
Rows and Capabilities as Modal Effects

WENHAO TANG, The University of Edinburgh, UK

SAM LINDLEY, The University of Edinburgh, UK

Effect handlers allow programmers to model and compose computational effects modularly. Effect systems

statically guarantee that all effects are handled. Several recent practical effect systems are based on either

row polymorphism or capabilities. However, there remains a gap in understanding the precise relationship

between effect systems with such disparate foundations. The main difficulty is that in both row-based and

capability-based systems, effect tracking is typically entangled with other features such as functions.

We propose a uniform framework for encoding, analysing, and comparing effect systems. Our framework

exploits and generalises modal effect types, a recent novel effect system which decouples effect tracking
from functions via modalities. Modalities offer fine-grained control over when and how effects are tracked,

enabling us to express different strategies for effect tracking. We give encodings as macro translations from

existing row-based and capability-based effect systems into our framework and show that these encodings

preserve types and semantics. Our encodings reveal the essence of effect tracking mechanisms in different

effect systems, enable a direct analysis on their differences, and provide practical insights on language design.

CCS Concepts: • Theory of computation→ Type structures; Type theory; Control primitives.

Additional Key Words and Phrases: effect handlers, effect types, modal types

1 Introduction

Effect handlers [34] provide a powerful abstraction to define and compose computational effects

including state, concurrency, and probability. Effect systems statically ensure that all effects used

in a program are handled. The literature includes much work on effect systems for effect handlers

based on a range of different theoretical foundations. Two of the most popular and well-studied

approaches are row-based effect systems [16, 24, 28] and capability-based effect systems [5–7].

Row-based effect systems, as in the languages Koka [24, 41], Links [16], and Frank [28], follow

the traditional monadic reading of effects: effects are what computations do when they run. They

treat effect types as a row of effects and annotate each function arrow with an effect row. For

modularity, they implement parametric effect polymorphism via row polymorphism [23, 36]. For

example, a standard application function in System F
𝜖
[40], a core calculus of Koka, has type:

∀𝜀.(Int →𝜀 1) → Int →𝜀 1

It is polymorphic in its effects 𝜀, which must agree with the effect performed by its first argument.

Capability-based effect systems, as in the language Effekt [6, 7] and an extension to Scala 3 [5],

adopt a contextual reading of effects: effects are capabilities provided by the context. Treating

effects as capabilities enables a notion of contextual effect polymorphism [7] which allows effect-

polymorphic reuse of functions without effect variables. For example, an uncurried application

function in System C [6], a core calculus of Effekt, has type:

(𝑓 : Int ⇒ 1, Int) ⇒ 1

The argument 𝑓 is a capability. It is a second-class function that cannot be returned as a value. It

can use any capabilities the context provides. We write ⇒ for second-class functions. For a curried

Authors’ Contact Information: Wenhao Tang, wenhao.tang@ed.ac.uk, The University of Edinburgh, UK; Sam Lindley,

sam.lindley@ed.ac.uk, The University of Edinburgh, UK.

This work is licensed under a Creative Commons Attribution 4.0 International License.

https://orcid.org/0009-0000-6589-3821
https://orcid.org/0000-0002-1360-4714
https://orcid.org/0009-0000-6589-3821
https://orcid.org/0000-0002-1360-4714
https://creativecommons.org/licenses/by/4.0
https://creativecommons.org/licenses/by/4.0

32:2 Wenhao Tang and Sam Lindley

application function, which requires returning a function, we must capture capabilities in types:

(𝑓 : Int ⇒ 1) ⇒ (Int ⇒ 1 at {𝑓 })

Its result has type (Int ⇒ 1 at {𝑓 }). As well as specifying an argument and result types as usual,

this type also includes a capture set {𝑓 } which records that the returned function may use the

capability 𝑓 bound by the argument type (𝑓 : Int ⇒ 1).
Though row-based and capability-based effect systems are both well-studied, their relationship

is not. In this paper, we aim to bridge this gap in the literature by encoding both styles of effect

systems into a uniform framework. Yoshioka et al. [43] propose a parameterised calculus which

can be instantiated to various row-based effect systems, but they point out that it is challenging

future work to extend their approach to capability-based effect systems. Row-based and capability-

based effect systems differ significantly in both theoretical foundations and interpretations of

effects. Moreover, their mechanisms for tracking effects are entangled with other features such as

functions. For instance, as we have seen above, a function arrow in System F
𝜖
is not only a standard

function type but also provides effect annotations. Similarly, a function arrow in System C may

bind capabilities. The entanglement of effect tracking with such features is the central challenge in

analysing the differences between such effect systems.

An alternative foundation for effect systems has recently emerged in the form of modal effect
types (Met) [38], a novel approach to effect systems based on multimodal type theory [14, 15, 21].

Met decouples effect tracking from standard type and term constructs via modalities. For instance,

an application function in Met has a plain function type (Int → 1) → Int → 1. This type imposes

no restriction on how effects from the context may be used. To control the use of effects, we

can add modalities to the type. For example, the type [yield] (Int → 1) → Int → 1 restricts the

argument function to use only the operation yield by wrapping it with the absolute modality [yield]
(modalities have higher precedence than function arrows); the type [] (Int → 1) → [](Int → 1)
restricts both the argument and result functions to be pure.

Tang et al. [38] focus on the pragmatics of Met, especially how modalities enable concise

type signatures of higher-order functions without losing modularity. In this paper we exploit the

observation that the decoupling of effect tracking via modalities leads to a tangible increase in

flexibility and expressivity compared to typical effect systems whose effect tracking is entangled

with other features. Such decoupling allows us to encode a range of effect systems, including those

based on rows and capabilities, in a uniform framework.

We introduceMet(X), a System F-style core calculus with modal effect types parameterised by

an effect structure X. The effect structure is our main extension toMet [38]. An effect structure,

inspired by prior work on abstracting row and effect types [17, 30, 43], defines the structure of effect

collections.Met hardwires the underlying effect structure to scoped rows [23]. In contrast,Met(X)

allows us to smoothly account for the different treatments of effect collections adopted by different

effect systems, such as sets [1, 6], simple rows [30], and scoped rows [23, 24, 28]. Parameterising

by the effect structure enables us to separate the bureaucracy of managing effect collections from

our main concern which is how to use modalities to encode different effect tracking mechanisms.

Met(X) has two further extensions toMet. The first extension ismodality-parameterised handlers.
This is a natural generalisation of effect handlers to be parameterised by a modality which is used

to wrap continuations. This extension is crucial for the encodings of System F
𝜖
and System C as

we will see in Section 2.5. The second extension is local labels, a minimal extension which allows

us to dynamically generate operation labels [11]. This extension is crucial for encoding named

handlers [4, 7, 44] (also called lexically-scoped handlers) as adopted in some languages, especially

those with capability-based effect systems like Effekt.

Rows and Capabilities as Modal Effects 32:3

As the main novelty of this paper, we encode, as macro translations [12], various effect systems

based on rows and capabilities into our uniform framework Met(X). We prove that our encodings

preserve typing and operational semantics. Our encodings do not heavily alter the structure of

programs but mostly merely insert terms for manipulating modalities; our semantics preservation

theorems establish a strong correspondence between the behaviours of source calculi and their

translations. Our primary case studies are encodings of System F
𝜖
[40], a core calculus of Kokawith

a row-based effect system, and of System C [6], a core calculus of Effekt with a capability-based

effect system. By encoding effect systems into a uniform framework, we can directly reason about

the differences the effect tracking mechanisms of different effect systems (Sections 2.4 and 2.5.4).

Our encodings also offer practical insights for language designers (Section 6.3).

Beyond analysing differences between effect systems,Met(X) opens up interesting future re-

search directions. First, Met(X) gives a uniform intermediate representation for different effect

systems which enables us to design type-directed optimisations without restricting ourselves to a

specific effect system. Second,Met(X) allows us to design a new effect system by directly giving its

encoding intoMet(X) instead of starting from scratch. Type soundness and effect safety of Met(X)

guarantee the corresponding properties hold for the new effect system.

The main contributions of this paper are as follows.

• We give a high-level overview of Met(X) and a high-level overview of how to encode row-

based and capability-based effect systems intoMet(X) which we use to compare row-based

and capability-based effect systems (Section 2).

• We formally define Met(X) (Section 3) including our three extensions to Met: effect struc-

tures, modality-parameterised handlers, and local labels. We prove type soundness and effect

safety of Met(X) for any effect structure X satisfying certain natural validity conditions.

• We formally define the encoding of System F
𝜖
, a core calculus with a row-based effect

system à la Koka, intoMet(Rscp) with the theory Rscp for scoped rows (Section 4). We prove

the encoding preserves types and semantics.

• We formally define the encoding of System C, a core calculus with a capability-based effect

system à la Effekt, intoMet(S) with the theory S for sets (Section 5). We prove the encoding

preserves types and semantics.

• We discuss encodings of further effect systems, practical insights for language design

provided by our encodings, as well as potential extensions to Met(X) (Section 6).

Section 7 discusses related and future work. The full specifications, proofs, and appendices can be

found in the extended version of the paper [37].

2 Overview

In this section we give a high-level overview of the main ideas of the paper. We begin with a

brief introduction to modal effects [38] inMet(X) and examples of effect theories X. We briefly

describe the row-based effect system of System F
𝜖
[40] and the capability-based effect system of

System C [6] along with their encodings into Met(X). We use these encodings to directly compare

the different systems in a uniform framework. We specifically consider encodings of the different

kinds of effect handlers provided by the different systems. We also briefly discuss the results of

encoding other effect systems in Met(X).

32:4 Wenhao Tang and Sam Lindley

2.1 Modal Effects and Met(X)

Met(X) is a System F-style core calculus. Every well-typed term in System F is also well-typed in

Met(X). For example, we may define a higher-order application function as follows.

app
Met(X) � 𝜆𝑓 Int→1 .𝜆𝑥Int .𝑓 𝑥 : (Int → 1) → Int → 1

We use meta-level macros defined by � in red to refer to code snippets.

2.1.1 Effect Contexts. Met(X) adopts a contextual reading of effects. Effectful operations are

ascribed a type signature, either globally or locally. For our examples we begin by assuming global

operations yield : Int ↠ 1 and ask : 1 ↠ Int. Typing judgements include an ambient effect context
which tracks the operations that may be performed. Consider the following function.

⊢ gen
Met(X) � 𝜆𝑥Int .do yield 𝑥 : Int → 1 @ yield

It has type Int → 1. When applied it performs the yield operation using the do syntax. The

judgement specifies the effect context with the syntax @ yield, which tracks the possibility of

performing yield. We can now apply app
Met(X) to gen

Met(X) and 42 as follows.

⊢ (𝜆𝑓 Int→1 .𝜆𝑥Int .𝑓 𝑥) (𝜆𝑥Int .do yield 𝑥) 42 : 1 @ yield

There is a natural notion of subeffecting on effect contexts. The following judgement is also valid.

⊢ 𝜆𝑥Int .do yield 𝑥 : Int → 1 @ yield, ask

2.1.2 Absolute Modalities. Effect contexts specified by@𝐸 belong to typing judgements instead

of types. As discussed in Section 1,Met(X) uses modalities to track effects in types. An absolute
modality [𝐸] allows us to specify a new effect context 𝐸 in types different from the ambient one.

For example, consider the following typing derivation.

µ[yield] ⊢ 𝜆𝑥Int .do yield 𝑥 : Int → 1 @ yield

⊢ gen′
Met(X) � mod[yield] (𝜆𝑥Int .do yield 𝑥) : [yield] (Int → 1) @ 𝐹

This term has type [yield] (Int → 1). We highlight modalities in blue when they appear in types.

The syntax mod[yield] introduces an absolute modality [yield] which specifies a singleton effect

context of yield and uses it to override the ambient effect context 𝐹 . The typing judgement of the

premise uses the new effect context yield as its ambient effect context. The lock µ[yield] tracks the
switch of the effect context and controls the accessibility of variables on the left of it. Only variables

that are known not to use effects other than yield may be used. This is important to ensure effect

safety. For example, consider the following invalid judgement.

𝑓 : Int → 1 ⊬ mod[yield] (𝜆𝑥Int .𝑓 𝑥) : [yield] (Int → 1) @ ask

This program is unsafe as 𝑓 may invoke ask which we must not use under effect context yield

specified by the modality [yield].Met(X) rejects this judgement as it relies on the following invalid

judgement for the inner function.

𝑓 : Int → 1,µ[yield] ⊬ 𝜆𝑥Int .𝑓 𝑥 : Int → 1 @ yield

This typing judgement is invalid as the lock µ[yield] prevents the use of 𝑓 . To make it valid, we can

annotate the binding of 𝑓 with the modality [yield] as 𝑓 :[yield] Int → 1. This annotation tracks

that the function 𝑓 may only use the operation yield. Such annotated bindings are introduced by

modality elimination. For instance, we can eliminate the modality of gen′
Met(X) and then apply it

via the let mod syntax as follows (where we elide the typing of the bound term).

... 𝑓 :[yield] Int → 1 ⊢ 𝑓 42 : 1 @ yield

⊢ let mod[yield] 𝑓 = mod[yield] (𝜆𝑥Int .do yield 𝑥) in 𝑓 42 : 1 @ yield

Rows and Capabilities as Modal Effects 32:5

The term 𝜆𝑥Int.do yield 𝑥 inside the modality [yield] is bound to 𝑓 . The binding of 𝑓 is annotated
with this absolute modality. Consequently, the use of 𝑓 in 𝑓 42 requires the ambient effect context

to contain the operation yield. In general, whether a variable binding 𝑓 :𝜇 𝐴 can be used after a

lock µ𝜈 is controlled by a modality transformation relation which we will introduce in Section 3.3.

2.1.3 Relative Modalities. As well as being able to specify a fresh effect context from scratch with

an absolute modality,Met(X) also has relative modalities ⟨𝐷⟩ which allow us to extend the ambient

effect context with an extension 𝐷 . For instance, consider the following derivation.

µ⟨yield⟩ ⊢ 𝜆𝑥Int .do yield (do ask ()) : Int → 1 @ yield, ask

⊢ mod⟨yield⟩ (𝜆𝑥Int .do yield (do ask ())) : ⟨yield⟩(Int → 1) @ ask

The relative modality ⟨yield⟩ extends the ambient effect context ask with the operation yield.

Consequently, the inside function can use both operations. Relative modalities are especially useful

for giving composable types to effect handlers. We refer to Tang et al. [38] for further details. We

use relative modalities in the encoding of System C as we will see in Section 2.3.

2.1.4 Effect Structures. Improving onMet, we parameteriseMet(X) by an effect structureX which

defines the well-formedness relations and equivalence relations for extensions and effect contexts

as well as a subeffecting relation 𝐸 ⩽ 𝐹 . In the remainder of the overview, we will use two effect

structures: S, which models effect collections as sets of operations, to encode capability sets in

System C, and Rscp, which models effect collections as scoped rows of operations, to encode effect

rows in System F
𝜖
. Sets are unordered and allow only one occurrence of each label, whereas scoped

rows allow repeated labels and identify rows up to reordering of non-identical labels. Both theories

support effect variables. Theory S allows arbitrary numbers of effect variables while theory Rscp

only allows at most one effect variable in each row following row polymorphism [23, 36].

2.2 Rows as Modal Effects

Koka [25] has an effect system based on scoped rows [23]. System F
𝜖
[40] is a core calculus

underlying Koka. To encode System F
𝜖
, we use the effect structure Rscp of scoped rows.

Function types in System F
𝜖
have the form 𝐴 →𝐸 𝐵, where 𝐸 is an effect row that specifies the

effects that the function may use. Effect types in System F
𝜖
are entangled with function types. The

key idea of our encoding is to decouple the effect type 𝐸 from the function arrow via an absolute

modality inMet(Rscp). Writing J−K for translations, we translate a function type as follows.

J𝐴 →𝐸 𝐵K = [J𝐸K] (J𝐴K → J𝐵K)

An effectful function in System F
𝜖
is decomposed into an absolute modality and a standard function

in Met(Rscp). For instance, consider the following first-order effectful function in System F
𝜖
which

invokes the operation yield from Section 2.1.

gen
F
𝜖 � 𝜆yield𝑥Int .do yield 𝑥 : Int →yield 1

(Each 𝜆-abstraction in System F
𝜖
is annotated with an effect row.) The translation of gen

F
𝜖 is exactly

the function gen′
Met(X) defined in Section 2.1.2. We repeat its definition here for easy reference.

Jgen
F
𝜖 K = mod[yield] (𝜆𝑥Int .do yield 𝑥) : [yield] (Int → 1)

On the term level, we insert a modality introductionmod[yield] for the 𝜆-abstraction, corresponding
to the type-level modality [yield]. We colour mod in grey in the translations. The black parts

remain terms with valid syntax and provide intuitions on the translation. Remember that the

modality [yield] is a first-class type constructor and not part of the function type.

32:6 Wenhao Tang and Sam Lindley

As a more non-trivial example including both higher-order functions and function application,

consider the effect-polymorphic application function in System F
𝜖
from Section 1.

app
F
𝜖 � Λ𝜀Effect .𝜆𝑓 Int→

𝜀1 .𝜆𝜀𝑥Int .𝑓 𝑥 : ∀𝜀.(Int →𝜀 1) → Int →𝜀 1

This function abstracts over an effect variable 𝜀 which stands for the effects performed by the

argument 𝑓 . Both 𝑓 and the inner 𝜆-abstraction are annotated with 𝜀 as 𝑓 is invoked so the effects

must match up. The outer 𝜆-abstraction is pure as partial application is pure. The encoding of app
F
𝜖

inMet(Rscp) is as follows.

Japp
F
𝜖 K = Λ𝜀Effect .mod[] (𝜆𝑓 [𝜀] (Int→1) .mod[𝜀] (𝜆𝑥Int .let mod[𝜀] 𝑓 ′ = 𝑓 in 𝑓 ′ 𝑥))

: ∀𝜀Effect .[] ([𝜀] (Int → 1) → [𝜀] (Int → 1))
Each function arrow is associated with an absolute modality reflecting the effects performed by

that function. For the pure function arrow in the middle, we use the empty absolute modality [].
The type abstraction Λ𝜀 and quantifier ∀𝜀 are preserved. We omit kinds when obvious. In the term,

in addition to modality introduction, we also insert a modality elimination for 𝑓 before applying it

to 𝑥 . The use of 𝑓 ′ requires that the effect variable 𝜀 is present in the effect context.

Our term translation from System F
𝜖
to Met(Rscp) explicitly decouples the effect tracking

mechanism of System F
𝜖
from function abstraction and application. This reveals the essence of

effect tracking in System F
𝜖
. Each 𝜆-abstraction 𝜆𝐸𝑥 .𝑀 in System F

𝜖
is encoded in Met(Rscp)

by inserting a modality introduction mod[J𝐸K] . This demonstrates that a function in System F
𝜖

carries its effects. Each function application 𝑉 𝑊 in System F
𝜖
is encoded by inserting a modality

elimination let mod[J𝐸K] 𝑓 = J𝑉 K in 𝑓 J𝑊 K for function 𝑉 of type 𝐴 →𝐸 𝐵. This demonstrates

that when a function is invoked in System F
𝜖
, we need to provide all effects it may use, as the

elimination of [J𝐸K] and use of 𝑓 together require J𝐸K to be present in the effect context.

We give the full encoding of System F
𝜖
intoMet(Rscp) in Section 4.

2.3 Capabilities as Modal Effects

Effekt [8] has an effect system based on capabilities. System C [6] is a core calculus underlying

Effekt. Since System C tracks capabilities as sets, we use the effect structure S of sets to encode it.

Functions in System C are called blocks. Blocks are second-class in that they must be fully applied

and cannot be returned. Capabilities are introduced as block variables. Unlike row-based effect

systems which have a separate notion of operation labels, System C interprets effects as capabilities

provided by the context. A capability can only be used if it is in scope.

2.3.1 First-Order Blocks. Let us start with a simple example. Supposing we have a capability

y : Int ⇒ 1 (for yielding integers) in the context, we can construct the following block.

y :
∗ Int ⇒ 1 ⊢ gen𝐶 � {(𝑥 : Int) ⇒ y(𝑥)} : Int ⇒ 1 | {y}

The star ∗ on the binding of y indicates that this block variable is a capability. Braces delimit blocks.

Arguments are wrapped in parentheses. Double arrows emphasise that blocks are second-class.

The block applies the capability y from the context to the argument 𝑥 . The typing judgement tracks

a capability set {y}, which contains all capabilities that the block may use. The block arrow itself

has no capability annotation. The above block is simply encoded as a 𝜆-abstraction inMet(S).1

y∗ : Effect, y : [y∗] (Int → 1), ŷ :[y∗] Int → 1 ⊢ Jgen𝐶K = 𝜆𝑥Int .ŷ 𝑥 : Int → 1 @ y∗

The most interesting aspect of the encoding is how we encode the capability y : Int ⇒ 1 in the

context. A capability y in System C can appear as both a type and a term. We introduce an effect

1
If we strictly follow the encoding of System C in Section 5.2, there would be an extra identity modality for the translated

function. This modality is crucial for keeping the encoding systematic. We omit such identity modalities in the overview.

Rows and Capabilities as Modal Effects 32:7

variable y∗ of kind Effect to represent it at the type level. We omit kinds in the context when obvious.

We encode the capability y itself as a term variable of type [y∗] (Int → 1), where the absolute
modality makes sure that whenever y is invoked the effect variable 𝑦∗ must be present in the

effect context. To avoid repeatedly writing modality eliminations, the modality of y is immediately

eliminated and bound to ŷ after y is introduced. The translation of the block body directly applies

ŷ to 𝑥 . The effect variable y∗ must be in the effect context specified by@ y∗ because ŷ is used.

2.3.2 Boxes. In System C we can turn a second-class block into a first-class value by boxing it.

y :
∗ Int ⇒ 1 ⊢ gen′𝐶 � box {(𝑥 : Int) ⇒ y(𝑥)} : Int ⇒ 1 at {y}

This typing judgement has no capability set as it is for values which are always pure in System C.

The value has type Int ⇒ 1 at {y}, which means it is a boxed block of type Int ⇒ 1with capability

set {y}. The block may only use the capability y. We can unbox a boxed block𝑉 via unbox 𝑉 which

gives back a second-class block. We simply encode boxing and unboxing as modality introduction

and elimination in Met(S). For instance, we encode gen′𝐶 as follows.

y∗, y : [y∗] (Int → 1), ŷ :[y∗] Int → 1 ⊢ Jgen′𝐶K = mod[y∗] (𝜆𝑥Int .ŷ 𝑥) : [y∗] (Int → 1) @ ·

The capability set annotation at {y} in the type is encoded as the absolute modality [y∗]. The
encoding shows the connection between boxes of System C and modalities, supporting the claim

of Brachthäuser et al. [6] that boxes of System C are inspired by modal connectives [9].

2.3.3 Higher-Order Blocks. The situation become more involved when we consider higher-order

blocks that take other blocks as arguments. This is because System C entangles the introduction

and tracking of capabilities with blocks, especially their construction and application.

Let us consider the uncurried and curried application functions (blocks) introduced in Section 1.

app𝐶 � {(𝑥 : Int, 𝑓 : Int ⇒ 1) ⇒ 𝑓 (𝑥)} : (Int, 𝑓 : Int ⇒ 1) ⇒ 1

app′𝐶 � {(𝑓 : Int ⇒ 1) ⇒ box {(𝑥 : Int) ⇒ 𝑓 (𝑥)}} : (𝑓 : Int ⇒ 1) ⇒ (Int ⇒ 1 at {𝑓 })
These are block constructions. The first block app𝐶 binds the integer parameter 𝑥 first because

System C requires value parameters like 𝑥 to appear before blocks parameters like 𝑓 in a parameter

list. In addition to behaving like standard 𝜆-abstractions, block constructions also play an important

role in capability tracking. Specifically:

(1) Both app𝐶 and app′𝐶 bind a capability 𝑓 : Int ⇒ 1 for their block bodies. This capability 𝑓

can also be used in the type as shown in the type of app′𝐶 .
(2) For soundness, System C assumes that this new capability 𝑓 is called directly at least once in

the block body even if 𝑓 may actually not be used. (The capability 𝑓 is indeed called directly

in app𝐶 but not so in app𝐶′ as being boxed.) Consequently, the capability 𝑓 is always added

to the capability set of the block body tracked by the typing judgement.

(3) In addition to the new capability 𝑓 , both app𝐶 and app′𝐶 allow any capability from the

context to be called as well.

Our encoding of block constructions inMet(S) takes account of these three constraints and exposes
them explicitly via modalities. For instance, app𝐶 is encoded as follows.

Japp𝐶K = Λ𝑓 ∗ .mod⟨𝑓 ∗ ⟩ (𝜆𝑥Int .𝜆𝑓 [𝑓
∗] (Int→1) .let mod[𝑓 ∗] ˆ𝑓 = 𝑓 in

ˆ𝑓 𝑥)
: ∀𝑓 ∗ .⟨𝑓 ∗⟩(Int → [𝑓 ∗] (Int → 1) → 1)

For (1), in order to allow the term variable 𝑓 to appear in types, we introduce an effect variable 𝑓 ∗

and wrap the type Int → 1 of the argument 𝑓 with an absolute modality [𝑓 ∗]. The effect variable
𝑓 ∗ represents the term variable 𝑓 at the level of types. Additionally, we immediately eliminate the

modality of 𝑓 to ˆ𝑓 . As a result, in the context of the application
ˆ𝑓 𝑥 we have three bindings of 𝑓 ∗,

32:8 Wenhao Tang and Sam Lindley

𝑓 , and ˆ𝑓 , consistent with the translation of capability y as shown in Section 2.3.1. For (2) and (3),

we use a relative modality ⟨𝑓 ∗⟩ to wrap the whole function type. The relative modality adds the

effect variable 𝑓 ∗ to the ambient effect context for the function to use, in accordance with (2). The

relative modality also still allows the function to use effects from the ambient effect context as we

have seen in Section 2.1.3, in accordance with (3).

The translation of app′𝐶 is similar.

Japp′𝐶K = Λ𝑓 ∗ .mod⟨𝑓 ∗ ⟩ (𝜆𝑓 [𝑓
∗] (Int→1) .let mod[𝑓 ∗] ˆ𝑓 = 𝑓 in mod[𝑓 ∗] (𝜆𝑥 . ˆ𝑓 𝑥))

: ∀𝑓 ∗ .⟨𝑓 ∗⟩([𝑓 ∗] (Int → 1) → [𝑓 ∗] (Int → 1))
In general, the translation of block types from System C to Met(S) is as follows, where we let 𝐴

and 𝐵 range over value types and let 𝑇 range over block types.

J(𝐴, 𝑓 : 𝑇) ⇒ 𝐵K = ∀𝑓 ∗ .⟨𝑓 ∗⟩(J𝐴K → [𝑓 ∗]J𝑇 K → J𝐵K)
A block type is decomposed into a standard function type with extra modalities and type quantifiers,

which makes explicit exactly how System C introduces and tracks capabilities.

2.3.4 Block Calls. Blocks must be fully applied. Assuming we have a capability y : Int ⇒ 1 in the

context, we can apply the blocks app𝐶 and app′𝐶 to the block gen𝐶 as follows.

y :
∗ Int ⇒ 1 ⊢ app𝐶 (gen𝐶 , 42) : 1 | {y}

y :
∗ Int ⇒ 1 ⊢ app′𝐶 (gen𝐶) : Int ⇒ 1 at {y} | {y}

(As blocks must be fully applied, we must additionally pass an integer to app𝐶 — in this case

42.) These are block calls. Similar to block constructions, block calls in System C not only pass

arguments to a block but also play an important role in capability tracking. Specifically:

(1) Recall that both app𝐶 and app′𝐶 bind a capability 𝑓 . Consequently, when calling them with

gen𝐶 , System C substitutes 𝑓 with the capability set {y} of gen𝐶 in types. This is reflected

by at {y} in the type of calling app′𝐶 (before substitution it was at {𝑓 }).
(2) Recall that System C assumes the capability 𝑓 bound by app𝐶 and app′𝐶 is called directly.

Consequently, the capability set of the whole block call must be extended with the capability

set {y} of the argument gen𝐶 . This is reflected by the fact that both typing judgements track

the capability sets {y} even though the application of app′𝐶 does not call y directly.

Our encoding of block calls inMet(S) takes account of these two constraints and exposes them

explicitly via modalities. For instance, our example application of app𝐶 is encoded as follows.

y∗, y : [y∗] (Int → 1), ŷ :[y∗] Int → 1 ⊢
let mod⟨y∗ ⟩ 𝑓 = Japp𝐶K y∗ in 𝑓 42 (mod[y∗] Jgen𝐶K) : 1 @ y∗

For (1), recall that in the translation Japp𝐶K we bind an effect variable 𝑓 ∗ to represent the capability
𝑓 and wrap the argument type with an absolute modality [𝑓 ∗]. Thus for the application of Japp𝐶K,
we instantiate the effect variable 𝑓 ∗ with y∗ and box the argument Jgen𝐶Kwith the absolute modality

[y∗]. For (2), the elimination of the relative modality ⟨y∗⟩ of Japp𝐶K y∗ and the use of 𝑓 ensure that
y∗ must be present in the effect context.

The translation of the call of app′𝐶 is similar.

y∗, y : [y∗] (Int → 1), ŷ :[y∗] Int → 1 ⊢
let mod⟨y∗ ⟩ 𝑓 = Japp′𝐶K y∗ in 𝑓 (mod[y∗] Jgen𝐶K) : [y∗] (Int → 1) @ y∗

As with the encoding of Section 2.2, the encoding of System C inMet(S) helps elucidate exactly
how the capability tracking of System C is entangled with constructs like block constructions and

calls. Modality introduction and elimination reveal the hidden mechanisms.

We give the full encoding of System C intoMet(S) in Section 5.

Rows and Capabilities as Modal Effects 32:9

2.4 Comparing Rows and Capabilities

As a uniform framework, Met(X) allows us to directly compare how effect tracking differs in

different effect systems without dealing with the subtleties in their typing and reduction rules.

For instance, let us compare the encoding of function types and polymorphic types in System F
𝜖

with the encoding of block types and box types in System C.

System F
𝜖
toMet(Rscp) : J𝐴 →𝐸 𝐵K = [J𝐸K] (J𝐴K → J𝐵K)

J∀𝜀.𝐴K = ∀𝜀.J𝐴K

System C to Met(S) : J(𝐴, 𝑓 : 𝑇) ⇒ 𝐵K = ∀𝑓 ∗ .⟨𝑓 ∗⟩(J𝐴K → [𝑓 ∗]J𝑇 K → J𝐵K)
J𝑇 at 𝐶K = [J𝐶K]J𝑇 K

From the encodings we can immediately observe two key differences of System F
𝜖
and System C.

(1) The encoding of function types in System F
𝜖
is wrapped with an absolute modality, whereas

the encoding of a block type in System C is wrapped with a relative modality. The encoding

of box types in System C is wrapped with an absolute modality. The different modalities

reveal a fundamental difference between the meanings of functions in System F
𝜖
and blocks in

System C: functions in System F
𝜖
can only use those effects specified in their types, whereas

blocks in System C can use arbitrary effects from the context unless they are boxed.

(2) The encoding of block types in System C binds a list of effect variables and wraps each

block argument type with an absolute modality of the corresponding effect variable, whereas

the encoding of a function type in System F
𝜖
is much less involved. Only the encoding of

polymorphic types in System F
𝜖
binds effect variables. The difference in the treatment of

argument types reveals that capabilities in System C act as an implicit form of parametric

polymorphism, abstracting the capabilities used by each block variable. This explains why

capability-based effect systems do not require explicit effect variables in many cases where

row-based effect systems do.

2.5 Encoding Effect Handlers

We have seen how effectful functions in System F
𝜖
and System C are encoded inMet(X). These are

the most important parts of our encodings, as most effect systems track effects by giving different

intepretations to functions. Though all effect systems discussed in this paper support effect handlers,

the same ideas apply equally to traditional effect systems for languages with only built-in effects.

Nonetheless, the encodings of effect handlers in System F
𝜖
and System C are interesting and reveal

fundamental differences between the typing and semantics of effect handlers in these two calculi.

In this section, we first briefly review what effect handlers are and then show how effect handlers

in System F
𝜖
and System C are encoded.

2.5.1 Effect Handlers in Met(X). Effect handlers allow us to customise how to handle effectful

operations. For instance, we can write a handler to handle the yield operation defined in Section 2.1

by summing up all yielded integers as follows.

sumMet(X) � handle (do yield 42;do yield 37; 0) with {yield 𝑝 𝑟 ↦→ 𝑝 + 𝑟 ()}
The computation do yield 42;do yield 37; 0 is handled by the handler {yield 𝑝 𝑟 ↦→ 𝑝 + 𝑟 ()}.
The handler consists of one operation clause for the operation yield. In this operation clause, the

variable 𝑝 of type Int is bound to the parameter of the yield operation, and the variable 𝑟 of type

1 → Int is bound to its recursively-handled continuation. (This kind of recursive handling is known

as deep handlers [20] in the literature.) For instance, when the first yield operation is handled, 𝑝

is 42 and 𝑟 is the continuation 𝜆𝑦1.handle (do yield 37; 0) with {yield 𝑝 𝑟 ↦→ 𝑝 + 𝑟 ()}. The
handler clause adds the yielded integer 𝑝 to the result of the continuation 𝑟 , thus returning the

32:10 Wenhao Tang and Sam Lindley

sum of all handled operations. The above program reduces to 79. Effect handlers also have a return

clause which we omit here, but describe in Section 3.

2.5.2 Encoding Effect Handlers in System F
𝜖
. System F

𝜖
does not use the handle with syntax.

Instead, a handler in System F
𝜖
is defined as a handler value, which is a function that takes an

argument to handle. Consider the following polymorphic handler for the yield operation.

sumF
𝜖 � Λ𝜀.handler {yield 𝑝 𝑟 ↦→ 𝑝 + 𝑟 ()} : ∀𝜀.(1 →yield,𝜀 Int) →𝜀 Int

The term sumF
𝜖 is polymorphic over other effects 𝜀 that it does not handle. The handler syntax

defines a handler, which is a function that takes an argument of type 1 →yield,𝜀 Int, calls this

argument with unit and handles the yield operation. The continuation 𝑟 has type 1 →𝜀 Int as it

may use effects abstracted by 𝜀. For instance, we can apply sumF
𝜖 as follows which reduces to 79.

sumF
𝜖 𝐸 (𝜆𝑥1 .do yield 42;do yield 37; 0)

We can easily encode sumF
𝜖 in Met(Rscp) as a polymorphic function whose body uses the

handle with syntax to handle the argument. The main difficulty is that for the handler clause, the

continuation 𝑟 should have type J1 →𝜀 IntK = [𝜀] (1 → Int) following the translation of function

types in Section 2.2. However, the typing rule of handlers in Tang et al. [38] only allows us to give

a function type to 𝑟 with no modality. To solve this problem, we introduce modality-parameterised
handlers. In Met(X), the handler syntax is annotated with a modality 𝜇 as handle𝜇 𝑀 with 𝐻 .

The continuation 𝑟 in the handler clause of 𝐻 now has type 𝜇 (𝐴 → 𝐵) for some types 𝐴 and 𝐵.

With the modality-parameterised handler, we can translate sumF
𝜖 as follows, omitting the details

of the translation of the handler clause, which we name 𝐻 ′
.

JsumF
𝜖 K = Λ𝜀.mod[𝜀] (𝜆𝑓 [yield,𝜀] (1→Int) .handle[𝜀] (let mod[yield,𝜀] 𝑓

′ = 𝑓 in 𝑓 ′ ()) with 𝐻 ′)
: ∀𝜀.[𝜀] ([yield, 𝜀] (1 → Int) → Int)

We eliminate the modality of the argument 𝑓 before applying and handling it. The type translation

follows the translation given in Section 2.2. We give full details of our modality-parameterised

handlers in Section 3.5 and formally define the translation of handlers in Section 4.2.

2.5.3 Encoding Effect Handlers in System C. System C adopts named handlers. Instead of using

operation labels to identify which operation we want to invoke and handle, in System C each

handler binds a fresh capability in the scope of the handler and handles the use of this capability.

For instance, we can define a named handler and use it to handle a computation as follows.

⊢ sum𝐶 � try {yInt⇒1 ⇒ y(42); y(37); 0} with {𝑝 𝑟 ↦→ 𝑝 + 𝑟 (())} : Int | 𝐶
Handlers in System C use the try with syntax. This handler introduces a capability y of type

Int ⇒ 1 in the scope between try andwith. We use the capability y to yield integers 42 and 37.

These two uses of 𝑦 are handled by the handler, whose operation clause is similar to what we have

seen before, except it uses a capability in place of an operation label.

The semantics of named handlers in System C differs from that of the standard effect handlers

of Plotkin and Pretnar [34]. Named handlers have a generative semantics [4] which dynamically

generates a fresh runtime label for each capability introduced by a handler. Dynamic generation

guarantees the uniqueness of runtime labels, which ensures that all uses of a capability must be

handled by the handler that introduces the capability.

To encode the named handlers of System C into Met(X), we need to resolve this semantic gap.

Adding named handlers to Met(X) would work but is rather heavyweight. We observe that the

essence of named handlers is actually a way to dynamically generate labels. We introduce local labels
to Met(X), which decouple dynamic generation of labels from named handlers. This extension is

inspired by the local effects of Biernacki et al. [3], dynamic labels of de Vilhena and Pottier [11], and

Rows and Capabilities as Modal Effects 32:11

fresh labels of the Links language [19]. The syntax local ℓ : 𝐴 ↠ 𝐵 in 𝑀 introduces a local label in

the scope of 𝑀 . The type system ensures the local label ℓ cannot escape from 𝑀 . The semantics

generates a fresh label to replace the local label ℓ . We provide the details in Section 3. With local

labels, we can encode sum𝐶 as follows, omitting the handler𝐻 ′
, which contains an operation clause

for ℓy translated from the handler of sum𝐶 .

⊢ Jsum𝐶K = local ℓy : Int ↠ 1 in handle
[J𝐶K]

(𝜆y [ℓy] (Int→1) .let mod[ℓy] ŷ = y in ŷ 42; ŷ 37; 0) (mod[ℓy] (𝜆𝑥Int .do ℓy 𝑥)) with 𝐻 ′
: Int @ J𝐶K

We introduce a local label ℓy for the handler. We use the term mod[ℓy] (𝜆𝑥Int.do ℓy 𝑥) which
invokes the operation ℓy to simulate the capability introduced by the named handler in sum𝐶 . The
translation of the handled computation binds this function to y, eliminates the modality of y to ŷ,
and uses ŷ to yield integers 42 and 37. As in the encoding of effect handlers in System F

𝜖
, we also

use our modality-parameterised handlers here and annotate handle with the modality [J𝐶K].
Our translation Jsum𝐶K is simplified for clarity; it is actually the result of reducing the full

translation of sum𝐶 by a few steps. We give the full translation in Section 5.2.

2.5.4 Comparing Encodings of Effect Handlers. Our encodings of System F
𝜖
and System C effect

handlers elucidate how effect handlers differ in these two effect systems.

(1) The System C encoding requires local labels, whereas the System F
𝜖
encoding does not, which

reveals the syntactic difference that capabilities in System C have scopes whereas operation

labels in System F
𝜖
do not, and the semantic difference that System C generates fresh runtime

labels for effect handlers, whereas System F
𝜖
does not.

(2) The System F
𝜖
encoding performs operations directly, whereas the System C encoding wraps

operation invocations into a function (such as the term mod[ℓy] (𝜆𝑥Int.do ℓy 𝑥) in Jsum𝐶K)
and passes this function to the handled computation. This difference shows how in a capability-

based effect system such as System C operations are not directly invoked via their labels but

are instead invoked and passed around as blocks explicitly at the term level.

2.6 More Encodings

The encodings of System F
𝜖
and System C illustrate the core idea of using modalities to encode

and compare effect systems with different foundations inMet(X). However,Met(X) can be used

for much more than encoding these two effect systems. In Section 6, we will discuss two more

representative encodings of effect systems into Met(X), including

• System Ξ [7], an early core calculus for Effekt based on capabilities, and

• System F
𝜖+sn

[41], a core calculus formalising scope-safe named handlers of Koka.

These results further demonstrate the expressiveness of Met(X) as a general framework to encode,

compare, and analyse effect systems. We further discuss practical language design insights arising

from our encodings in Section 6.3.

3 The Core Calculus Met(X)

Met(X) is a System F-style call-by-value core calculus with modal effect types parameterised by an

effect structure X. In addition to the effect structure,Met(X) also extendsMet with local labels

and modality-parameterised handlers. We aim to be self-contained about modal effect types in this

paper and refer to Tang et al. [38] for a more complete introduction.

32:12 Wenhao Tang and Sam Lindley

3.1 Syntax

The syntax of Met(X) is as follows. We highlight syntax relevant to modal effect types and our

extensions of local labels and modality-parameterised handlers in grey.

Types 𝐴, 𝐵 ::= 1 | 𝐴 → 𝐵 | 𝜇𝐴
| 𝛼 | ∀𝛼𝐾 .𝐴

Modalities 𝜇, 𝜈 ::= [𝐸] | ⟨𝐷⟩
Extensions 𝐷 ::= · | ℓ, 𝐷 | 𝜀, 𝐷
Effect Contexts 𝐸, 𝐹 ::= · | ℓ, 𝐸 | 𝜀, 𝐸
Kinds 𝐾 ::= Abs | Any | Effect
Contexts Γ ::= · | Γ, 𝛼 : 𝐾 | Γ, µ𝜇𝐸

| Γ, 𝑥 :𝜇𝐸 𝐴 | Γ, ℓ : 𝐴 ↠ 𝐵

Label Contexts Σ ::= · | Σ, ℓ : 𝐴 ↠ 𝐵

Terms 𝑀, 𝑁 ::= () | 𝑥 | 𝜆𝑥𝐴 .𝑀 | 𝑀 𝑁

| Λ𝛼𝐾 .𝑉 | 𝑀 𝐴 | mod𝜇 𝑉

| let𝜈 mod𝜇 𝑥 = 𝑉 in 𝑀

| do ℓ 𝑀 | local ℓ : 𝐴 ↠ 𝐵 in 𝑀

| handle
𝜇 𝑀 with 𝐻

Values 𝑉 ,𝑊 ::= () | 𝑥 | 𝜆𝑥𝐴 .𝑀 | Λ𝛼𝐾 .𝑉 | mod𝜇 𝑉

| 𝑉 𝐴 | let𝜈 mod𝜇 𝑥 = 𝑉 in𝑊

Handlers 𝐻 ::= {return 𝑥 ↦→ 𝑁, ℓ 𝑝 𝑟 ↦→ 𝑀}

We have two kinds Abs and Any for value types and one kind Effect for extensions and effect

contexts. By convention, we usually write 𝛼 for type variables of values and 𝜀 for effect variables.

We omit kinds when obvious. We let 𝐴 range over both value types 𝐴 and effect contexts 𝐸, and let

𝛼 range over type variables for them in type abstraction Λ𝛼𝐾 .𝑉 and type application𝑀 𝐴.

Unlike Tang et al. [38], we omit masking, as it is not used by our encodings. We discuss future

extensions to Met(X), including masking, in Section 6.4.

For simplicity, we assume that each handler only handles one operation, and fix a global context

Σ which associates each global operation label with its type. An entry ℓ : 𝐴 ↠ 𝐵 indicates that

the operation ℓ takes an argument of type 𝐴 and returns a value of type 𝐵. We also support local

labels which are introduced by local ℓ : 𝐴 ↠ 𝐵 in 𝑀 and maintained in the context Γ. We do not

distinguish between local and global labels syntactically.

Values include type application and modality elimination whose subterms are restricted to be

values, following the notion of complex values in call-by-push-value [26]. Such complex values are

convenient as we adopt a value restriction [39] for type abstraction and modality introduction.

3.2 Effect Structures

An effect structure defines the structure of effect collections, that is, extensions and effect contexts in

Met(X). Extensions𝐷 and effect contexts 𝐸 are both syntactically defined as lists of labels and effect

variables. We overload commas for list concatenation, e.g., 𝐷, 𝐸 and 𝐸, 𝐹 are both list concatenation.

As usual, list concatenation is associative but not commutative. The kinding, equivalence, and

subtyping (or subeffecting) relations for them are determined by an effect structure X.

Definition 3.1 (Effect structure). An effect structure X is a tuple ⟨:,≡⟩ of two relations.

• Γ ⊢ 𝐷 : Effect is a kinding relation which defines well-formed extensions and is preserved

by concatenation 𝐷, 𝐷 ′
. That is, if Γ ⊢ 𝐷 : Effect and Γ ⊢ 𝐷 ′

: Effect, then Γ ⊢ 𝐷,𝐷 ′
: Effect.

• Γ ⊢ 𝐷 ≡ 𝐷 ′
is an equivalence relation for well-formed extensions.

Our definition of an effect structureX is minimal and only includes the definitions of kinding and

equivalence relations for extensions 𝐷 . We can naturally derive the kinding relation Γ ⊢ 𝐸 : Effect,

equivalence relation Γ ⊢ 𝐸 ≡ 𝐸′, and subeffecting relation Γ ⊢ 𝐸 ⩽ 𝐸′ for effect contexts as follows.

Γ ⊢ · : Effect
Γ ∋ 𝜀 : Effect
Γ ⊢ 𝜀 : Effect

Γ ⊢ 𝐷 : Effect Γ ⊢ 𝐸 : Effect

Γ ⊢ 𝐷, 𝐸 : Effect

Γ ⊢ · ≡ · Γ ⊢ 𝜀 ≡ 𝜀
Γ ⊢ 𝐷1 ≡ 𝐷2 Γ ⊢ 𝐸1 ≡ 𝐸2

Γ ⊢ 𝐷1, 𝐸1 ≡ 𝐷2, 𝐸2

Γ ⊢ 𝐸, 𝐸′ ≡ 𝐹
Γ ⊢ 𝐸 ⩽ 𝐹

Rows and Capabilities as Modal Effects 32:13

The kinding and equivalence relations for effect contexts are defined inductively. The subeffecting

relation is more interesting. We have 𝐸 ⩽ 𝐹 if there exists an effect context 𝐸′ such that 𝐸, 𝐸′ is
well-formed and 𝐸, 𝐸′ ≡ 𝐹 . It is easy to verify that this subeffecting relation is a preorder. We often

write :X , ⩽X , and ≡X to denote which specific effect structure we refer to. We sometimes omit the

context Γ for the equivalence and subeffecting for brevity.

We give three examples of effect structures, among which Rscp and S are used for the encoding

of System F
𝜖
and System C in Sections 4.2 and 5.2, respectively.

Definition 3.2 (Simple Rows). Rsimp = ⟨:Rsimp
,≡Rsimp

⟩ defines effect collections as simple rows [30]

of operation labels. Well-formed extensions consist of distinct labels without any effect variable.

𝐷 ≡ 𝐷 ′
if 𝐷 is identical to 𝐷 ′

modulo reordering of labels.

Definition 3.3 (Scoped Rows). Rscp = ⟨:Rscp
,≡Rscp

⟩ defines effect collections as scoped rows [23] of
operation labels. Well-formed extensions comprise potentially duplicated labels without any effect

variable. 𝐷 ≡ 𝐷 ′
if 𝐷 is identical to 𝐷 ′

modulo reordering of distinct labels.

Definition 3.4 (Sets). S = ⟨:S,≡S⟩ defines effect collections as sets. Well-formed extensions are

sets of labels and effect variables. The equivalence relation is set equivalence.

Full formal definitions of these effect structures are given in ??. The effect structure Rscp cor-

responds to the treatment of effect collections as scoped rows used inMet, modulo the fact that

Met has presence types for labels in effect contexts, whereas we choose not to for simplicity. We

discuss extending Met(X) with presence types and richer effect kinds in Section 6.4.

Following Yoshioka et al. [43], an effect structure that intuitively characterises the notion of a

collection of effects should satisfy the following validity conditions.

Definition 3.5 (Validity Conditions). Validity conditions for an effect structure X are

(1) if 𝐸 ⩽X · then 𝐸 = ·, and
(2) if ℓ ⩽X ℓ ′, 𝐸 and ℓ ≠ ℓ ′ then ℓ ⩽X 𝐸.

The validity conditions together ensure that if a label ℓ is a subtype of an effect context 𝐸, then it

must syntactically appear in the effect context 𝐸. The first condition prevents us from claiming

that some label is contained in the empty effect context. The second condition prevents us from

identifying two syntactically different label as the same one. All effect structures given above

satisfy the validity conditions. Our type soundness and effect safety theorems in Section 3.7 are

parameterised by any effect structure satisfying the validity conditions.

3.3 Modalities

Modalities manipulate effect contexts as follows.

[𝐸] (𝐹) = 𝐸 ⟨𝐷⟩(𝐹) = 𝐷, 𝐹

The absolute modality [𝐸] completely replaces the effect context 𝐹 with 𝐸. The extension modality

⟨𝐷⟩ extends the effect context 𝐹 with 𝐷 . Following Met [38], we write 𝜇𝐹 as a meta-level notation

for the pair of modality 𝜇 and effect context 𝐹 where 𝐹 is the effect context that 𝜇 manipulates.

Modality Composition. We define the composition of modalities as follows.

𝜇 ◦ [𝐸] = [𝐸] [𝐸] ◦ ⟨𝐷⟩ = [𝐷, 𝐸] ⟨𝐷1⟩ ◦ ⟨𝐷2⟩ = ⟨𝐷2, 𝐷1⟩
Composition is from left to right, for consistency with Met. First, an absolute modality fully

determines the new effect context 𝐸 no matter what 𝜇 does before. Second, setting the effect context

to 𝐸 followed by extending 𝐸 with 𝐷 is equivalent to directly setting the effect context to 𝐷, 𝐸.

Third, relative modalities can be composed into one by combining the extensions. Composition is

32:14 Wenhao Tang and Sam Lindley

well-defined as we have (𝜇 ◦ 𝜈) (𝐸) = 𝜈 (𝜇 (𝐸)). We also have associativity (𝜇 ◦ 𝜈) ◦ 𝜉 = 𝜇 ◦ (𝜈 ◦ 𝜉)
and identity ⟨⟩ ◦ 𝜇 = 𝜇 ◦ ⟨⟩ = 𝜇. All of these properties are independent of the effect structure X.

Modality Transformation. We define a modality transformation judgement, which determines

the coercion of modalities, controlling the accessibility of variables as mentioned in Section 2.1.2

where we disallow the usage of the variable 𝑓 : Int → 1. Given a variable binding 𝑓 :𝜇𝐹 𝐴 (which

means 𝑓 is introduced by eliminating the modality 𝜇 of some value of type 𝜇𝐴 at effect context 𝐹),

we can access it after a lock µ𝜈𝐹 if the modality transformation relation Γ ⊢ 𝜇 ⇒ 𝜈 @ 𝐹 holds. The

modality transformation judgement is defined as follows.

MT-Abs

Γ ⊢ 𝐸 ⩽ 𝜇 (𝐹)
Γ ⊢ [𝐸] ⇒ 𝜇 @ 𝐹

MT-Extend

Γ ⊢ 𝐷1, 𝐹 ⩽ 𝐷2, 𝐹 for all 𝐸 ⩽ 𝐹

Γ ⊢ ⟨𝐷1⟩ ⇒ ⟨𝐷2⟩ @𝐸

Both rules make sure that we do not lose any effects after transformation. Rule MT-Abs allows

us to transform an absolute modality [𝐸] to any other modality 𝜇 as long as 𝐸 ⩽ 𝜇 (𝐹). Rule
MT-Extend allows us to transform an extension modality ⟨𝐷1⟩ to another extension modality ⟨𝐷2⟩
as long as for any effect context 𝐹 larger than 𝐸, we have 𝐷1, 𝐹 ⩽ 𝐷2, 𝐹 . We need to quantify over all

effect contexts 𝐹 which are larger than the ambient effect context 𝐸 because the new effect context

that a relative modality gives us depends on the ambient effect context. For instance, consider the

following judgement which coerces the modality ⟨𝐷1⟩ of 𝑉 to ⟨𝐷2⟩.

Γ ⊢ let mod⟨𝐷1 ⟩ 𝑥 = 𝑉 in mod⟨𝐷2 ⟩ 𝑥 : ⟨𝐷2⟩(Int → Int) @𝐸

In its derivation tree we need the transformation relation ⟨𝐷1⟩ ⇒ ⟨𝐷2⟩ @𝐸. To preserve the

judgement after upcasting 𝐸 to a larger 𝐹 , the transformation requires 𝐷1, 𝐹 ⩽ 𝐷2, 𝐹 for any 𝐸 ⩽ 𝐹 .

Our MT-Extend rule is suitable for any effect structure, while the corresponding rule MT-Upcast

in Tang et al. [38] is specific to the treatment of effect collections as scoped rows inMet. Given a

specific effect structure, we can usually find an easier-to-compute representation of MT-Extend

without universal quantification (as is the case for the MT-Upcast rule in Met).

3.4 Kinds and Contexts

The kinding relations for extensions and effect contexts are provided by the effect structure X in

Section 3.2. For value types, we have two kinds where Abs is a subkind of Any. A type has kind Abs

if all function types appearing as syntactic subterms of the type are wrapped in absolute modalities.

For example, (1 → 1) → 1 does not have kind Abs whereas [] ((1 → 1) → 1) does. Intuitively,
values whose types have kind Abs do not depend on the ambient effect context. For any operation

ℓ : 𝐴 ↠ 𝐵, types 𝐴 and 𝐵 should have kind Abs to avoid effect leakage following Tang et al. [38].

The kinding and type equivalence rules of Met(X) are given in ??.
Contexts are ordered. We write Γ @𝐸 when context Γ is well-formed at effect context 𝐸, that is,

the types of the variables are well-kinded, and the variables and locks are compatible with 𝐸. For

instance, the following context is well-formed at effect context 𝐸.

𝑥 :𝜇𝐹 𝐴1, 𝑦 :𝜈𝐹 𝐴2, µ[𝐸]𝐹 , 𝑧 :𝜉𝐸 𝐴3,𝑤 : 𝐴4 @𝐸

Let us read from right to left. Variable 𝑤 is at effect context 𝐸 (it is technically tagged with an

identity modality ⟨⟩𝐸 which is omitted). Variable 𝑧 is tagged with modality 𝜉𝐸 , which means it is

not at effect context 𝐸 but actually at effect context 𝜉 (𝐸). Lock µ[𝐸]𝐹 changes the effect context to

𝐸 from 𝐹 . Variables 𝑦 and 𝑥 are at effect contexts 𝜈 (𝐹) and 𝜇 (𝐹), respectively. Each modality in the

context carries an index of the effect context it manipulates, making switching of effect contexts

explicit. We frequently omit the index when it is clear what it must be. Formal definitions of kinding

and context well-formedness rules are in ??. We define locks(−) to compose all the modalities on

Rows and Capabilities as Modal Effects 32:15

Γ ⊢ (𝜇,𝐴) ⇒ 𝜈 @ 𝐹 Γ ⊢ 𝐴 : Abs

Γ ⊢ (𝜇,𝐴) ⇒ 𝜈 @ 𝐹

Γ ⊢ 𝜇 ⇒ 𝜈 @ 𝐹

Γ ⊢ (𝜇,𝐴) ⇒ 𝜈 @ 𝐹

Γ ⊢ 𝑀 : 𝐴 @𝐸

T-Var

Γ ⊢ (𝜇,𝐴) ⇒ locks(Γ′) @ 𝐹

Γ, 𝑥 :𝜇𝐹 𝐴, Γ
′ ⊢ 𝑥 : 𝐴 @𝐸

T-Mod

Γ,µ𝜇𝐹 ⊢ 𝑉 : 𝐴 @ 𝜇 (𝐹)
Γ ⊢ mod𝜇 𝑉 : 𝜇𝐴 @ 𝐹

T-Letmod

Γ,µ𝜈𝐹 ⊢ 𝑉 : 𝜇𝐴 @𝜈 (𝐹)
Γ, 𝑥 :(𝜈◦𝜇)𝐹 𝐴 ⊢ 𝑀 : 𝐵 @ 𝐹

Γ ⊢ let𝜈 mod𝜇 𝑥 = 𝑉 in 𝑀 : 𝐵 @ 𝐹

T-Abs

Γ, 𝑥 : 𝐴 ⊢ 𝑀 : 𝐵 @𝐸

Γ ⊢ 𝜆𝑥𝐴 .𝑀 : 𝐴 → 𝐵 @𝐸

T-App

Γ ⊢ 𝑀 : 𝐴 → 𝐵 @𝐸

Γ ⊢ 𝑁 : 𝐴 @𝐸

Γ ⊢ 𝑀 𝑁 : 𝐵 @𝐸

T-TAbs

Γ, 𝛼 : 𝐾 ⊢ 𝑉 : 𝐴 @𝐸

Γ ⊢ Λ𝛼𝐾 .𝑉 : ∀𝛼𝐾 .𝐴 @𝐸

T-TApp

Γ ⊢ 𝑀 : ∀𝛼𝐾 .𝐴 @𝐸

Γ ⊢ 𝐵 : 𝐾

Γ ⊢ 𝑀 𝐵 : 𝐴[𝐵/𝛼] @𝐸

T-Unit

Γ ⊢ () : 1 @𝐸

T-Do

Σ, Γ ∋ ℓ : 𝐴 ↠ 𝐵 Γ ⊢ 𝑁 : 𝐴 @ ℓ, 𝐸

Γ ⊢ do ℓ 𝑁 : 𝐵 @ ℓ, 𝐸

T-LocalEffect

Γ, ℓ : 𝐴 ↠ 𝐵 ⊢ 𝑀 : 𝐴′
@𝐸

Γ ⊢ local ℓ : 𝐴 ↠ 𝐵 in 𝑀 : 𝐴′
@𝐸

T-Handle

𝜇 (𝐹) = 𝐸 Γ ⊢ 𝜇 ⇒ ⟨⟩ @ 𝐹 Γ ⊢ 𝜇 ⇒ 𝜇 ◦ 𝜇 @ 𝐹 Γ,µ𝜇𝐹 ,µ⟨ℓ ⟩𝐸 ⊢ 𝑀 : 𝐴 @ ℓ, 𝐸

Σ, Γ ∋ ℓ : 𝐴′ ↠ 𝐵′ Γ,µ𝜇𝐹 , 𝑥 : (𝜇 ◦ ⟨ℓ⟩)𝐴 ⊢ 𝑁 : 𝐵 @𝐸 Γ,µ𝜇𝐹 , 𝑝 : 𝐴′, 𝑟 : 𝜇 (𝐵′ → 𝐵) ⊢ 𝑁 ′
: 𝐵 @𝐸

Γ ⊢ handle𝜇 𝑀 with {return 𝑥 ↦→ 𝑁, ℓ 𝑝 𝑟 ↦→ 𝑁 ′} : 𝐵 @ 𝐹

Fig. 1. Typing rules and auxiliary rules of Met(X).

the locks in a context.

locks(·) = ⟨⟩ locks(Γ,µ𝜇𝐸) = locks(Γ) ◦ 𝜇 locks(Γ, 𝑥 :𝜇𝐸 𝐴) = locks(Γ)

We identify contexts up to the following two equations.

Γ,µ⟨⟩𝐹 , Γ
′
@𝐸 = Γ, Γ′ @𝐸 Γ,µ𝜇𝐹 ,µ𝜈𝐹 ′ , Γ

′
@𝐸 = Γ,µ(𝜇◦𝜈)𝐹 , Γ

′
@𝐸

3.5 Typing

Figure 1 gives the typing rules forMet(X). As before, we highlight rules relevant to modal effect

types and our extensions in grey. The typing judgement Γ ⊢ 𝑀 : 𝐴 @𝐸 means that the term𝑀 has

type 𝐴 under context Γ and effect context 𝐸 with well-formedness condition Γ @𝐸.

Modality Introduction and Elimination. Rule T-Mod introduces a modality 𝜇 to the conclusion,

puts a lock into the context of the premise, and changes the effect context. Rule T-Letmod eliminates

a modality 𝜇 and moves it to the variable binding. We have seen examples that rely on these rules

in Section 2.1. There is another modality 𝜈 in T-Letmod which is needed for technical reasons

to support sequential elimination. For instance, given a variable 𝑥 : 𝜈𝜇𝐴 with two modalities, to

eliminate both 𝜈 and 𝜇, we can first eliminate 𝜈 to 𝑦 :𝜈 𝜇𝐴 and then to 𝑧 :𝜈◦𝜇 𝐴 as follows.

let mod𝜈 𝑦 = 𝑥 in let𝜈 mod𝜇 𝑧 = 𝑦 in 𝑀

We restrictmod𝜇 and let𝜈 mod𝜇 to values to avoid effect leakage, as inMet [29, 38]. Otherwise,

for example, if we were to allow a computation mod[yield] (do yield 42), this term would be

well-typed in the empty effect context but get stuck as yield is not handled (note that we do not

wantmod to suspend computations as it could be confusing to programmers).

32:16 Wenhao Tang and Sam Lindley

Accessing Variables. Locks control the accessibility of variables as we have shown in Section 2.1.

Rule T-Var uses the auxiliary judgement Γ ⊢ (𝜇,𝐴) ⇒ locks(Γ′) @ 𝐹 (also defined in Figure 1)

to check whether we can access a variable 𝑥 :𝜇𝐹 𝐴 given all locks in Γ′. When 𝐴 has kind Abs,

we can always use 𝑥 as it does not depend on the effect context. Otherwise we need to make

sure the coercion from 𝜇 to locks(Γ′) is safe by checking the modality transformation relation

Γ ⊢ 𝜇 ⇒ locks(Γ′) @ 𝐹 where locks(Γ′) composes the modalities on locks in Γ′. We have seen an

example in Section 2.1.2 that the variable 𝑓 : Int → 1 cannot be used while 𝑓 :[yield] Int → 1 can.

As another example, 𝑥 :⟨ℓ ⟩ 1 → 1,µ[ℓ ′] ⊢ 𝑥 : 1 → 1 @ ℓ ′ is ill-typed since we cannot transform the

modality ⟨ℓ⟩ to [ℓ ′]. It would be well-typed if 𝑥 had type Int.

Local Labels. Rule T-LocalEffect binds a fresh local label ℓ with type signature 𝐴 ↠ 𝐵 (we

adopt the Barendregt convention for local labels.) Well-formedness of type 𝐴′
and effect context 𝐸

under Γ ensures that ℓ cannot appear in 𝐴′
or 𝐸. Rule T-Do may use any label from Σ and Γ. The

operational semantics (Section 3.6) generates runtime labels to substitute local labels.

Modality-Parameterised Handlers. Rule T-Handle defines a handler and uses it to handle a

computation 𝑀 . Let us first ignore all occurrences of the modality 𝜇. A handler of operation ℓ

extends the effect context with ℓ as indicated by the lock µ⟨ℓ ⟩𝐸 in the typing judgement of𝑀 . The

return value of𝑀 is bound to the variable 𝑥 in the return clause return 𝑥 ↦→ 𝑁 . The type of 𝑥 also

has the modality ⟨ℓ⟩ since 𝑥 may use the operation ℓ , e.g., when𝑀 returns a function 𝜆𝑥.do ℓ 𝑥 .

We generalise the handlers of Tang et al. [38] to be parameterised by a modality 𝜇. The modality

𝜇 transforms the effect context 𝐹 to 𝜇 (𝐹) = 𝐸 for the whole term as witnessed by the addition of

the lock µ𝜇𝐹 to the context of each premise. Since both the handled computation and the handler

clauses are well-typed under the lock µ𝜇𝐹 , we can wrap the continuation 𝑟 , which captures the

handled computation and the handler, into the modality 𝜇. The return value 𝑥 is also wrapped in

the modality 𝜇 as it is returned from𝑀 whose context contains the lock µ𝜇𝐹 . This is in contrast to

the handler rule of Tang et al. [38], as shown below, which just gives 𝑟 the function type 𝐵′ → 𝐵.

Σ, Γ ∋ ℓ : 𝐴′ ↠ 𝐵′ Γ,µ⟨ℓ ⟩𝐸 ⊢ 𝑀 : 𝐴 @ ℓ, 𝐸 Γ, 𝑥 : ⟨ℓ⟩𝐴 ⊢ 𝑁 : 𝐵 @𝐸 Γ, 𝑝 : 𝐴′, 𝑟 : 𝐵′ → 𝐵 ⊢ 𝑁 ′
: 𝐵 @𝐸

Γ ⊢ handle 𝑀 with {return 𝑥 ↦→ 𝑁, ℓ 𝑝 𝑟 ↦→ 𝑁 ′} : 𝐵 @𝐸

To recover the original handler construct of Tang et al. [38], we just need to instantiate the modality

𝜇 to the identity modality ⟨⟩ as shown by the following syntactic sugar.

handle 𝑀 with {return 𝑥 ↦→ 𝑁, ℓ 𝑝 𝑟 ↦→ 𝑁 ′}
� handle

⟨⟩ 𝑀 with {return 𝑥 ↦→ 𝑁, ℓ 𝑝 𝑟 ↦→ let mod⟨⟩ 𝑟 = 𝑟 in 𝑁
′}

Having a modality 𝜇 for the continuation 𝑟 allows us to have more fine-grained control over

effect tracking for the continuation. As discussed in Section 2.5, the extra expressiveness provided

by this rule is especially useful for a unified framework to encode other effect systems with support

for effect handlers, as different encodings typically require translating a function type into a type

with some modalities. We give an example of an effect handler annotated with the empty absolute

modality [] in Met(X) based on the handler sumMet(X) in Section 2.5.1.

handle
[] (do yield 42;do yield 37; 0) with {return 𝑥 ↦→ let mod[yield] 𝑥

′ = 𝑥 in 𝑥 ′,
yield 𝑝 𝑟 ↦→ let mod[] 𝑟

′ = 𝑟 in 𝑝 + 𝑟 ′ ()}

As a result of the annotation [], the continuation 𝑟 has type [] (1 → Int) instead of 1 → Int. In the

return clause we eliminate the modality [] ◦ ⟨yield⟩ = [yield] of 𝑥 . In contrast, the omitted return

clause of sumMet(X) is return 𝑥 ↦→ let mod⟨yield⟩ 𝑥
′ = 𝑥 in 𝑥 ′.

The new handler rule requires the modality 𝜇 to have a comonadic structure as specified by

the conditions Γ ⊢ 𝜇 ⇒ ⟨⟩ @ 𝐹 and Γ ⊢ 𝜇 ⇒ 𝜇 ◦ 𝜇 @ 𝐹 . These conditions are important because

Rows and Capabilities as Modal Effects 32:17

Value normal forms 𝑈 ::= 𝑥 | 𝜆𝑥𝐴 .𝑀 | Λ𝛼𝐾 .𝑉 | mod𝜇 𝑈

Evaluation Contexts E ::= [] | E 𝑁 | 𝑈 E | E 𝐴 | mod𝜇 E | let𝜈 mod𝜇 𝑥 = E in 𝑀

| do ℓ E | handle𝜇 E with 𝐻

E-App (𝜆𝑥𝐴 .𝑀)𝑈 { 𝑀 [𝑈 /𝑥]
E-TApp (Λ𝛼𝐾 .𝑈)𝐴{ 𝑈 [𝐴/𝛼]
E-Letmod let𝜈 mod𝜇 𝑥 = mod𝜇 𝑈 in 𝑀 { 𝑀 [𝑈 /𝑥]
E-Gen local ℓ : 𝐴 ↠ 𝐵 in 𝑀 | Ω { 𝑀 [ℓ′/ℓ] | Ω, ℓ′ : 𝐴 ↠ 𝐵 where ℓ′ fresh in Ω and Σ
E-Ret handle

𝜇 𝑈 with 𝐻 { 𝑁 [(mod(𝜇◦⟨ℓ ⟩) 𝑈)/𝑥],
where 𝐻 = {return 𝑥 ↦→ 𝑁, ℓ 𝑝 𝑟 ↦→ 𝑁 ′}

E-Op handle
𝜇 E[do ℓ 𝑈] with 𝐻 { 𝑁 [𝑈 /𝑝, (mod𝜇 (𝜆𝑦.handle𝜇 E[𝑦] with 𝐻))/𝑟]

where ℓ ∉ bl(E) and 𝐻 ∋ (ℓ 𝑝 𝑟 ↦→ 𝑁)
E-Lift E[𝑀] { E[𝑁] if𝑀 { 𝑁

Fig. 2. Operational semantics of Met(X).

semantically a handler for operation ℓ may not be used (when ℓ is not invoked) or be used multiple

times (when ℓ is invoked multiple times). Intuitively, each use of the handler consumes one modality

𝜇. The condition 𝜇 ⇒ ⟨⟩ @ 𝐹 makes sure that when the handler is not used, we can transform

away the modality 𝜇 at effect context 𝐹 . The condition 𝜇 ⇒ 𝜇 ◦ 𝜇 @ 𝐹 makes sure that when the

handler is used multiple times, we can duplicate the modality 𝜇 each time the handlers is used.

For example, the identity modality ⟨⟩ trivially satisfies the comonadic structure, and the absolute

modality [𝐸] satisfies the comonadic structure at 𝐹 with 𝐸 ⩽ 𝐹 .

3.6 Operational Semantics

We adopt the generative semantics of Biernacki et al. [4] for local labels. Each local label ℓ introduced

by local ℓ : 𝐴 ↠ 𝐵 in 𝑀 is replaced by a fresh label generated at runtime. We manage these

labels in a context defined as Ω ::= · | Ω, ℓ : 𝐴 ↠ 𝐵. We do not syntactically distinguish runtime

generated labels from static labels; runtime labels are tracked in Ω. We define value normal forms

𝑈 which cannot reduce further. The definitions for all new syntax and the operational semantics

are given in Figure 2. The reduction relation has the form𝑀 | Ω { 𝑁 | Ω′
. We omit Ω when it is

unchanged. Only E-Gen extends Ω. We do not restrict𝑀 and 𝑁 to be closed terms. All judgements

defined previously are also straightforwardly extended with Ω. For instance, typing judgements

are of form Ω | Γ ⊢ 𝑀 : 𝐴 @𝐸 for runtime terms.

The operational semantics mostly followsMet. Rule E-Gen is new and generates a fresh runtime

label for a local label binding. Moreover, since we generalise the handler of Met, rules E-ret and

E-Op are also generalised. Rule E-Ret wraps the return value with the modality 𝜇 ◦ ⟨ℓ⟩. Rule E-Op
wraps the continuation with the modality 𝜇. The modalities in both rules are consistent with the

typing rule T-Handle in Section 3.5. The function bl(E) gives the set of bound operation labels

which have handlers installed in the evaluation context E. The condition ℓ ∉ bl(E) makes sure

each operation ℓ is handled by the dynamically innermost handler of ℓ .

3.7 Type Soundness and Effect Safety

To state syntactic type soundness, we first define normal forms.

Definition 3.6 (Normal Forms). We say that term 𝑀 is in normal form with respect to effect

context 𝐸, if it is either in value normal form𝑀 = 𝑈 or of the form𝑀 = E[do ℓ 𝑈] for ℓ ⩽ 𝐸.

The following theorems together give type soundness and effect safety. They hold for any effect

structure X satisfying the validity conditions of Definition 3.5.

32:18 Wenhao Tang and Sam Lindley

Theorem 3.7 (Progress). InMet(X) whereX satisfies the validity conditions, if Ω | · ⊢ 𝑀 : 𝐴 @𝐸,
then either𝑀 | Ω { 𝑁 | Ω′ for some 𝑁 and Ω′, or𝑀 is in a normal form with respect to 𝐸.

Theorem 3.8 (Subject Reduction). InMet(X) where X satisfies the validity conditions, if Ω |
Γ ⊢ 𝑀 : 𝐴 @𝐸 and𝑀 | Ω { 𝑁 | Ω′, then Ω′ | Γ ⊢ 𝑁 : 𝐴 @𝐸.

The proofs are given in ??.

4 Encoding a Row-Based Effect System à la Koka

In this section, we briefly present System F
𝜖
[40], a System F-style core calculus formalising the

row-based effect system of Koka [25], and show how to encode it intoMet(Rscp). We refer to Xie

et al. [40] for a complete introduction to System F
𝜖
.

4.1 System F
𝝐

The syntax of System F
𝜖
is as follows.

Value Types 𝐴, 𝐵 ::= 1 | 𝛼 | 𝐴 →𝐸 𝐵 | ∀𝛼𝐾 .𝐴
Effect Rows 𝐸, 𝐹 ::= · | 𝜀 | ℓ, 𝐸
Kind 𝐾 ::= Effect | Value
Contexts Γ ::= · | Γ, 𝑥 : 𝐴 | Γ, 𝛼 : 𝐾

Label Contexts Σ ::= · | Σ, ℓ : 𝐴 ↠ 𝐵

Values 𝑉 ,𝑊 ::= () | 𝑥 | 𝜆𝐸𝑥𝐴 .𝑀
| Λ𝛼𝐾 .𝑉 | handler 𝐻

Computations 𝑀, 𝑁 ::= return 𝑉 | 𝑉 𝑊 | 𝑉 𝐴
| do ℓ 𝑉 | let 𝑥 = 𝑀 in 𝑁

Handlers 𝐻 ::= {ℓ 𝑝 𝑟 ↦→ 𝑁 }
Different from Xie et al. [41], our version of System F

𝜖
is fine-grain call-by-value [27]. Effect rows

𝐸 are scoped rows [23] with an optional tail effect variable 𝜀. As in Met(X), we assume a fixed

global label context Σ. By convention we write 𝜀 for effect variables and 𝛼 for value type variables.

We omit their kinds, Effect and Value, when obvious. In type abstraction and application, we let 𝐴

range over both value types and effect rows, and let 𝛼 range over their type variables.

Typing judgements in System F
𝜖
include Γ ⊢ 𝑉 : 𝐴 for values and Γ ⊢ 𝑀 : 𝐴 | 𝐸 for computations,

where the latter tracks effects 𝐸. The typing rules and operational semantics of System F
𝜖
are

standard for a System F-style calculus with effect handlers and a row-based effect system [16, 24].

We provide the full rules in ?? and show three representative typing rules here.

T-Abs

Γ, 𝑥 : 𝐴 ⊢ 𝑀 : 𝐵 | 𝐸
Γ ⊢ 𝜆𝐸𝑥𝐴 .𝑀 : 𝐴 →𝐸 𝐵

T-Do

Σ ∋ ℓ : 𝐴 ↠ 𝐵

Γ ⊢ 𝑉 : 𝐴

Γ ⊢ do ℓ 𝑉 : 𝐵 | ℓ, 𝐸

T-Handler

𝐻 = {ℓ 𝑝 𝑟 ↦→ 𝑁 } Σ ∋ ℓ : 𝐴′ ↠ 𝐵′

Γ, 𝑝 : 𝐴′, 𝑟 : 𝐵′ →𝐸 𝐴 ⊢ 𝑁 : 𝐴 | 𝐸
Γ ⊢ handler 𝐻 : (1 →ℓ,𝐸 𝐴) →𝐸 𝐴

Rule T-Abs introduces a 𝜆-abstraction. Rule T-Do invokes an operation ℓ . Rule T-Handler intro-

duces a handler as a function that takes an argument function of type 1 →ℓ,𝐸 𝐴 as in Section 2.5.2.

Xie et al. [40] do not include a return clause in handlers for System F
𝜖
.

4.2 Encoding System F
𝜖
into Met(Rscp)

Figure 3 encodes System F
𝜖
inMet(Rscp). The translation is mostly straightforward.

For kinds, we translate effect kind Effect to effect kind Effect and value kind Value to the kind

Abs. We always translate values in System F
𝜖
into values of kind Abs inMet(Rscp).

For types, we decouple effects from function types in System F
𝜖
by translating an effectful

function type 𝐴 →𝐸 𝐵 into a function type with an absolute modality [J𝐸K] (J𝐴K → J𝐵K).
For contexts, we homomorphically translate each entry.

For terms, the translation is type-directed and essentially defined on typing judgements. We

annotate components of a term with their types as necessary. We highlight modality-relevant

syntax of the term translation in grey. The grey parts show how modalities decouple effect tracking.

The black parts themselves remain valid programs after type erasure.

Rows and Capabilities as Modal Effects 32:19

J−K : Kind → Kind

JEffectK = Effect

JValueK = Abs

J−K : Effect Row → Effect Context

J·K = ·
J𝜀K = 𝜀

Jℓ, 𝐸K = ℓ, J𝐸K

J−K : Label Context → Label Context

J·K = ·
JΣ, ℓ : 𝐴 ↠ 𝐵K = JΣK, ℓ : J𝐴K ↠ J𝐵K

J−K : Value / Handler → Term

J()K = ()
J𝑥K = 𝑥

JΛ𝛼𝐾 .𝑉 K = Λ𝛼J𝐾K .J𝑉 K
J𝜆𝐸𝑥𝐴 .𝑀K = mod[J𝐸K] (𝜆𝑥J𝐴K .J𝑀K)

r
handler 𝐻 :

(1 →ℓ,𝐸 𝐴) →𝐸 𝐴

z
= mod[J𝐸K] (𝜆𝑓 .handle[J𝐸K] (let mod[Jℓ,𝐸K] 𝑓

′ = 𝑓 in 𝑓 ′ ()) with J𝐻𝐸K)

J{ℓ 𝑝 𝑟 ↦→ 𝑁 }𝐸K = {return 𝑥 ↦→ let mod[Jℓ,𝐸K] 𝑥
′ = 𝑥 in 𝑥 ′, ℓ 𝑝 𝑟 ↦→ J𝑁 K}

J−K : Type → Type

J1K = 1
J𝛼K = 𝛼

J𝐴 →𝐸 𝐵K = [J𝐸K] (J𝐴K → J𝐵K)
J∀𝛼𝐾 .𝐴K = ∀𝛼J𝐾K .J𝐴K

J−K : Context → Context

J·K = ·
JΓ, 𝑥 : 𝐴K = JΓK, 𝑥 : J𝐴K
JΓ, 𝛼 : 𝐾K = JΓK, 𝛼 : J𝐾K

J−K : Computation → Term

Jreturn 𝑉 K = J𝑉 K
Jlet 𝑥 = 𝑀 in 𝑁 K = let 𝑥 = J𝑀K in J𝑁 K

J𝑉 𝐴K = J𝑉 K J𝐴K
J(𝑉 : 𝐴 →𝐸 𝐵)𝑊 K = let mod[J𝐸K] 𝑥 = J𝑉 K in 𝑥 J𝑊 K

Jdo ℓ 𝑉 K = do ℓ J𝑉 K

Fig. 3. An encoding of System F
𝜖
in Met(Rscp).

The translation of lambda abstraction 𝜆𝐸𝑥𝐴 .𝑀 introduces an absolute modality bymod[J𝐸K] , and
the translation of function application𝑉 𝑊 first eliminates the modality of J𝑉 K by let mod[J𝐸K] 𝑥 =

J𝑉 K before applying it. Examples for translations of lambda abstraction and application can be

found in Section 2.2 as Jgen
F
𝜖 K and Japp

F
𝜖 K.

Translations of type abstraction, type application, operation invocation, and let-binding are

homomorphic. Let-binding in Met(X) is syntactic sugar defined in the standard way as let 𝑥 =

𝑀 in 𝑁 � (𝜆𝑥 .𝑁) 𝑀 . The translation of return 𝑉 is simply J𝑉 K.
A handler value handler 𝐻 of type (1 →ℓ,𝐸 𝐴) →𝐸 𝐴 is translated to a higher-order function

that handles the application of its function argument 𝑓 . We eliminate the modality of 𝑓 before

applying it to () since 𝑓 has type [Jℓ, 𝐸K] (1 → J𝐴K). We introduce a modality mod[J𝐸K] for the
whole translated function since handler 𝐻 is an effectful function with effect 𝐸. In the return clause

of J𝐻K, we must eliminate the modality of 𝑥 as shown in the typing rule T-Handle of Met(Rscp).

This modality elimination is always possible as the type J𝐴K of 𝑥 always has kind Abs. The operation
clause of J𝐻K demonstrates why we must use modality-parameterised handlers. Note that rule

T-Handler of System F
𝜖
gives the continuation 𝑟 in 𝐻 the type 𝐵′ →𝐸 𝐴. By annotating handle

with [J𝐸K], the continuation 𝑟 in J𝐻K has type [J𝐸K] (J𝐵′K → J𝐴K), which is equal to J𝐵′ →𝐸 𝐴K.
We now give the full translation of the handler sumF

𝜖 of Section 2.5.2.

JsumF
𝜖 K = Λ𝜀.mod[𝜀] (𝜆𝑓 [yield,𝜀] (1→Int) .handle[𝜀] (let mod[yield,𝜀] 𝑓

′ = 𝑓 in 𝑓 ()) with

{return 𝑥 ↦→ let mod[yield,𝜀] 𝑥
′ = 𝑥 in 𝑥 ′, ℓ 𝑝 𝑟 ↦→ 𝑝 + (let mod[𝜀] 𝑟

′ = 𝑟 in 𝑟 ′ ())})
: ∀𝜀.[𝜀] ([yield, 𝜀] (1 → Int) → Int)

We have the following type and semantics preservation theorems with proofs in ??.

Theorem 4.1 (Type Preservation). If Γ ⊢ 𝑀 : 𝐴 | 𝐸 in System F
𝜖 , then JΓK ⊢ J𝑀K : J𝐴K @ J𝐸K

in Met(Rscp). Similarly for typing judgements of values.

32:20 Wenhao Tang and Sam Lindley

Value Types 𝐴, 𝐵 ::= 1 | 𝑇 at 𝐶

Block Types 𝑇 ::= (𝐴, 𝑓 : 𝑇) ⇒ 𝐵

Capability Sets 𝐶 ::= {𝑓 }
Contexts Γ ::= · | Γ, 𝑥 : 𝐴 | Γ, 𝑓 :

𝐶 𝑇 | Γ, 𝑓 :
∗ 𝑇

Values 𝑉 ,𝑊 ::= 𝑥 | () | box 𝑃
Handlers 𝐻 ::= {𝑝 𝑟 ↦→ 𝑁 }

Blocks 𝑃,𝑄 ::= 𝑓 | {(𝑥 : 𝐴, 𝑓 : 𝑇) ⇒ 𝑀}
| unbox 𝑉

Computations 𝑀, 𝑁 ::= return 𝑉 | 𝑃 (𝑉 ,𝑄)
| let 𝑥 = 𝑀 in 𝑁

| def 𝑓 = 𝑃 in 𝑁

| try {𝑓 (𝐴)⇒𝐵 ⇒ 𝑀} with 𝐻

Γ ⊢ 𝑉 : 𝐴 Γ ⊢ 𝑃 : 𝑇 | 𝐶

T-Unit

Γ ⊢ () : 1

T-Var

Γ ∋ 𝑥 : 𝐴

Γ ⊢ 𝑥 : 𝐴

T-Box

Γ ⊢ 𝑃 : 𝑇 | 𝐶
Γ ⊢ box 𝑃 : 𝑇 at 𝐶

T-Transparent

Γ ∋ 𝑓 :
𝐶 𝑇

Γ ⊢ 𝑓 : 𝑇 | 𝐶

T-Tracked

Γ ∋ 𝑓 :
∗ 𝑇

Γ ⊢ 𝑓 : 𝑇 | {𝑓 }

T-Unbox

Γ ⊢ 𝑉 : 𝑇 at 𝐶

Γ ⊢ unbox 𝑉 : 𝑇 | 𝐶

T-Block

Γ, 𝑥 : 𝐴, 𝑓 :
∗ 𝑇 ⊢ 𝑀 : 𝐵 | 𝐶 ∪ {𝑓 }

Γ ⊢ {(𝑥 : 𝐴, 𝑓 : 𝑇) ⇒ 𝑀} : (𝐴, 𝑓 : 𝑇) ⇒ 𝐵 | 𝐶

T-BSub

Γ ⊢ 𝑃 : 𝑇 | 𝐶′ 𝐶′ ⊆ 𝐶
Γ ⊢ 𝑃 : 𝑇 | 𝐶

Γ ⊢ 𝑀 : 𝐴 | 𝐶

T-Value

Γ ⊢ 𝑉 : 𝐴

Γ ⊢ return 𝑉 : 𝐴 | ·

T-Let

Γ ⊢ 𝑀 : 𝐴 | 𝐶
Γ, 𝑥 : 𝐴 ⊢ 𝑁 : 𝐵 | 𝐶′

Γ ⊢ let 𝑥 = 𝑀 in 𝑁 : 𝐵 | 𝐶 ∪𝐶′

T-Call

Γ ⊢ 𝑃 : (𝐴𝑖 , 𝑓𝑗 : 𝑇𝑗) ⇒ 𝐵 | 𝐶
Γ ⊢ 𝑉𝑖 : 𝐴𝑖 Γ ⊢ 𝑄 𝑗 : 𝑇𝑗 | 𝐶 𝑗
Γ ⊢ 𝑃 (𝑉𝑖 , 𝑄 𝑗) : 𝐵 [𝐶 𝑗/𝑓𝑗] | 𝐶 ∪𝐶 𝑗

T-Sub

Γ ⊢ 𝑀 : 𝐴 | 𝐶′

𝐶′ ⊆ 𝐶
Γ ⊢ 𝑀 : 𝐴 | 𝐶

T-Def

Γ ⊢ 𝑃 : 𝑇 | 𝐶′

Γ, 𝑓 :
𝐶′
𝑇 ⊢ 𝑀 : 𝐴 | 𝐶

Γ ⊢ def 𝑓 = 𝑃 in 𝑀 : 𝐴 | 𝐶

T-Handle

Γ, 𝑓 :
∗ (𝐴′) ⇒ 𝐵′ ⊢ 𝑀 : 𝐴 | 𝐶 ∪ {𝑓 }

Γ, 𝑝 : 𝐴′, 𝑟 :𝐶 (𝐵′) ⇒ 𝐴 ⊢ 𝑁 : 𝐴 | 𝐶
Γ ⊢ try {𝑓 (𝐴

′)⇒𝐵′
⇒ 𝑀} with {𝑝 𝑟 ↦→ 𝑁 } : 𝐴 | 𝐶

Fig. 4. Syntax and typing rules for System C. We mostly follow the syntax of Brachthäuser et al. [6]. The

main difference is that we write ⇒ for block types to emphasise they are second-class.

Theorem 4.2 (Semantics Preservation). If 𝑀 is well-typed and 𝑀 { 𝑁 in System F
𝜖 , then

J𝑀K {∗ J𝑁 K in Met(Rscp) where{∗ denotes the transitive closure of{.

5 Encoding a Capability-Based Effect System à la Effekt

In this section we briefly present System C [6], a core calculus formalising the capability-based

effect system of Effekt [8], and show how to encode it into Met(S). We refer to Brachthäuser et al.

[6] for a complete introduction to System C.

5.1 System C

Figure 4 gives the syntax and typing rules for System C, which is fine-grain call-by-value [27] and

distinguishes between first-class values 𝑉 , blocks 𝑃 (second-class functions), and computations𝑀 .

We have three typing judgements for values, blocks, and computations individually. Judgements

for blocks Γ ⊢ 𝑃 : 𝑇 | 𝐶 and computations Γ ⊢ 𝑀 : 𝐴 | 𝐶 explicitly track a capability set 𝐶 , which

contains the capabilities in Γ that may be used.

The typing rules of System C are much more involved than those of System F
𝜖
as capability

tracking is deeply entangled with term constructs such as block constructions (T-Block), block calls

(T-Call), block bindings (T-Def), and usages of block variables (T-Transparent and T-Tracked).

Due to space constraints, we focus on explaining these key rules.

Rows and Capabilities as Modal Effects 32:21

There are two rules for uses of block variables as there are two forms of block variable bindings

in contexts. A tracked binding 𝑓 :
∗ 𝑇 stands for a capability. Rule T-Tracked tracks 𝑓 itself in the

singleton capability set {𝑓 }. A transparent binding 𝑓 :
𝐶 𝑇 stands for a user-defined block whose

capability set 𝐶 is known. Rule T-Transparent tracks 𝐶 as the capability set.

Rules T-Def and T-Block both bind block variables. Rule T-Def binds a block 𝑃 as a transparent

block variable 𝑓 :
𝐶′
𝑇 where 𝐶′

is the capability set of 𝑃 . Rule T-Block binds a list of tracked block

variables (capabilities) 𝑓 :
∗ 𝑇 whose concrete capability sets are unknown until called. The rule

T-Block reflects the roles that block constructions play for capability tracking as we introduced in

Section 2.3.3. For instance, all capabilities 𝑓 are added to the capability set of the block body𝑀 .

Rule T-Call fully applies a block 𝑃 to values 𝑉𝑖 and blocks 𝑄 𝑗 . The rule reflects the roles that

block calls play for capability tracking as we introduced in Section 2.3.4. It substitutes each block

variable 𝑓𝑗 (recall that these variables are bound as 𝑓𝑗 :
∗ 𝑇 in rule T-Block) with the capability set

𝐶 𝑗 of the block 𝑄 𝑗 in type 𝐵. The capability set of the call is the union of the capability sets of 𝑃

and all its block arguments because all these arguments might be invoked.

Rule T-Handle defines a named handler which introduces a capability 𝑓 : (𝐴′) ⇒ 𝐵′ to the

scope of𝑀 . Operation invocation via calling 𝑓 in𝑀 is handled by this handler. The capability 𝑓 is

added to the capability set of𝑀 . The continuation 𝑟 is introduced as a transparent binding with

capability set 𝐶 as it may only use capabilities in 𝐶 provided by the context.

System C adopts named handlers and a generative semantics with a reduction relation𝑀 | Ω {
𝑁 | Ω′

where Ω ::= · | ℓ : (𝐴) ⇒ 𝐵 is a context for runtime operation labels, similar to Met(X).

The most interesting reduction rule is E-Gen which uses a runtime capability value capℓ with a

runtime label ℓ to substitute a capability 𝑓 introduced by a handler.

E-Gen try {𝑓 (𝐴)⇒𝐵 ⇒ 𝑀} with 𝐻 | Ω { tryℓ 𝑀 [capℓ/𝑓] with 𝐻 | Ω, ℓ : (𝐴) ⇒ 𝐵 where ℓ fresh

The full specification of operational semantics can be found in ??.

5.2 Encoding System C in Met(S)
Figure 5 encodes System C in Met(S). The term translation is type-directed and defined on typing

judgements. We annotate components of a term with their types and capability sets as necessary.

We highlight syntax relevant to modalities and type abstraction of the term translation in grey.

The grey parts show how modalities decouple capability tracking. The black parts remain valid

programs after type erasure. The encoding is unavoidably more involved than that of System F
𝜖

because of the deeper entanglement of capability tracking with blocks. As in Section 5.1, we focus

on explaining the encoding of block-relevant constructs.

For block constructions and block calls, we have explained their encodings in detail in Sec-

tions 2.3.3 and 2.3.4, using the constructions and calls of blocks app𝐶 and app′𝐶 as examples.

A block binding def 𝑓 = 𝑃 in 𝑁 not only binds a block 𝑃 to 𝑓 but also annotate the binding

𝑓 :
𝐶′
𝑇 with the capability set𝐶′

of the block 𝑃 as shown by rule T-Def in Figure 4. For instance, we

can bind the block gen𝐶 in Section 2.3.1 to 𝑓 and apply it to 42. Its typing derivation is as follows.

y :
∗ Int ⇒ 1 ⊢ gen𝐶 : Int ⇒ 1 | {y} y :

∗ Int ⇒ 1, 𝑓 :
{y} Int ⇒ 1 ⊢ 𝑓 (42) : 1 | {y}

y :
∗ Int ⇒ 1 ⊢ def 𝑓 = gen𝐶 in 𝑓 (42) : 1 | {y}

The binding of 𝑓 in the second premise is annotated with its capability set {y} since gen𝐶 uses the

capability y. We cannot simply encode such a transparent binding by ignoring its annotation of

the capability set. Instead, we use an absolute modality to simulate this annotation. To encode the

binding of 𝑓 , we wrap the translated block gen𝐶 into the absolute modality [y]. The full translation
of the above term is as follows, where we provide the omitted identity modality in Section 2.3.1.

let 𝑓 = mod[y∗] (mod⟨⟩ (𝜆𝑥Int .ŷ 𝑥)) in let mod[y∗] ˆ𝑓 = 𝑓 in let mod⟨⟩ 𝑓
′ = ˆ𝑓 in 𝑓 ′ 42

32:22 Wenhao Tang and Sam Lindley

J−K : Cap Set → Effect Context

J{𝑓 }K = 𝑓 ∗

J−K : Value / Block Type → Type

J1K = 1

J𝑇 at 𝐶K = [J𝐶K]J𝑇 K

J(𝐴, 𝑓 : 𝑇) ⇒ 𝐵K = ∀𝑓 ∗ .⟨𝑓 ∗⟩(J𝐴K → [𝑓 ∗]J𝑇 K → J𝐵K)

J−K : Value → Term

J()K = ()
J𝑥K = 𝑥

Jbox 𝑃 : 𝑇 at 𝐶K = mod[J𝐶K] J𝑃K

J−K : Context → Context

J·K = ·
JΓ, 𝑥 : 𝐴K = JΓK, 𝑥 : J𝐴K

JΓ, 𝑓 :
∗ 𝑇 K = JΓK, 𝑓 ∗, 𝑓 : [𝑓 ∗]J𝑇 K, ˆ𝑓 :[𝑓 ∗] J𝑇 K

JΓ, 𝑓 :
𝐶 𝑇 K = JΓK, 𝑓 : [J𝐶K]J𝑇 K, ˆ𝑓 :[J𝐶K] J𝑇 K

J−K : Block → Term

J𝑓 K = ˆ𝑓

J{(𝑥 : 𝐴, 𝑓 : 𝑇) ⇒ 𝑀}K = Λ𝑓 ∗ .mod⟨𝑓 ∗ ⟩ (𝜆𝑥
J𝐴K 𝑓 [𝑓 ∗]J𝑇 K .

let mod[𝑓 ∗] ˆ𝑓 = 𝑓 in J𝑀K)
Junbox 𝑉 : 𝑇 | 𝐶K = let mod[J𝐶K] 𝑥 = J𝑉 K in 𝑥

J−K : Computation / Handler → Term

Jreturn 𝑉 K = J𝑉 K
Jlet 𝑥 = 𝑀 in 𝑁 K = let 𝑥 = J𝑀K in J𝑁 K

Jdef 𝑓 = 𝑃 : 𝑇 | 𝐶 in 𝑁 K = let 𝑓 = mod[J𝐶K] J𝑃K in let mod[J𝐶K] ˆ𝑓 = 𝑓 in J𝑁 K

J𝑃 (𝑉𝑖 , 𝑄 𝑗 : 𝑇𝑗 | 𝐶 𝑗)K = let mod⟨J𝐶 𝑗 K⟩
𝑥 = J𝑃K J𝐶 𝑗 K in 𝑥 J𝑉𝑖K (mod[J𝐶 𝑗 K] J𝑄 𝑗 K)

r
try {𝑓 (𝐴′)⇒𝐵′ ⇒ 𝑀}
with 𝐻 : 𝐴 | 𝐶

z
= local ℓ𝑓 : J𝐴′K ↠ J𝐵′K in let mod⟨ℓ𝑓 ⟩ 𝑔 =

(Λ𝑓 ∗ .mod⟨𝑓 ∗ ⟩ (𝜆𝑓 .let mod[𝑓 ∗] ˆ𝑓 = 𝑓 in J𝑀K)) ℓ𝑓
in handle

[J𝐶K] (𝑔 (mod[ℓ𝑓] (mod⟨⟩ (𝜆𝑥J𝐴′K .do ℓ𝑓 𝑥)))) with J𝐻 𝑓 ,𝐶K
J{𝑝 𝑟 ↦→ 𝑁 }𝑓 ,𝐶K = {return 𝑥 ↦→ let mod[ℓ𝑓 ,J𝐶K] 𝑥

′ = 𝑥 in 𝑥 ′,
ℓ𝑓 𝑝 𝑟 ↦→ let mod[J𝐶K] 𝑟 = 𝑟 in J𝑁 K}

Fig. 5. An encoding of System C in Met(S).

We eliminate the modality [y∗] of 𝑓 and bind it to
ˆ𝑓 , reminiscent of how we translate block

arguments bound by block constructions. In general, for a transparent block variable binding 𝑓 :
𝐶 𝑇

in the context, it is translated to two variable bindings 𝑓 : [J𝐶K]J𝑇 K and ˆ𝑓 :[J𝐶K] J𝑇 K.
The translation of uses of block variables is simple. We translate each 𝑓 to its hat version

ˆ𝑓 .

The simplicity benefits from the fact that we eagerly eliminate the modality of each 𝑓 after it is

introduced, e.g., in the translations of block constructions and block bindings.

The translation of named handlers try {𝑓 (𝐴′)⇒𝐵′ ⇒ 𝑀} with 𝐻 is different from the translation

of sum𝐶 in Section 2.5.3. The full translation of sum𝐶 is as follows, where we provide the omitted

identity modality of the function 𝜆𝑥Int.do ℓy 𝑥 .

local ℓy : Int ↠ 1 in let mod⟨ℓy ⟩ 𝑔 = (Λy∗ .mod⟨y∗ ⟩ (𝜆y.let mod[y∗] ŷ = y in 𝑦 42;𝑦 37; 0)) ℓy
in handle

[J𝐶K] (𝑔 (mod[ℓy] (mod⟨⟩ (𝜆𝑥Int .do ℓy 𝑥))))
with {return 𝑥 ↦→ let mod[ℓy ,J𝐶K] 𝑥

′ = 𝑥 in 𝑥 ′, ℓy 𝑝 𝑟 ↦→ let mod[J𝐶K] 𝑟 = 𝑟 in 𝑝 + 𝑟 ()}

Themain difference is that, instead of directly using the local label ℓy for the handled computation,

we introduce an effect variable y∗ first and substitute it with ℓy . This extra layer of abstraction

is necessary to keep the translation systematic, because our translations of types and terms con-

sistently translate a capability y to an effect variable y∗. After reducing the type application and

substitution of 𝑔 in the above translation term, we get the translation of sum𝐶 in Section 2.5.3.

In the return clause, we additionally eliminate the modality of 𝑥 . In the operation clause, we

eliminate the modality [J𝐶K] of 𝑟 and bind it to 𝑟 as we use a modality-parameterised handler. Using

Rows and Capabilities as Modal Effects 32:23

a modality-parameterised handler is important because in sum𝐶 , the continuation 𝑟 is a transparent
binding of form 𝑓 :

𝐶 1 → Int as shown by the typing rule T-Handle of System C in Section 5.1.

We need to wrap the translated continuation 𝑟 with the absolute modality [J𝐶K] to be consistent

with the translation of transparent bindings.

For contexts, we translate each entry. For a variable binding 𝑥 : 𝐴, we translate it homomorphi-

cally. For a transparent binding of a block variable 𝑓 :
𝐶 𝑇 , we translate it to two term variables 𝑓

and
ˆ𝑓 as discussed in the translation of def above. For a tracked binding of a block variable 𝑓 :

∗ 𝑇 ,

we translate it to an effect variable 𝑓 ∗ and two term variables 𝑓 and ˆ𝑓 as discussed in Section 2.2.

We have the following type and semantics preservation theorems with proofs in ??.

Theorem 5.1 (Type Preservation). If Γ ⊢ 𝑀 : 𝐴 | 𝐶 in System C, then JΓK ⊢ J𝑀K : J𝐴K @ J𝐶K in
Met(S). Similarly for typing judgements of values and blocks.

Theorem 5.2 (Semantics Preservation). If𝑀 is well-typed and𝑀 | Ω { 𝑁 | Ω′ in System C,
then J𝑀K | JΩK {∗ J𝑁 K | JΩ′K in Met(S), where{∗ denotes the transitive closure of{.

6 More Encodings and Discussions

In this section, we discuss more encodings of effect systems into Met(X), highlight practical

language design insights gleaned from our encodings, and outline potential extensions to Met(X).

6.1 An Early Version of Effekt

System Ξ [7] is an early core calculus of the Effekt language. System Ξ is essentially a fragment

of System C without boxes. As a result, in System Ξ capabilities can never appear in types since

we cannot box a second-class block into a first-class value. While our encoding of System C in

Section 5.2 directly gives an encoding of System Ξ inMet(S), it introduces unnecessary complexity.

Since capabilities never appear in types in System Ξ, we do not need to introduce an effect variable

𝑓 ∗ for each capability 𝑓 in the encoding. It turns out that we can simply encode second-class blocks

in System Ξ as first-class functions in Met(S) without introducing any extra term constructs. For

instance, a block {(𝑥 : 𝐴, 𝑓 : 𝑇) ⇒ 𝑀} is encoded as a function 𝜆𝑥J𝐴K 𝑓 J𝑇 K .J𝑀K by merely changing

the notations. We provide the full encoding of System Ξ inMet(S) in ?? and prove it preserves

types and semantics in ??.

6.2 Named Handlers in Koka

Xie et al. [41] extend Koka with named handlers and formalise this extension in the core calculus

System F
𝜖+sn

, which is based on System F
𝜖
. System F

𝜖+sn
allows each handler to bind a handler

name that can be used to invoke operations. A handler name is similar to a capability in System C

but it is a first-class value. For instance, we can define a named handler in System F
𝜖+sn

as follows.

sum
F
𝜖+sn � Λ𝜀.nhandler {yield 𝑝 𝑟 ↦→ 𝑝 + 𝑟 ()} : ∀𝜀.(∀𝑎.ev yield𝑎 →yield𝑎,𝜀 Int) →𝜀 Int

This handler is similar to the handler sumF
𝜖 in Section 2.5.2. Themain difference is that the argument

takes a value of type ev yield𝑎 . This is a first-class handler name with which we can invoke the

yield operation. For example, we can apply sum
System F

𝜖+sn as follows.

sum
F
𝜖+sn 𝐸 (Λ𝑎.𝜆ℎev yield𝑎 .ℎ 42;ℎ 37; 0)

Instead of using the label yield to invoke the operation as in application of sumF
𝜖 in Section 2.5.2,

we directly apply the handler name ℎ to arguments. This is reminiscent of the handler sumSystem C

in Section 2.5.3 where we invoke the operation by calling the capability introduced by the handler.

This program reduces to 79. The scope variable 𝑎 ensure scope safety of the handler name, similar

to the technique used by runST in Haskell [22].

32:24 Wenhao Tang and Sam Lindley

As with the encoding of named handlers in System C, we can encode a named handler of

System F
𝜖+sn

by introducing a local label ℓ𝑎 and using the termmod[ℓ𝑎] (𝜆𝑥 .do ℓ𝑎 𝑥) to simulate

the handler name. We use the effect structure S instead of Rscp as there can never be duplicated

handlers with the same name in System F
𝜖+sn

. The theory S gives us flexibility to have multiple

effect variables, which we use to encode scope variables. We give the full encoding of System F
𝜖+sn

inMet(S) in ?? and prove its type and semantics preservation in ??.

6.3 Insights for Language Design

In Section 2.4 and Section 2.5.4, we demonstrated how our encodings provide a direct way to

compare the differences of System F
𝜖
and System C. Moreover, our encodings can also help to

inform language design choices based on the following observations.

(1) Our encodings together demonstrate that modal effect types are as expressive as the row-based

and capability-based effect systems we consider.

(2) The encoding of System Ξ (Section 6.1) implies that we need not sacrifice first-class functions

in order to obtain the benefits of the contextual effect polymorphism of Effekt.

(3) The encodings of System C (Section 5.2), System Ξ (Section 6.1), and System F
𝜖+sn

(Section 6.2)

demonstrate that we can use local labels, a minimal extension as introduced in Section 3, to

simulate the relatively heavyweight feature of named handlers in Effekt and Koka.

(4) The encoding of System F
𝜖+sn

(Section 6.2) further demonstrates that the first-class handler

names of Koka offer no extra expressiveness over the second-class local labels of Met(X).

(5) The encoding of System C (Section 5.2) shows that instead of having a built-in form of

capabilities which can appear at both term and type levels as in Effekt and Scala [5], we can

simulate it by introducing an effect variable for each argument and wrap the argument into an

absolute modality with the corresponding effect variable.

6.4 Potential Extensions to Met(X)

We discuss three potential extensions to Met(X) and leave their full development as future work.

Effect Kinds. We can extend the effect structure to abstract over effect kinds instead of having a

single kind Effect. The augmented definition of effect structure is a triple X = ⟨R, :,≡⟩ where the
new component R is a set of effect kinds. We must extend the kinding and equivalence relations

accordingly. As an example of this extension, in order to characterise Rémy-style row types [35]

which use a kind system to ensure that there is no duplicated label, we can declare R = {RowL | L}
where L is a label set and denotes all labels that must not be in the row. As another example, this

extension enables us to combine different effect structures together by assigning a kind to each

theory. For instance, we can declare two kinds Set and Row for theories S and Rscp respectively,

and then give local labels the kind Set and global labels the kind Row. We can then treat local labels

as sets and global labels as scoped rows.

Presence Types. We can associate operation labels in extensions and effect contexts with presence

types [36]. Furthermore, instead of predefining the operation types for labels, we can assign

operation types to labels in extensions and effect contexts in the manner of Tang et al. [38]. For

instance, the syntax of extensions could be extended to 𝐷 ::= · | ℓ : 𝑃, 𝐷 | 𝜀, 𝐷 , where 𝑃 is a presence

type typically defined as 𝑃 ::= − | Pre(𝐴 ↠ 𝐵) | 𝜃 . A label can be absent (−), present with a type

(Pre(𝐴 ↠ 𝐵)), or polymorphic over its presence (𝜃).

Masking. Met(X) does not include the mask operator and the mask modality ⟨𝐿 |⟩ of Met [38].

This enables us to substantially simplify the presentation of the core calculus, especially the

definitions relevant to modalities in Section 3.3, compared to that of Tang et al. [38]. Moreover, the

Rows and Capabilities as Modal Effects 32:25

lack of the mask operator does not influence our encodings as the core calculi of Effekt and Koka do

not have it. Masking [2, 10] is useful for effect systems based on scoped rows where duplicated labels

indicate nested handlers for the same operation label. With the mask operator, we can manually

select which handler to use when nested. It is interesting future work to extend Met(X) with a

suitable notion of abstract mask operator and extend the syntax of relative modalities to ⟨𝐿 |𝐷⟩
where 𝐿 is a mask and 𝐷 is an extension. This extension will require extending the effect structure

to define the kinding and equivalence relations of masks. A form of masking also makes sense for

effect structures other than Rscp. For instance, masking ℓ from a computation in S could be used to

disallow ℓ to be performed by the computation.

7 Related and Future Work

Row-Based Effect Systems. Row-based effect systems track effects by annotating function arrows

with row types denoting effects. They have been adopted in research languages such as Links [16],

Koka [24], and Frank [28]. Links uses Rémy-style row types with presence polymorphism [36],

whereas Koka and Frank use scoped rows [23]. Eff [1] and Helium [4] also track effects on function

arrows but treat effect types as sets. In this paper we focus on Koka, but we expect that other

row-based effect systems can be encoded similarly by instantiating the effect structure appropriately.

Capability-Based Effect Systems. Capability-based effect systems introduce and track effects as

capabilities. Different variations diverge on when capability sets appear in types. Effekt [6, 7] uses

second-class functions and only attaches capability sets to types when boxing functions. CC<:□ [5]

and Capless [42], the foundations for capture tracking in Scala 3, always annotate every type with

its capability set and use subtyping and syntactic sugar to simplify capability sets. It is interesting

future work to encode them in Met(X).

Abstracting Effect Systems. Yoshioka et al. [43] study different treatments of effect collections in

row-based effect systems. They propose a parameterised core calculus, 𝜆EA, whose effect types can

be instantiated to various kinds of sets and rows. The effect types in 𝜆EA are still entangled with

function types. As a result, 𝜆EA cannot encode capability-based effect systems. We follow 𝜆EA in

parameterising our core calculus Met(X) over different treatments of effect collections. We make

use of modalities to decouple effect tracking from function types, enabling the encodings of both

row-based and capability-based effect systems.

Encoding into Modal Effect Types. Tang et al. [38] consider a restricted row-based effect system in

which each effect type can refer only to the lexically closest effect variable. This restricted system

remains remarkably expressive and suffices for many practical programs. Nonetheless, they show

that it can be encoded into simply-typedMet without any effect polymorphism. Our encodings

consider richer source languages, showing that modal effect types are as expressive as several

row-based and capability-based effect systems in the literature.

Local Effects. Local labels inMet(X) allow us to introduce fresh effects locally. They are useful

for solving the effect encapsulation and accidental handling problems [3, 10, 44]. As discussed in

Section 2.5.3, there are various local effect formalisms in the literature [3, 11, 19]; most are based on

dynamic generation of fresh effect names, whereas the calculus of Biernacki et al. [3] is based on

effect coercions. We conjecture that local labels of Met(X) are as expressive as these formalisms.

We are interested in studying their relationship by encoding them into Met(X).

A Modal Type System for Benign Effects. Nanevski [31] propose a modal type system for benign

effects in Chapter 4.3. We refer to this system as MTBE. MTBE supports local effects and indexes

the standard necessity modality □ with effects for effect tracking. In MTBE, a type □𝐸 𝐴 means a

32:26 Wenhao Tang and Sam Lindley

computation which returns a value of type 𝐴 and may perform effects in 𝐸. This indexed necessity

modality is similar to the absolute modality of Met(X). The key difference between MTBE and

Met(X) (and Met) is that MTBE has no notion of ambient effect context. MTBE requires functions

to be pure: every function type must specify all the effects it may perform via a box. In contrast,

Met(X) allows a function to perform any effects from the ambient effect context. For example,

an application function of type (Int → 1) → Int → 1 inMet(X) allows its argument to perform

any effects from the ambient effect context, whereas a function with such a type in MTBE can

only be applied to pure functions (by default each function type has the empty □). In order to

apply an application function to effectful arguments in MTBE we must specify what effects may be

performed in the type. This requires parametric effect polymorphism in order to support arbitrary

effectful arguments. Moreover, MTBE does not support relative modalities as relative modalities are

intimately tied to the notion of ambient effect contexts. Our encoding of System C in Section 5.2

relies on the notion of ambient effect contexts and relative modalities. As a result, MTBE cannot

serve as a general framework for encoding various effect systems as Met(X) does.

Effectful Contextual Modal Type Theory. Zyuzin and Nanevski [45] propose effectful contextual

modal type theory (ECMTT) which extends the contextual necessity modality [32] to track contexts

of effectful operations. Similar to MTBE, ECMTT also lacks the notion of ambient effect contexts

and is thus less expressive and flexible than Met(X). Moreover, ECMTT does not support dynamic

generation of fresh effect names and thus cannot express named handlers as in Effekt.

Call-By-Push-Value. Attempts to decouple programming language features have frequently born

fruit. For instance, call-by-push-value (CBPV) [26] subsumes both call-by-value (CBV) and call-by-

name (CBN) by decoupling thunking and forcing from function abstraction and application. Our

work is in a similar vein. More interestingly, our encodings of System F
𝜖
and System C possess

certain similarities with Levy’s encodings of CBV and CBN into CBPV, respectively. In our encoding

of System F
𝜖
, each function is wrapped in an absolute modality, reminiscent of the CBV-to-CBPV

encoding where each function is thunked. In our encoding of System C, we only wrap a block in

an absolute modality when passing it as an argument, reminiscent of the CBN-to-CBPV encoding,

in which thunking of a function is deferred until passing it as an argument. We are interested in

further exploring these similarities.

Expressive Power of Effect Handlers. Forster et al. [13] compare the expressive power of effect

handlers, monadic reflection, and delimited control in a simply-typed setting and show that delim-

ited control cannot encode effect handlers in a type-preserving way. Piróg et al. [33] extend the

comparison between effect handlers and delimited control to a polymorphic setting and show their

equivalence. Ikemori et al. [18] further show the typed equivalence between named handlers and

multi-prompt delimited control. In contrast to these works, which compare effect handlers with

other programming abstractions, we compare different effect systems for effect handlers.

Future Work. In addition to the ideas already discussed above and in Section 6.4, other directions

for future work include: exploring inverse encodings (from instantiations of Met(X) into other

calculi); studying parametricity and abstraction safety [4, 44] forMet(X); and further developing

Met(X) as a uniform intermediate language for type- and effect-directed optimisation.

Acknowledgments

We thank Jonathan Immanuel Brachthäuser, Anton Lorenzen, Orpheas van Rooij, Jesse Sigal, and

the anonymous reviewers of ICFP 2025 and POPL 2026 for feedback. Sam Lindley was supported

by UKRI Future Leaders Fellowship “Effect Handler Oriented Programming” (MR/T043830/1 and

MR/Z000351/1).

Rows and Capabilities as Modal Effects 32:27

References

[1] Andrej Bauer and Matija Pretnar. 2014. An Effect System for Algebraic Effects and Handlers. Log. Methods Comput.
Sci. 10, 4 (2014). doi:10.2168/LMCS-10(4:9)2014

[2] Dariusz Biernacki, Maciej Piróg, Piotr Polesiuk, and Filip Sieczkowski. 2018. Handle with care: relational interpretation

of algebraic effects and handlers. Proc. ACM Program. Lang. 2, POPL (2018), 8:1–8:30. doi:10.1145/3158096

[3] Dariusz Biernacki, Maciej Piróg, Piotr Polesiuk, and Filip Sieczkowski. 2019. Abstracting algebraic effects. Proc. ACM
Program. Lang. 3, POPL (2019), 6:1–6:28. doi:10.1145/3290319

[4] Dariusz Biernacki, Maciej Piróg, Piotr Polesiuk, and Filip Sieczkowski. 2020. Binders by day, labels by night: effect

instances via lexically scoped handlers. Proc. ACM Program. Lang. 4, POPL (2020), 48:1–48:29. doi:10.1145/3371116

[5] Aleksander Boruch-Gruszecki, Martin Odersky, Edward Lee, Ondrej Lhoták, and Jonathan Immanuel Brachthäuser.

2023. Capturing Types. ACM Trans. Program. Lang. Syst. 45, 4 (2023), 21:1–21:52. doi:10.1145/3618003
[6] Jonathan Immanuel Brachthäuser, Philipp Schuster, Edward Lee, and Aleksander Boruch-Gruszecki. 2022. Effects,

capabilities, and boxes: from scope-based reasoning to type-based reasoning and back. Proc. ACM Program. Lang. 6,
OOPSLA1 (2022), 1–30. doi:10.1145/3527320

[7] Jonathan Immanuel Brachthäuser, Philipp Schuster, and Klaus Ostermann. 2020. Effects as capabilities: effect handlers

and lightweight effect polymorphism. Proc. ACM Program. Lang. 4, OOPSLA (2020), 126:1–126:30. doi:10.1145/3428194

[8] Jonathan Immanuel Brachthäuser, Philipp Schuster, and Klaus Ostermann. 2025. Effekt Language: A language with

lexical effect handlers and lightweight effect polymorphism. https://effekt-lang.org. Accessed 2025-07-10.

[9] Vikraman Choudhury and Neel Krishnaswami. 2020. Recovering purity with comonads and capabilities. Proc. ACM
Program. Lang. 4, ICFP (2020), 111:1–111:28. doi:10.1145/3408993

[10] Lukas Convent, Sam Lindley, Conor McBride, and Craig McLaughlin. 2020. Doo bee doo bee doo. J. Funct. Program. 30
(2020), e9. doi:10.1017/S0956796820000039

[11] Paulo Emílio de Vilhena and François Pottier. 2023. A Type System for Effect Handlers and Dynamic Labels. In

Programming Languages and Systems - 32nd European Symposium on Programming, ESOP 2023, Held as Part of the
European Joint Conferences on Theory and Practice of Software, ETAPS 2023, Paris, France, April 22-27, 2023, Proceedings
(Lecture Notes in Computer Science, Vol. 13990), Thomas Wies (Ed.). Springer, 225–252. doi:10.1007/978-3-031-30044-8_9

[12] Matthias Felleisen. 1991. On the Expressive Power of Programming Languages. Sci. Comput. Program. 17, 1-3 (1991),
35–75. doi:10.1016/0167-6423(91)90036-W

[13] Yannick Forster, Ohad Kammar, Sam Lindley, and Matija Pretnar. 2019. On the expressive power of user-defined effects:

Effect handlers, monadic reflection, delimited control. J. Funct. Program. 29 (2019), e15. doi:10.1017/S0956796819000121
[14] Daniel Gratzer. 2023. Syntax and semantics of modal type theory. Ph. D. Dissertation. Aarhus University.
[15] Daniel Gratzer, G. A. Kavvos, Andreas Nuyts, and Lars Birkedal. 2021. Multimodal Dependent Type Theory. Log.

Methods Comput. Sci. 17, 3 (2021). doi:10.46298/LMCS-17(3:11)2021

[16] Daniel Hillerström and Sam Lindley. 2016. Liberating Effects with Rows and Handlers (TyDe 2016). Association for

Computing Machinery, New York, NY, USA, 15–27. doi:10.1145/2976022.2976033

[17] Alex Hubers and J. Garrett Morris. 2023. Generic Programming with Extensible Data Types: Or, Making Ad Hoc

Extensible Data Types Less Ad Hoc. Proc. ACM Program. Lang. 7, ICFP (2023), 356–384. doi:10.1145/3607843

[18] Kazuki Ikemori, Youyou Cong, and Hidehiko Masuhara. 2023. Typed Equivalence of Labeled Effect Handlers and

Labeled Delimited Control Operators. In International Symposium on Principles and Practice of Declarative Programming,
PPDP 2023, Lisboa, Portugal, October 22-23, 2023, Santiago Escobar and Vasco T. Vasconcelos (Eds.). ACM, 4:1–4:13.

doi:10.1145/3610612.3610616

[19] Robin Jourde. 2022. M1 Internship Report : Effect Typing for Links. https://github.com/Orbion-J/intership-report-

2022/blob/master/pdf/report.pdf Accessed 2025-07-10.

[20] Ohad Kammar, Sam Lindley, and Nicolas Oury. 2013. Handlers in action. In ACM SIGPLAN International Conference on
Functional Programming, ICFP’13, Boston, MA, USA - September 25 - 27, 2013, Greg Morrisett and Tarmo Uustalu (Eds.).

ACM, 145–158. doi:10.1145/2500365.2500590

[21] G. A. Kavvos and Daniel Gratzer. 2023. Under Lock and Key: a Proof System for a Multimodal Logic. Bull. Symb. Log.
29, 2 (2023), 264–293. doi:10.1017/BSL.2023.14

[22] John Launchbury and Simon L. Peyton Jones. 1995. State in Haskell. LISP Symb. Comput. 8, 4 (1995), 293–341.
[23] Daan Leijen. 2005. Extensible records with scoped labels. In Revised Selected Papers from the Sixth Symposium on

Trends in Functional Programming, TFP 2005, Tallinn, Estonia, 23-24 September 2005 (Trends in Functional Programming,
Vol. 6), Marko C. J. D. van Eekelen (Ed.). Intellect, 179–194.

[24] Daan Leijen. 2017. Type Directed Compilation of Row-Typed Algebraic Effects. In Proceedings of the 44th ACM
SIGPLAN Symposium on Principles of Programming Languages (Paris, France) (POPL ’17). Association for Computing

Machinery, New York, NY, USA, 486–499. doi:10.1145/3009837.3009872

[25] Daan Leijen. 2025. Koka: A strongly typed functional-style language with effect types and handlers. https://koka-

lang.github.io. Accessed 2025-07-10.

https://doi.org/10.2168/LMCS-10(4:9)2014
https://doi.org/10.1145/3158096
https://doi.org/10.1145/3290319
https://doi.org/10.1145/3371116
https://doi.org/10.1145/3618003
https://doi.org/10.1145/3527320
https://doi.org/10.1145/3428194
https://effekt-lang.org
https://doi.org/10.1145/3408993
https://doi.org/10.1017/S0956796820000039
https://doi.org/10.1007/978-3-031-30044-8_9
https://doi.org/10.1016/0167-6423(91)90036-W
https://doi.org/10.1017/S0956796819000121
https://doi.org/10.46298/LMCS-17(3:11)2021
https://doi.org/10.1145/2976022.2976033
https://doi.org/10.1145/3607843
https://doi.org/10.1145/3610612.3610616
https://github.com/Orbion-J/intership-report-2022/blob/master/pdf/report.pdf
https://github.com/Orbion-J/intership-report-2022/blob/master/pdf/report.pdf
https://doi.org/10.1145/2500365.2500590
https://doi.org/10.1017/BSL.2023.14
https://doi.org/10.1145/3009837.3009872
https://koka-lang.github.io
https://koka-lang.github.io

32:28 Wenhao Tang and Sam Lindley

[26] Paul Blain Levy. 2004. Call-By-Push-Value: A Functional/Imperative Synthesis. Semantics Structures in Computation,

Vol. 2. Springer.

[27] Paul Blain Levy, John Power, and Hayo Thielecke. 2003. Modelling environments in call-by-value programming

languages. Inf. Comput. 185, 2 (2003), 182–210. doi:10.1016/S0890-5401(03)00088-9
[28] Sam Lindley, Conor McBride, and Craig McLaughlin. 2017. Do Be Do Be Do. In Proceedings of the 44th ACM SIGPLAN

Symposium on Principles of Programming Languages (Paris, France) (POPL 2017). Association for Computing Machinery,

New York, NY, USA, 500–514. doi:10.1145/3009837.3009897

[29] Anton Lorenzen, Leo White, Stephen Dolan, Richard A. Eisenberg, and Sam Lindley. 2024. Oxidizing OCaml with

Modal Memory Management. Proc. ACM Program. Lang. 8, ICFP (2024), 485–514. doi:10.1145/3674642

[30] J. Garrett Morris and James McKinna. 2019. Abstracting Extensible Data Types: Or, Rows by Any Other Name. Proc.
ACM Program. Lang. 3, POPL, Article 12 (jan 2019), 28 pages. doi:10.1145/3290325

[31] Aleksandar Nanevski. 2004. Functional programming with names and necessity. Ph. D. Dissertation. USA. AAI3143944.

[32] Aleksandar Nanevski, Frank Pfenning, and Brigitte Pientka. 2008. Contextual modal type theory. ACM Trans. Comput.
Log. 9, 3 (2008), 23:1–23:49. doi:10.1145/1352582.1352591

[33] Maciej Piróg, Piotr Polesiuk, and Filip Sieczkowski. 2019. Typed Equivalence of Effect Handlers and Delimited Control.

In 4th International Conference on Formal Structures for Computation and Deduction, FSCD 2019, June 24-30, 2019,
Dortmund, Germany (LIPIcs, Vol. 131), Herman Geuvers (Ed.). Schloss Dagstuhl - Leibniz-Zentrum für Informatik,

30:1–30:16. doi:10.4230/LIPICS.FSCD.2019.30

[34] Gordon D. Plotkin and Matija Pretnar. 2013. Handling Algebraic Effects. Log. Methods Comput. Sci. 9, 4 (2013).

doi:10.2168/LMCS-9(4:23)2013

[35] D. Rémy. 1989. Type checking records and variants in a natural extension of ML. In Proceedings of the 16th ACM
SIGPLAN-SIGACT Symposium on Principles of Programming Languages (Austin, Texas, USA) (POPL ’89). Association
for Computing Machinery, New York, NY, USA, 77–88. doi:10.1145/75277.75284

[36] Didier Rémy. 1994. Type Inference for Records in a Natural Extension of ML. In Theoretical Aspects of Object-Oriented
Programming: Types, Semantics, and Language Design. Citeseer.

[37] Wenhao Tang and Sam Lindley. 2025. Rows and Capabilities as Modal Effects. arXiv:2507.10301 [cs.PL] https:

//arxiv.org/abs/2507.10301

[38] Wenhao Tang, Leo White, Stephen Dolan, Daniel Hillerström, Sam Lindley, and Anton Lorenzen. 2025. Modal Effect

Types. Proc. ACM Program. Lang. 9, OOPSLA1 (2025), 1130–1157. doi:10.1145/3720476
[39] Andrew K. Wright. 1995. Simple Imperative Polymorphism. LISP Symb. Comput. 8, 4 (1995), 343–355.
[40] Ningning Xie, Jonathan Immanuel Brachthäuser, Daniel Hillerström, Philipp Schuster, and Daan Leijen. 2020. Effect

handlers, evidently. Proc. ACM Program. Lang. 4, ICFP (2020), 99:1–99:29. doi:10.1145/3408981

[41] Ningning Xie, Youyou Cong, Kazuki Ikemori, and Daan Leijen. 2022. First-class names for effect handlers. Proc. ACM
Program. Lang. 6, OOPSLA2 (2022), 30–59. doi:10.1145/3563289

[42] Yichen Xu, Oliver Bračevac, Cao Nguyen Pham, and Martin Odersky. 2025. What’s in the Box: Ergonomic and

Expressive Capture Tracking over Generic Data Structures. Proc. ACM Program. Lang. 9, OOPSLA2, Article 334 (Oct.
2025), 28 pages. doi:10.1145/3763112

[43] Takuma Yoshioka, Taro Sekiyama, and Atsushi Igarashi. 2024. Abstracting Effect Systems for Algebraic Effect Handlers.

CoRR abs/2404.16381 (2024). doi:10.48550/ARXIV.2404.16381 arXiv:2404.16381

[44] Yizhou Zhang and Andrew C. Myers. 2019. Abstraction-safe effect handlers via tunneling. Proc. ACM Program. Lang.
3, POPL (2019), 5:1–5:29. doi:10.1145/3290318

[45] Nikita Zyuzin and Aleksandar Nanevski. 2021. Contextual modal types for algebraic effects and handlers. Proc. ACM
Program. Lang. 5, ICFP (2021), 1–29. doi:10.1145/3473580

Received 2025-07-10; accepted 2025-11-06

https://doi.org/10.1016/S0890-5401(03)00088-9
https://doi.org/10.1145/3009837.3009897
https://doi.org/10.1145/3674642
https://doi.org/10.1145/3290325
https://doi.org/10.1145/1352582.1352591
https://doi.org/10.4230/LIPICS.FSCD.2019.30
https://doi.org/10.2168/LMCS-9(4:23)2013
https://doi.org/10.1145/75277.75284
https://arxiv.org/abs/2507.10301
https://arxiv.org/abs/2507.10301
https://arxiv.org/abs/2507.10301
https://doi.org/10.1145/3720476
https://doi.org/10.1145/3408981
https://doi.org/10.1145/3563289
https://doi.org/10.1145/3763112
https://doi.org/10.48550/ARXIV.2404.16381
https://arxiv.org/abs/2404.16381
https://doi.org/10.1145/3290318
https://doi.org/10.1145/3473580

	Abstract
	1 Introduction
	2 Overview
	2.1 Modal Effects and Met(X)
	2.2 Rows as Modal Effects
	2.3 Capabilities as Modal Effects
	2.4 Comparing Rows and Capabilities
	2.5 Encoding Effect Handlers
	2.6 More Encodings

	3 The Core Calculus Met(X)
	3.1 Syntax
	3.2 Effect Structures
	3.3 Modalities
	3.4 Kinds and Contexts
	3.5 Typing
	3.6 Operational Semantics
	3.7 Type Soundness and Effect Safety

	4 Encoding a Row-Based Effect System à la Koka
	4.1 System Fbold0mu mumu subsection
	4.2 Encoding System F into Met(Rscp)

	5 Encoding a Capability-Based Effect System à la Effekt
	5.1 System C
	5.2 Encoding System C in Met(S)

	6 More Encodings and Discussions
	6.1 An Early Version of Effekt
	6.2 Named Handlers in Koka
	6.3 Insights for Language Design
	6.4 Potential Extensions to Met(X)

	7 Related and Future Work
	Acknowledgments
	References

