. Rule E-GEN is new and generates a fresh runtime
label for a local label binding. Moreover, since we generalise the handler of MEeT, rules E-ReT and
E-Op are also generalised. Rule E-RET wraps the return value with the modality p o (£). Rule E-Op
wraps the continuation with the modality p. The modalities in both rules are consistent with the
typing rule T-HANDLE in Section 3.5. The function bl(E) gives the set of bound operation labels
which have handlers installed in the evaluation context &. The condition ¢ ¢ bl(&) makes sure
each operation ¢ is handled by the dynamically innermost handler of ¢.

3.7 Type Soundness and Effect Safety
To state syntactic type soundness, we first define normal forms.

Definition 3.6 (Normal Forms). We say that term M is in normal form with respect to effect
context E, if it is either in value normal form M = U or of the form M = &[do ¢ U] for ¢ < E.

The following theorems together give type soundness and effect safety. They hold for any effect
structure X satisfying the validity conditions of Definition 3.5.

32:18 Wenhao Tang and Sam Lindley

THEOREM 3.7 (PROGRESS). In MET(X) where X satisfies the validity conditions, if Q | -+ M : A @ E,
then either M | Q ~> N | Q' for some N and Q’, or M is in a normal form with respect to E.

THEOREM 3.8 (SUBJECT REDUCTION). In MET(X) where X satisfies the validity conditions, if Q |
Ir+M:A@EandM | Q~» N | Q/,thenQ' |[T-FN:A@E.

The proofs are given in ??.

4 Encoding a Row-Based Effect System a la Koka

In this section, we briefly present System F€ [40], a System F-style core calculus formalising the
row-based effect system of Koka [25], and show how to encode it into MET(Rs,). We refer to Xie
et al. [40] for a complete introduction to System F€.

4.1 System F°¢

The syntax of System F€ is as follows.

Value Types A, B:=1|a|A —F B|VaK.A Values V,W:a=() | x| AExAM

Effect Rows E,F:u=-|¢|tE | AaX.V | handler H
Kind K ::= Effect | Value Computations M,N z=returnV |V W |V A
Contexts Fu=-|I,x:A|lLa:K | dotV|letx=MinN
Label Contexts X :=-|23,f: A — B Handlers H:={tprw— N}

Different from Xie et al. [41], our version of System F€ is fine-grain call-by-value [27]. Effect rows
E are scoped rows [23] with an optional tail effect variable ¢. As in MET(X), we assume a fixed
global label context . By convention we write ¢ for effect variables and « for value type variables.
We omit their kinds, Effect and Value, when obvious. In type abstraction and application, we let A
range over both value types and effect rows, and let « range over their type variables.

Typing judgements in System F€ include I' + V : A for valuesand T + M : A | E for computations,
where the latter tracks effects E. The typing rules and operational semantics of System F¢ are
standard for a System F-style calculus with effect handlers and a row-based effect system [16, 24].
We provide the full rules in ?? and show three representative typing rules here.

T-Do T-HANDLER
T-ABs >>5¢:A—»B H={¢tpr— N} o¢:A" - B
ILx:A+M:B|E T'rV:A T,p:A',r:B'—>EAFN:A|E
TrAExAM:ASEB F'rdo¢V:B|¢E T+ handler H: (1 »5%F A) »f A

Rule T-ABs introduces a A-abstraction. Rule T-Do invokes an operation ¢. Rule T-HANDLER intro-
duces a handler as a function that takes an argument function of type 1 —%% A as in Section 2.5.2.
Xie et al. [40] do not include a return clause in handlers for System F€.

4.2 Encoding System F into MET(Rp)

Figure 3 encodes System F€ in MET(R;p). The translation is mostly straightforward.

For kinds, we translate effect kind Effect to effect kind Effect and value kind Value to the kind
Abs. We always translate values in System F€ into values of kind Abs in MET(Rp).

For types, we decouple effects from function types in System F€ by translating an effectful
function type A —% B into a function type with an absolute modality [[E]]([A] — [B]).

For contexts, we homomorphically translate each entry.

For terms, the translation is type-directed and essentially defined on typing judgements. We
annotate components of a term with their types as necessary. We highlight modality-relevant
syntax of the term translation in grey. The grey parts show how modalities decouple effect tracking.
The black parts themselves remain valid programs after type erasure.

Rows and Capabilities as Modal Effects 32:19

]t e
ect] = ect 1] =1
[Value] = Abs [e] = «
. [4 —F B] = [[E]1([A] — [B])
[[[[—% : Fffect Row — Effect Context [[Va:K.A]] _ Va[[K]].[[A]]
le] = ¢ [-] : Context — Context
[¢.E] = ¢ [E] [="
[[[[—% : Fabel Context — Label Context [%[Ilj, ; 2% : %ll:%,z %2%
[>.¢:4— B] = [3].¢: [A] - [B] [-] : Computation — Term
. — Term return V|| = [V
[[[[(_)% - ?f)alue / Handler = T [let x[[= Min N]]} = l[[et]]x = [M] in [N]
= [V Al = [V] [A]

x
[(V:A—=EB) W] = let mod| [z x = [V] in x [W]
[AcK V] = AalKD [V] [do e V] = do[M' I
[AExA.M] = mod| [z (AxIAl M)
handler H :
[[(1 —bE A) »E A]]
[{¢ pr— N}E] = {return x — let mod |, g ¥ =xinx’, £ pr [N]}

= mod|jz| (Af-handlellEl] (let mod |, ;| f" = fin f () with [HE])

Fig. 3. An encoding of System F€ in MET(Rscp).

The translation of lambda abstraction A¥x* .M introduces an absolute modality by mod[g]), and
the translation of function application V' W first eliminates the modality of [V] by let mod g} x =
[V] before applying it. Examples for translations of lambda abstraction and application can be
found in Section 2.2 as [geng]| and [appe].

Translations of type abstraction, type application, operation invocation, and let-binding are
homomorphic. Let-binding in MET(X) is syntactic sugar defined in the standard way as let x =
M in N = (Ax.N) M. The translation of return V is simply [V].

A handler value handler H of type (1 —%F A) —F A is translated to a higher-order function
that handles the application of its function argument f. We eliminate the modality of f before
applying it to () since f has type [[¢, E]](1 — [A]). We introduce a modality mod gy for the
whole translated function since handler H is an effectful function with effect E. In the return clause
of [H], we must eliminate the modality of x as shown in the typing rule T-HANDLE of MET(Rscp).
This modality elimination is always possible as the type [A] of x always has kind Abs. The operation
clause of [H] demonstrates why we must use modality-parameterised handlers. Note that rule
T-HANDLER of System F€ gives the continuation r in H the type B” —% A. By annotating handle
with [[E]], the continuation r in [H] has type [[E]]|([B'] — [A]), which is equal to [B" —F A].
We now give the full translation of the handler sumge of Section 2.5.2.

[sumee] = Aemody,) (AfYe1de1A=I00 handlelé! (let mod .14, f/ = f in £ () with
{return x = let mod|yic1q,| X’ =xinx’ L pr—p+(let mod, ¥ =rinr ())})
¢ Ve.le]([yield,] (1 — Int) — Int)

We have the following type and semantics preservation theorems with proofs in ??.

THEOREM 4.1 (TYPE PRESERVATION). If T+ M : A | E in System F*, then [T] v [M] : [A] @ [E]
in MET(Rcp). Similarly for typing judgements of values.

32:20 Wenhao Tang and Sam Lindley

Value Types A,B:=1|T atC Blocks P,Qu=f| {(nf_T) = M}
Block Types Tu=(Af:T)=B | unbox V

Capability Sets C == {17} Computations M, N ::= return V | P(V, Q)
Contexts Tu=-|Tx:A|LfCT|Lf*T | letx=Min N

Values V,W:u=x]|()| box P | def f=PinN

Handlers H:={pr+— N} | try {f(A):B = M} with H

‘FI—V:AHFI—P:T|C‘

T-VAR T-Box T-TRANSPARENT T-TRACKED
T-Unrr Tox:A THP:T|C rsf€r Tsf*T
Tr():1 Ttx:A IF'tboxP:TatC Trf:T|C Trf:T|{f}
T-UnBOX T-Brock _ T-BSus
I'+V:TatC Lx:Af>*TrM:B|CU{f} T+P:T|C c'cc
T'tunboxV:T|C TH{(x:Af:T)=>M}:(Af:T)=B|C F'+P:T|C
TFM:A|C TLeT T-CaL
T-VALUE FI—M:A|C r"P:(Ai>f}':Tj):>B|C
THV:A ILx:ArN:B|C TrVi:A; TrQj:Tj|C
TrreturnV:A]|- Trletx=MinN:B|CUC’ T+ P(V;,Qj) : BICj/fil | CUC;
T-SuB T-DEF T-HANDLE
TFM:A|C T+P:T|C I,f*(A)=B +M:A|CU{f}
c'cc ILfCTrM:A|C Tp:A,r€(B)=>ArN:A|C
TFM:A|C Trdef f=PinM:A|C T+try {fA)=F = M} with {pr—> N}:A|C

Fig. 4. Syntax and typing rules for System C. We mostly follow the syntax of Brachthauser et al. [6]. The
main difference is that we write = for block types to emphasise they are second-class.

THEOREM 4.2 (SEMANTICS PRESERVATION). If M is well-typed and M ~> N in System F*, then
[M] ~* [N] in MET(R,cp) where ~>* denotes the transitive closure of ~.

5 Encoding a Capability-Based Effect System a la Effekt

In this section we briefly present System C [6], a core calculus formalising the capability-based
effect system of Effekt [8], and show how to encode it into MeT(S). We refer to Brachthéuser et al.
[6] for a complete introduction to System C.

5.1 System C

Figure 4 gives the syntax and typing rules for System C, which is fine-grain call-by-value [27] and
distinguishes between first-class values V, blocks P (second-class functions), and computations M.

We have three typing judgements for values, blocks, and computations individually. Judgements
for blocks T + P : T | C and computations I' + M : A | C explicitly track a capability set C, which
contains the capabilities in I" that may be used.

The typing rules of System C are much more involved than those of System F¢ as capability
tracking is deeply entangled with term constructs such as block constructions (T-BLock), block calls
(T-CaLr), block bindings (T-DEF), and usages of block variables (T-TRANSPARENT and T-TRACKED).
Due to space constraints, we focus on explaining these key rules.

Rows and Capabilities as Modal Effects 32:21

There are two rules for uses of block variables as there are two forms of block variable bindings
in contexts. A tracked binding f :* T stands for a capability. Rule T-TRACKED tracks f itself in the
singleton capability set {f}. A transparent binding f :© T stands for a user-defined block whose
capability set C is known. Rule T-TRANSPARENT tracks C as the capability set.

Rules T-DEF and T-Brock both bind block variables. Rule T-DEF binds a block P as a transparent
block variable f :" T where C’ is the capability set of P. Rule T-BLock binds a list of tracked block
variables (capabilities) f—*T whose concrete capability sets are unknown until called. The rule
T-Brock reflects the roles that block constructions play for capability tracking as we introduced in
Section 2.3.3. For instance, all capabilities]_‘ are added to the capability set of the block body M.

Rule T-Catt fully applies a block P to values V; and blocks Q;. The rule reflects the roles that
block calls play for capability tracking as we introduced in Section 2.3.4. It substitutes each block
variable f; (recall that these variables are bound as f; :* T in rule T-BLock) with the capability set
C; of the block Q; in type B. The capability set of the call is the union of the capability sets of P
and all its block arguments because all these arguments might be invoked.

Rule T-HANDLE defines a named handler which introduces a capability f : (A’) = B’ to the
scope of M. Operation invocation via calling f in M is handled by this handler. The capability f is
added to the capability set of M. The continuation r is introduced as a transparent binding with
capability set C as it may only use capabilities in C provided by the context.

System C adopts named handlers and a generative semantics with a reduction relation M | Q ~»
N | Q" where Q == | £: (A) = B is a context for runtime operation labels, similar to MeT(X).
The most interesting reduction rule is E-GEN which uses a runtime capability value cap, with a
runtime label ¢ to substitute a capability f introduced by a handler.

E-GEN try {f(A):B = M} with H| Q ~ try, M[cap,/f] with H| Q,¢: (A) = B where ¢ fresh

The full specification of operational semantics can be found in ??.

5.2 Encoding System C in MET(S)

Figure 5 encodes System C in MeT(S). The term translation is type-directed and defined on typing
judgements. We annotate components of a term with their types and capability sets as necessary.
We highlight syntax relevant to modalities and type abstraction of the term translation in grey.
The grey parts show how modalities decouple capability tracking. The black parts remain valid
programs after type erasure. The encoding is unavoidably more involved than that of System F¢
because of the deeper entanglement of capability tracking with blocks. As in Section 5.1, we focus
on explaining the encoding of block-relevant constructs.

For block constructions and block calls, we have explained their encodings in detail in Sec-
tions 2.3.3 and 2.3.4, using the constructions and calls of blocks app and app’ - as examples.

A block binding def f = P in N not only binds a block P to f but also annotate the binding
f :€ T with the capability set C’ of the block P as shown by rule T-DEF in Figure 4. For instance, we
can bind the block gen, in Section 2.3.1 to f and apply it to 42. Its typing derivation is as follows.

ySInt=1+ gen. - Int=1 | {y} yrimt=1 P me=1 0 f42) 1| {3}

y:Int=1+ def f=gen-in f(42) : 1 | {y}

The binding of f in the second premise is annotated with its capability set {y} since gen uses the
capability y. We cannot simply encode such a transparent binding by ignoring its annotation of
the capability set. Instead, we use an absolute modality to simulate this annotation. To encode the
binding of f, we wrap the translated block gen . into the absolute modality [y]. The full translation
of the above term is as follows, where we provide the omitted identity modality in Section 2.3.1.

let f = mod| .| (mod;, (AxI".5 x)) in let mod| | f = f in let mod,, f' = f in f’ 42

32:22 Wenhao Tang and Sam Lindley

[-] : Cap Set — Effect Context [-] : Context — Context
= r []=-
[[,x:A] = [I],x:[A]
[[[[1% : \1/alue/Block Type — Type [L.fFT] = [T].Ff : [f:":][[T]]A,f L 7]
[Tatc] = [[C]][T] [r.f€T] = [T1.f = [[CTTD. f =pgeq [T

[AF:T) = B] = VF~.() (4] - [F1[T] - [B]) [H : JBgock = Term

[[ﬂ(_)% : zf)alue — Term HGATT) =M = Af"mod (AxAT 1710,

[x] = x let mod|p+| f = f in [M])
[box P: T atC] = mod|j) [P] [unbox V: T |C] = let mod) x= [V]inx

[-] : Computation / Handler — Term
[return V] = [V]
[let x =M in N] = let x = [M] in [N]
[def f=P:T|CinN] = let f = mod ;| [P] inlet mod | f = f in [N]
HP(V,', Qj T] | Cj)]] = let mod<ﬂ> X = [[P]] I(i[} inx [[V,]] (mOd[H<~/’| [[Qjﬂ)
ﬂ"y {fA=8 = M}]]
with H: A|C

local ¢ : [A’] — [B'] in let mod;,, g =
(A‘/"‘.mod«/) (Af let mod| ¢ f:f in [M])) tr

in handle![?l] (g (mod |, | (mod,, (AxI4) do ¢f x)))) with [H/C]
[{p r = N}C] = {return x > let mod, 10y ¥ =xinx,
tp prletmod o) #=rin [N]}

Fig. 5. An encoding of System C in MET(S).

*

We eliminate the modality [y*] of f and bind it to f , reminiscent of how we translate block
arguments bound by block constructions. In general, for a transparent block variable binding f :© T
in the context, it is translated to two variable bindings f : [[C]][T] and f ‘e [T

The translation of uses of block variables is simple. We translate each f to its hat version f .
The simplicity benefits from the fact that we eagerly eliminate the modality of each f after it is
introduced, e.g., in the translations of block constructions and block bindings.

The translation of named handlers try {f4)=F" = M} with H is different from the translation
of sumc in Section 2.5.3. The full translation of sumc is as follows, where we provide the omitted
identity modality of the function Ax™"*.do ¢, x.

local £, : Int — 1in let mod(,) g = (Ay".mod,, (Aylet mod|, | =y in §42;7 37;0)) £,
in handle![°l] (4 (mod, (mod, (Ax™"*.do £, x))))
with {return x — let mod|, o)) X" =xinx’, £, pr > let mod|jc)) F =rinp+7 ()}

The main difference is that, instead of directly using the local label ¢, for the handled computation,
we introduce an effect variable y* first and substitute it with ¢,. This extra layer of abstraction
is necessary to keep the translation systematic, because our translations of types and terms con-
sistently translate a capability y to an effect variable y*. After reducing the type application and
substitution of g in the above translation term, we get the translation of sumc in Section 2.5.3.

In the return clause, we additionally eliminate the modality of x. In the operation clause, we
eliminate the modality [[C]] of r and bind it to 7 as we use a modality-parameterised handler. Using

Rows and Capabilities as Modal Effects 32:23

a modality-parameterised handler is important because in sum, the continuation r is a transparent
binding of form f :© 1 — Int as shown by the typing rule T-HANDLE of System C in Section 5.1.
We need to wrap the translated continuation r with the absolute modality [[C]] to be consistent
with the translation of transparent bindings.

For contexts, we translate each entry. For a variable binding x : A, we translate it homomorphi-
cally. For a transparent binding of a block variable f :€ T, we translate it to two term variables f
and f as discussed in the translation of def above. For a tracked binding of a block variable f :* T,
we translate it to an effect variable f* and two term variables f and f as discussed in Section 2.2.

We have the following type and semantics preservation theorems with proofs in ??.

THEOREM 5.1 (TYPE PRESERVATION). If '+ M : A | C in System C, then [I'] + [M] : [A] @ [C] in
MET(S). Similarly for typing judgements of values and blocks.

THEOREM 5.2 (SEMANTICS PRESERVATION). IfM is well-typed and M | Q ~> N | Q' in System C,
then [M] | [Q] ~* [N] | [€'] in MeT(S), where ~>* denotes the transitive closure of ~.

6 More Encodings and Discussions

In this section, we discuss more encodings of effect systems into MeT(X), highlight practical
language design insights gleaned from our encodings, and outline potential extensions to MET(X).

6.1 An Early Version of Effekt

System E [7] is an early core calculus of the Effekt language. System E is essentially a fragment
of System C without boxes. As a result, in System E capabilities can never appear in types since
we cannot box a second-class block into a first-class value. While our encoding of System C in
Section 5.2 directly gives an encoding of System = in MeT(S), it introduces unnecessary complexity.
Since capabilities never appear in types in System =, we do not need to introduce an effect variable
f* for each capability f in the encoding. It turns out that we can simply encode second-class blocks
in System E as first-class functions in MET(S) without introducing any extra term constructs. For
instance, a block {(x : A, f : T) = M} is encoded as a function Ax[4] fI7I [M] by merely changing
the notations. We provide the full encoding of System E in MeT(S) in ?? and prove it preserves
types and semantics in ??.

6.2 Named Handlers in Koka

Xie et al. [41] extend Koka with named handlers and formalise this extension in the core calculus
System F€**" which is based on System F€. System F€**" allows each handler to bind a handler
name that can be used to invoke operations. A handler name is similar to a capability in System C
but it is a first-class value. For instance, we can define a named handler in System F**" as follows.

sumges=n = Ae.nhandler {yield pr+ p+r ()} :Ve.(Va.evyield® —Y1el4"¢ Int) —¢ Int

This handler is similar to the handler sumge in Section 2.5.2. The main difference is that the argument
takes a value of type evyield®. This is a first-class handler name with which we can invoke the
yield operation. For example, we can apply sums,gierm rersn as follows.

sumpesss E (Aa.ARSY€'" b 42; h 37;0)

Instead of using the label yield to invoke the operation as in application of sumge in Section 2.5.2,
we directly apply the handler name h to arguments. This is reminiscent of the handler sumsysiem c
in Section 2.5.3 where we invoke the operation by calling the capability introduced by the handler.
This program reduces to 79. The scope variable a ensure scope safety of the handler name, similar
to the technique used by runsT in Haskell [22].

32:24 Wenhao Tang and Sam Lindley

As with the encoding of named handlers in System C, we can encode a named handler of
System F€**" by introducing a local label £, and using the term mod|,,] (Ax.do ¢, x) to simulate
the handler name. We use the effect structure S instead of Ry, as there can never be duplicated
handlers with the same name in System F**". The theory S gives us flexibility to have multiple
effect variables, which we use to encode scope variables. We give the full encoding of System F€*"
in MEeT(S) in ?? and prove its type and semantics preservation in ??.

6.3 Insights for Language Design

In Section 2.4 and Section 2.5.4, we demonstrated how our encodings provide a direct way to
compare the differences of System F¢ and System C. Moreover, our encodings can also help to
inform language design choices based on the following observations.

(1) Our encodings together demonstrate that modal effect types are as expressive as the row-based
and capability-based effect systems we consider.

(2) The encoding of System = (Section 6.1) implies that we need not sacrifice first-class functions
in order to obtain the benefits of the contextual effect polymorphism of Effekt.

(3) The encodings of System C (Section 5.2), System = (Section 6.1), and System F€*" (Section 6.2)
demonstrate that we can use local labels, a minimal extension as introduced in Section 3, to
simulate the relatively heavyweight feature of named handlers in Effekt and Koka.

(4) The encoding of System F¢**" (Section 6.2) further demonstrates that the first-class handler
names of Koka offer no extra expressiveness over the second-class local labels of MET(X).

(5) The encoding of System C (Section 5.2) shows that instead of having a built-in form of
capabilities which can appear at both term and type levels as in Effekt and Scala [5], we can
simulate it by introducing an effect variable for each argument and wrap the argument into an
absolute modality with the corresponding effect variable.

6.4 Potential Extensions to MET(X)

We discuss three potential extensions to MET(X) and leave their full development as future work.

Effect Kinds. We can extend the effect structure to abstract over effect kinds instead of having a
single kind Effect. The augmented definition of effect structure is a triple X = (R, :, =) where the
new component R is a set of effect kinds. We must extend the kinding and equivalence relations
accordingly. As an example of this extension, in order to characterise Rémy-style row types [35]
which use a kind system to ensure that there is no duplicated label, we can declare R = {Row s | L}
where L is a label set and denotes all labels that must not be in the row. As another example, this
extension enables us to combine different effect structures together by assigning a kind to each
theory. For instance, we can declare two kinds Set and Row for theories S and R, respectively,
and then give local labels the kind Set and global labels the kind Row. We can then treat local labels
as sets and global labels as scoped rows.

Presence Types. We can associate operation labels in extensions and effect contexts with presence
types [36]. Furthermore, instead of predefining the operation types for labels, we can assign
operation types to labels in extensions and effect contexts in the manner of Tang et al. [38]. For
instance, the syntax of extensions could be extended to D =:= - | £ : P, D | ¢, D, where P is a presence
type typically defined as P := — | Pre(A — B) | 6. A label can be absent (—), present with a type
(Pre(A — B)), or polymorphic over its presence (0).

Masking. MET(X) does not include the mask operator and the mask modality (L[} of MEeT [38].
This enables us to substantially simplify the presentation of the core calculus, especially the
definitions relevant to modalities in Section 3.3, compared to that of Tang et al. [38]. Moreover, the

Rows and Capabilities as Modal Effects 32:25

lack of the mask operator does not influence our encodings as the core calculi of Effekt and Koka do
not have it. Masking [2, 10] is useful for effect systems based on scoped rows where duplicated labels
indicate nested handlers for the same operation label. With the mask operator, we can manually
select which handler to use when nested. It is interesting future work to extend MeT(X) with a
suitable notion of abstract mask operator and extend the syntax of relative modalities to (L|D)
where L is a mask and D is an extension. This extension will require extending the effect structure
to define the kinding and equivalence relations of masks. A form of masking also makes sense for
effect structures other than R,,. For instance, masking ¢ from a computation in S could be used to
disallow ¢ to be performed by the computation.

7 Related and Future Work

Row-Based Effect Systems. Row-based effect systems track effects by annotating function arrows
with row types denoting effects. They have been adopted in research languages such as Links [16],
Koka [24], and Frank [28]. Links uses Rémy-style row types with presence polymorphism [36],
whereas Koka and Frank use scoped rows [23]. Eff [1] and Helium [4] also track effects on function
arrows but treat effect types as sets. In this paper we focus on Koka, but we expect that other
row-based effect systems can be encoded similarly by instantiating the effect structure appropriately.

Capability-Based Effect Systems. Capability-based effect systems introduce and track effects as
capabilities. Different variations diverge on when capability sets appear in types. Effekt [6, 7] uses
second-class functions and only attaches capability sets to types when boxing functions. CC..5 [5]
and Capless [42], the foundations for capture tracking in Scala 3, always annotate every type with
its capability set and use subtyping and syntactic sugar to simplify capability sets. It is interesting
future work to encode them in MeT(X).

Abstracting Effect Systems. Yoshioka et al. [43] study different treatments of effect collections in
row-based effect systems. They propose a parameterised core calculus, Aga, whose effect types can
be instantiated to various kinds of sets and rows. The effect types in Aga are still entangled with
function types. As a result, Ags cannot encode capability-based effect systems. We follow Aga in
parameterising our core calculus MeT(X) over different treatments of effect collections. We make
use of modalities to decouple effect tracking from function types, enabling the encodings of both
row-based and capability-based effect systems.

Encoding into Modal Effect Types. Tang et al. [38] consider a restricted row-based effect system in
which each effect type can refer only to the lexically closest effect variable. This restricted system
remains remarkably expressive and suffices for many practical programs. Nonetheless, they show
that it can be encoded into simply-typed MET without any effect polymorphism. Our encodings
consider richer source languages, showing that modal effect types are as expressive as several
row-based and capability-based effect systems in the literature.

Local Effects. Local labels in MeT(X) allow us to introduce fresh effects locally. They are useful
for solving the effect encapsulation and accidental handling problems [3, 10, 44]. As discussed in
Section 2.5.3, there are various local effect formalisms in the literature [3, 11, 19]; most are based on
dynamic generation of fresh effect names, whereas the calculus of Biernacki et al. [3] is based on
effect coercions. We conjecture that local labels of MET(X) are as expressive as these formalisms.
We are interested in studying their relationship by encoding them into MeT(X).

A Modal Type System for Benign Effects. Nanevski [31] propose a modal type system for benign
effects in Chapter 4.3. We refer to this system as MTBE. MTBE supports local effects and indexes
the standard necessity modality O with effects for effect tracking. In MTBE, a type O A means a

32:26 Wenhao Tang and Sam Lindley

computation which returns a value of type A and may perform effects in E. This indexed necessity
modality is similar to the absolute modality of MeT(X). The key difference between MTBE and
MEeT(X) (and MET) is that MTBE has no notion of ambient effect context. MTBE requires functions
to be pure: every function type must specify all the effects it may perform via a box. In contrast,
MET(X) allows a function to perform any effects from the ambient effect context. For example,
an application function of type (Int — 1) — Int — 1in MEeT(X) allows its argument to perform
any effects from the ambient effect context, whereas a function with such a type in MTBE can
only be applied to pure functions (by default each function type has the empty O). In order to
apply an application function to effectful arguments in MTBE we must specify what effects may be
performed in the type. This requires parametric effect polymorphism in order to support arbitrary
effectful arguments. Moreover, MTBE does not support relative modalities as relative modalities are
intimately tied to the notion of ambient effect contexts. Our encoding of System C in Section 5.2
relies on the notion of ambient effect contexts and relative modalities. As a result, MTBE cannot
serve as a general framework for encoding various effect systems as MeT(X) does.

Effectful Contextual Modal Type Theory. Zyuzin and Nanevski [45] propose effectful contextual
modal type theory (ECMTT) which extends the contextual necessity modality [32] to track contexts
of effectful operations. Similar to MTBE, ECMTT also lacks the notion of ambient effect contexts
and is thus less expressive and flexible than MeT(X). Moreover, ECMTT does not support dynamic
generation of fresh effect names and thus cannot express named handlers as in Effekt.

Call-By-Push-Value. Attempts to decouple programming language features have frequently born
fruit. For instance, call-by-push-value (CBPV) [26] subsumes both call-by-value (CBV) and call-by-
name (CBN) by decoupling thunking and forcing from function abstraction and application. Our
work is in a similar vein. More interestingly, our encodings of System F¢ and System C possess
certain similarities with Levy’s encodings of CBV and CBN into CBPYV, respectively. In our encoding
of System F€, each function is wrapped in an absolute modality, reminiscent of the CBV-to-CBPV
encoding where each function is thunked. In our encoding of System C, we only wrap a block in
an absolute modality when passing it as an argument, reminiscent of the CBN-to-CBPV encoding,
in which thunking of a function is deferred until passing it as an argument. We are interested in
further exploring these similarities.

Expressive Power of Effect Handlers. Forster et al. [13] compare the expressive power of effect
handlers, monadic reflection, and delimited control in a simply-typed setting and show that delim-
ited control cannot encode effect handlers in a type-preserving way. Pirdg et al. [33] extend the
comparison between effect handlers and delimited control to a polymorphic setting and show their
equivalence. Ikemori et al. [18] further show the typed equivalence between named handlers and
multi-prompt delimited control. In contrast to these works, which compare effect handlers with
other programming abstractions, we compare different effect systems for effect handlers.

Future Work. In addition to the ideas already discussed above and in Section 6.4, other directions
for future work include: exploring inverse encodings (from instantiations of MeT(X) into other
calculi); studying parametricity and abstraction safety [4, 44] for MeT(X); and further developing
MET(X) as a uniform intermediate language for type- and effect-directed optimisation.

Acknowledgments

We thank Jonathan Immanuel Brachthiuser, Anton Lorenzen, Orpheas van Rooij, Jesse Sigal, and
the anonymous reviewers of ICFP 2025 and POPL 2026 for feedback. Sam Lindley was supported
by UKRI Future Leaders Fellowship “Effect Handler Oriented Programming” (MR/T043830/1 and
MR/Z000351/1).

Rows and Capabilities as Modal Effects 32:27

References

[12]
[13]

[14]
[15]

[16]
[17]
[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

Andrej Bauer and Matija Pretnar. 2014. An Effect System for Algebraic Effects and Handlers. Log. Methods Comput.
Sci. 10, 4 (2014). doi:10.2168/LMCS-10(4:9)2014

Dariusz Biernacki, Maciej Pirog, Piotr Polesiuk, and Filip Sieczkowski. 2018. Handle with care: relational interpretation
of algebraic effects and handlers. Proc. ACM Program. Lang. 2, POPL (2018), 8:1-8:30. doi:10.1145/3158096

Dariusz Biernacki, Maciej Pirdg, Piotr Polesiuk, and Filip Sieczkowski. 2019. Abstracting algebraic effects. Proc. ACM
Program. Lang. 3, POPL (2019), 6:1-6:28. d0i:10.1145/3290319

Dariusz Biernacki, Maciej Pirdg, Piotr Polesiuk, and Filip Sieczkowski. 2020. Binders by day, labels by night: effect
instances via lexically scoped handlers. Proc. ACM Program. Lang. 4, POPL (2020), 48:1-48:29. doi:10.1145/3371116
Aleksander Boruch-Gruszecki, Martin Odersky, Edward Lee, Ondrej Lhotak, and Jonathan Immanuel Brachthauser.
2023. Capturing Types. ACM Trans. Program. Lang. Syst. 45, 4 (2023), 21:1-21:52. doi:10.1145/3618003

Jonathan Immanuel Brachthéuser, Philipp Schuster, Edward Lee, and Aleksander Boruch-Gruszecki. 2022. Effects,
capabilities, and boxes: from scope-based reasoning to type-based reasoning and back. Proc. ACM Program. Lang. 6,
OOPSLA1 (2022), 1-30. doi:10.1145/3527320

Jonathan Immanuel Brachthéauser, Philipp Schuster, and Klaus Ostermann. 2020. Effects as capabilities: effect handlers
and lightweight effect polymorphism. Proc. ACM Program. Lang. 4, OOPSLA (2020), 126:1-126:30. doi:10.1145/3428194
Jonathan Immanuel Brachthauser, Philipp Schuster, and Klaus Ostermann. 2025. Effekt Language: A language with
lexical effect handlers and lightweight effect polymorphism. https://effekt-lang.org. Accessed 2025-07-10.
Vikraman Choudhury and Neel Krishnaswami. 2020. Recovering purity with comonads and capabilities. Proc. ACM
Program. Lang. 4, ICFP (2020), 111:1-111:28. do0i:10.1145/3408993

Lukas Convent, Sam Lindley, Conor McBride, and Craig McLaughlin. 2020. Doo bee doo bee doo. J. Funct. Program. 30
(2020), €9. do0i:10.1017/S0956796820000039

Paulo Emilio de Vilhena and Francois Pottier. 2023. A Type System for Effect Handlers and Dynamic Labels. In
Programming Languages and Systems - 32nd European Symposium on Programming, ESOP 2023, Held as Part of the
European Joint Conferences on Theory and Practice of Software, ETAPS 2023, Paris, France, April 22-27, 2023, Proceedings
(Lecture Notes in Computer Science, Vol. 13990), Thomas Wies (Ed.). Springer, 225-252. doi:10.1007/978-3-031-30044-8_9
Matthias Felleisen. 1991. On the Expressive Power of Programming Languages. Sci. Comput. Program. 17, 1-3 (1991),
35-75. doi:10.1016/0167-6423(91)90036-W

Yannick Forster, Ohad Kammar, Sam Lindley, and Matija Pretnar. 2019. On the expressive power of user-defined effects:
Effect handlers, monadic reflection, delimited control. J. Funct. Program. 29 (2019), e15. doi:10.1017/50956796819000121
Daniel Gratzer. 2023. Syntax and semantics of modal type theory. Ph.D. Dissertation. Aarhus University.

Daniel Gratzer, G. A. Kavvos, Andreas Nuyts, and Lars Birkedal. 2021. Multimodal Dependent Type Theory. Log.
Methods Comput. Sci. 17, 3 (2021). doi:10.46298/LMCS-17(3:11)2021

Daniel Hillerstrém and Sam Lindley. 2016. Liberating Effects with Rows and Handlers (TyDe 2016). Association for
Computing Machinery, New York, NY, USA, 15-27. doi:10.1145/2976022.2976033

Alex Hubers and J. Garrett Morris. 2023. Generic Programming with Extensible Data Types: Or, Making Ad Hoc
Extensible Data Types Less Ad Hoc. Proc. ACM Program. Lang. 7, ICFP (2023), 356-384. do0i:10.1145/3607843

Kazuki Ikemori, Youyou Cong, and Hidehiko Masuhara. 2023. Typed Equivalence of Labeled Effect Handlers and
Labeled Delimited Control Operators. In International Symposium on Principles and Practice of Declarative Programming,
PPDP 2023, Lisboa, Portugal, October 22-23, 2023, Santiago Escobar and Vasco T. Vasconcelos (Eds.). ACM, 4:1-4:13.
d0i:10.1145/3610612.3610616

Robin Jourde. 2022. M1 Internship Report : Effect Typing for Links. https://github.com/Orbion-]J/intership-report-
2022/blob/master/pdf/report.pdf Accessed 2025-07-10.

Ohad Kammar, Sam Lindley, and Nicolas Oury. 2013. Handlers in action. In ACM SIGPLAN International Conference on
Functional Programming, ICFP’13, Boston, MA, USA - September 25 - 27, 2013, Greg Morrisett and Tarmo Uustalu (Eds.).
ACM, 145-158. do0i:10.1145/2500365.2500590

G. A. Kavvos and Daniel Gratzer. 2023. Under Lock and Key: a Proof System for a Multimodal Logic. Bull. Symb. Log.
29, 2 (2023), 264-293. doi:10.1017/BSL.2023.14

John Launchbury and Simon L. Peyton Jones. 1995. State in Haskell. LISP Symb. Comput. 8, 4 (1995), 293-341.

Daan Leijen. 2005. Extensible records with scoped labels. In Revised Selected Papers from the Sixth Symposium on
Trends in Functional Programming, TFP 2005, Tallinn, Estonia, 23-24 September 2005 (Trends in Functional Programming,
Vol. 6), Marko C. J. D. van Eekelen (Ed.). Intellect, 179-194.

Daan Leijen. 2017. Type Directed Compilation of Row-Typed Algebraic Effects. In Proceedings of the 44th ACM
SIGPLAN Symposium on Principles of Programming Languages (Paris, France) (POPL °17). Association for Computing
Machinery, New York, NY, USA, 486-499. doi:10.1145/3009837.3009872

Daan Leijen. 2025. Koka: A strongly typed functional-style language with effect types and handlers. https://koka-
lang.github.io. Accessed 2025-07-10.

https://doi.org/10.2168/LMCS-10(4:9)2014
https://doi.org/10.1145/3158096
https://doi.org/10.1145/3290319
https://doi.org/10.1145/3371116
https://doi.org/10.1145/3618003
https://doi.org/10.1145/3527320
https://doi.org/10.1145/3428194
https://effekt-lang.org
https://doi.org/10.1145/3408993
https://doi.org/10.1017/S0956796820000039
https://doi.org/10.1007/978-3-031-30044-8_9
https://doi.org/10.1016/0167-6423(91)90036-W
https://doi.org/10.1017/S0956796819000121
https://doi.org/10.46298/LMCS-17(3:11)2021
https://doi.org/10.1145/2976022.2976033
https://doi.org/10.1145/3607843
https://doi.org/10.1145/3610612.3610616
https://github.com/Orbion-J/intership-report-2022/blob/master/pdf/report.pdf
https://github.com/Orbion-J/intership-report-2022/blob/master/pdf/report.pdf
https://doi.org/10.1145/2500365.2500590
https://doi.org/10.1017/BSL.2023.14
https://doi.org/10.1145/3009837.3009872
https://koka-lang.github.io
https://koka-lang.github.io

32:28 Wenhao Tang and Sam Lindley

[26] Paul Blain Levy. 2004. Call-By-Push-Value: A Functional/Imperative Synthesis. Semantics Structures in Computation,
Vol. 2. Springer.

[27] Paul Blain Levy, John Power, and Hayo Thielecke. 2003. Modelling environments in call-by-value programming
languages. Inf. Comput. 185, 2 (2003), 182-210. doi:10.1016/S0890-5401(03)00088-9

[28] Sam Lindley, Conor McBride, and Craig McLaughlin. 2017. Do Be Do Be Do. In Proceedings of the 44th ACM SIGPLAN
Symposium on Principles of Programming Languages (Paris, France) (POPL 2017). Association for Computing Machinery,
New York, NY, USA, 500-514. doi:10.1145/3009837.3009897

[29] Anton Lorenzen, Leo White, Stephen Dolan, Richard A. Eisenberg, and Sam Lindley. 2024. Oxidizing OCaml with
Modal Memory Management. Proc. ACM Program. Lang. 8, ICFP (2024), 485-514. doi:10.1145/3674642

[30] J. Garrett Morris and James McKinna. 2019. Abstracting Extensible Data Types: Or, Rows by Any Other Name. Proc.
ACM Program. Lang. 3, POPL, Article 12 (jan 2019), 28 pages. doi:10.1145/3290325

[31] Aleksandar Nanevski. 2004. Functional programming with names and necessity. Ph. D. Dissertation. USA. AAI3143944.

[32] Aleksandar Nanevski, Frank Pfenning, and Brigitte Pientka. 2008. Contextual modal type theory. ACM Trans. Comput.
Log. 9, 3 (2008), 23:1-23:49. do0i:10.1145/1352582.1352591

[33] Maciej Pirdg, Piotr Polesiuk, and Filip Sieczkowski. 2019. Typed Equivalence of Effect Handlers and Delimited Control.
In 4th International Conference on Formal Structures for Computation and Deduction, FSCD 2019, June 24-30, 2019,
Dortmund, Germany (LIPIcs, Vol. 131), Herman Geuvers (Ed.). Schloss Dagstuhl - Leibniz-Zentrum fiir Informatik,
30:1-30:16. do0i:10.4230/LIPICS.FSCD.2019.30

[34] Gordon D. Plotkin and Matija Pretnar. 2013. Handling Algebraic Effects. Log. Methods Comput. Sci. 9, 4 (2013).
d0i:10.2168/LMCS-9(4:23)2013

[35] D.Rémy. 1989. Type checking records and variants in a natural extension of ML. In Proceedings of the 16th ACM
SIGPLAN-SIGACT Symposium on Principles of Programming Languages (Austin, Texas, USA) (POPL °89). Association
for Computing Machinery, New York, NY, USA, 77-88. doi:10.1145/75277.75284

[36] Didier Rémy. 1994. Type Inference for Records in a Natural Extension of ML. In Theoretical Aspects of Object-Oriented
Programming: Types, Semantics, and Language Design. Citeseer.

[37] Wenhao Tang and Sam Lindley. 2025. Rows and Capabilities as Modal Effects. arXiv:2507.10301 [cs.PL] https:
//arxiv.org/abs/2507.10301

[38] Wenhao Tang, Leo White, Stephen Dolan, Daniel Hillerstrom, Sam Lindley, and Anton Lorenzen. 2025. Modal Effect
Types. Proc. ACM Program. Lang. 9, OOPSLA1 (2025), 1130-1157. doi:10.1145/3720476

[39] Andrew K. Wright. 1995. Simple Imperative Polymorphism. LISP Symb. Comput. 8, 4 (1995), 343-355.

[40] Ningning Xie, Jonathan Immanuel Brachthauser, Daniel Hillerstrom, Philipp Schuster, and Daan Leijen. 2020. Effect
handlers, evidently. Proc. ACM Program. Lang. 4, ICFP (2020), 99:1-99:29. do0i:10.1145/3408981

[41] Ningning Xie, Youyou Cong, Kazuki Ikemori, and Daan Leijen. 2022. First-class names for effect handlers. Proc. ACM
Program. Lang. 6, OOPSLA2 (2022), 30-59. doi:10.1145/3563289

[42] Yichen Xu, Oliver Bracevac, Cao Nguyen Pham, and Martin Odersky. 2025. What’s in the Box: Ergonomic and
Expressive Capture Tracking over Generic Data Structures. Proc. ACM Program. Lang. 9, OOPSLA2, Article 334 (Oct.
2025), 28 pages. doi:10.1145/3763112

[43] Takuma Yoshioka, Taro Sekiyama, and Atsushi Igarashi. 2024. Abstracting Effect Systems for Algebraic Effect Handlers.
CoRR abs/2404.16381 (2024). doi:10.48550/ARXIV.2404.16381 arXiv:2404.16381

[44] Yizhou Zhang and Andrew C. Myers. 2019. Abstraction-safe effect handlers via tunneling. Proc. ACM Program. Lang.
3, POPL (2019), 5:1-5:29. doi:10.1145/3290318

[45] Nikita Zyuzin and Aleksandar Nanevski. 2021. Contextual modal types for algebraic effects and handlers. Proc. ACM
Program. Lang. 5, ICFP (2021), 1-29. doi:10.1145/3473580

[t

Received 2025-07-10; accepted 2025-11-06

https://doi.org/10.1016/S0890-5401(03)00088-9
https://doi.org/10.1145/3009837.3009897
https://doi.org/10.1145/3674642
https://doi.org/10.1145/3290325
https://doi.org/10.1145/1352582.1352591
https://doi.org/10.4230/LIPICS.FSCD.2019.30
https://doi.org/10.2168/LMCS-9(4:23)2013
https://doi.org/10.1145/75277.75284
https://arxiv.org/abs/2507.10301
https://arxiv.org/abs/2507.10301
https://arxiv.org/abs/2507.10301
https://doi.org/10.1145/3720476
https://doi.org/10.1145/3408981
https://doi.org/10.1145/3563289
https://doi.org/10.1145/3763112
https://doi.org/10.48550/ARXIV.2404.16381
https://arxiv.org/abs/2404.16381
https://doi.org/10.1145/3290318
https://doi.org/10.1145/3473580

	Abstract
	1 Introduction
	2 Overview
	2.1 Modal Effects and Met(X)
	2.2 Rows as Modal Effects
	2.3 Capabilities as Modal Effects
	2.4 Comparing Rows and Capabilities
	2.5 Encoding Effect Handlers
	2.6 More Encodings

	3 The Core Calculus Met(X)
	3.1 Syntax
	3.2 Effect Structures
	3.3 Modalities
	3.4 Kinds and Contexts
	3.5 Typing
	3.6 Operational Semantics
	3.7 Type Soundness and Effect Safety

	4 Encoding a Row-Based Effect System à la Koka
	4.1 System Fbold0mu mumu subsection
	4.2 Encoding System F into Met(Rscp)

	5 Encoding a Capability-Based Effect System à la Effekt
	5.1 System C
	5.2 Encoding System C in Met(S)

	6 More Encodings and Discussions
	6.1 An Early Version of Effekt
	6.2 Named Handlers in Koka
	6.3 Insights for Language Design
	6.4 Potential Extensions to Met(X)

	7 Related and Future Work
	Acknowledgments
	References

