
1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

Modal Effect Types

WENHAO TANG, The University of Edinburgh, UK
LEO WHITE, Jane Street, UK
STEPHEN DOLAN, Jane Street, UK
DANIEL HILLERSTRÖM, The University of Edinburgh, UK
SAM LINDLEY, The University of Edinburgh, UK
ANTON LORENZEN, The University of Edinburgh, UK

We propose a novel type system for effects and handlers using modal types. Conventional effect systems attach
effects to function types, which can lead to verbose effect-polymorphic types, especially for higher-order
functions. Our modal effect system provides succinct types for higher-order first-class functions without
losing modularity and reusability. The core idea is to decouple effects from function types and instead to
track effects through relative and absolute modalities, which represent transformations on the ambient effects
provided by the context.

We formalise the idea of modal effect types in a multimodal System F-style core calculus Met with effects
and handlers. Met supports modular effectful programming via modalities without relying on effect variables.
We encode a practical fragment of a conventional row-based effect system with effect polymorphism, which
captures most common use-cases, into Met in order to formally demonstrate the expressive power of modal
effect types. To recover the full power of conventional effect systems beyond this fragment, we seamlessly
extend Met to Mete with effect variables. We propose a surface language Metel for Mete with a sound and
complete type inference algorithm inspired by FreezeML.

1 Introduction

Effect systems allow a typed programming language to express information about what a function
does when running, instead of merely providing information about what sort of results it might
produce when finished.

Consider the standard map function:

map : ∀𝛼 𝛽. (List 𝛼, 𝛼 → 𝛽) → List 𝛽

In a typical functional programming language, this type is a statement about the values that map
accepts and returns (that it takes a list of 𝛼 and a function from 𝛼 to 𝛽 , and returns a list of 𝛽), but
is silent about which effects may occur during its evaluation.

The effect systems of, say, Koka [31] or Links [21] give the following more precise type to map:

map : ∀𝛼 𝛽 Y. (List 𝛼, 𝛼 Y−→ 𝛽) Y−→ List 𝛽

This type uses effect polymorphism, quantifying over an effect variable Y, in order to express that
the effects that may be performed by map (xs, f) are precisely those that may be performed by
calls to f. That is, map performs no effects of its own, beyond those of the callback f.

While this type precisely expresses what we want to say about map, the annotation burden of this
style of effect system is larger than it might first appear. While only a small amount of text needs
to be added to turn the first type into the second, the problem lies in the quantity and location of
places where it is needed. Functions like map that use no effectful features themselves still need to
be annotated, as does essentially every higher-order function.

Authors’ Contact Information: Wenhao Tang, wenhao.tang@ed.ac.uk, The University of Edinburgh, UK; Leo White,
lwhite@janestreet.com, Jane Street, UK; Stephen Dolan, sdolan@janestreet.com, Jane Street, UK; Daniel Hillerström,
daniel.hillerstrom@ed.ac.uk, The University of Edinburgh, UK; Sam Lindley, sam.lindley@ed.ac.uk, The University of
Edinburgh, UK; Anton Lorenzen, anton.lorenzen@ed.ac.uk, The University of Edinburgh, UK.

HTTPS://ORCID.ORG/0009-0000-6589-3821
HTTPS://ORCID.ORG/0009-0003-7046-3035
HTTPS://ORCID.ORG/0000-0002-4609-9101
HTTPS://ORCID.ORG/0000-0003-4730-9315
HTTPS://ORCID.ORG/0000-0002-1360-4714
HTTPS://ORCID.ORG/0009-0003-7046-3035
https://orcid.org/0009-0000-6589-3821
https://orcid.org/0009-0003-7046-3035
https://orcid.org/0000-0002-4609-9101
https://orcid.org/0000-0003-4730-9315
https://orcid.org/0000-0002-1360-4714
https://orcid.org/0009-0003-7046-3035

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

2 Wenhao Tang, Leo White, Stephen Dolan, Daniel Hillerström, Sam Lindley, and Anton Lorenzen

This is a mild burden to the authors of new code, but a significant obstacle to extending an
existing language with effectful features: signatures of much existing library code must be rewritten
to support effect polymorphism, even in old libraries that do not use the new features at all. The
need to update such libraries makes it difficult to add an effect system to a language in a backwards-
compatible way. Instead, our goal is to support precise tracking of effects, without polluting the
type of non-effectful functions like map.

1.1 Annotating Effect Transitions

Important steps towards this goal were taken by the languages Frank [12, 33] and Effekt [7, 8],
both of which use the original type for map, allowing use of effectful callbacks without requiring
effect polymorphism annotations in the type of map.

The key idea enabling use of these simpler types in both languages is the ambient effect context.
All functions are typed assuming a certain set of possible effects, and annotations are required at
transitions between different effect contexts. Since the argument to map uses the same effects as
map itself, there is no transition and hence no annotation is required.
Both Frank and Effekt achieve this by special typing support for computations that appear

in argument position. In Frank, an adjustment is attached to each argument, specifying how the
ambient effects of the called function relate to the effects provided to its argument. In Effekt,
arrow types appearing in argument position are parsed as blocks, second-class function types that
inherit ambient effects. While different, both of these mechanisms give elegant typings of handlers,
but become more complicated with more advanced uses of arrow types, such as when closures are
captured and/or inserted into data structures. The essential reason is that both argument types
decorated with adjustments in Frank and block types in Effekt are second-class, and they use
different methods to bypass this restriction. In Frank, first-class higher-order functions rely on
some syntactic sugar to insert effect variables. In Effekt, first-class use of closures was initially
disallowed entirely, and now supported with extra annotations on captured capabilities.

We build on this insight that types should mark transitions between effect contexts, rather than
repeating the full effect context. We extend the idea by decoupling it from function arguments, and
making effect transitions available as a true type constructor, usable in any context.
We work in the framework of modal types, following multimodal type theory (MTT) [17, 18],

where each possible effect context is a mode, and each possible transition between effect contexts is
a modality. We support both relative modalities, which describe a local change to an effect context
such as entering a new handler (similar to Frank’s adjustments), and absolute modalities, which
describe the full effect context (similar to Frank’s abilities).
Unlike Frank and Effekt, our modalities are not tied to function arrows, and can be applied

anywhere, even nested inside complex data structures. Our modal effect system also works smoothly
with pure first-class higher-order functions; they all type check without requiring hidden effect
variables or extra annotations, and can be applied to effectful arguments.

1.2 Contributions

The main contributions of this paper are:

• We give high-level overview of the main ideas through a series of examples that illustrate
the verbosity of conventional effect systems, how they can be simplified by the absolute
and relative modalities, and how modal effect types enable us to write expressive effectful
programs in a sound and succinct way (Section 2).

• We introduce Met, a multimode and multimodal core calculus with effect handlers and
modal effect types (Section 3). We prove its type soundness and effect safety.

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

Modal Effect Types 3

• We extend Met with data types and richer kinds of handlers. We further extend it to Mete
with effect variables to recover the full power of traditional effect systems (Section 4).

• To illustrate the expressiveness of modal effect types, we formally prove that a practical
fragment of traditional row-based effect systems is encodable in Met. (Section 5).

• To demonstrate the feasibility of programming with modal effect types, we introduceMetel,
a surface language based on Mete with a sound and complete type inference algorithm
which can automatically unbox modalities for variables (Section 6).

• We discuss the relationships of modal effect types with the Frank language, capability-based
effect systems, and multimodal type theory. (Section 7).

Section 7 also discusses other related work and Section 8 concludes.

2 Programming with Modal Effect Types

In this section we give a series of examples to illustrate the main ideas of modal effect types.
We demonstrate how modal effect types allow composition of higher-order functions and effect
handlers in a modular manner with succinct types. The key enablers for this programming style are
the relative and absolute modalities, which provide the programmer with a novel typing mechanism
to manage effect contexts. The examples are written inMetel, whose core calculus we introduce
in Sections 3 and 4, and whose design we discuss further in Section 6. Metel is a typed functional
language equipped with a modal effect type system for programming with effects and handlers.

2.1 Seamless First-Class Higher-Order Functions

First-class higher-order functions are a staple ingredient of functional programming. As we ex-
plained in the introduction, extending an existing language with traditional row-based effect typing
requires adding effect variables to the type signatures of pure higher-order functions. Modal effect
types offer a backwards-compatible alternative, requiring no extra effect variables for types of
higher-order functions that do not themselves use effects. For instance, in Metel we write the
standard type for the curried implementation of map.
map : ∀ a b . (a → b) → List a → List b

map f nil = nil

map f (cons x xs) = cons (f x) xs

This is a genuine first-class higher-order function which can be partially applied, passed around,
stored in data types, and so forth. Metel, unlike Frank, does not implicitly insert any effect
variables in the type signature of map. We may still apply map to any function that performs any
effects from the effect context in which map is invoked.

The effect context for global definitions is empty (though in a practical programming language it
could include some built-in effects).Metel captures this fact by implicitly boxing the type signature
of each global definition in the empty absolute modality []. The elaborated type signature for map is:

map : ∀ a b . []((a → b) → List a → List b)

Since map itself is pure, the default empty effect context suffices. As we shall see shortly, map can be
invoked under any effect context by way of unboxing and sub-effecting.

In general an absolute modality has the form [E], which specifies that the effect context is E. In
Section 2.2 we further consider absolute modalities. In Section 2.3 we also discuss relative modalities.

Metel automatically unboxes variables like map when they are used, meaning that programmers
may omit empty absolute modalities from the signatures of pure functions. Consequently, modal
effect types can be retrofitted onto an existing programming language, while preserving the
signatures of pure functions.

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

4 Wenhao Tang, Leo White, Stephen Dolan, Daniel Hillerström, Sam Lindley, and Anton Lorenzen

2.2 Absolute Modalities Define Full Effect Contexts

In Metel, modalities are used to change the effect context. An absolute modality is absolute in
the sense that it specifies an entire new effect context to replace the current one with. As an
example consider an implementation of a yield-style generator [24] using an effectful operation
yield : Int ⇒ 1 which takes an integer and returns a unit.
gen : [yield](List Int → 1)

gen xs = map (fun x → do yield x) xs; ()

The gen function implements an integer generator which reflects a given list as a computation by
yielding each element of the list. In the function body we apply map to an effectful function that
invokes the operation gen via the keyword do. The absolute modality [yield] specifies the effect
context required to run gen (it must be able to perform yield). The type signature tellsMetel to
implicitly box gen with the modality [yield].

The use of map is implicitly unboxed enabling implicit sub-effecting to coerce the empty effects of
its definition to the yield effect of its invocation site. In general unboxing and sub-effecting allow
functions to be used in a larger effect context than the one in which it was defined, for instance:
gen' : [yield, foo, bar, baz](List Int → 1)

gen' xs = gen xs

In a traditional row-based effect system, the effect context is changed by way of effect polymor-
phism, and we would give the following type signature to gen.

gen : ∀ e . List Int
yield, e
−−−−−−−−→ 1

2.3 Relative Modalities Define Effect Transformations

Henceforth, we will frequently refer to the effect context in which a given term or variable is
used as the ambient effect context. Pure higher-order functions like map are local in the sense that
they do not change the ambient effect context. Modal effect types come into their own when the
programming language has facilities that act on effect contexts, such as handlers and masks [4].

For example, we can implement an effect handler for yield that reifies a given computation into
a list by interpreting each yield as consing the element onto the list.

asList m = handle m () with

return () ⇒ nil

yield x r ⇒ cons x (r ())

The body of asList applies the function m inside a handler. In the handler we have to consider
two things: 1) what happens when m returns; and 2) what happens when m performs yield. In the
first case, we map the unit value () to the empty list nil. In the second case, we cons the yielded
element x onto the list returned by the application of r. Here r is bound to the continuation of
performing yield inside m. Its argument type is given by the return type of the operation being
handled (unit in the case of yield) and its return type is given by the return type of the handler,
i.e. r : 1 → List Int. The continuation r reinstalls the handler such that residual invocations of
yield are handled in the same manner. This style is known as deep handlers in the literature [26].

We can annotate this function with an absolute modality.
asList : [yield](1 → 1) → List Int

Often this type is not the one we want as it means that the function parameter is only allowed to
use the yield operation. The absolute modality fixes the effect context, preventing the function
argument from using other effects. Sometimes it may be desirable to do so, however, more often

197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

225

226

227

228

229

230

231

232

233

234

235

236

237

238

239

240

241

242

243

244

245

Modal Effect Types 5

we want to be able to handle the specific yield operation of an arbitrary effectful function that
performs multiple different operations. To this end, we can instead use relative modalities, which
enable us to describe the relative change that the handler makes to the ambient effect context, e.g.

asList : <yield>(1 → 1) → List Int

The relative modality <yield> is part of the parameter type and indicates that the effect context
for the term inside is derived by extending the ambient effect context with yield. Thus, when m

is automatically unboxed and used in asList, the effect context required by m matches the effect
context in the scope of the yield handler. The relative modality here captures the fact that asList
handles the yield effect when invoking m, but also allows m to perform other effects (which will
be forwarded to an outer handler). In a traditional row-based effect system, we would give the
following type signature to asList.

asList : ∀ e . (1
yield, e
−−−−−−−−→ 1)

e−→ List Int

To run asList, we must box its argument with <yield>.
> asList <yield>(fun () → gen [3,1,4,1,5,9])

[3,1,4,1,5,9] : List Int

The syntax <yield>(...) boxes the term inside with the relative modality <yield>. It extends the
ambient effect context with yield for the program inside, allowing the effectful function gen to be
used. Note that both asList and gen are automatically unboxed as usual.

In general, relative modalities have the form <L|D>, where L is a row of operations that is masked
from the ambient effect context, and D is a row of operations that extends the ambient effect context.
We write <D> as shorthand for <|D>. We expand more on masking in Section 2.8.

2.4 Effect Safety and No Accidental Handling

In asList, the parameter m is used under the same effect context in which it is introduced. In general,
Metel restricts the use of any variable whose value depends on the effect context at the time of its
binding occurrence (e.g., a function not boxed by an absolute modality). Such a variable may only
be used under an effect context compatible with one at the binding occurrence.
This property is important for guaranteeing effect safety, i.e., that all effects are handled. For

instance, the following program is ill-typed
asListWrong : <yield>(1 → 1) → List Int # ill-typed

asListWrong m = m (); [37,42]

because m requires an effect context that permits the yield effect and yet the effect context of the
definition of asListWrong is empty.
This property also forces effect types to reflect where effects are handled, thus preventing the

accidental handling problem [54]. For instance, we cannot give the following type to asList.
asList : (1 → 1) → List Int # ill-typed

asList m = handle m () with ... # same as in Section 2.3

The problem is that the handler extends the effect context with yield, and yet m is introduced before
this extension. As a result, the value bound to m might use a yield operation from its effect context
provided by a different handler instead of asList (we follow Leijen [30] to allow duplicated labels).
If this type was allowed, asList would handle this yield unexpectedly

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

261

262

263

264

265

266

267

268

269

270

271

272

273

274

275

276

277

278

279

280

281

282

283

284

285

286

287

288

289

290

291

292

293

294

6 Wenhao Tang, Leo White, Stephen Dolan, Daniel Hillerström, Sam Lindley, and Anton Lorenzen

2.5 Composing Handlers

We can compose handlers modularly in Metel. For example, consider two integer state operations
get : 1 ⇒ Int and put : Int ⇒ 1. We can implement a standard state handler by interpreting a
computation over state operations as a state-passing function.
state : ∀ [a] . <get, put>(1 → a) → Int → (a, Int)

state m = handle m () with

return x ⇒ fun s → (x, s)

get () r ⇒ fun s → r s s

put s' r ⇒ fun s → r () s'

The attentive reader may have observed that the type variable a is declared inside a box. We shall
discuss the reason for this syntax in Section 2.7.

With state operations, we can write a generator which yields the prefix sum of a list.
prefixSum : [yield, get, put](List Int → 1)

prefixSum xs = map (fun x → do put (do get + x); do yield (do get)) xs; ()

The absolute modality [yield, get, put] aggregates all effects performed in the definition.
We can now handle prefixSum by composing two handlers in sequence.

> asList <yield>(fun () →
state <get,put>(fun () → prefixSum [3,1,4,1,5,9]) 0; ())

[3,4,8,9,14,23] : List Int

Following the pattern we saw previously for handlers, we explicitly box the arguments with relative
modalities in order to extend the effect context with the handled effects. Observe how we use state
modularly: its type signature mentions only get and put even though it is applied to a computation
which invokes prefixSum, which also uses yield.

2.6 Effect Transformations

We give an example similar to the one from Section 2.2 of Brachthäuser et al. [7], in which an effect
handler is used to transform a computation by reperforming the handled effect. The following
handler transforms all generated integers with a function and then re-generates them.
regen : [yield]((Int → Int) → <yield>(1 → 1) → 1)

regen f m = handle m () with

return () ⇒ ()

yield s r ⇒ do yield (f s); r ()

The intuition behind the type signature for regen is as follows: we handle the yield operation
for the second argument (as indicated by <yield>), and the whole function also uses yield (as
indicated by [yield]). This type is similar to those given by Effekt and Frank modulo syntactic
differences. In contrast, Koka infers the following more verbose type.
∀<e>. (f : (int) → <yield|e> int) → ((g : () → <yield,yield|e> ()) → <yield|e> ())

2.7 Escaping Handlers and Absolute Kinds

One of the fundamental ideas of modal effect types is to track transformations on effect contexts,
rather than just full effect contexts. As a consequence, when a value leaves the scope of a handler,
its ambient effect context changes, and we must keep track of this change. For instance, the most
general type for the state handler define in Section 2.5 is as follows.

295

296

297

298

299

300

301

302

303

304

305

306

307

308

309

310

311

312

313

314

315

316

317

318

319

320

321

322

323

324

325

326

327

328

329

330

331

332

333

334

335

336

337

338

339

340

341

342

343

Modal Effect Types 7

state : ∀ a . <get, put>(1 → a) → Int → (<get, put>a, Int)

The return value has type <get, put>a instead of just a because it comes from an effect context
which extends the ambient one with get and put. However, this handler does not handle operations
in return values. We must guarantee that the effect context in which the return value is used
provides operations get and put.
As a special case, values boxed with absolute modalities do not depend on the current effect

context, and thus can flexibly leave the scope of handlers. We can also give the following specialised
type for the state handler where a is always boxed with the empty absolute modality [].
state : ∀ a . <get, put>(1 → []a) → Int → (a, Int)

Because of automatic unboxing, this is a valid type for state without changing its definition.
In practice, it is useful to allow a value of base type or an algebraic data type that contains

only base types or a type boxed with absolute modalities to appear anywhere, including escaping
escaping the scope of a handler. Such values can never depend on the effect context in which they
are used. We introduce a kind system to Metel in which the Abs kind classifies only such absolute
data types, whereas the Any kind classifies all data types. Subkinding allows any Abs type to be
treated as an Any type. By default all type variables have kind Any. Recall the type for the state
handler in Section 2.5.
state : ∀ [a] . <get, put>(1 → a) → Int → (a, Int)

The syntax ∀ [a] ascribes kind Abs to a, and thus allows values of type a to leave the scope of the
handler. In practice it is usually desirable for return types of computations inside handler scopes
to have absolute kind, so that they can escape, but if a handler is used locally then this need not
always be the case.

2.8 Masking

Handlers extend the ambient effect context with those effects that they handle. Dually, masks
remove the effects they mask from the ambient effect context [4]. Masking is a useful device to
conceal private implementation details [35].

We give an example of implementing find with yield to show how masks work inMetel.
findWrong : (Int → Bool) → List Int → Maybe Int # ill-typed

findWrong p xs = handle (map (fun x → if p x then do yield x else ()) xs) with

return _ ⇒ nothing

yield x _ ⇒ just x

This program is ill-typed as the predicate p is bound under the ambient effect context but used in
the scope of a handler.

To fix it, we can mask yield and rewrite the handled expression as follows.
(map (fun x → if maska<yield>(p x) then do yield x else ()) xs)

The maska<yield>(...) form masks the operation yield from the ambient effect context. Now the
effect context for p is equivalent to the ambient one, since the transformations of extending with
yield followed by masking with yield cancel each other.
We use the keyword maska rather than simply mask because leaving the scope of masks also

changes the effect context. The situation is similar to the one we encountered in Section 2.7 where
we were concerned with allowing some values to escape the scope of a handler. The term mask

<yield>(p x) yields a value of type <yield|>Bool instead of Bool, where <yield|> is a relative
modality masking yield from the ambient effect context. Even though p x returns a boolean value

344

345

346

347

348

349

350

351

352

353

354

355

356

357

358

359

360

361

362

363

364

365

366

367

368

369

370

371

372

373

374

375

376

377

378

379

380

381

382

383

384

385

386

387

388

389

390

391

392

8 Wenhao Tang, Leo White, Stephen Dolan, Daniel Hillerström, Sam Lindley, and Anton Lorenzen

here,Metel cannot automatically unbox the value in order to ensure completeness of type inference.
The maska form enables the special case of yielding values of absolute kind such as booleans.

2.9 Cooperative Concurrency

We now consider an example of a richer effect handler which implements cooperative concurrency
with a UNIX-style fork operation [23, 44]. We simplify the signature of fork ever-so-slightly such
that it returns a boolean to indicate whether the parent or child process should be evaluated,
i.e. ufork : 1 ⇒ Bool. In addition, we require an operation suspend : 1 ⇒ 1 that suspends the
current process such that another process can run.
We model a process as a data type that embeds a continuation function which takes the list of

suspended processes as input and returns unit. In addition, we define auxiliary functions push for
appending a process onto a queue and next which pops and runs the next process.

data Proc = proc (List Proc → ())

push : ∀ a . a → List a → List a

push x xs = xs ++ cons x nil

next : List Proc → ()

next q = case q of

nil → ()

cons (proc p) ps → p ps

The following handler implements a scheduler by using the state-passing technique to thread
the process queue through the handler activations.
schedule : <ufork, suspend>(1 → 1) → List Proc → 1

schedule m = handle m () with

return () ⇒ fun q → next q

suspend () r ⇒ fun q → next (push (proc (r ())) q)

ufork () r ⇒ fun q → r true (push (proc (r false)) q)

The return-case is triggered when a process finishes, thus we run the next available process. In the
suspend-case we enqueue the continuation, before we run the next available process. Finally, in the
ufork-case we implement the process duplication behaviour of UNIX fork by first enqueuing one
application of the continuation, and then immediately applying the continuation to resume one
of the process copies. Note that in the above code we seamlessly store effectful functions in data
types, similar to how one would do it in a functional language without an effect type system.

2.10 Modal Types with Effect Variables

There is no free lunch; modal effect types cannot offer everything that row-based effect types provide
without some cost. An important use case that requires explicit effect variables is implementing
higher-order operations [49, 50, 52].
In Metel, we restrict argument and result types of operations to be absolute for effect safety.

This is because effect handlers provide non-trivial manipulation of control-flow, which allows
operation arguments and results to seamlessly move between different effect contexts. For example,
suppose we were to allow an operation leak : (1 → Int) ⇒ 1, we could write the following
unsafe program.
handle (handle (do leak (fun _ → do yield 42)) { yield → ... }) { leak p → p }

The yield operation is used under an effect context containing yield, which is added by the yield
handler. However, the handler of leak binds the closure (fun _ → do yield 42) to p and leaks
it. Requiring leak to have the signature [yield](1 → Int) ⇒ 1 fixes the leakage problem as it
specifies the full effect context for the argument of leak.

393

394

395

396

397

398

399

400

401

402

403

404

405

406

407

408

409

410

411

412

413

414

415

416

417

418

419

420

421

422

423

424

425

426

427

428

429

430

431

432

433

434

435

436

437

438

439

440

441

Modal Effect Types 9

Using such an absolute modality in this fashion impedesmodularity. As another example, consider
a higher-order fork operation which takes a thunk as an argument. We may specify the full effect
context for the child process, such as the following signature.
effect fork : [fork, suspend](1 → 1) ⇒ 1

However, if we want to support processes that use other effects as well then either we have to
change the signature or we need to extend our modal type system with effect variables. With an
effect variable e, we can define the following parameterised signature.
effect fork e : [fork e, suspend, e](1 → 1) ⇒ 1

Fortunately, as we demonstrate in Section 4.5, modal effect types are compatible with explicit
effect variables, and indeedMetel supports them.

2.11 Modalities Anywhere

Unlike adjustments in Frank and block annotations in Effekt mentioned in Section 1.1, modal
types are first-class types just like data types and can appear anywhere. For instance, we can put
two functions with modal types in a pair and handle them separately.
handleTwo : (<yield>(1 → 1), <yield>(1 → 1)) → (List Int, List Int)

handleTwo (x, y) = (asList ~x, asList ~y)

The syntax ~x freezes the variable x, and prevents it from being automatically unboxed, following
FreezeML [15]. Thus we can directly apply asList to it without re-boxing.

The type inference algorithm of Metel also supports instantiation of type variables with modal
types, by analogy to impredicativity of first-class polymorphism. As a consequence, Metel enjoys
various stability properties. For instance, given the standard identity function id and application
function app, type inference of Metel is stable under replacing any term t with id t and any
application t1 t2 with app t1 t2.

3 A Multimodal Core Calculus with Effect Handlers

In this section, we introduce Met, a System F-style call-by-value core calculus with effect handlers
and modal effect types. We present its static and dynamic semantics as well as its meta theory. We
defer extensions including data types, alternative forms of handlers, and explicit effect variables to
Section 4.Met is closely related to multimodal type theory (MTT) [17, 18], especially its simply-
typed fragment [29]. We present Met without assuming any background on MTT, and discuss the
relationships in Section 7.3.

3.1 Syntax

The syntax of Met is as follows.

Types 𝐴, 𝐵 ::= 𝛼 | ∀𝛼𝐾 .𝐴
| 𝐴 → 𝐵 | `𝐴

Masks 𝐿 ::= · | ℓ, 𝐿
Extensions 𝐷 ::= · | ℓ : 𝑃, 𝐷
Effect Contexts 𝐸, 𝐹 ::= · | ℓ : 𝑃, 𝐸
Signatures 𝑃 ::= 𝐴 ↠ 𝐵 | −
Modalities ` ::= [𝐸] | ⟨𝐿 |𝐷⟩
Kinds 𝐾 ::= Abs | Any

Contexts Γ ::= · | Γ, 𝛼 : 𝐾 | Γ, 𝑥 :`𝐹 𝐴 | Γ,µ`𝐹
Terms 𝑀, 𝑁 ::= 𝑥 | _𝑥𝐴 .𝑀 | 𝑀 𝑁 | Λ𝛼𝐾 .𝑉 | 𝑀𝐴

| mod` 𝑉 | leta mod` 𝑥 = 𝑉 in 𝑀

| do ℓ 𝑀 | mask𝐿𝑀

| handle𝑀 with 𝐻

Values 𝑉 ,𝑊 ::= 𝑥 | _𝑥𝐴 .𝑀 | Λ𝛼𝐾 .𝑉 | 𝑉 𝐴 | mod` 𝑉

Handlers 𝐻 ::= {return 𝑥 ↦→ 𝑀} | {ℓ 𝑝 𝑟 ↦→ 𝑀} ⊎ 𝐻

442

443

444

445

446

447

448

449

450

451

452

453

454

455

456

457

458

459

460

461

462

463

464

465

466

467

468

469

470

471

472

473

474

475

476

477

478

479

480

481

482

483

484

485

486

487

488

489

490

10 Wenhao Tang, Leo White, Stephen Dolan, Daniel Hillerström, Sam Lindley, and Anton Lorenzen

𝐷 + 𝐸 𝐸 − 𝐿 𝐿 ⊲⊳ 𝐷

𝐷 + 𝐸 = 𝐷, 𝐸

· − 𝐿 = ·

(ℓ : 𝑃, 𝐸) − 𝐿 =

{
𝐸 − 𝐿′ if 𝐿 ≡ ℓ, 𝐿′

ℓ : 𝑃, (𝐸 − 𝐿) otherwise

· ⊲⊳ 𝐷 = (·, 𝐷)

(ℓ, 𝐿) ⊲⊳ 𝐷 =

{
(𝐿′, 𝐷 ′′) if 𝐷 ′ ≡ ℓ : 𝑃, 𝐷 ′′

((ℓ, 𝐿′), 𝐷 ′) otherwise
where (𝐿′, 𝐷 ′) = 𝐿 ⊲⊳ 𝐷

Fig. 1. Operations on Effect Contexts forMet.

Met extends a System F-style calculus with standard constructs for effects and handlers as well as
the main novelty of this work: modal effect types. We highlight the novel features in grey.

3.2 Effect Contexts as Modes

The modes of Met are effect contexts 𝐸, which are scoped rows of effect labels [30]. Each label
denotes an effectful operation. An effect may contain the same label multiple times. Each label has
a signature. A signature can be an arrow of the form 𝐴 ↠ 𝐵, which takes an argument of type 𝐴
and returns a value of type 𝐵, or absent − (similar to presence types [43]), which indicates that the
operation of this label cannot be invoked.

Following Rémy [43] and Leijen [30], we identify effects up to reordering of distinct labels, and
allow absent labels to be freely added to or removed from the right of effect contexts. For instance,
ℓ : 𝑃, ℓ ′ : − is equivalent to ℓ : 𝑃 . We can think of an effect context as denoting a map from labels to
infinite sequences of signatures where a cofinite tail of each sequence contains only −.
Extensions 𝐷 and masks 𝐿 are used respectively to extend effect contexts with more labels or

removes some labels from them. Extensions are like effect contexts except that we do not ignore
labels with absent signatures in their equivalence relation, so ℓ : 𝑃, ℓ ′ : − and ℓ : 𝑃 are distinct.
We define a sub-effecting relation on effect contexts: 𝐸 ⩽ 𝐸′ if we can replace the absent

signatures in 𝐸 with proper signatures to obtain 𝐸′. We also have a subtyping relation on extensions
𝐷 ⩽ 𝐷 ′. Different from sub-effecting, it requires 𝐷 and 𝐷 ′ to contain the same row of labels, but
allows absent signatures in 𝐷 to be replaced by other signatures in 𝐷 ′. We give the full rules for
type equivalence and sub-effecting in Appendix A.1.

Masks 𝐿 are simply multi-sets of labels without signatures, as we do not require signatures when
masking labels from effect contexts. The actions of extending 𝐷 + 𝐸 and masking 𝐸 − 𝐿 are defined
in Figure 1. We write 𝐿 ⊲⊳ 𝐷 = (𝐿′, 𝐷 ′) for the difference between 𝐿 and 𝐷 . The 𝐿′ are those labels
in 𝐿 not appearing in the domain of 𝐷 , and the 𝐷 ′ are those labels in 𝐷 not appearing in 𝐿.

3.3 Modalities Manipulating Effect Contexts

In conventional row-based effect systems, such as Koka or Links, an effect annotation on a function
type specifies all of the effects that the function may perform when it is invoked. InMet, effect
annotations only specify effects relative to the ambient effect context, as functions may also use
any operations from the ambient effect context. Effect annotations are given via modalities, which
construct a new effect context relative to an ambient effect context as follows.

[𝐸] (𝐹) = 𝐸 ⟨𝐿 |𝐷⟩(𝐹) = 𝐷 + (𝐹 − 𝐿)

The absolute modality [𝐸] replaces the ambient effect context 𝐹 with 𝐸. This is similar to how
effect annotations on functions in row-based effect systems work. Intuitively, we may think of the
type [𝐸] (𝐴 → 𝐵) as corresponding roughly to the type 𝐴 →𝐸 𝐵 in traditional effect type systems.
The relative modality ⟨𝐿 |𝐷⟩ is the key feature that makes effectful programming without effect

491

492

493

494

495

496

497

498

499

500

501

502

503

504

505

506

507

508

509

510

511

512

513

514

515

516

517

518

519

520

521

522

523

524

525

526

527

528

529

530

531

532

533

534

535

536

537

538

539

Modal Effect Types 11

variables viable inMet. It specifies the a transformation on the ambient effect context. It masks the
labels 𝐿 in 𝐹 before extending the resulting context with 𝐷 . We call ⟨|𝐷⟩ an extension modality,
⟨𝐿 |⟩ a mask modality, and ⟨|⟩ the identity modality. We write 1 for the identity modality.
Modalities are monotone total functions on effect contexts. If 𝐸 ⩽ 𝐹 , we have ` (𝐸) ⩽ ` (𝐹).
We write `𝐹 for the pair of ` and 𝐹 where 𝐹 is the effect context that ` acts on. We refer to such a

pair as an indexed modality. We write `𝐹 : 𝐸 → 𝐹 if ` (𝐹) = 𝐸. (The arrow goes from 𝐸 to 𝐹 instead
of the other direction to keep closer to MTT [17, 18]. For readers familiar with MTT, indexed
modalities `𝐹 correspond to the notion of modalities in MTT as they are concrete morphisms
between modes and our modalities ` actually correspond to indexed families of modalities in MTT.)

Modality Composition. We can compose the actions of modalities in the intuitive way.

` ◦ [𝐸] = [𝐸]
[𝐸] ◦ ⟨𝐿 |𝐷⟩ = [𝐷 + (𝐸 − 𝐿)]

⟨𝐿1 |𝐷1⟩ ◦ ⟨𝐿2 |𝐷2⟩ = ⟨𝐿1 + 𝐿 |𝐷2 + 𝐷⟩ where (𝐿, 𝐷) = 𝐿2 ⊲⊳ 𝐷1

To keep close toMTT, our composition reads from left to right. First, an absolutemodality completely
specifies the new effect context, thus shadowing any other modality `. Second, replacing the effect
context with 𝐸 and then masking 𝐿 and extending with 𝐷 is equivalent to just replacing with
𝐷 + (𝐸 − 𝐿). Third, sequential masking and extending can be combined into one by using 𝐿2 ⊲⊳ 𝐷1
to cancel the overlapping part of 𝐿2 and 𝐷1. For instance, we have ⟨|ℓ : 𝑃⟩ ◦ ⟨ℓ |⟩ = ⟨|⟩.

Composition is well-defined since composing followed by applying is equivalent to sequentially
applying (` ◦ a) (𝐸) = a (` (𝐸)). We also have associativity (` ◦ a) ◦ b = ` ◦ (a ◦ b) and identity 1.
The definition of composition naturally generalises to indexed modalities `𝐹 . We can compose

`𝐹 : 𝐸 → 𝐹 and a𝐸 : 𝐸′ → 𝐸 to get `𝐹 ◦ a𝐸 : 𝐸′ → 𝐹 which is defined as (` ◦ a)𝐹 .

Modality Transformations. Just as modalities allow us to manipulate effect contexts, we need
transformations that allow us to change modalities1.

We write `𝐹 ⇒ a𝐹 for a transformation between indexed modalities `𝐹 : 𝐸 → 𝐹 and a𝐹 : 𝐸′ → 𝐹 .
Intuitively, such a transformation describes how under ambient effect context 𝐹 , the action of `
can be replaced by the action of a . In particular, if we have a variable boxed by ` under the effect
context 𝐹 , we can use it under a new effect context derived by applying a to 𝐹 .

What properties do we expect from `𝐹 ⇒ a𝐹 ? To guarantee effect safety, the new effect context 𝐸
given by applying a should be larger than the 𝐸′ given by applying `. To avoid accidental handling,
when ` is relative (which means the variable depends on the ambient effect context), the new effect
context 𝐸′ should not accidentally capture more effects than those specified by ` and the ambient
effect context. Moreover, we want the transformation to be stable under sub-effecting. We formally
define `𝐹 ⇒ a𝐹 by the transitive closure of the following three rules.

MT-Abs
`𝐹 : 𝐸′ → 𝐹 𝐸 ⩽ 𝐸′

[𝐸]𝐹 ⇒ `𝐹

MT-Upcast
𝐷 ⩽ 𝐷 ′

⟨𝐿 |𝐷⟩𝐹 ⇒ ⟨𝐿 |𝐷 ′⟩𝐹

MT-Expand
(𝐹 − 𝐿) ≡ ℓ : 𝑃, 𝐸

⟨ℓ, 𝐿 |𝐷, ℓ : 𝑃⟩𝐹 ⇔ ⟨𝐿 |𝐷⟩𝐹
MT-Abs allows us to transform an absolute modality to any other modality as long as no effect

leaks.MT-Upcast allow us to upcast a label with an absent signature in 𝐷 to an arbitrary signature,
since the corresponding operation is unused. Recall that the subtyping relation between extensions
only upcasts signatures. MT-Expand is bidirectional. It allows us to simultaneously mask and
extend some operations given that these operations exist in the ambient effect context 𝐹 .

1The interested reader may wonder if we would need yet another notion of transforming a modality transformation, but
thankfully this is not necessary: there is only one modality transformation between any two modalities

540

541

542

543

544

545

546

547

548

549

550

551

552

553

554

555

556

557

558

559

560

561

562

563

564

565

566

567

568

569

570

571

572

573

574

575

576

577

578

579

580

581

582

583

584

585

586

587

588

12 Wenhao Tang, Leo White, Stephen Dolan, Daniel Hillerström, Sam Lindley, and Anton Lorenzen

Let us give some examples here. First, []𝐸 ⇒ `𝐸 always holds, consistent with the intuition
that pure values can be used anywhere. Second, ⟨|ℓ : −⟩𝐸 ⇒ ⟨|ℓ : 𝑃⟩𝐸 always holds. Third, we have
⟨ℓ |ℓ : 𝑃⟩ℓ :𝑃,𝐸 ⇔ ⟨|⟩ℓ :𝑃,𝐸 in both directions. Last, ⟨|ℓ : 𝑃⟩𝐸 ⇒ ⟨|ℓ : 𝑃, ℓ ′ : 𝑃 ′⟩𝐸 does not hold for any
𝐸, avoiding accidental handling.

The following lemma shows that the syntactic definition of transformation matches the semantics
of our intuition. The proof is in Appendix A.4.

Lemma 3.1 (Semantics of modality transformation). We have `𝐹 ⇒ a𝐹 if and only if

` (𝐹 ′) ⩽ a (𝐹 ′) for all 𝐹 ′ with 𝐹 ⩽ 𝐹 ′.

Attentive readers may have observed that this lemma characterises the essence of effect safety,
but does not mention accidental handling explicitly. Actually, since Met allows same labels to
have different signatures, effect safety implies that there is no accidental handling. For instance,
⟨|⟩𝐹 ⇒ ⟨|ℓ : 𝑃⟩𝐹 violates Lemma 3.1 since 𝐹, ℓ : 𝑃 ′ ̸⩽ ℓ : 𝑃, 𝐹, ℓ : 𝑃 ′ when 𝑃 ̸⩽ 𝑃 ′.

3.4 Kinds and Contexts

Γ ⊢ 𝐴 : 𝐾 Γ ⊢ 𝑃 Γ ⊢ (`,𝐴) ⇒ a @ 𝐹

Γ ∋ 𝛼 : 𝐾
Γ ⊢ 𝛼 : 𝐾

Γ ⊢ 𝐴 : Abs
Γ ⊢ 𝐴 : Any

Γ ⊢ [𝐸] Γ ⊢ 𝐴 : Any
Γ ⊢ [𝐸]𝐴 : Abs

Γ ⊢ ⟨𝐿 |𝐷⟩ Γ ⊢ 𝐴 : 𝐾
Γ ⊢ ⟨𝐿 |𝐷⟩𝐴 : 𝐾

Γ ⊢ 𝐴 : Any
Γ ⊢ 𝐵 : Any

Γ ⊢ 𝐴 → 𝐵 : Any

Γ ⊢ 𝐴 : Abs
Γ ⊢ 𝐵 : Abs
Γ ⊢ 𝐴 ↠ 𝐵

Γ ⊢ 𝐴 : Abs
Γ ⊢ (`,𝐴) ⇒ a @ 𝐹

`𝐹 ⇒ a𝐹

Γ ⊢ (`,𝐴) ⇒ a @ 𝐹

Γ @𝐸

· @𝐸

Γ @ 𝐹 `𝐹 : 𝐸 → 𝐹 Γ ⊢ 𝐴 : 𝐾
Γ, 𝑥 :`𝐹 𝐴 @ 𝐹

Γ @𝐸

Γ, 𝛼 : 𝐾 @𝐸

Γ @ 𝐹 `𝐹 : 𝐸 → 𝐹

Γ,µ`𝐹 @𝐸

Fig. 2. Selected kinding, well-formedness, and auxiliary rules forMet.

As illustrated in Section 2.7, we have two kinds Abs and Any. The Abs kind is a sub-kind of the
kind of all types Any, and denotes types of values that are guaranteed not to use operations from
the ambient effect context.

We show the kinding and well-formedness rules for types and signatures in Figure 2, relying on
the well-formedness of modalities and effect contexts, which is standard and defined in Appendix
A.1. Function arrows have kind Any due to the possibility of using operations from the ambient
effect context. Boxing a type by the absolute modality yields an absolute type as it cannot depend
on the ambient effect context.
A type at kind Abs may still contain an effectful computation, as long as it is contained within

an absolute modality. We restrict the kind of the argument and return value of effects to be Abs in
order to prevent effect leakage as discussed in Section 2.10.

Contexts are ordered. We define the relation Γ @𝐸 that context Γ is well-formed at effect context
𝐸 in Figure 2. Each term variable binding 𝑥 :`𝐹 𝐴 in contexts is tagged with an indexed modality `𝐹
which arises from unboxing. Intuitively, this annotation means that the term bound to 𝑥 is defined
inside modality ` under the effect context 𝐹 .

589

590

591

592

593

594

595

596

597

598

599

600

601

602

603

604

605

606

607

608

609

610

611

612

613

614

615

616

617

618

619

620

621

622

623

624

625

626

627

628

629

630

631

632

633

634

635

636

637

Modal Effect Types 13

Contexts contain locks carrying indexed modalities which track effect transformations for
variable bindings. For instance, the following context is well-formed at effect context 𝐸. Reading
from left to right, the lock µ[𝐸]𝐹 switches the effect context from 𝐹 to 𝐸.

𝑥 :`𝐹 𝐴1, 𝑦 :a𝐹 𝐴2,µ[𝐸]𝐹 , 𝑧 :b𝐸 𝐴3 @𝐸

Following MTT, we define locks(−) to compose all the modalities on the locks in a context.
locks(·) = 1

locks(Γ,µ`𝐹) = locks(Γ) ◦ `𝐹
locks(Γ, 𝑥 :`𝐹 𝐴) = locks(Γ)
locks(Γ, 𝛼 : 𝐾) = locks(Γ)

Following MTT, we identify contexts up to the following two equations.
Γ,µ1𝐸 @𝐸 = Γ @𝐸 Γ,µ`𝐹 ,µa𝐹 ′ @𝐸 = Γ,µ`𝐹 ◦a𝐹 ′ @𝐸

3.5 Typing

The typing rules of Met are shown in Figure 3. The typing judgement Γ ⊢ 𝑀 : 𝐴 @𝐸 means that
the term 𝑀 has type 𝐴 under context Γ and effect context 𝐸. As usual, we require Γ @𝐸, Γ ⊢ 𝐸,
Γ ⊢ 𝐴 : 𝐾 for some 𝐾 , and well-formedness for type annotations as well-formedness conditions.
We explain the interesting rules, which are highlighted in grey; the other rules are standard.

Γ ⊢ 𝑀 : 𝐴 @𝐸

T-Var
a𝐹 = locks(Γ′) : 𝐸 → 𝐹

Γ ⊢ (`,𝐴) ⇒ a @ 𝐹

Γ, 𝑥 :`𝐹 𝐴, Γ
′ ⊢ 𝑥 : 𝐴 @𝐸

T-Mod
`𝐹 : 𝐸 → 𝐹

Γ,µ`𝐹 ⊢ 𝑉 : 𝐴 @𝐸

Γ ⊢ mod` 𝑉 : `𝐴 @ 𝐹

T-Letmod
a𝐹 : 𝐸 → 𝐹 Γ,µa𝐹 ⊢ 𝑉 : `𝐴 @𝐸

Γ, 𝑥 :a𝐹 ◦`𝐸 𝐴 ⊢ 𝑀 : 𝐵 @ 𝐹

Γ ⊢ leta mod` 𝑥 = 𝑉 in 𝑀 : 𝐵 @ 𝐹

T-TAbs
Γ, 𝛼 : 𝐾 ⊢ 𝑉 : 𝐴 @𝐸

Γ ⊢ Λ𝛼𝐾 .𝑉 : ∀𝛼𝐾 .𝐴 @𝐸

T-Abs
Γ, 𝑥 : 𝐴 ⊢ 𝑀 : 𝐵 @𝐸

Γ ⊢ _𝑥𝐴 .𝑀 : 𝐴 → 𝐵 @𝐸

T-TApp
Γ ⊢ 𝑀 : ∀𝛼𝐾 .𝐵 @𝐸 Γ ⊢ 𝐴 : 𝐾

Γ ⊢ 𝑀𝐴 : 𝐵 [𝐴/𝛼] @𝐸

T-App
Γ ⊢ 𝑀 : 𝐴 → 𝐵 @𝐸 Γ ⊢ 𝑁 : 𝐴 @𝐸

Γ ⊢ 𝑀 𝑁 : 𝐵 @𝐸

T-Do
𝐸 = ℓ : 𝐴 ↠ 𝐵, 𝐹 Γ ⊢ 𝑁 : 𝐴 @𝐸

Γ ⊢ do ℓ 𝑁 : 𝐵 @𝐸

T-Mask
Γ,µ⟨𝐿 |⟩𝐹 ⊢ 𝑀 : 𝐴 @ 𝐹 − 𝐿
Γ ⊢ mask𝐿 𝑀 : ⟨𝐿 |⟩𝐴 @ 𝐹

T-Handler
𝐻 = {return 𝑥 ↦→ 𝑁 } ⊎ {ℓ𝑖 𝑝𝑖 𝑟𝑖 ↦→ 𝑁𝑖 }𝑖

Γ,µ⟨|𝐷 ⟩𝐹 ⊢ 𝑀 : 𝐴 @𝐷 + 𝐹 Γ, 𝑥 : ⟨|𝐷⟩𝐴 ⊢ 𝑁 : 𝐵 @ 𝐹

𝐷 = {ℓ𝑖 : 𝐴𝑖 ↠ 𝐵𝑖 }𝑖 [Γ, 𝑝𝑖 : 𝐴𝑖 , 𝑟𝑖 : 𝐵𝑖 → 𝐵 ⊢ 𝑁𝑖 : 𝐵 @ 𝐹]𝑖
Γ ⊢ handle 𝑀 with 𝐻 : 𝐵 @ 𝐹

Fig. 3. Typing rules for coreMet.

Modality Introduction and Elimination. Modalities are introduced by T-Mod and eliminated by
T-Letmod. The termmod` 𝑉 introduces modality ` to the type of the conclusion and lock µ`𝐹 into
the context of the premise, and requires the value𝑉 to be well-typed under the new effect context 𝐸
manipulated by `. The lock µ`𝐹 tracks the change to the effect context. We restrict mod to values
as it manipulates effect contexts [2, 34]. Otherwise, a term such as mod⟨| ℓ ⟩ (do ℓ 𝑉) would type
check under the empty effect context but get stuck.

638

639

640

641

642

643

644

645

646

647

648

649

650

651

652

653

654

655

656

657

658

659

660

661

662

663

664

665

666

667

668

669

670

671

672

673

674

675

676

677

678

679

680

681

682

683

684

685

686

14 Wenhao Tang, Leo White, Stephen Dolan, Daniel Hillerström, Sam Lindley, and Anton Lorenzen

Following MTT, we use let-style modality elimination which takes another modality a in addition
to the modality ` that is eliminated from 𝑉 . This is crucial for sequential unboxing. For instance, 𝑦
and 𝑧 in the following term are bound as 𝑦 :a `𝐴 and 𝑧 :a◦` 𝐴, respectively.

_𝑥a`𝐴 .let moda 𝑦 = 𝑥 in leta mod` 𝑧 = 𝑦 in 𝑀

As with boxing, unboxing is restricted to values. We treat a type application of a value as itself a
value as type application does not perform any effects. Consequently, we gain the flexibility to use
type applications in boxing and unboxing.

Masking and Handling. Masking and handling provide specialised means to introduce values
with relative modalities. A mask mask𝐿𝑀 introduces the mask modality ⟨𝐿 |⟩, and a handler
handle 𝑀 with 𝐻 binds a value boxed with the extension modality ⟨|𝐷⟩ in its return clause. Unlike
mod, these constructs apply to computations as they perform masking and handling semantically.
As shown in Section 2.7, entering the scope of a handler for operations 𝐷 means that 𝐷 is

extended with the ambient effect context. Values escaping a handler must be boxed with ⟨|𝐷⟩ since
they may use these previously extended operations. Similarly, going into the scope ofmask𝐿 means
that effect labels 𝐿 are removed from the ambient effects 𝐹 . For those values leaving masks, they
need to be boxed with ⟨𝐿 |⟩ since they cannot use these previously masked operations.

Accessing Variables. The T-Var rule uses the auxiliary judgement Γ ⊢ (`,𝐴) ⇒ a @ 𝐹 defined
in Figure 2. Variables of absolute types can always be used as they do not depend on the ambient
effect context. For a non-absolute term variable binding 𝑥 :`𝐹 𝐴 from context Γ, 𝑥 :`𝐹 𝐴, Γ′, we
must guarantee that it is safe to use 𝑥 in the current effect context. The effect context where 𝑥 is
introduced is 𝐹 . As we track all transformations on effect contexts up to the binding of 𝑥 as locks
in Γ′, the current effect context 𝐸 is obtained by applying all modalities on locks in Γ′ to 𝐹 . Thus,
the condition `𝐹 ⇒ locks(Γ′)𝐹 defined in Section 3.3 is needed for effect safety.

Let us look at some examples. Consider the following judgement.
µ⟨| ℓ2 ⟩, 𝑦 :⟨| ℓ1 ⟩ℓ2 1 → Int ⊢ handle 𝑦 () with {ℓ1} : _ @ ℓ2

The handler introduces a lock µ⟨| ℓ1 ⟩ℓ2 . This judgement is valid because we have ⟨|ℓ1⟩ℓ2 ⇒ ⟨|ℓ1⟩ℓ2 . It
would be invalid if we were to extend the handler to handle ℓ2, as ⟨|ℓ1⟩ℓ2 ⇒ ⟨|ℓ1, ℓ2⟩ℓ2 does not hold.
Otherwise, the function 𝑦 might use ℓ2 which is accidentally handled here.

µ⟨| ℓ2 ⟩, 𝑦 :⟨| ℓ1 ⟩ℓ2 1 → Int ⊢wrong handle 𝑦 () with {ℓ1, ℓ2} : _ @ ℓ2

We can fix this judgement by masking ℓ2. The transformation ⟨|ℓ1⟩ℓ2 ⇒ (⟨|ℓ1, ℓ2⟩ℓ2 ◦ ⟨ℓ2 |⟩ℓ1,ℓ2,ℓ2) is
well-defined since ⟨|ℓ1, ℓ2⟩ℓ2 ◦ ⟨ℓ2 |⟩ℓ1,ℓ2,ℓ2 = ⟨|ℓ1⟩ℓ2 .

µ⟨| ℓ2 ⟩, 𝑦 :⟨| ℓ1 ⟩ℓ2 1 → Int ⊢ handle maskℓ2 (𝑦 ()) with {ℓ1, ℓ2} : _ @ ℓ2

Subeffecting. Subeffecting is incorporated into the T-Var rule within the transformation relation
`𝐹 ⇒ a𝐹 . We have seen how subeffecting works in Section 2.2. We give another example here
upcasting [] to [𝐸].

_𝑥 [] (Int→Int) .let mod[] 𝑦 = 𝑥 in mod[𝐸] 𝑦 : [] (Int → Int) → [𝐸] (Int → Int)
Due to subeffecting, given a variable binding 𝑥 : 1 → 1 under ambient effect context 𝐸, we

cannot assume 𝐸 is exactly the effect context required to invoke a function bound to 𝑥 . For instance,
consider the following program.

let 𝑓 = mod[] (_𝑥1→1.𝑥 ()) in let mod[] 𝑔 = 𝑓 in 𝑔 (__.do ℓ 𝑉 ; ())
Though the function _𝑥1→1.𝑥 is typed checked with the empty ambient effect context, the term
bound to 𝑥 in the application of 𝑔 actually invokes ℓ .

687

688

689

690

691

692

693

694

695

696

697

698

699

700

701

702

703

704

705

706

707

708

709

710

711

712

713

714

715

716

717

718

719

720

721

722

723

724

725

726

727

728

729

730

731

732

733

734

735

Modal Effect Types 15

3.6 Masking and Handling with Absolute Kinds

Masking attaches a mask modality to the return value of the term being masked, and handling
attaches an extension modality to the return value of the term being handled. In practice, these
return values often have absolute kind, which means these modalities can be omitted. We provide
the following syntactic sugar to treats absolute return values specially for masking and handling.
We also introduce syntactic sugar for specialised unboxing.

mask
Abs

𝐿 𝑀 � let mod⟨𝐿 |⟩ 𝑥 = mask𝐿 𝑀 in 𝑥

handle
Abs𝑀 with 𝐻 � handle 𝑀 with 𝐻 ′

where 𝐻 = {return 𝑥 ↦→ 𝑁 } ⊎ {ℓ𝑖 𝑝𝑖 𝑟𝑖 ↦→ 𝑁𝑖 }𝑖
𝐻 ′ = {return 𝑥 ↦→ let mod⟨|𝐷 ⟩ 𝑥 = 𝑥 in 𝑁 } ⊎ {ℓ𝑖 𝑝𝑖 𝑟𝑖 ↦→ 𝑁𝑖 }𝑖

let mod` = 𝑀 in 𝑁 � (_𝑥.let mod` 𝑥 = 𝑥 in 𝑁) 𝑀
let mod`;a 𝑥 = 𝑉 in 𝑀 � let mod` 𝑥 = 𝑉 in let` moda 𝑥 = 𝑥 in 𝑀

The following typing rules are derivable for absolute 𝐴, which allow us to elide modalities:

T-MaskAbs
Γ ⊢ 𝐴 : Abs

Γ,µ⟨𝐿 |⟩𝐹 ⊢ 𝑀 : 𝐴 @ 𝐹 − 𝐿
Γ ⊢ mask

Abs

𝐿 𝑀 : 𝐴 @ 𝐹

T-HandleAbs
Γ ⊢ 𝐴 : Abs 𝐻 = {return 𝑥 ↦→ 𝑁 } ⊎ {ℓ𝑖 𝑝𝑖 𝑟𝑖 ↦→ 𝑁𝑖 }𝑖

Γ,µ⟨|𝐷 ⟩𝐹 ⊢ 𝑀 : 𝐴 @𝐷 + 𝐹 Γ, 𝑥 : 𝐴 ⊢ 𝑁 : 𝐵 @ 𝐹

𝐷 = {ℓ𝑖 : 𝐴𝑖 ↠ 𝐵𝑖 }𝑖 [Γ, 𝑝𝑖 : 𝐴𝑖 , 𝑟𝑖 : 𝐵𝑖 → 𝐵 ⊢ 𝑁𝑖 : 𝐵 @ 𝐹]𝑖
Γ ⊢ handleAbs𝑀 with 𝐻 : 𝐵 @ 𝐹

3.7 Operational Semantics

The operational semantics forMet is quite standard. As type application values can reduce, we
first define value normal forms𝑈 that cannot reduce, and evaluation contexts E:

Value normal forms 𝑈 ::= 𝑥 | _𝑥𝐴 .𝑀 | Λ𝛼𝐾 .𝑉 | mod` 𝑈

Evaluation contexts E ::= [] | E 𝐴 | E 𝑁 | 𝑈 E | mod` E | leta mod` 𝑥 = E in 𝑀

| do ℓ E | mask𝐿 E | handle E with 𝐻

The reduction rules are as follows.

E-App (_𝑥𝐴 .𝑀)𝑈 { 𝑀 [𝑈 /𝑥]
E-TApp (Λ𝛼.𝑉)𝐴{ 𝑉 [𝐴/𝛼]
E-Letmod leta mod` 𝑥 = mod` 𝑈 in 𝑀 { 𝑀 [𝑈 /𝑥]
E-Mask mask𝐿𝑈 { mod⟨𝐿 |⟩ 𝑈
E-Ret handle 𝑈 with 𝐻 { 𝑁 [(mod⟨|𝐷 ⟩ 𝑈)/𝑥],where (return 𝑥 ↦→ 𝑁) ∈ 𝐻
E-Op handle E[do ℓ 𝑈] with 𝐻 { 𝑁 [𝑈 /𝑝, (_𝑦.handle E[𝑦] with 𝐻)/𝑟],

where 0−free(ℓ, E) and (ℓ 𝑝 𝑟 ↦→ 𝑁) ∈ 𝐻
E-Lift E[𝑀] { E[𝑁], if𝑀 { 𝑁

The only slightly non-standard aspect of the rules is the boxing of values escaping masks and
handlers. In E-Ret, we assume handlers are decorated with the operations 𝐷 that they handle.
Following Biernacki et al. [4], the predicate 𝑛−free(ℓ, E) is defined inductively on evaluation

contexts as follows. The meta function count(ℓ ;𝐿) yields the number of ℓ labels in 𝐿. We omit the
inductive cases that do not change 𝑛. Notice that the cases for introduction and elimination of
modalities fall into this category as they require values which cannot be of the form do ℓ 𝑉 .

736

737

738

739

740

741

742

743

744

745

746

747

748

749

750

751

752

753

754

755

756

757

758

759

760

761

762

763

764

765

766

767

768

769

770

771

772

773

774

775

776

777

778

779

780

781

782

783

784

16 Wenhao Tang, Leo White, Stephen Dolan, Daniel Hillerström, Sam Lindley, and Anton Lorenzen

0−free(ℓ, [])
𝑛−free(ℓ, E)

(𝑛)−free(ℓ,do ℓ ′ E)
𝑛−free(ℓ, E) count(𝑙 ;𝐿) =𝑚

(𝑛 +𝑚)−free(ℓ,mask𝐿 E)

(𝑛 + 1)−free(ℓ, E) ℓ ∈ dom(𝐻)
𝑛−free(ℓ,handle E with 𝐻)

𝑛−free(ℓ, E) ℓ ∉ dom(𝐻)
𝑛−free(ℓ,handle E with 𝐻)

3.8 Type Soundness and Effect Safety

We prove type soundness and effect safety forMet. Our proofs cover the extensions in Section 4.
Met enjoys relatively standard substitution properties along the lines of Kavvos and Gratzer

[29]. For example, we have the following rule for substituting values with modalities into terms.

Γ,µ`𝐹 ⊢ 𝑉 : 𝐴 @ 𝐹 ′ Γ, 𝑥 :`𝐹 𝐴, Γ
′ ⊢ 𝑀 : 𝐵 @𝐸

Γ, Γ′ ⊢ 𝑀 [𝑉 /𝑥] : 𝐵 @𝐸

We state and prove the relevant properties in Appendix A.5.
To state syntactic type soundness, we first define normal forms.

Definition 3.2 (Normal Forms). We say a term𝑀 is in a normal form with respect to effect type 𝐸,
if it is either in value normal form𝑀 = 𝑈 or of form𝑀 = E[do ℓ 𝑈] for ℓ ∈ 𝐸 and 𝑛−free(ℓ, E).

We have the following theorems which in together give type soundness and effect safety, proved
in Appendices A.6 and A.7.

Theorem 3.3 (Progress). If ⊢ 𝑀 : 𝐴 @𝐸, then either there exists 𝑁 such that𝑀 { 𝑁 or𝑀 is in

a normal form with respect to 𝐸.

Theorem 3.4 (Subject Reduction). If Γ ⊢ 𝑀 : 𝐴 @𝐸 and𝑀 { 𝑁 , then Γ ⊢ 𝑁 : 𝐴 @𝐸.

4 Extensions to the Core Calculus

In this section we demonstrate thatMet scales to support data types, richer handlers, and other
useful primitives that provide extra expressiveness. We also introduce Mete, an extension of Met
with effect variables, recovering the full expressive power of row-based effect systems. We prove
type soundness and effect safety for all extensions.

4.1 Data Types and Crisp Induction

We demonstrate the extensibility of Met with data types by extending it with pair and sum types.
Figure 4 shows the syntax and typing rules. The T-Pair, T-Inl, and T-Inr are standard introduction
rules. The elimination rules T-CrispPair and T-CrispSum are more interesting. In addition to
normal pattern matching, they interpret the value𝑉 under the effect context transformed by certain
modalities a , which can then be tagged to the variable bindings in case clauses. They follow the
crisp induction principles of multimodal type theory [18, 45]. These crisp elimination rules provide
extra expressiveness. For example, we can write the following function which transforms a sum
of type ` (𝐴 + 𝐵) to another sum of type (`𝐴 + `𝐵). This function is not expressible without crisp
elimination rules.

_𝑥` (𝐴+𝐵) .let mod` 𝑦 = 𝑥 in case` 𝑦 of {inl 𝑥1 ↦→ inl (mod` 𝑥1), inr 𝑥2 ↦→ inr (mod` 𝑥2)}

The semantics of this extension is standard and shown in Appendix A.2.

785

786

787

788

789

790

791

792

793

794

795

796

797

798

799

800

801

802

803

804

805

806

807

808

809

810

811

812

813

814

815

816

817

818

819

820

821

822

823

824

825

826

827

828

829

830

831

832

833

Modal Effect Types 17

T-Pair
Γ ⊢ 𝑀 : 𝐴 @𝐸 Γ ⊢ 𝑁 : 𝐵 @𝐸

Γ ⊢ (𝑀, 𝑁) : (𝐴, 𝐵) @𝐸

T-Inl
Γ ⊢ 𝑀 : 𝐴 @𝐸

Γ ⊢ inl 𝑀 : 𝐴 + 𝐵 @𝐸

T-Inr
Γ ⊢ 𝑀 : 𝐵 @𝐸

Γ ⊢ inr 𝑀 : 𝐴 + 𝐵 @𝐸

T-CrispPair
a𝐹 : 𝐸 → 𝐹 Γ,µa𝐹 ⊢ 𝑉 : (𝐴, 𝐵) @𝐸

Γ, 𝑥 :a𝐹 𝐴,𝑦 :a𝐹 𝐵 ⊢ 𝑀 : 𝐴′ @ 𝐹

Γ ⊢ casea 𝑉 of (𝑥,𝑦) ↦→ 𝑀 : 𝐴′ @ 𝐹

T-CrispSum
a𝐹 : 𝐸 → 𝐹 Γ,µa𝐹 ⊢ 𝑉 : 𝐴 + 𝐵 @𝐸

Γ, 𝑥 :a𝐹 𝐴 ⊢ 𝑀1 : 𝐴′ @ 𝐹 Γ, 𝑦 :a𝐹 𝐵 ⊢ 𝑀2 : 𝐴′ @ 𝐹

Γ ⊢ casea 𝑉 of {inl 𝑥 ↦→ 𝑀1, inr 𝑦 ↦→ 𝑀2} : 𝐴′ @ 𝐹

Fig. 4. Typing rules for data types inMet.

4.2 Commuting Modalities and Type Abstraction

Crisp elimination rules in Section 4.1 allow us to commute modalities and data types. Similarly, it is
also sound and useful to commute type abstractions and modalities. However, the current modality
elimination rule cannot do so, for a similar reason to why it is not possible to transform ∀𝛼.𝐴 + 𝐵
to (∀𝛼.𝐴) + (∀𝛼.𝐵) in System F. We extend modality elimination to the form leta mod` Λ𝛼𝐾𝑥 =

𝑉 in 𝑀 which allows 𝑉 to use additional type variables in 𝛼𝐾 which are abstracted when bound to
𝑥 . The extended typing and reduction rules are as follows.

T-Letmod’
a𝐹 : 𝐸 → 𝐹 Γ,µa𝐹 , 𝛼 : 𝐾 ⊢ 𝑉 : `𝐴 @𝐸 Γ, 𝑥 :a𝐹 ◦`𝐸 ∀𝛼𝐾 .𝐴 ⊢ 𝑀 : 𝐵 @ 𝐹

Γ ⊢ leta mod` Λ𝛼𝐾 .𝑥 = 𝑉 in 𝑀 : 𝐵 @ 𝐹

E-Letmod’ leta mod` Λ𝛼𝐾 .𝑥 = mod` 𝑈 in 𝑀 { 𝑀 [(Λ𝛼𝐾 .𝑈)/𝑥]
For instance, we can now write a function of type ∀𝛼𝐾 .`𝐴 → ` (∀𝛼.𝐴) where 𝛼 ∉ ftv(`) as follows.

_𝑥∀𝛼
𝐾 .`𝐴 .let mod` Λ𝛼

𝐾 .𝑦 = 𝑥 𝛼 in mod` 𝑦

4.3 Boxing Computations under Empty Effect Contexts

We have restricted boxes to values in order to guarantee effect safety. This restriction is not essential
for []. For example, suppose we have 𝑓 :[] (𝐴 → 𝐵) and 𝑥 :[] 𝐴, it is sound to treat mod[] (𝑓 𝑥)
as a computation which returns a value of type []𝐵. As 𝑓 𝑥 is evaluated under the empty effect
context, we can guarantee that it cannot get stuck on unhandled operations.

We extend the introduction rule for the empty absolute modality to allow non-value terms with
the following typing rule.

T-BoxAbs
Γ,µ[]𝐹 ⊢ 𝑀 : 𝐴 @ ·

Γ ⊢ mod[] 𝑀 : []𝐴 @ 𝐹

The same generalisation applies to T-Mask and T-Handler. As an example, we can write the
following app function.

app : ∀𝛼.∀𝛽.[] (𝛼 → 𝛽) → []𝛼 → []𝛽
app = Λ𝛼.Λ𝛽._𝑓 ._𝑥 .let mod[] 𝑓 = 𝑓 in let mod[] 𝑥 = 𝑥 in mod[] (𝑓 𝑥)

The formula corresponding to the type of this function is commonly referred to as Axiom K in
modal logic and is also satisfied by other similar modalities such as the safe modality of Choudhury
and Krishnaswami [10].

834

835

836

837

838

839

840

841

842

843

844

845

846

847

848

849

850

851

852

853

854

855

856

857

858

859

860

861

862

863

864

865

866

867

868

869

870

871

872

873

874

875

876

877

878

879

880

881

882

18 Wenhao Tang, Leo White, Stephen Dolan, Daniel Hillerström, Sam Lindley, and Anton Lorenzen

4.4 Absolute and Shallow Handlers

Up to now we have considered only deep handlers of the form handle 𝑀 with 𝐻 where𝑀 depends
on the ambient effect contexts. Deep handlers automatically wrap the handler around the body of
the continuation 𝑟 captured in a handler clause, and thus 𝑟 depends on the ambient effect context.
Though this usually suffices in practice, in some cases we may want the computation 𝑀 or the
continuation to be absolute, i.e., independent from the ambient effect context. This situation is
more prevalent in Mete with effect variables.

We extend the handler syntax to handle
A𝑀 with 𝐻 with the following typing rule.

T-HandlerA
𝐷 = {ℓ𝑖 : 𝐴𝑖 ↠ 𝐵𝑖 }𝑖 Γ,µ[𝐷+𝐸]𝐹 ⊢ 𝑀 : 𝐴 @𝐷 + 𝐸

Γ, 𝑥 : [𝐷 + 𝐸]𝐴 ⊢ 𝑁 : 𝐵 @ 𝐹 [Γ, 𝑝𝑖 : 𝐴𝑖 , 𝑟𝑖 : [𝐹] (𝐵𝑖 → 𝐵) ⊢ 𝑁𝑖 : 𝐵 @ 𝐹]𝑖
Γ ⊢ handleA 𝑀 with {return 𝑥 ↦→ 𝑁 } ⊎ {ℓ𝑖 𝑝𝑖 𝑟𝑖 ↦→ 𝑁𝑖 }𝑖 : 𝐵 @ 𝐹

The T-HandlerA rule extends the context with an absolute lock µ[𝐷+𝐸]𝐹 specifying the effect
context for 𝑀 , and boxes the continuation 𝑟 with the absolute modality [𝐹], where 𝐹 exactly
gives the effect context after handling. We also extend the handler syntax with shallow handlers
handle

†𝑀 with 𝐻 , in which the handler is not automatically wrapped around the body of
continuations, and absolute shallow handlers handleA†𝑀 with 𝐻 [22, 26]. The full syntax, typing
rules, and semantics for these handlers are shown in Appendix A.2.

4.5 Effect Variables

Though Met suffices for many common use-cases of effects and handlers in practice, there are
situations in which it is useful to refer to one or more effect contexts that differ from the ambient
one (such as the higher-order fork operation in Section 2.10).

Mete, the extension of Met with effect variables, is quite lightweight and straightforward.

Effects 𝐸 ::= · | ℓ : 𝑃, 𝐸 | Y | 𝐸\𝐿 Kinds 𝐾 ::= · · · | Eff

𝐸 ≡ 𝐹 𝐸 ⩽ 𝐹

𝐸\· ≡ 𝐸 ·\𝐿 ≡ · (ℓ : 𝑃, 𝐸)\(ℓ, 𝐿) ≡ 𝐸\𝐿
ℓ ∉ 𝐿

(ℓ : 𝑃, 𝐸)\𝐿 ≡ ℓ : 𝑃, 𝐸\𝐿

(Y\𝐿)\𝐿′ ≡ Y\(𝐿, 𝐿′) Y\𝐿 ≡ Y\𝐿 · ⩽ Y\𝐿 Y\𝐿 ⩽ Y\𝐿

𝐸 − 𝐿
Y\𝐿 − 𝐿′ = Y\(𝐿, 𝐿′)

We extend the syntax of effect contexts 𝐸 with effect variables Y. As is typical for row polymor-
phism, we restrict each effect type to contain at most one effect variable. We also extend the syntax
with effect masking 𝐸\𝐿, which means the effect types given by masking 𝐿 from 𝐸. The latter is
needed to keep the syntax of effect contexts closed under the masking operation 𝐸 − 𝐿; otherwise
we cannot define Y − 𝐿. In other words, the syntax of effects is the free algebra generated from
extending 𝐷, 𝐸 and masking 𝐸\𝐿 with base elements · and Y.
The effect equivalence and subeffecting rules are extended in a relatively standard way. We

do not allow non-trivial equivalence or subtyping between different effect variables. We always
identity effects up to the equivalence relation. That is, we can directly treat syntax of effects as
the free algebra quotiented by the equivalence relation 𝐸 ≡ 𝐹 . Observe that using the equivalence

883

884

885

886

887

888

889

890

891

892

893

894

895

896

897

898

899

900

901

902

903

904

905

906

907

908

909

910

911

912

913

914

915

916

917

918

919

920

921

922

923

924

925

926

927

928

929

930

931

Modal Effect Types 19

relation, all open effect types with effect variable Y can be simplified to an equivalent normal form
𝐷, Y\𝐿. We assume the operation 𝐸 − 𝐿 is defined for effects 𝐸 in normal form and extend it with
one case for effect variables.
As the extension of Mete is local and only influences relevant definitions of effects, the meta

theory and proofs for Met directly apply to Mete without any non-trivial changes.

5 Encoding Row-based Effect Systems into Met

Even without effect variables,Met is expressive enough to encode programs from conventional
row-based effect systems as long as effect variables on function arrows always refer to the lexically
closest one. This is an important special case, since most functions in practice use at most one
effect variable. For example, as of July 2024, the Koka repository contains 520 effectful functions
across 112 files but only 86 functions across 5 files use more than one effect variable, almost all of
them internal primitives for handlers not exposed to programmers. Moreover, almost all programs
in the Frank repository make no mention of effect variables at all, relying on syntactic sugar to
hide the single effect variable.

5.1 Row Effect Types with a Single Effect Variable

We define F1eff , a System F-style core calculus with row-based effect types in the style of Koka [31],
but where each scope can only refer to a single effect variable. The syntax is defined as follows.

Types 𝐴, 𝐵 ::= Int | 𝐴 →{𝐸 |Y } 𝐵 | ∀Y.𝐴
Terms 𝑀, 𝑁 ::= 𝑥 | _{𝐸 |Y }𝑥𝐴 .𝑀 | 𝑀 𝑁 | ΛY.𝑉 | 𝑀 {𝐸 |Y}

| mask𝐿 𝑀 | do ℓ 𝑀 | handle 𝑀 with 𝐻

Values 𝑉 ,𝑊 ::= 𝑥 | _{𝐸 |Y }𝑥𝐴 .𝑀 | ΛY.𝑉
Effects 𝐸, 𝐹, 𝐿, 𝐷 ::= · | ℓ, 𝐸
Contexts Γ ::= · | Γ, 𝑥 :Y 𝐴 | Γ, q

𝐸
| Γ, qΛ

𝐸

We include integers, effectful function arrows, and effect abstraction ∀Y.𝐴. As we consider only
one effect variable at a time, we need not track effect variables on function types and effect type
abstraction. Nonetheless, we include them in grey font for easier comparison with existing calculi.
In Γ, we track for each variable the effect variable at which effect context it was introduced. Further,
we add markers q

𝐸
and qΛ

𝐸
to the context, which track the change of effect context due to functions,

masks, handlers, and effect abstraction. These markers are not needed by the typing rules but help
with the encoding. As with Met, we require contexts to be ordered. To convey the essential idea of
the encoding, we omit type polymorphism and data types from F1eff ; we discuss these extensions
in Section 5.3. For simplicity we also assume operation signatures come from a global context
Σ = {ℓ : 𝐴 ↠ 𝐵}, thus unifying extensions, masks, and effects (effect contexts) into one syntactic
category. Mirroring our kind restriction for operation signatures inMet, we assume that these 𝐴
and 𝐵 are not function arrows, but they can be effect abstractions (which may themselves contain
function arrows).
Figure 5 gives the typing rules of F1eff . The judgement Γ ⊢ 𝑀 : 𝐴 ! {𝐸 |Y} states that in context Γ,

the term𝑀 has type 𝐴 under an effect context consisting of concrete effects 𝐸 extended with effect
variable Y. The typing rules are mostly standard for row-based effect type systems.

In the R-Var rule, we ensure that either the current effect variable matches the effect variable
at which the variable was introduced or that the value is an effect abstraction. These constraints
guarantee programs can only use one effect variable in one scope.

The R-App, R-Do, R-Mask, and R-Handler rules are standard, while the R-Abs rule is standard
except for requiring the effect variable to remain unchanged.

932

933

934

935

936

937

938

939

940

941

942

943

944

945

946

947

948

949

950

951

952

953

954

955

956

957

958

959

960

961

962

963

964

965

966

967

968

969

970

971

972

973

974

975

976

977

978

979

980

20 Wenhao Tang, Leo White, Stephen Dolan, Daniel Hillerström, Sam Lindley, and Anton Lorenzen

The R-EAbs rule introduces a new effect variable Y′ and the R-EApp rule instantiates an effect
abstraction. While conventional systems allow instantiating with any effect row, this rule only
allows instantiation with the ambient effects. The instantiation operator [{𝐸 |Y}/] implements
standard type substitution for the single effect variable.

Int[{𝐸 |Y}/] = Int

(𝐴 →{𝐹 |Y′ } 𝐵) [{𝐸 |Y}/] = 𝐴[{𝐸 |Y}/] →{𝐹,𝐸 |Y } 𝐵 [{𝐸 |Y}/]
(∀Y′ .𝐴) [{𝐸 |Y}/] = ∀Y′ .𝐴

Revisiting the example from Section 2.6, we can write the regen function in F1eff as follows:

regen : ∀.(Int →Yield
Int) →Yield ((1 →Yield,Yield 1) →Yield 1)

regen = Λ._𝑓 ._𝑚.handle𝑚 () with {return 𝑥 ↦→ 𝑥, Yield 𝑠 𝑟 ↦→ do Yield (𝑓 𝑠); 𝑟 ()}

5.2 Encoding

We now give translations for types and contexts of F1eff into Met. We transform F1eff types at effect
context 𝐸 to modal types in Met by the translation J−K𝐸 . For integer types, we insert the identity
modality. For function arrows, the relative modality ⟨𝐸 − 𝐹 |𝐹 − 𝐸⟩ heralds the transition from effect
context 𝐸 to effect context 𝐹 as we enter the function. For effect abstraction, the empty absolute
modality simulates entering a new effect context with different effect variables. We translate
contexts by translating each type and moving top-level modalities to their bindings. For each
marker, we insert a corresponding lock to reflect the changes of effect context.

Γ ⊢ 𝑀 : 𝐴 ! {𝐸 |Y}

R-Var
Y = Y′ or 𝐴 = ∀Y′′ .𝐴′

Γ1, 𝑥 :Y′ 𝐴, Γ2 ⊢ 𝑥 : 𝐴 ! {𝐸 |Y}

R-Abs
Γ, q𝐸, 𝑥 :Y 𝐴 ⊢ 𝑀 : 𝐵 ! {𝐹 |Y}

Γ ⊢ _{𝐹 |Y }𝑥𝐴 .𝑀 : 𝐴 →{𝐹 |Y } 𝐵 ! {𝐸 |Y}

R-App
Γ ⊢ 𝑀 : 𝐴 →{𝐸 |Y } 𝐵 ! {𝐸 |Y}

Γ ⊢ 𝑁 : 𝐴 ! {𝐸 |Y}
Γ ⊢ 𝑀 𝑁 : 𝐵 ! {𝐸 |Y}

R-EAbs
Y′ ∉ ftv(Γ)

Γ, qΛ𝐸 ⊢ 𝑉 : 𝐴 ! {· |Y′}
Γ ⊢ ΛY′ .𝑉 : ∀Y′ .𝐴 ! {𝐸 |Y}

R-EApp
Γ ⊢ 𝑀 : ∀Y′ .𝐴 ! {𝐸 |Y}

Γ ⊢ 𝑀 {𝐸 |Y} : 𝐴[{𝐸 |Y}/] ! {𝐸 |Y}

R-Mask
Γ, q𝐿+𝐸 ⊢ 𝑀 : 𝐴 ! {𝐸 |Y}

Γ ⊢ mask𝐿 𝑀 : 𝐴 ! {𝐿 + 𝐸 |Y}

R-Do
(ℓ : 𝐴 ↠ 𝐵) ∈ Σ

Γ ⊢ 𝑀 : 𝐴 ! {ℓ, 𝐸 |Y}
Γ ⊢ do ℓ 𝑀 : 𝐵 ! {ℓ, 𝐸 |Y}

R-Handler
Γ, q𝐸 ⊢ 𝑀 : 𝐴 ! {ℓ𝑖 , 𝐸 |Y} Γ, 𝑥 :Y 𝐴 ⊢ 𝑁 : 𝐵 ! {𝐸 |Y}

{ℓ𝑖 : 𝐴𝑖 ↠ 𝐵𝑖 } ⊆ Σ [Γ, 𝑝𝑖 :Y 𝐴𝑖 , 𝑟𝑖 :Y 𝐵𝑖 →𝐸 𝐵 ⊢ 𝑁𝑖 : 𝐵 ! {𝐸 |Y}]𝑖
𝐻 = {return 𝑥 ↦→ 𝑁 } ⊎ {ℓ𝑖 𝑝𝑖 𝑟𝑖 ↦→ 𝑁𝑖 }𝑖

Γ ⊢ handle 𝑀 with 𝐻 : 𝐵 ! {𝐸 |Y}

Fig. 5. Typing rules of F1eff

981

982

983

984

985

986

987

988

989

990

991

992

993

994

995

996

997

998

999

1000

1001

1002

1003

1004

1005

1006

1007

1008

1009

1010

1011

1012

1013

1014

1015

1016

1017

1018

1019

1020

1021

1022

1023

1024

1025

1026

1027

1028

1029

Modal Effect Types 21

JIntK𝐸 = ⟨|⟩Int
J𝐴 →𝐹 𝐵K𝐸 = ⟨𝐸 − 𝐹 |𝐹 − 𝐸⟩(J𝐴K𝐹 → J𝐵K𝐹)

J∀.𝐴K𝐸 = []J𝐴K·
topmod(`𝐴) = `

J·K𝐸 = ·
JΓ, 𝑥 : 𝐴K𝐸 = JΓK𝐸, 𝑥 :`𝐸 𝐴′ for `𝐴′ = J𝐴K𝐸

JΓ, q
𝐹
K𝐸 = JΓK𝐹 ,µ⟨𝐹−𝐸 |𝐸−𝐹 ⟩

JΓ, qΛ
𝐹
K· = JΓK𝐹 ,µ[]

Observe that not every valid typing judgement in F1eff can be transformed to valid typing judge-
ment in Met, because the translation depends on markers in contexts, while the typing of F1eff
does not. We define well-scoped typing judgements, which characterise the typing judgements for
which our encoding is well-defined, as follows.

Definition 5.1 (Well-scoped). A typing judgement Γ1, 𝑥 :Y 𝐴, Γ2 ⊢ 𝑀 : 𝐵 !𝐸 is well-scoped for 𝑥 if
either 𝑥 ∉ fv(𝑀) or qΛ

𝐹
∉ Γ2 or 𝐴 = ∀.𝐴′. A typing judgement Γ ⊢ 𝑀 : 𝐴 !𝐸 is well-scoped if it is

well-scoped for all 𝑥 ∈ Γ.

In particular, if the judgement at the bottom of a derivation tree is well-scoped, then every
judgement in the derivation tree is well-scoped.

Figure 6 shows the translation from F1eff terms with their types and effect contexts to Met terms.
We have the following type preservation theorem. The proof is given in Appendix A.8.

Lemma 5.2 (Type preservation of encoding). If Γ ⊢ 𝑀 : 𝐴 ! {𝐸 |Y} is well-scoped, then 𝑀 :
𝐴 !𝐸 d 𝑀 ′

and JΓK𝐸 ⊢ 𝑀 ′ : J𝐴K𝐸 @𝐸.

In the term translation, all terms are translated to boxed terms with proper modalities consistent
with those given by the type translation, such that used term variables are always accessible after
translation. We greedily unbox top-level modalities of term variables when they are bound, and
lazily box them when they are used. Throughout, we use the syntax defined in Section 3.6.

Greedy unboxing happens for variable bindings such as _-abstractions and handlers. In the R-Abs
case, we unbox the top-level modality of variable 𝑥 immediately after 𝑥 is bound. Additionally,
we box the whole function with the relative modality ⟨𝐸 − 𝐹 |𝐹 − 𝐸⟩, reflecting the effect context
transition. In the R-Handler case, we similarly unbox the variable bindings for return clauses
and operation clauses immediately after they are bound. In the operation clauses, we need only
unbox the argument to the handler 𝑝𝑖 ; the resume function 𝑟𝑖 is introduced under the current
effect context 𝐸. In the return clause, we unbox 𝑥 with ⟨|ℓ𝑖⟩ ◦ ` and then transform this modality
to `′ given by topmod(J𝐴K𝐸) in order to match the current effect context 𝐸. We have proved this
modality transformation and the ones mentioned below in Appendix A.8.
Similar to the R-Abs case, the R-EAbs case boxes the translated value with the empty absolute

modality. Similar to the return clauses of the R-Handler case, the R-Mask case transforms the
modality ⟨𝐿 |⟩ ◦ `1 to `2 in order to match the current effect context 𝐿 + 𝐸.
Lazy boxing happens when variables are used in the R-Var rule. Note that variables might be

used at a different effect context than they were introduced, in which case we must establish the
existence of a modality transformation.

As a result of translating all terms to boxed terms, we must insert unboxing for elimination rules
such as R-App and R-EApp. Nothing special happens for the R-Do case.

1030

1031

1032

1033

1034

1035

1036

1037

1038

1039

1040

1041

1042

1043

1044

1045

1046

1047

1048

1049

1050

1051

1052

1053

1054

1055

1056

1057

1058

1059

1060

1061

1062

1063

1064

1065

1066

1067

1068

1069

1070

1071

1072

1073

1074

1075

1076

1077

1078

22 Wenhao Tang, Leo White, Stephen Dolan, Daniel Hillerström, Sam Lindley, and Anton Lorenzen

𝑀 : 𝐴 !𝐸 d 𝑀 ′

R-Var
` ≔ topmod(J𝐴K𝐸)
𝑥 : 𝐴 !𝐸 d mod` 𝑥

R-App
𝑀 : 𝐴 →𝐸 𝐵 !𝐸 d 𝑀 ′

𝑁 : 𝐴 !𝐸 d 𝑁 ′ 𝑥 fresh

𝑀 𝑁 : 𝐵 !𝐸 d let mod⟨ | ⟩ 𝑥 = 𝑀 ′
in 𝑥 𝑁 ′

R-Abs
𝑀 : 𝐵 ! 𝐹 d 𝑀 ′ a ≔ ⟨𝐸 − 𝐹 |𝐹 − 𝐸⟩ ` ≔ topmod(J𝐴K𝐹)
_𝐹𝑥𝐴 .𝑀 : 𝐴 →𝐹 𝐵 !𝐸 d moda (_𝑥J𝐴K𝐹 .let mod` 𝑥 = 𝑥 in 𝑀 ′)

R-EAbs
𝑉 : 𝐴 ! · d 𝑉 ′

Λ.𝑉 : ∀.𝐴 !𝐸 d mod[] 𝑉
′

R-EApp
𝑀 : ∀.𝐴 !𝐸 d 𝑀 ′ 𝑥 fresh

𝑀@ : 𝐴[𝐸/] !𝐸 d let mod[] 𝑥 = 𝑀 ′
in 𝑥

R-Do
𝑀 : 𝐴 ! ℓ, 𝐸 d 𝑀 ′

do ℓ 𝑀 : 𝐵 ! ℓ, 𝐸 d do ℓ 𝑀 ′

R-Mask
𝑀 : 𝐴 !𝐸 d 𝑀 ′ `1 ≔ topmod(J𝐴K𝐸) `2 ≔ topmod(J𝐴K𝐿+𝐸)
mask𝐿 𝑀 : 𝐴 !𝐿 + 𝐸 d let mod⟨𝐿 |⟩;`1 𝑥 = mask𝐿 𝑀

′
in mod`2 𝑥

R-Handler
𝑀 : 𝐴 ! ℓ𝑖 , 𝐸 d 𝑀 ′ 𝑁 : 𝐵 !𝐸 d 𝑁 ′ [𝑁𝑖 : 𝐵 !𝐸 d 𝑁 ′

𝑖]𝑖
` ≔ topmod(J𝐴Kℓ𝑖 ,𝐸) `′ ≔ topmod(J𝐴K𝐸)

𝑁 ′′ ≔ let mod⟨| ℓ𝑖 ⟩;` 𝑥 = 𝑥 in let`′ mod⟨ | ⟩ 𝑥 = mod⟨ | ⟩ 𝑥 in 𝑁 ′

[`𝑖 ≔ topmod(J𝐴𝑖K·) 𝑁 ′′
𝑖 ≔ let mod`𝑖 𝑝𝑖 = 𝑝𝑖 in 𝑁

′
𝑖]𝑖

𝐻 = {return 𝑥 ↦→ 𝑁 } ⊎ {ℓ𝑖 𝑝𝑖 𝑟𝑖 ↦→ 𝑁𝑖 }𝑖 𝐻 ′ ≔ {return 𝑥 ↦→ 𝑁 ′′} ⊎ {ℓ𝑖 𝑝𝑖 𝑟𝑖 ↦→ 𝑁 ′
𝑖 }𝑖

handle 𝑀 with 𝐻 : 𝐵 !𝐸 d handle 𝑀 ′
with 𝐻 ′

Fig. 6. Encoding of F1eff inMet.

Revisiting the regen example from Section 2.6, we can directly translate the F1eff version above as
follows into Met, omitting boxing and unboxing of the identity modality ⟨|⟩.

regen : [Yield] ((⟨|⟩(Int → Int) → ⟨|⟩(⟨|Yield⟩(1 → 1) → 1)))
regen = mod[] (mod⟨|Yield⟩ (_𝑓 .(_𝑚.let mod⟨|Yield⟩ 𝑚 =𝑚 in handle𝑚 () with {

return 𝑥 ↦→ let mod⟨|Yield⟩ 𝑥 = 𝑥 in 𝑥,

Yield 𝑠 𝑟 ↦→ do Yield (𝑓 𝑠); 𝑟 () })))
This is essentially the same program as in Section 2.6, but with significant noise due to the greedy

unboxing and (omitted) identity boxes. In practice, identity boxes are not necessary — they are
only generated here to keep the encoding uniform. On the other hand, greedy unboxing is useful
in practice. In Section 6, we show how Metel can automatically infer unboxing.

5.3 Extensibility of the Encoding

We have omitted value type polymorphism and data types in our encoding in order to focus on
conveying the core idea. We now discuss how to extend the encoding to support these features.

Recall that the encoding in Section 5.2 translates each F1eff type and term to a boxedMet type and
term consistently such that variable accessibility is preserved. Generalising the encoding to type
polymorphism is relatively easy, as we need only ensure variable accessibility. For a polymorphic

1079

1080

1081

1082

1083

1084

1085

1086

1087

1088

1089

1090

1091

1092

1093

1094

1095

1096

1097

1098

1099

1100

1101

1102

1103

1104

1105

1106

1107

1108

1109

1110

1111

1112

1113

1114

1115

1116

1117

1118

1119

1120

1121

1122

1123

1124

1125

1126

1127

Modal Effect Types 23

value with type ∀𝛼.𝐴, the translation on the value of type 𝐴 would give a value of modal type `𝐴′

in Met. We can use our extension in Section 4.2 to commute the quantifier and modality to obtain
a value of type ` (∀𝛼.𝐴′).
Generalising the encoding to data types is more involved. For instance, given a pair of type

(𝐴, 𝐵), the translation on its components might give terms of type `𝐴′ and a𝐵′ with unrelated
modalities. This makes it impossible to give the pair a modality other than ⟨|⟩, which can not be
used in all contexts where the pair can be used in F1eff . To ensure variable accessibility, we need to
greedily destruct the pair and unbox its components with modalities ` and a respectively. The uses
of this pair variable in the translated function body are replaced by fresh pairs of these unboxed
components. For variable bindings of recursive data types, we need to greedily destruct only to the
extent that the data type is unfolded in the function body (where we may treat recursive invocations
as opaque). While this requires a somewhat global translation, it does not require destructing and
unboxing the recursive data type more than a small number of times.
The essential reason for the translation being global comes from the fact that we use let-style

unboxing following MTT. For modalities with certain structure (right adjoints), it is possible to use
Fitch-style unboxing [11] which allows terms to be directly unboxed without binding [17, 46]. We
are interested in exploring whether we could extend Met to use Fitch-style unboxing and thus
give a compositional local encoding for recursive data types. Fortunately, these issues appear not
to cause problems in practice. Functional programs typically use pattern-matching in a structured
way that plays nicely with automatic unboxing.

6 A Surface Language with Type Inference

In this section we briefly outline the design of Metel, a call-by-value surface language based on
Mete with Hindley-Milner type inference [13] for ML types and modalities without complicated
constraint solving (albeit some annotations are required for modalities).
The problem of inferring modal effect types is closely related to that of inferring first-class

polymorphism. Box introduction is analogous to type abstraction (which type inference algorithms
realise through generalisation). Box elimination is analogous to type application (which type
inference algorithms realise through instantiation). As such, one can adapt any of the myriad
techniques for combining first-class polymorphism with Hindley-Milner type inference. Metel is
inspired by the approach of FreezeML [15], a system that supports full impredicative polymorphism
with a combination of type annotations and frozen term variables which disable instantiation.Metel
is a conservative extension of ML, and thus can fully infer types for any ML programs without
the need for any annotations. Metel uses the machinery of FreezeML to support modal effect
types, but does not support first-class polymorphism (although incorporating it using FreezeML’s
mechanism would be relatively straightforward).

A central feature of Metel that makes it more convenient to program with than Mete is that it
infers unboxing when variables are used. For instance, the following Metel program

_𝑚⟨|Ask⟩ (1→Int) .handle𝑚 () with {Ask _ 𝑟 ↦→ 𝑟 42}
is elaborated to the following Mete program:

_𝑚⟨|Ask⟩ (1→Int) .let mod⟨|Ask⟩ �̂� =𝑚 in handle �̂� () with {Ask _ 𝑟 ↦→ 𝑟 42}
We now summarise the key ideas behind the design of Metel.

• The underlying philosophy of Metel is to “never guess modalities”. This is analogous to
the underlying philosophy of FreezeML to “never guess polymorphism”.

• Following FreezeML (and algorithmic presentations of ML) instantiation is performed by
default when a variable is used (𝑥).

1128

1129

1130

1131

1132

1133

1134

1135

1136

1137

1138

1139

1140

1141

1142

1143

1144

1145

1146

1147

1148

1149

1150

1151

1152

1153

1154

1155

1156

1157

1158

1159

1160

1161

1162

1163

1164

1165

1166

1167

1168

1169

1170

1171

1172

1173

1174

1175

1176

24 Wenhao Tang, Leo White, Stephen Dolan, Daniel Hillerström, Sam Lindley, and Anton Lorenzen

• Similarly, Metel also performs unboxing for variables by default via elaboration.
• Metel allows type variables to be instantiated with modal types. This is analogous to allow-
ing type variables to be instantiated with polymorphic types (giving rise to impredicative
polymorphism) in FreezeML.

• Following FreezeML, variables can be frozen in order to suppress such instantiation (⌈𝑥⌉,
written ~x in ASCII text as shown in Section 2.11).

• Boxing is never inferred. Though it would be possible to infer limited use of boxing in
let-bindings (following FreezeML and algorithmic presentations of ML), this would yield
the most general modality which is not typically what we require for handlers.

• Type annotations are required for function argument types that contain modal types.
• Type annotations are only required for those bindings that contain modal types.

We lack space to include full technical details of Metel in the body of the paper, and in any
case most of the subtleties and design choices are in essence the same as those one encounters in
treating type inference with first-class polymorphism. The full specification for Metel is given in
Appendix B. We formalise the type inference algorithm following the approach of type inference in
context [19, 20]. Soundness and completeness of type inference is proved in Appendix C.
We have chosen a design inspired by FreezeML in the full knowledge that other designs may

be better suited to other circumstances. But as a means for enabling us to write the examples in
Section 2 and for demonstrating the feasibility of implementing sound and complete type inference
for modal effect types it has fulfilled its purpose. In the future, we intend to explore and implement
an alternative design as an extension to OCaml, building on and complementing recent work
on modal types for OCaml [34], and making use of existing means for supporting first-class
polymorphism in OCaml.

7 Discussion and Related Work

We first discuss the most relevant systems: Frank [12, 33], Effekt [7, 8], and CC<:□ [6]. Then we
discuss the relationship between Met and MTT [17, 18, 29]. Finally we discuss other related work.

7.1 Do Be Do Be Do

Our absolute and relative modalities are inspired by the abilities and adjustments in Frank [12, 33].
Absolute modalities and abilities both specify the whole effect context required to run some
computation, while relative modalities and adjustments both specify deltas to the ambient effect
context. A key difference is that Frank restricts adjustments to appear only beside function
parameters and essentially treats these parameters as second-class computation variables. To write
higher-order programs, Frank implicitly inserts effect variables to pass ambient effects around.Met
generalises abilities and adjustments to modalities which can appear flexibly in types, eliminating
effect variables altogether. As demonstrated in Section 5, Frank with implicit effect variables and
no closed abilities is expressible inMet. Frank’s adaptors are richer thanMet’s masking, although
we expect relative modalities to extend readily to cover this use.

7.2 Capability-based Effect Systems

Capability-based effect systems [6–8] interpret effects as capabilities and offer a form of implicit
effect polymorphism through capability passing.

For example, in Effekt the asList for Yield has the following type:
def asList{ f: 1 ⇒ List[Int] / { Yield } }: List[Int] / {}

Here the block parameter f is allowed to use the capability Yield in addition to those from the
context. The capability annotation {Yield} on its type is similar to our relative modalities.

1177

1178

1179

1180

1181

1182

1183

1184

1185

1186

1187

1188

1189

1190

1191

1192

1193

1194

1195

1196

1197

1198

1199

1200

1201

1202

1203

1204

1205

1206

1207

1208

1209

1210

1211

1212

1213

1214

1215

1216

1217

1218

1219

1220

1221

1222

1223

1224

1225

Modal Effect Types 25

A key difference between Effekt and Met is that Effekt requires blocks to be second-class,
whileMet supports first-class functions. Brachthäuser et al. [7] recovers first-class functions by
boxing blocks. However, such boxed blocks cannot use capabilities from the context any more,
because the boxes on types fully specifies the required capabilities, similar to our absolute modalities.
For example, we can obtain a curried version of map in Effekt by boxing the result.
map1[A, B]{ f: A ⇒ B }: List[A] ⇒ List[B] at {f} / {}

The return value has type List[A] ⇒ List[B] at {f}. The decoration {f} indicates that the return
function captures the capability f. This sort of annotation is reminiscent of an effect variable. This
is telling for whyMet is not expressive enough to encode Effekt. To encode captured capability
variables, as in map1, we need the expressiveness provided by effect variables inMete.

Another key difference is that Effekt uses named handlers [5, 51, 54] where operations are
dispatched to a specific named handler, whereas Met uses Plotkin and Pretnar [41]-style handlers
where operations dispatched to the first matching handler in the evaluation context. Named handlers
provide a form of effect generativity. In the future it would be interesting to explore variants of
modal effect types with capabilities and generative effects [14].

CC<:□ [6], the basis for capture tracking in Scala 3, also provides succinct types for uncurried
higher-order functions like map. As in Effekt, the curried version requires the result function to be
explicitly annotated with its capture set {f}.

7.3 Relationship between Met and Multimodal Type Theory

The literature on multimodal type theory organises the structure of modes (objects), modalities
(morphisms between objects), and their transformations (2-cells between morphisms) in a 2-

category [17, 18, 29] (or, in the case of a single mode, a semiring [1, 9, 39, 40]). In Met, modes
are effect contexts 𝐸, modalities are `𝐹 : 𝐸 → 𝐹 , and transformations are `𝐹 ⇒ a𝐹 . However, we
have found that 2-categories are not sufficient in a system that also includes submoding. To deal
with this extra structure, we extend the 2-category to a double category with an additional kind of
vertical morphisms between objects (in Met, vertical morphisms are the preorder relation 𝐸 ⩽ 𝐹),
as also proposed by Katsumata [28]. As a result, the transformations do not strictly require the
two modalities to have the same sources and targets, enabling us to have []𝐹 ⇒ [𝐸]𝐹 in Met. The
relationship between Met and MTT is explained in detail in Appendix A.3.

7.4 Other Related Work

We discuss other related work on effect systems and modal types.

Row-based Effect Systems. Row polymorphism is one popular approach to implementing effect
systems for effect handlers. Links [21] use Rémy-style row polymorphism with presence types
[43], while Koka [31] and Frank [33] use scoped rows [30] which allow duplicated labels. Morris
and McKinna [36] proposes a general framework for comparing different kinds of row types, and
Yoshioka et al. [53] proposes a similar framework focusing on comparing effect rows. Met adopts
Leijen-style scoped rows meanwhile allows operation signatures to be absent, similar to presence
types. Mete extends Met with effect variables by row polymorphism and extending the algebraic
structure of row types to be closed under extensions and masks.

Subtyping-based Effect Systems. Eff [3, 42] is equipped with an effect system with both effect
variables and sub-effecting, based on the type inference and elaboration described in Karachalias
et al. [27], which supports constraint solving for sub-effecting between effect variables. The effect
system of Helium [5] is based on finite sets, offering a natural sub-effecting relation corresponding
to set-inclusion. As such, their system aligns closely with Lucassen and Gifford [35]-style effect

1226

1227

1228

1229

1230

1231

1232

1233

1234

1235

1236

1237

1238

1239

1240

1241

1242

1243

1244

1245

1246

1247

1248

1249

1250

1251

1252

1253

1254

1255

1256

1257

1258

1259

1260

1261

1262

1263

1264

1265

1266

1267

1268

1269

1270

1271

1272

1273

1274

26 Wenhao Tang, Leo White, Stephen Dolan, Daniel Hillerström, Sam Lindley, and Anton Lorenzen

systems. Tang et al. [47] proposes an effectful calculus with effect polymorphism and sub-effecting
via qualified types [25] following Rose [36]. We have both effect variables and sub-effecting in
Mete andMetel but do not consider non-trivial constraint solving.

Modal Types and Effects. Nanevski [37] proposes a modal calculus for handling exceptions, using
a necessity modality indexed by the set of names of used effects. Zyuzin and Nanevski [55] extends
contextual modal types [38] to algebraic effects and handlers, using a contextual necessity modality
to track effects and modelling context reachability as effect handling. Both of their necessity
modalities are similar to our absolute modalities. They do not have similar constructs to our relative
modalities. They both give comonadic semantics to the modalities, while Met adopts the standard
CBV semantics and restrict modalities to values. They focus on theoretical work, while we aim
to design a practical effect system with succinct types and backward compatibility. Choudhury
and Krishnaswami [10] proposes to use the necessity modality to recover purity from an effectful
calculus. This is similar to our empty absolute modality, especially when extended as in Section 4.3.

Effects in Call-By-Push-Value. In CBPV [32], effects are usually tracked on typing judgements
for computations and captured into types when switching to values [16, 26, 48]. Met tracks effect
contexts as modes for all terms in typing judgements to have succinct effect types.

8 Conclusion

We have proposed a novel modal effect type system which manages effect contexts by tracking
changes to them via absolute and relative modalities. We formalised modal effect types in a core
calculus following multimodal type theory. We illustrated our design through a collection of
examples in a surface language with sound and complete type inference. We demonstrated the
expressiveness of the calculus by encoding a practical fragment of a traditional effect system.

Future work includes: implementing our system as an extension to OCaml; exploring extensions
of modal effect types with Fitch-style unboxing, named handlers, generative effects, and capabilities;
combining modal effect types with control-flow linearity; and developing a denotational semantics.

References

[1] Andreas Abel and Jean-Philippe Bernardy. 2020. A unified view of modalities in type systems. Proc. ACM Program.

Lang. 4, ICFP, Article 90 (aug 2020), 28 pages. https://doi.org/10.1145/3408972
[2] Danel Ahman. 2023. When Programs Have to Watch Paint Dry. In Foundations of Software Science and Computation

Structures, Orna Kupferman and Pawel Sobocinski (Eds.). Springer Nature Switzerland, Cham, 1–23.
[3] Andrej Bauer and Matija Pretnar. 2013. An Effect System for Algebraic Effects and Handlers. In Algebra and Coalgebra

in Computer Science, Reiko Heckel and Stefan Milius (Eds.). Springer Berlin Heidelberg, Berlin, Heidelberg, 1–16.
[4] Dariusz Biernacki, Maciej Piróg, Piotr Polesiuk, and Filip Sieczkowski. 2018. Handle with care: relational interpretation

of algebraic effects and handlers. Proc. ACM Program. Lang. 2, POPL (2018), 8:1–8:30. https://doi.org/10.1145/3158096
[5] Dariusz Biernacki, Maciej Piróg, Piotr Polesiuk, and Filip Sieczkowski. 2020. Binders by day, labels by night: effect

instances via lexically scoped handlers. Proc. ACM Program. Lang. 4, POPL (2020), 48:1–48:29. https://doi.org/10.1145/
3371116

[6] Aleksander Boruch-Gruszecki, Martin Odersky, Edward Lee, Ondrej Lhoták, and Jonathan Immanuel Brachthäuser.
2023. Capturing Types. ACM Trans. Program. Lang. Syst. 45, 4 (2023), 21:1–21:52. https://doi.org/10.1145/3618003

[7] Jonathan Immanuel Brachthäuser, Philipp Schuster, Edward Lee, and Aleksander Boruch-Gruszecki. 2022. Effects,
capabilities, and boxes: from scope-based reasoning to type-based reasoning and back. Proc. ACM Program. Lang. 6,
OOPSLA1 (2022), 1–30. https://doi.org/10.1145/3527320

[8] Jonathan Immanuel Brachthäuser, Philipp Schuster, and Klaus Ostermann. 2020. Effects as capabilities: effect handlers
and lightweight effect polymorphism. Proc. ACM Program. Lang. 4, OOPSLA (2020), 126:1–126:30. https://doi.org/10.
1145/3428194

[9] Pritam Choudhury, Harley Eades III, Richard A. Eisenberg, and Stephanie Weirich. 2021. A graded dependent
type system with a usage-aware semantics. Proc. ACM Program. Lang. 5, POPL, Article 50 (jan 2021), 32 pages.
https://doi.org/10.1145/3434331

https://doi.org/10.1145/3408972
https://doi.org/10.1145/3158096
https://doi.org/10.1145/3371116
https://doi.org/10.1145/3371116
https://doi.org/10.1145/3618003
https://doi.org/10.1145/3527320
https://doi.org/10.1145/3428194
https://doi.org/10.1145/3428194
https://doi.org/10.1145/3434331

1275

1276

1277

1278

1279

1280

1281

1282

1283

1284

1285

1286

1287

1288

1289

1290

1291

1292

1293

1294

1295

1296

1297

1298

1299

1300

1301

1302

1303

1304

1305

1306

1307

1308

1309

1310

1311

1312

1313

1314

1315

1316

1317

1318

1319

1320

1321

1322

1323

Modal Effect Types 27

[10] Vikraman Choudhury and Neel Krishnaswami. 2020. Recovering purity with comonads and capabilities. Proc. ACM
Program. Lang. 4, ICFP (2020), 111:1–111:28. https://doi.org/10.1145/3408993

[11] Ranald Clouston. 2018. Fitch-Style Modal Lambda Calculi. In Foundations of Software Science and Computation Structures

- 21st International Conference, FOSSACS 2018, Held as Part of the European Joint Conferences on Theory and Practice of

Software, ETAPS 2018, Thessaloniki, Greece, April 14-20, 2018, Proceedings (Lecture Notes in Computer Science, Vol. 10803),
Christel Baier and Ugo Dal Lago (Eds.). Springer, 258–275. https://doi.org/10.1007/978-3-319-89366-2_14

[12] Lukas Convent, Sam Lindley, Conor McBride, and Craig McLaughlin. 2020. Doo bee doo bee doo. J. Funct. Program. 30
(2020), e9. https://doi.org/10.1017/S0956796820000039

[13] Luis Damas and Robin Milner. 1982. Principal Type-Schemes for Functional Programs. In Proceedings of the 9th

ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages (Albuquerque, New Mexico) (POPL ’82).
Association for Computing Machinery, New York, NY, USA, 207–212. https://doi.org/10.1145/582153.582176

[14] Paulo Emílio de Vilhena and François Pottier. 2023. A Type System for Effect Handlers and Dynamic Labels. In
Programming Languages and Systems - 32nd European Symposium on Programming, ESOP 2023, Held as Part of the

European Joint Conferences on Theory and Practice of Software, ETAPS 2023, Paris, France, April 22-27, 2023, Proceedings

(Lecture Notes in Computer Science, Vol. 13990), Thomas Wies (Ed.). Springer, 225–252. https://doi.org/10.1007/978-3-
031-30044-8_9

[15] Frank Emrich, Sam Lindley, Jan Stolarek, James Cheney, and Jonathan Coates. 2020. FreezeML: complete and easy
type inference for first-class polymorphism. In Proceedings of the 41st ACM SIGPLAN International Conference on

Programming Language Design and Implementation, PLDI 2020, London, UK, June 15-20, 2020, Alastair F. Donaldson
and Emina Torlak (Eds.). ACM, 423–437. https://doi.org/10.1145/3385412.3386003

[16] Yannick Forster, Ohad Kammar, Sam Lindley, and Matija Pretnar. 2019. On the expressive power of user-defined
effects: Effect handlers, monadic reflection, delimited control. J. Funct. Program. 29 (2019), e15. https://doi.org/10.
1017/S0956796819000121

[17] Daniel Gratzer. 2023. Syntax and semantics of modal type theory. Ph. D. Dissertation. Aarhus University.
[18] Daniel Gratzer, G. A. Kavvos, Andreas Nuyts, and Lars Birkedal. 2020. Multimodal Dependent Type Theory. In LICS

’20: 35th Annual ACM/IEEE Symposium on Logic in Computer Science, Saarbrücken, Germany, July 8-11, 2020, Holger
Hermanns, Lijun Zhang, Naoki Kobayashi, and Dale Miller (Eds.). ACM, 492–506. https://doi.org/10.1145/3373718.
3394736

[19] Adam Gundry, Conor McBride, and James McKinna. 2010. Type Inference in Context. In MSFP@ICFP. ACM, 43–54.
[20] Adam Michael Gundry. 2013. Type inference, Haskell and dependent types. Ph. D. Dissertation. University of Strathclyde,

Glasgow, UK. http://oleg.lib.strath.ac.uk/R/?func=dbin-jump-full&object_id=22728
[21] Daniel Hillerström and Sam Lindley. 2016. Liberating Effects with Rows and Handlers (TyDe 2016). Association for

Computing Machinery, New York, NY, USA, 15–27. https://doi.org/10.1145/2976022.2976033
[22] Daniel Hillerström and Sam Lindley. 2018. Shallow Effect Handlers. In Programming Languages and Systems - 16th

Asian Symposium, APLAS 2018, Wellington, New Zealand, December 2-6, 2018, Proceedings (Lecture Notes in Computer

Science, Vol. 11275), Sukyoung Ryu (Ed.). Springer, 415–435. https://doi.org/10.1007/978-3-030-02768-1_22
[23] Daniel Hillerström. 2022. Foundations for Programming and Implementing Effect Handlers. Ph. D. Dissertation. The

University of Edinburgh, UK. https://doi.org/10.7488/era/2122
[24] Roshan P. James and Amr Sabry. 2011. Yield: Mainstream Delimited Continuations. Informal proceedings of

TPDC@RDP’11. https://legacy.cs.indiana.edu/~sabry/papers/yield.pdf.
[25] Mark P. Jones. 1994. A Theory of Qualified Types. Sci. Comput. Program. 22, 3 (1994), 231–256. https://doi.org/10.

1016/0167-6423(94)00005-0
[26] Ohad Kammar, Sam Lindley, and Nicolas Oury. 2013. Handlers in action. In ACM SIGPLAN International Conference on

Functional Programming, ICFP’13, Boston, MA, USA - September 25 - 27, 2013, Greg Morrisett and Tarmo Uustalu (Eds.).
ACM, 145–158. https://doi.org/10.1145/2500365.2500590

[27] Georgios Karachalias, Matija Pretnar, Amr Hany Saleh, Stien Vanderhallen, and Tom Schrijvers. 2020. Explicit effect
subtyping. J. Funct. Program. 30 (2020), e15. https://doi.org/10.1017/S0956796820000131

[28] Shin-ya Katsumata. 2018. A Double Category Theoretic Analysis of Graded Linear Exponential Comonads. In Founda-

tions of Software Science and Computation Structures, Christel Baier and Ugo Dal Lago (Eds.). Springer International
Publishing, Cham, 110–127.

[29] G. A. Kavvos and Daniel Gratzer. 2023. Under Lock and Key: a Proof System for a Multimodal Logic. Bull. Symb. Log.

29, 2 (2023), 264–293. https://doi.org/10.1017/BSL.2023.14
[30] Daan Leijen. 2005. Extensible records with scoped labels. In Revised Selected Papers from the Sixth Symposium on

Trends in Functional Programming, TFP 2005, Tallinn, Estonia, 23-24 September 2005 (Trends in Functional Programming,

Vol. 6), Marko C. J. D. van Eekelen (Ed.). Intellect, 179–194.
[31] Daan Leijen. 2017. Type Directed Compilation of Row-Typed Algebraic Effects. In Proceedings of the 44th ACM

SIGPLAN Symposium on Principles of Programming Languages (Paris, France) (POPL ’17). Association for Computing

https://doi.org/10.1145/3408993
https://doi.org/10.1007/978-3-319-89366-2_14
https://doi.org/10.1017/S0956796820000039
https://doi.org/10.1145/582153.582176
https://doi.org/10.1007/978-3-031-30044-8_9
https://doi.org/10.1007/978-3-031-30044-8_9
https://doi.org/10.1145/3385412.3386003
https://doi.org/10.1017/S0956796819000121
https://doi.org/10.1017/S0956796819000121
https://doi.org/10.1145/3373718.3394736
https://doi.org/10.1145/3373718.3394736
http://oleg.lib.strath.ac.uk/R/?func=dbin-jump-full&object_id=22728
https://doi.org/10.1145/2976022.2976033
https://doi.org/10.1007/978-3-030-02768-1_22
https://doi.org/10.7488/era/2122
https://legacy.cs.indiana.edu/~sabry/papers/yield.pdf
https://doi.org/10.1016/0167-6423(94)00005-0
https://doi.org/10.1016/0167-6423(94)00005-0
https://doi.org/10.1145/2500365.2500590
https://doi.org/10.1017/S0956796820000131
https://doi.org/10.1017/BSL.2023.14

1324

1325

1326

1327

1328

1329

1330

1331

1332

1333

1334

1335

1336

1337

1338

1339

1340

1341

1342

1343

1344

1345

1346

1347

1348

1349

1350

1351

1352

1353

1354

1355

1356

1357

1358

1359

1360

1361

1362

1363

1364

1365

1366

1367

1368

1369

1370

1371

1372

28 Wenhao Tang, Leo White, Stephen Dolan, Daniel Hillerström, Sam Lindley, and Anton Lorenzen

Machinery, New York, NY, USA, 486–499. https://doi.org/10.1145/3009837.3009872
[32] Paul Blain Levy. 2004. Call-By-Push-Value: A Functional/Imperative Synthesis. Semantics Structures in Computation,

Vol. 2. Springer.
[33] Sam Lindley, Conor McBride, and Craig McLaughlin. 2017. Do Be Do Be Do. In Proceedings of the 44th ACM SIGPLAN

Symposium on Principles of Programming Languages (Paris, France) (POPL 2017). Association for Computing Machinery,
New York, NY, USA, 500–514. https://doi.org/10.1145/3009837.3009897

[34] Anton Lorenzen, Leo White, Stephen Dolan, Richard A. Eisenberg, and Sam Lindley. 2024. Oxidizing OCaml with
Modal Memory Management. Proc. ACM Program. Lang. 8, ICFP (2024). https://antonlorenzen.de/oxidizing-ocaml-
modal-memory-management.pdf

[35] John M. Lucassen and David K. Gifford. 1988. Polymorphic Effect Systems. In POPL. ACM Press, 47–57. https:
//doi.org/10.1145/73560.73564

[36] J. Garrett Morris and James McKinna. 2019. Abstracting Extensible Data Types: Or, Rows by Any Other Name. Proc.
ACM Program. Lang. 3, POPL, Article 12 (jan 2019), 28 pages. https://doi.org/10.1145/3290325

[37] Aleksandar Nanevski. 2005. A modal calculus for exception handling. In Intuitionistic Modal Logics and Applications

Workshop (IMLA’05), Chicago, IL.
[38] Aleksandar Nanevski, Frank Pfenning, and Brigitte Pientka. 2008. Contextual modal type theory. ACM Trans. Comput.

Log. 9, 3 (2008), 23:1–23:49. https://doi.org/10.1145/1352582.1352591
[39] Dominic Orchard, Vilem-Benjamin Liepelt, and Harley Eades III. 2019. Quantitative program reasoning with graded

modal types. Proc. ACM Program. Lang. 3, ICFP, Article 110 (jul 2019), 30 pages. https://doi.org/10.1145/3341714
[40] Tomas Petricek, Dominic Orchard, and Alan Mycroft. 2014. Coeffects: a calculus of context-dependent computation. In

Proceedings of the 19th ACM SIGPLAN International Conference on Functional Programming (Gothenburg, Sweden) (ICFP
’14). Association for Computing Machinery, New York, NY, USA, 123–135. https://doi.org/10.1145/2628136.2628160

[41] Gordon D. Plotkin and Matija Pretnar. 2013. Handling Algebraic Effects. Log. Methods Comput. Sci. 9, 4 (2013).
[42] Matija Pretnar. 2014. Inferring Algebraic Effects. Log. Methods Comput. Sci. 10, 3 (2014). https://doi.org/10.2168/LMCS-

10(3:21)2014
[43] Didier Rémy. 1994. Type Inference for Records in a Natural Extension of ML. In Theoretical Aspects of Object-Oriented

Programming: Types, Semantics, and Language Design. Citeseer.
[44] Dennis Ritchie and Ken Thompson. 1974. The UNIX Time-Sharing System. Commun. ACM 17, 7 (1974), 365–375.
[45] Michael Shulman. 2018. Brouwer’s fixed-point theorem in real-cohesive homotopy type theory. Math. Struct. Comput.

Sci. 28, 6 (2018), 856–941. https://doi.org/10.1017/S0960129517000147
[46] Michael Shulman. 2023. Semantics of multimodal adjoint type theory. In Proceedings of the 39th Conference on the

Mathematical Foundations of Programming Semantics, MFPS XXXIX, Indiana University, Bloomington, IN, USA, June 21-23,

2023 (EPTICS, Vol. 3), Marie Kerjean and Paul Blain Levy (Eds.). EpiSciences. https://doi.org/10.46298/ENTICS.12300
[47] Wenhao Tang, Daniel Hillerström, Sam Lindley, and J. Garrett Morris. 2024. Soundly Handling Linearity. Proc. ACM

Program. Lang. 8, POPL, Article 54 (jan 2024), 29 pages. https://doi.org/10.1145/3632896
[48] Cassia Torczon, Emmanuel Suárez Acevedo, Shubh Agrawal, Joey Velez-Ginorio, and Stephanie Weirich. 2023. Effects

and Coeffects in Call-By-Push-Value (Extended Version). arXiv:2311.11795 [cs.PL] https://arxiv.org/abs/2311.11795
[49] Birthe van den Berg and Tom Schrijvers. 2023. A Framework for Higher-Order Effects & Handlers. CoRR abs/2302.01415

(2023). https://doi.org/10.48550/arXiv.2302.01415 arXiv:2302.01415
[50] Nicolas Wu, Tom Schrijvers, and Ralf Hinze. 2014. Effect Handlers in Scope. SIGPLAN Not. 49, 12 (Sept. 2014), 1–12.

https://doi.org/10.1145/2775050.2633358
[51] Ningning Xie, Youyou Cong, Kazuki Ikemori, and Daan Leijen. 2022. First-class names for effect handlers. Proc. ACM

Program. Lang. 6, OOPSLA2 (2022), 30–59. https://doi.org/10.1145/3563289
[52] Zhixuan Yang and Nicolas Wu. 2023. Modular Models of Monoids with Operations. Proc. ACM Program. Lang. 7, ICFP

(2023), 566–603. https://doi.org/10.1145/3607850
[53] Takuma Yoshioka, Taro Sekiyama, and Atsushi Igarashi. 2024. Abstracting Effect Systems for Algebraic Effect Handlers.

CoRR abs/2404.16381 (2024). https://doi.org/10.48550/ARXIV.2404.16381 arXiv:2404.16381
[54] Yizhou Zhang and Andrew C. Myers. 2019. Abstraction-safe effect handlers via tunneling. Proc. ACM Program. Lang.

3, POPL (2019), 5:1–5:29. https://doi.org/10.1145/3290318
[55] Nikita Zyuzin and Aleksandar Nanevski. 2021. Contextual modal types for algebraic effects and handlers. Proc. ACM

Program. Lang. 5, ICFP (2021), 1–29. https://doi.org/10.1145/3473580

https://doi.org/10.1145/3009837.3009872
https://doi.org/10.1145/3009837.3009897
https://antonlorenzen.de/oxidizing-ocaml-modal-memory-management.pdf
https://antonlorenzen.de/oxidizing-ocaml-modal-memory-management.pdf
https://doi.org/10.1145/73560.73564
https://doi.org/10.1145/73560.73564
https://doi.org/10.1145/3290325
https://doi.org/10.1145/1352582.1352591
https://doi.org/10.1145/3341714
https://doi.org/10.1145/2628136.2628160
https://doi.org/10.2168/LMCS-10(3:21)2014
https://doi.org/10.2168/LMCS-10(3:21)2014
https://doi.org/10.1017/S0960129517000147
https://doi.org/10.46298/ENTICS.12300
https://doi.org/10.1145/3632896
https://arxiv.org/abs/2311.11795
https://arxiv.org/abs/2311.11795
https://doi.org/10.48550/arXiv.2302.01415
https://arxiv.org/abs/2302.01415
https://doi.org/10.1145/2775050.2633358
https://doi.org/10.1145/3563289
https://doi.org/10.1145/3607850
https://doi.org/10.48550/ARXIV.2404.16381
https://arxiv.org/abs/2404.16381
https://doi.org/10.1145/3290318
https://doi.org/10.1145/3473580

1373

1374

1375

1376

1377

1378

1379

1380

1381

1382

1383

1384

1385

1386

1387

1388

1389

1390

1391

1392

1393

1394

1395

1396

1397

1398

1399

1400

1401

1402

1403

1404

1405

1406

1407

1408

1409

1410

1411

1412

1413

1414

1415

1416

1417

1418

1419

1420

1421

Modal Effect Types 29

A Full Specification, Meta Theory, and Proofs for Met

We provide the specification, meta theory, and proofs for Met omitted in Section 3. Our proofs for
meta theory of Met consider all extensions in Section 4 including effect variables (Mete).

A.1 Extra Rules

The full kinding and well-formedness rules forMet are shown in Figure 7. We include the kind
Eff and syntax 𝐸\𝐿 to also cover Mete. The type equivalence and sub-effecting rules are shown in
Figure 8. We highlight the special rule that allows us to add or remove absent labels from the right.

Γ ⊢ 𝐴 : 𝐾 Γ ⊢ ` Γ ⊢ 𝐸 : 𝐾 Γ ⊢ 𝐿 Γ ⊢ 𝐷 Γ ⊢ 𝑃 Γ ⊢ (`,𝐴) ⇒ a @ 𝐹

Γ ∋ 𝛼 : 𝐾
Γ ⊢ 𝛼 : 𝐾

Γ ⊢ 𝐴 : Abs
Γ ⊢ 𝐴 : Any

Γ ⊢ [𝐸] Γ ⊢ 𝐴 : Any
Γ ⊢ [𝐸]𝐴 : Abs

Γ ⊢ ⟨𝐿 |𝐷⟩ Γ ⊢ 𝐴 : 𝐾
Γ ⊢ ⟨𝐿 |𝐷⟩𝐴 : 𝐾

Γ ⊢ 𝐴 : Any Γ ⊢ 𝐵 : Any
Γ ⊢ 𝐴 → 𝐵 : Any

Γ, 𝛼 : 𝐾 ⊢ 𝐴 : 𝐾 ′

Γ ⊢ ∀𝛼𝐾 .𝐴 : 𝐾 ′
Γ ⊢ 𝐿 Γ ⊢ 𝐷

Γ ⊢ ⟨𝐿 |𝐷⟩
Γ ⊢ 𝐸 : Eff
Γ ⊢ [𝐸]

Γ ⊢ · : Eff
Γ ⊢ 𝑃 Γ ⊢ 𝐸 : Eff

Γ ⊢ ℓ : 𝑃, 𝐸 : Eff
Γ ⊢ 𝐸 : Eff Γ ⊢ 𝐿

Γ ⊢ 𝐸\𝐿 : Eff

Γ ⊢ −
Γ ⊢ 𝐴 : Abs Γ ⊢ 𝐵 : Abs

Γ ⊢ 𝐴 ↠ 𝐵 Γ ⊢ 𝐿 Γ ⊢ ·
Γ ⊢ 𝑃 Γ ⊢ 𝐷

Γ ⊢ ℓ : 𝑃, 𝐷

Γ ⊢ 𝐴 : Abs
Γ ⊢ (`,𝐴) ⇒ a @ 𝐹

`𝐹 ⇒ a𝐹

Γ ⊢ (`,𝐴) ⇒ a @ 𝐹

Fig. 7. Full kinding and well-formedness rules forMet andMete.

A.2 Full Specification for Extensions to Met

Figure 9 gives the syntax and typing rules for data types, absolute and shallow handlers. Figure 10
gives the extensions to value normal forms, evaluation contexts, and operational semantics for the
extensions with data types, absolute and relative handlers in Section 4.

1422

1423

1424

1425

1426

1427

1428

1429

1430

1431

1432

1433

1434

1435

1436

1437

1438

1439

1440

1441

1442

1443

1444

1445

1446

1447

1448

1449

1450

1451

1452

1453

1454

1455

1456

1457

1458

1459

1460

1461

1462

1463

1464

1465

1466

1467

1468

1469

1470

30 Wenhao Tang, Leo White, Stephen Dolan, Daniel Hillerström, Sam Lindley, and Anton Lorenzen

𝐿 ≡ 𝐿′ 𝐷 ≡ 𝐷 ′ 𝐸 ≡ 𝐹 𝑃 ≡ 𝑃 ′ ` ≡ a 𝐴 ≡ 𝐵

· ≡ ·
𝐿1 ≡ 𝐿2 𝐿2 ≡ 𝐿3

𝐿1 ≡ 𝐿3
𝐿 ≡ 𝐿′

ℓ, 𝐿 ≡ ℓ, 𝐿′
ℓ ≠ ℓ ′ 𝐿 ≡ 𝐿′

ℓ, ℓ ′, 𝐿 ≡ ℓ ′, ℓ, 𝐿

· ≡ ·
𝐷1 ≡ 𝐷2 𝐷2 ≡ 𝐷3

𝐷1 ≡ 𝐷3

𝑃 ≡ 𝑃 ′ 𝐷 ≡ 𝐷 ′

ℓ : 𝑃, 𝐷 ≡ ℓ : 𝑃 ′, 𝐷 ′
ℓ ≠ ℓ ′

ℓ : 𝑃, ℓ ′ : 𝑃 ′, 𝐷 ≡ ℓ ′ : 𝑃 ′, ℓ : 𝑃, 𝐷

· ≡ ·
𝐸1 ≡ 𝐸2 𝐸2 ≡ 𝐸3

𝐸1 ≡ 𝐸3
𝑃 ≡ 𝑃 ′ 𝐸 ≡ 𝐸′

ℓ : 𝑃, 𝐸 ≡ ℓ : 𝑃 ′, 𝐸′
ℓ ≠ ℓ ′

ℓ : 𝑃, ℓ ′ : 𝑃 ′, 𝐸 ≡ ℓ ′ : 𝑃 ′, ℓ : 𝑃, 𝐸

𝐸, ℓ : − ≡ 𝐸
𝐴 ≡ 𝐴′ 𝐵 ≡ 𝐵′

𝐴 ↠ 𝐵 ≡ 𝐴′ ↠ 𝐵′ − ≡ − 𝛼 ≡ 𝛼
` ≡ a 𝐴 ≡ 𝐵

`𝐴 ≡ a𝐵

𝐸 ≡ 𝐹
[𝐸] ≡ [𝐹]

𝐿 ≡ 𝐿′ 𝐷 ≡ 𝐷 ′

⟨𝐿 |𝐷⟩ ≡ ⟨𝐿′ |𝐷 ′⟩
𝐴 ≡ 𝐴′ 𝐵 ≡ 𝐵′

𝐴 → 𝐵 ≡ 𝐴′ → 𝐵′
𝐴 ≡ 𝐵

∀𝛼𝐾 .𝐴 ≡ ∀𝛼𝐾 .𝐵

𝑃 ⩽ 𝑃 ′ 𝐸 ⩽ 𝐹 𝐷 ⩽ 𝐷 ′

𝑃 ⩽ 𝑃 − ⩽ 𝑃 · ⩽ ·

𝐸1 ≡ ℓ : 𝑃1, 𝐸′1 𝐸2 ≡ ℓ : 𝑃2, 𝐸′2
𝑃1 ⩽ 𝑃2 𝐸′1 ⩽ 𝐸′2

𝐸1 ⩽ 𝐸2

𝐷1 ≡ ℓ : 𝑃1, 𝐷 ′
1 𝐷2 ≡ ℓ : 𝑃2, 𝐷 ′

2
𝑃1 ⩽ 𝑃2 𝐷 ′

1 ⩽ 𝐷 ′
2

𝐷1 ⩽ 𝐷2

Fig. 8. Type equivalence and sub-effecting forMet.

1471

1472

1473

1474

1475

1476

1477

1478

1479

1480

1481

1482

1483

1484

1485

1486

1487

1488

1489

1490

1491

1492

1493

1494

1495

1496

1497

1498

1499

1500

1501

1502

1503

1504

1505

1506

1507

1508

1509

1510

1511

1512

1513

1514

1515

1516

1517

1518

1519

Modal Effect Types 31

Types 𝐴, 𝐵 ::= · · · | (𝐴, 𝐵) | 𝐴 + 𝐵
Terms 𝑀, 𝑁 ::= · · · | (𝑀, 𝑁) | inl 𝑀 | inr 𝑀 | casea 𝑉 of {𝑄 ↦→ 𝑀}
Patterns 𝑄 ::= (𝑥,𝑦) | inl 𝑥 | inr 𝑥
Values 𝑉 ,𝑊 ::= · · · | (𝑉 ,𝑊) | inl 𝑉 | inr 𝑉

T-Pair
Γ ⊢ 𝑀 : 𝐴 @𝐸 Γ ⊢ 𝑁 : 𝐵 @𝐸

Γ ⊢ (𝑀, 𝑁) : (𝐴, 𝐵) @𝐸

T-Inl
Γ ⊢ 𝑀 : 𝐴 @𝐸

Γ ⊢ inl 𝑀 : 𝐴 + 𝐵 @𝐸

T-Inr
Γ ⊢ 𝑀 : 𝐵 @𝐸

Γ ⊢ inr 𝑀 : 𝐴 + 𝐵 @𝐸

T-CrispPair
a𝐹 : 𝐸 → 𝐹 Γ,µa𝐹 ⊢ 𝑉 : (𝐴, 𝐵) @𝐸

Γ, 𝑥 :a𝐹 𝐴,𝑦 :a𝐹 𝐵 ⊢ 𝑀 : 𝐴′ @ 𝐹

Γ ⊢ casea 𝑉 of (𝑥,𝑦) ↦→ 𝑀 : 𝐴′ @ 𝐹

T-CrispSum
a𝐹 : 𝐸 → 𝐹 Γ,µa𝐹 ⊢ 𝑉 : 𝐴 + 𝐵 @𝐸

Γ, 𝑥 :a𝐹 𝐴 ⊢ 𝑀1 : 𝐴′ @ 𝐹 Γ, 𝑦 :a𝐹 𝐵 ⊢ 𝑀2 : 𝐴′ @ 𝐹

Γ ⊢ casea 𝑉 of {inl 𝑥 ↦→ 𝑀1, inr 𝑦 ↦→ 𝑀2} : 𝐴′ @ 𝐹

Decorations 𝛿 ::= · | A | † | A†
Terms 𝑀, 𝑁 ::= handle

𝛿 𝑀 with 𝐻

T-HandlerA
𝐷 = {ℓ𝑖 : 𝐴𝑖 ↠ 𝐵𝑖 }𝑖 Γ,µ[𝐷+𝐸]𝐹 ⊢ 𝑀 : 𝐴 @𝐷 + 𝐸

Γ, 𝑥 : [𝐷 + 𝐸]𝐴 ⊢ 𝑁 : 𝐵 @ 𝐹 [Γ, 𝑝𝑖 : 𝐴𝑖 , 𝑟𝑖 : [𝐹] (𝐵𝑖 → 𝐵) ⊢ 𝑁𝑖 : 𝐵 @ 𝐹]𝑖
Γ ⊢ handleA 𝑀 with {return 𝑥 ↦→ 𝑁 } ⊎ {ℓ𝑖 𝑝𝑖 𝑟𝑖 ↦→ 𝑁𝑖 }𝑖 : 𝐵 @ 𝐹

T-ShallowHandler
𝐷 = {ℓ𝑖 : 𝐴𝑖 ↠ 𝐵𝑖 }𝑖 Γ,µ⟨|𝐷 ⟩ ⊢ 𝑀 : 𝐴 @𝐷 + 𝐹

Γ, 𝑥 : ⟨|𝐷⟩𝐴 ⊢ 𝑁 : 𝐵 @ 𝐹 [Γ, 𝑝𝑖 : 𝐴𝑖 , 𝑟𝑖 : ⟨|𝐷⟩(𝐵𝑖 → 𝐴) ⊢ 𝑁𝑖 : 𝐵 @ 𝐹]𝑖
Γ ⊢ handle† 𝑀 with {return 𝑥 ↦→ 𝑁 } ⊎ {ℓ𝑖 𝑝𝑖 𝑟𝑖 ↦→ 𝑁𝑖 }𝑖 : 𝐵 @ 𝐹

T-ShallowHandlerA
𝐷 = {ℓ𝑖 : 𝐴𝑖 ↠ 𝐵𝑖 }𝑖 Γ,µ[𝐷+𝐸] ⊢ 𝑀 : 𝐴 @𝐷 + 𝐸

Γ, 𝑥 : [𝐷 + 𝐸]𝐴 ⊢ 𝑁 : 𝐵 @ 𝐹 [Γ, 𝑝𝑖 : 𝐴𝑖 , 𝑟𝑖 : [𝐷 + 𝐸] (𝐵𝑖 → 𝐴) ⊢ 𝑁𝑖 : 𝐵 @ 𝐹]𝑖
Γ ⊢ handleA† 𝑀 with {return 𝑥 ↦→ 𝑁 } ⊎ {ℓ𝑖 𝑝𝑖 𝑟𝑖 ↦→ 𝑁𝑖 }𝑖 : 𝐵 @ 𝐹

Fig. 9. Syntax and typing rules for data types, absolute and shallow handlers inMet.

1520

1521

1522

1523

1524

1525

1526

1527

1528

1529

1530

1531

1532

1533

1534

1535

1536

1537

1538

1539

1540

1541

1542

1543

1544

1545

1546

1547

1548

1549

1550

1551

1552

1553

1554

1555

1556

1557

1558

1559

1560

1561

1562

1563

1564

1565

1566

1567

1568

32 Wenhao Tang, Leo White, Stephen Dolan, Daniel Hillerström, Sam Lindley, and Anton Lorenzen

Value normal forms 𝑈 ::= · · · | (𝑈1,𝑈2) | inl 𝑈 | inr 𝑈
Evaluation contexts E ::= · · · | (E, 𝑁) | (𝑈 , E) | inl E | inr E | casea E of {𝑄 ↦→ 𝑀}

| handle
𝛿 E with 𝐻

E-CrispPair case` (𝑈1,𝑈2) of (𝑥,𝑦) ↦→ 𝑁 { 𝑁 [𝑈1/𝑥,𝑈2/𝑦]
E-CrispInl case` inl 𝑈 of {inl 𝑥 ↦→ 𝑁1, · · · } { 𝑁1 [𝑈 /𝑥]
E-CrispInr case` inr 𝑈 of {inr 𝑦 ↦→ 𝑁2, · · · } { 𝑁2 [𝑈 /𝑦]
E-RetA handle 𝑈 with 𝐻 { 𝑁 [(mod[𝐷+𝐸] 𝑈)/𝑥]

where (return 𝑥 ↦→ 𝑁) ∈ 𝐻
E-OpA handle

A E[do ℓ 𝑈] with 𝐻 {

𝑁 [𝑈 /𝑝, (mod[𝐹] (_𝑦.handleA E[𝑦] with 𝐻))/𝑟]
where 0−free(ℓ, E) and (ℓ 𝑝 𝑟 ↦→ 𝑁) ∈ 𝐻

E-Ret† handle
† 𝑈 with 𝐻 { 𝑁 [(mod⟨|𝐷 ⟩ 𝑈)/𝑥]

where (return 𝑥 ↦→ 𝑁) ∈ 𝐻
E-Op† handle

† E[do ℓ 𝑈] with 𝐻 { 𝑁 [𝑈 /𝑝, (_𝑦.E[𝑦])/𝑟]
where 0−free(ℓ, E) and (ℓ 𝑝 𝑟 ↦→ 𝑁) ∈ 𝐻

E-RetA†
handle

A† 𝑈 with 𝐻 { 𝑁 [(mod[𝐷+𝐸] 𝑈)/𝑥]
where (return 𝑥 ↦→ 𝑁) ∈ 𝐻

E-OpA†
handle

A† E[do ℓ 𝑈] with 𝐻 {
𝑁 [𝑈 /𝑝, (mod[𝐷+𝐸] (_𝑦.E[𝑦]))/𝑟]
where 0−free(ℓ, E) and (ℓ 𝑝 𝑟 ↦→ 𝑁) ∈ 𝐻

Fig. 10. Operational semantics for data types and more handlers inMet.

1569

1570

1571

1572

1573

1574

1575

1576

1577

1578

1579

1580

1581

1582

1583

1584

1585

1586

1587

1588

1589

1590

1591

1592

1593

1594

1595

1596

1597

1598

1599

1600

1601

1602

1603

1604

1605

1606

1607

1608

1609

1610

1611

1612

1613

1614

1615

1616

1617

Modal Effect Types 33

A.3 The Double Category of Effects

𝐸 𝐹

`𝐹

a𝐹

𝐸 𝐹

𝐸′ 𝐹 ′

`𝐹

⩽ ⩽

a𝐹 ′

Fig. 11. 2-cells in a 2-category compared to 2-cells in a double category.

A double category extends a 2-category with an additional kind of morphisms. Alongside the
regular morphisms, now called horizontalmorphisms, there are also verticalmorphisms that connect
the objects of the 2-category. This makes it possible to generalise the 2-cells to transform arbitrary
morphisms, whose source and target are connected by vertical morphisms. Figure 11 shows the
differences between 2-cells in a 2-category and those in a double category using syntax of Met.

In Met, objects/modes are given by effect contexts, the horizontal morphisms by modalities, the
vertical morphisms by the sub-effecting relation, and 2-cells by the modality transformations.

Now we show that it indeed has the structure of a double category.
Since the sub-effecting relation is a preorder, effect contexts (objects) 𝐸 and sub-effecting (vertical

morphisms) 𝐸 ⩽ 𝐹 obviously form a category given by the poset.
We repeat the definition of modalities and modality composition from Section 3.3 here for easy

reference. We directly define them directly in terms of morphisms between modes.

[𝐸]𝐹 : 𝐸 → 𝐹

⟨𝐿 |𝐷⟩𝐹 : 𝐷 + (𝐹 − 𝐿) → 𝐹

[𝐸′]𝐹 ◦ [𝐸]𝐸′ = [𝐸]𝐹
⟨𝐿 |𝐷⟩𝐹 ◦ [𝐸]𝐷+(𝐹−𝐿) = [𝐸]𝐹

[𝐸]𝐹 ◦ ⟨𝐿 |𝐷⟩𝐸 = [𝐷 + (𝐸 − 𝐿)]𝐹
⟨𝐿1 |𝐷1⟩𝐹 ◦ ⟨𝐿2 |𝐷2⟩𝐷1+(𝐹−𝐿1) = ⟨𝐿1 + 𝐿 |𝐷2 + 𝐷⟩𝐹 where (𝐿, 𝐷) = 𝐿2 ⊲⊳ 𝐷1

The effect contexts (objects) and modalities (horizontal morphisms) also form a category since
modality composition possesses associativity and identity. We have the following lemma.

Lemma A.1 (Modes and modalities form a category). Modes and modalities form a category

with the identity morphism 1𝐸 = ⟨|⟩𝐸 : 𝐸 → 𝐸 and the morphism composition `𝐹 ◦ a𝐹 ′ such that

(1) Identity: 1𝐹 ◦ `𝐹 = `𝐹 = `𝐹 ◦ 1𝐸 for `𝐹 : 𝐸 → 𝐹 .

(2) Associativity: (`𝐸1 ◦ a𝐸2) ◦ b𝐸3 = `𝐸1 ◦ (a𝐸2 ◦ b𝐸3) for `𝐸1 : 𝐸2 → 𝐸1, a𝐸2 : 𝐸3 → 𝐸2, and

b𝐸3 : 𝐸 → 𝐸3.

Proof. By inlining the definitions of modalities and checking each case. □

In Section 3, we only define the modality transformations of shape `𝐹 ⇒ a𝐹 where the targets of
` and a are required to be the same effect context 𝐹 . This is enough for presenting the calculus, but
we can further extend it to allow `𝐹 ⇒ a𝐹 ′ where 𝐹 ⩽ 𝐹 ′. This is used in the meta theory for Met
such as the lock weakening lemma (Lemma A.11.3).

The extendedmodality transformation relation is defined by the transitive closure of the following
rules. Compared to the definition in Section 3.3, the only new rule is MT-Mono.
MT-Abs
`𝐹 : 𝐸′ → 𝐹 𝐸 ⩽ 𝐸′

[𝐸]𝐹 ⇒ `𝐹

MT-Upcast
𝐷 ⩽ 𝐷 ′

⟨𝐿 |𝐷⟩𝐹 ⇒ ⟨𝐿 |𝐷 ′⟩𝐹

MT-Expand
(𝐹 − 𝐿) ≡ ℓ : 𝑃, 𝐸

⟨ℓ, 𝐿 |𝐷, ℓ : 𝑃⟩𝐹 ⇔ ⟨𝐿 |𝐷⟩𝐹

MT-Mono
𝐹 ⩽ 𝐹 ′

`𝐹 ⇒ `𝐹 ′

1618

1619

1620

1621

1622

1623

1624

1625

1626

1627

1628

1629

1630

1631

1632

1633

1634

1635

1636

1637

1638

1639

1640

1641

1642

1643

1644

1645

1646

1647

1648

1649

1650

1651

1652

1653

1654

1655

1656

1657

1658

1659

1660

1661

1662

1663

1664

1665

1666

34 Wenhao Tang, Leo White, Stephen Dolan, Daniel Hillerström, Sam Lindley, and Anton Lorenzen

The following lemmas shows that the transformation `𝐹 ⇒ a𝐹 ′ satisfies the requirement of being
2-cells in the double category of effects with well-defined vertical and horizontal composition.

Lemma A.2 (Modality transformations are 2-cells). If `𝐹 ⇒ a𝐹 ′ , `𝐹 : 𝐸 → 𝐹 , and a𝐹 ′ :
𝐸′ → 𝐹 ′, then 𝐸 ⩽ 𝐸′ and 𝐹 ⩽ 𝐹 ′. Moreover, the transformation relation is closed under vertical and

horizontal composition as shown by the following admissible rules.

`𝐹1 ⇒ a𝐹2 a𝐹2 ⇒ b𝐹3

`𝐹1 ⇒ b𝐹3

`𝐹 ⇒ `′𝐹 ′ a𝐸 ⇒ a ′𝐸′ `𝐹 : 𝐸 → 𝐹 `′𝐹 ′ : 𝐸
′ → 𝐹 ′

`𝐹 ◦ a𝐸 ⇒ `′𝐹 ′ ◦ a ′𝐸′

Proof. To make proving easier, we give the resulting rules by taking the transitive closure.

`𝐹 ′ : 𝐸′ → 𝐹 ′ 𝐸 ⩽ 𝐸′ 𝐹 ⩽ 𝐹 ′

[𝐸]𝐹 ⇒ `𝐹 ′

𝐿 = dom(𝐷) 𝐷1 ⩽ 𝐷 ′
1 (𝐹 ′ − 𝐿1) ≡ 𝐷, 𝐸 𝐹 ⩽ 𝐹 ′

⟨𝐿1 |𝐷1⟩𝐹 ⇒ ⟨𝐿, 𝐿1 |𝐷 ′
1, 𝐷⟩𝐹 ′

𝐿 = dom(𝐷) 𝐷1 ⩽ 𝐷 ′
1 (𝐹 ′ − 𝐿1) ≡ 𝐷, 𝐸 𝐹 ⩽ 𝐹 ′

⟨𝐿, 𝐿1 |𝐷1, 𝐷⟩𝐹 ⇒ ⟨𝐿1 |𝐷 ′
1⟩𝐹 ′

It is easy to see that sources and targets of morphisms increase. Vertical composition follows
directly from the fact that we take the transitive closure. Horizontal compositions follows from
case analysis on shapes of modalities being composed. □

More on Relationships between Met and Multimodal Type Theory. In addition to extending to a
double category, Met also differs from MTT in the usage of morphism families. In types and terms
we use `, indexed families of morphisms between modes, instead of concrete morphisms `𝐹 . This
is very useful to allow term variables to be used flexibly in different effect contexts larger than
where they are defined. As a result, every type is always well-defined at any modes, which implies
that we do not need to define the judgement 𝐴 @𝐸 as in MTT. Moreover, one important benefit of
having types well-defined at any modes is that type quantifiers do not need to carry the additional
information about the modes at which the type variables can be used, greatly simplifying the type
system. Otherwise, polymorphic types would have forms ∀𝛼𝐾 @𝐸 .𝐴, where 𝐸 indicates the mode
of the type variable 𝛼 .
In contexts, we still keep concrete morphisms `𝐹 , which makes the proof trees of terms much

more structured than using morphism families.

A.4 Lemmas for Modes and Modalities

Beyond the structure and properties of double categories shown in Appendix A.3, we have some
extra properties on modes and modalities in Met.

The most important one is that horizontal morphisms (sub-effecting) act functorially on vertical
ones (modalities). In other words, the action of ` on effect contexts gives a total monotone function.

Lemma A.3 (Monotone modalities). If `𝐹 : 𝐸 → 𝐹 and 𝐹 ⩽ 𝐹 ′, then `𝐹 ′ : 𝐸′ → 𝐹 ′ with 𝐸 ⩽ 𝐸′.

Proof. By definition. □

We prove the lemma on the equivalence between syntactic and semantic definition of modality
transformation in Section 3.3. This lemma can be generalised to the general form of 2-cells in a
double category `𝐹 ⇒ a𝐹 ′ where 𝐹 ⩽ 𝐹 ′.

1667

1668

1669

1670

1671

1672

1673

1674

1675

1676

1677

1678

1679

1680

1681

1682

1683

1684

1685

1686

1687

1688

1689

1690

1691

1692

1693

1694

1695

1696

1697

1698

1699

1700

1701

1702

1703

1704

1705

1706

1707

1708

1709

1710

1711

1712

1713

1714

1715

Modal Effect Types 35

Lemma 3.1 (Semantics of modality transformation). We have `𝐹 ⇒ a𝐹 if and only if

` (𝐹 ′) ⩽ a (𝐹 ′) for all 𝐹 ′ with 𝐹 ⩽ 𝐹 ′.

Proof. From left to right, it is obvious that the semantics is preserved after taking the transitive
closure. We only need to show the transformation given by each rule satisfies the semantics.
Case MT-Abs. Follow from Lemma A.3.
Case MT-Upcast. Since 𝐷 ⩽ 𝐷 ′, we have 𝐷 + (𝐹 − 𝐿) ⩽ 𝐷 ′ + (𝐹 − 𝐿) for any 𝐹 .
Case MT-Expand. Since (𝐹 − 𝐿) ≡ ℓ : 𝑃, 𝐸, for any 𝐹 ⩽ 𝐹 ′ we have (𝐹 ′ − 𝐿) ≡ ℓ : 𝑃, 𝐸′ for some 𝐸′.

Both sides act on 𝐹 ′ give 𝐷, ℓ : 𝑃, 𝐸′.
From left to right, we need to show that for all pairs `𝐹 and a𝐹 satisfying the semantic definition,

we have `𝐹 ⇒ a𝐹 in the transitive closure of the three syntactic rules. This obviously holds for
those transformation starting from absolute modalities. For those transformation starting from
relative modalities, observe that they can only be transformed other relative modalities by the
semantic definition. By taking the transitive closure of the last two rules, we have

𝐿 = dom(𝐷) 𝐷1 ⩽ 𝐷 ′
1 (𝐹 − 𝐿1) ≡ 𝐷, 𝐸

⟨𝐿1 |𝐷1⟩𝐹 ⇒ ⟨𝐿, 𝐿1 |𝐷 ′
1, 𝐷⟩𝐹

𝐿 = dom(𝐷) 𝐷1 ⩽ 𝐷 ′
1 (𝐹 − 𝐿1) ≡ 𝐷, 𝐸

⟨𝐿, 𝐿1 |𝐷1, 𝐷⟩𝐹 ⇒ ⟨𝐿1 |𝐷 ′
1⟩𝐹

Suppose ⟨𝐿1 |𝐷1⟩𝐹 and ⟨𝐿2 |𝐷2⟩𝐹 satisfies that 𝐷1 + (𝐹 ′ − 𝐿1) ⩽ 𝐷2 + (𝐹 ′ − 𝐿2) (1) for all 𝐹 ⩽ 𝐹 ′.
Case analysis on the relationship between 𝐷1 and 𝐷2.
Case 𝐷2 is longer than 𝐷1. By (1) we have 𝐷2 ≡ 𝐷 ′

1, 𝐷 for 𝐷1 ⩽ 𝐷 ′
1. Let 𝐿 = dom(𝐷). Using proof

by contradiction, we can show that 𝐿2 ≡ 𝐿, 𝐿1 and (𝐹 − 𝐿1) ≡ 𝐷, 𝐸 for some 𝐸; otherwise,
we can always properly set 𝐹 ′ to violate (1) meanwhile satisfying 𝐹 ⩽ 𝐹 ′. Thus, this case is
covered by the first rule of the transitive closure.

Case 𝐷1 is longer than 𝐷2. We have 𝐷1 ≡ 𝐷 ′
2, 𝐷 for 𝐷 ′

2 ⩽ 𝐷2. Similar to the above case, using proof
by contradiction we can show that it is covered by the second rule of the transitive closure.

□

Our proofs for type soundness of Met do not use ad-hoc case analysis on shapes of modalities
or reply on any specific properties about the definition of composition and transformation (except
for the parts about effect handlers since they specify the required modalities in the typing rules).
As a result, it should be able to generalise our calculus and proofs to other mode theories satisfying
certain extra properties. We state some properties of the mode theory as the following lemmas for
easier reference in proofs. Most of them directly follow from the definition.

Lemma A.4 (Vertical composition). If `𝐹1 ⇒ a𝐹2 and a𝐹2 ⇒ b𝐹3 , then `𝐹1 ⇒ b𝐹3 .

Proof. Follow from Lemma A.2 □

Lemma A.5 (Horizontal composition). If `𝐹 : 𝐸 → 𝐹 , `′
𝐹 ′ : 𝐸

′ → 𝐹 ′, `𝐹 ⇒ `′
𝐹 ′ , and a𝐸 ⇒ a ′

𝐸′ ,

then `𝐹 ◦ a𝐸 ⇒ `′
𝐹 ′ ◦ a ′𝐸′ .

Proof. Follow from Lemma A.2 □

Lemma A.6 (Monotone modality transformation). If `𝐹 ⇒ a𝐹 and 𝐹 ⩽ 𝐹 ′, then `𝐹 ′ ⇒ a𝐹 ′ .

Proof. Follow from Lemma 3.1 □

1716

1717

1718

1719

1720

1721

1722

1723

1724

1725

1726

1727

1728

1729

1730

1731

1732

1733

1734

1735

1736

1737

1738

1739

1740

1741

1742

1743

1744

1745

1746

1747

1748

1749

1750

1751

1752

1753

1754

1755

1756

1757

1758

1759

1760

1761

1762

1763

1764

36 Wenhao Tang, Leo White, Stephen Dolan, Daniel Hillerström, Sam Lindley, and Anton Lorenzen

Lemma A.7 (Asymmetric reflexivity of modality transformation). If 𝐹 ⩽ 𝐹 ′ and `𝐹 : 𝐸 →
𝐹 , then `𝐹 ⇒ `𝐹 ′ .

Proof. By definition. □

A.5 Lemmas for Met

We prove structural and substitution lemmas forMet as well as some other auxiliary lemmas for
proving type soundness.

Lemma A.8 (Canonical forms).
1. If ⊢ 𝑈 : `𝐴 @𝐸, then𝑈 is of shapemod` 𝑈

′
.

2. If ⊢ 𝑈 : 𝐴 → 𝐵 @𝐸, then𝑈 is of shape _𝑥𝐴 .𝑀 .

3. If ⊢ 𝑈 : ∀𝛼.𝐴 @𝐸, then𝑈 is of shape Λ𝛼.𝑉 .
4. If ⊢ 𝑈 : (𝐴, 𝐵) @𝐸, then𝑈 is of shape (𝑈1,𝑈2).
5. If ⊢ 𝑈 : 𝐴 + 𝐵 @𝐸, then𝑈 is either of shape inl 𝑈 ′

or of shape inr 𝑈 ′
.

Proof. Directly follows from the typing rules. □

In order to define the lock weakening lemma, we first define a context update operation LΓM𝐹 ′
which gives a new context derived from updating the indexes of all locks and variable bindings in
Γ such that LΓM𝐹 ′ @ 𝐹 ′.

L·M𝐹 = ·
Lµ[𝐸]𝐹 ′ , Γ

′M
𝐹

= µ[𝐸]𝐹 , Γ
′

Lµ⟨𝐿 |𝐷 ⟩𝐹 ′ , Γ
′M
𝐹

= µ⟨𝐿 |𝐷 ⟩𝐹 , LΓ
′M𝐷+(𝐹−𝐿)

L𝑥 :`𝐹 ′ 𝐴, Γ
′M
𝐹

= 𝑥 :`𝐹 𝐴, LΓ′M𝐹
L𝛼 : 𝐾, Γ′M𝐹 = 𝛼 : 𝐾, LΓ′M𝐹

The have the following lemma showing that the index update operation preserves the locks(−)
operation except for updating the index.

Lemma A.9 (Index update preserves composition). If `𝐹 = locks(Γ) : 𝐸 → 𝐹 , 𝐹 ⩽ 𝐹 ′, and
locks(LΓM𝐹 ′) : 𝐸′ → 𝐹 ′, then locks(LΓM𝐹 ′) = `𝐹 ′ .

Proof. By straightforward induction on the context and using the property that (`◦a)𝐹 = `𝐹 ◦a𝐸
for `𝐹 : 𝐸 → 𝐹 . □

Corollary A.10 (Index update preserves transformation). If locks(Γ) : 𝐸 → 𝐹 , 𝐹 ⩽ 𝐹 ′,
and locks(LΓM𝐹 ′) : 𝐸′ → 𝐹 ′, then locks(Γ) ⇒ locks(LΓM𝐹 ′).

Proof. Immediately follow from Lemma A.9 and Lemma A.7. □

We have the following structural lemmas.

Lemma A.11 (Structural rules). The following structural rules are admissible.

1. Variable weakening.

Γ, Γ′ ⊢ 𝑀 : 𝐵 @𝐸 Γ, 𝑥 :`𝐹 𝐴, Γ
′ @𝐸

Γ, 𝑥 :`𝐹 𝐴, Γ
′ ⊢ 𝑀 : 𝐵 @𝐸

2. Variable swapping.

Γ, 𝑥 :`𝐹 𝐴,𝑦 :a𝐹 𝐵, Γ
′ ⊢ 𝑀 : 𝐴′ @𝐸

Γ, 𝑦 :a𝐹 𝐵, 𝑥 :`𝐹 𝐴, Γ
′ ⊢ 𝑀 : 𝐴′ @𝐸

1765

1766

1767

1768

1769

1770

1771

1772

1773

1774

1775

1776

1777

1778

1779

1780

1781

1782

1783

1784

1785

1786

1787

1788

1789

1790

1791

1792

1793

1794

1795

1796

1797

1798

1799

1800

1801

1802

1803

1804

1805

1806

1807

1808

1809

1810

1811

1812

1813

Modal Effect Types 37

3. Lock weakening.

Γ,µ`𝐹 , Γ
′ ⊢ 𝑀 : 𝐴 @𝐸 `𝐹 ⇒ a𝐹 a𝐹 : 𝐹 ′ → 𝐹 locks(LΓ′M𝐹 ′) : 𝐸′ → 𝐹 ′

Γ,µa𝐹 , LΓ
′M𝐹 ′ ⊢ 𝑀 : 𝐴 @𝐸′

4. Type variable weakening.

Γ, Γ′ ⊢ 𝑀 : 𝐵 @𝐸

Γ, 𝛼 : 𝐾, Γ′ ⊢ 𝑀 : 𝐵 @𝐸

5. Type variable swapping.

Γ1, Γ2, 𝛼 : 𝐾, Γ3 ⊢ 𝑀 : 𝐴 @𝐸

Γ1, 𝛼 : 𝐾, Γ3 ⊢ 𝑀 : 𝐴 @𝐸

𝛼 ∉ ftv(Γ2) Γ1, 𝛼 : 𝐾, Γ3 ⊢ 𝑀 : 𝐴 @𝐸

Γ1, Γ2, 𝛼 : 𝐾, Γ3 ⊢ 𝑀 : 𝐴 @𝐸

Proof. 1, 2, 4, and 5 follow from straightforward induction on the typing derivation. For 3, we
also proceed by induction on the typing derivation. The most interesting case is T-Var. Other cases
mostly follow from IHs.
Case

T-Var
a ′𝐹1 = locks(Γ2) : 𝐸 → 𝐹1 `′𝐹1 ⇒ a ′𝐹1 (1) or Γ ⊢ 𝐴 : Abs

Γ1, 𝑥 :`′
𝐹1
, Γ2 ⊢ 𝑥 : 𝐴 @𝐸

Trivial when 𝐴 is pure. Otherwise, case analysis on where the lock weakening happens.
Case Γ. Supposing Γ1 = Γ,µ`𝐹 , Γ0 and after lock weakening we have Γ,µa𝐹 , Γ

′
0 , 𝑥 :`′

𝐹 ′1
, Γ′2

where Γ′2 = LΓ2M𝐹 ′1 : 𝐸
′ → 𝐹 ′1 and Γ′0 = LΓ0M𝐹 ′ : 𝐹 ′1 → 𝐹 ′. By Lemma A.9 on Γ0, 𝐹 ⩽ 𝐹 ′,

and Lemma A.3, we have 𝐹1 ⩽ 𝐹 ′1. Then by (1) and Lemma A.6, we have `′
𝐹 ′1

⇒ a ′
𝐹 ′1
.

Then by Lemma A.9 we have a ′
𝐹 ′1

= locks(Γ′2). Finally by T-Var we have

Γ,µa𝐹 , Γ
′
0 , 𝑥 :`′

𝐹 ′1
, Γ′2 ⊢ 𝑥 : 𝐴 @𝐸′

Case Γ2. Suppose Γ2 = Γ0,µ`𝐹 , Γ
′. is weakened to Γ′2 = Γ0,µa𝐹 , LΓ′M𝐹 ′ . By Corollary A.10 we

have locks(Γ′) ⇒ locks(LΓ′M𝐹 ′). Then by Lemma A.5 we have we have locks(Γ2) ⇒
locks(Γ′2). By Lemma A.4 and (1), we have `′

𝐹1
⇒ locks(Γ′2). Finally by T-Var we have

Γ, 𝑥 :`′
𝐹1
, Γ′2 ⊢ 𝑥 : 𝐴 @𝐸′

Case
T-Mod
`′𝐸 : 𝐹1 → 𝐸 Γ,µ`𝐹 , Γ

′,µ`′
𝐸
⊢ 𝑉 : 𝐴 @ 𝐹1 (1)

Γ,µ`𝐹 , Γ
′ ⊢ mod`′ 𝑉 : `′𝐴 @𝐸

We have
LΓ′,µ`′

𝐸
M
𝐹 ′

= LΓ′M𝐹 ′ , Lµ`′𝐸 M𝐸′ = LΓ′M𝐹 ′ ,µ`′𝐸′ .

Supposing `′
𝐸′ : 𝐹

′
1 → 𝐸′, by locks(LΓ′M𝐹 ′ ,µ`′𝐸′) : 𝐹

′
1 → 𝐹 ′ and IH on (1), we have

Γ,µ`𝐹 , LΓ
′M𝐹 ′ ,µ`′𝐸′ ⊢ 𝑉 : 𝐴 @ 𝐹 ′1 .

Then by T-Mod we have

Γ,µ`𝐹 , LΓ
′M𝐹 ′ ⊢ mod`′ 𝑉 : `′𝐴 @𝐸′ .

1814

1815

1816

1817

1818

1819

1820

1821

1822

1823

1824

1825

1826

1827

1828

1829

1830

1831

1832

1833

1834

1835

1836

1837

1838

1839

1840

1841

1842

1843

1844

1845

1846

1847

1848

1849

1850

1851

1852

1853

1854

1855

1856

1857

1858

1859

1860

1861

1862

38 Wenhao Tang, Leo White, Stephen Dolan, Daniel Hillerström, Sam Lindley, and Anton Lorenzen

Case
T-Letmod

a ′𝐸 : 𝐹1 → 𝐸

Γ,µ`𝐹 , Γ
′,µa ′

𝐸
⊢ 𝑉 : `′𝐴 @ 𝐹1 (1) Γ,µ`𝐹 , Γ

′, 𝑥 :a ′
𝐸
◦`′
𝐹1
𝐴 ⊢ 𝑀 : 𝐵 @𝐸 (2)

Γ,µ`𝐹 , Γ
′ ⊢ leta ′ mod`′ 𝑥 = 𝑉 in 𝑀 : 𝐵 @𝐸

By IH on (1), we have
Γ,µa𝐹 , LΓ

′M𝐹 ′ ,µa ′𝐸′ ⊢ 𝑉 : `′𝐴 @ 𝐹 ′1

where a ′
𝐸′ : 𝐹

′
1 → 𝐸′. By IH on (2), we have

Γ,µa𝐹 , LΓ
′M𝐹 ′ , 𝑥 :a ′

𝐸′◦`
′
𝐹 ′1
𝐴 ⊢ 𝑀 : 𝐵 @𝐸′ .

Then by T-Letmod, we have
Γ,µ`𝐹 , LΓ

′M𝐹 ′ ⊢ leta ′ mod`′ 𝑥 = 𝑉 in 𝑀 : 𝐵 @𝐸′

Case
T-Letmod’

a ′𝐸 : 𝐹1 → 𝐸

Γ,µ`𝐹 , Γ
′,µa ′

𝐸
, 𝛼 : 𝐾 ⊢ 𝑉 : `′𝐴 @ 𝐹1 (1) Γ,µ`𝐹 , Γ

′, 𝑥 :a ′
𝐸
◦`′
𝐹1
∀𝛼𝐾 .𝐴 ⊢ 𝑀 : 𝐵 @𝐸 (2)

Γ,µ`𝐹 , Γ
′ ⊢ leta ′ mod`′ Λ𝛼𝐾 .𝑥 = 𝑉 in 𝑀 : 𝐵 @𝐸

Similar to the case for T-Letmod. BY IH on (1), we have

Γ,µa𝐹 , LΓ
′M𝐹 ′ ,µa ′𝐸′ , 𝛼 : 𝐾 ⊢ 𝑉 : `′𝐴 @ 𝐹 ′1

where a ′
𝐸′ : 𝐹

′
1 → 𝐸′. By IH on (2), we have

Γ,µa𝐹 , LΓ
′M𝐹 ′ , 𝑥 :a ′

𝐸′◦`
′
𝐹 ′1
∀𝛼𝐾 .𝐴 ⊢ 𝑀 : 𝐵 @𝐸′ .

Then by T-Letmod’, we have

Γ,µa𝐹 , LΓ
′M𝐹 ′ ⊢ leta ′ mod`′ Λ𝛼𝐾 .𝑥 = 𝑉 in 𝑀 : 𝐵 @𝐸′

Case T-TAbs, T-Abs, T-TApp, T-App, T-Do, T-Mask, T-Handler, and extensions. Follow from IH.
Similar to the two cases T-Mod and T-Letmod we have shown.

□

As a corollary of Lemma A.11.3, the following sub-effecting rule is admissible.

Corollary A.12 (Sub-effecting). The following rule is admissible.

Γ ⊢ 𝑀 : 𝐴 @𝐸 locks(Γ) : 𝐸 → 𝐹 𝐹 ⩽ 𝐹 ′ locks(LΓM𝐹 ′) : 𝐸′ → 𝐹 ′

LΓM𝐹 ′ ⊢ 𝑀 : 𝐴 @𝐸′

Proof. Follow from Lemma A.11.3 by adding the lock µ[𝐹] · to the left of Γ in Γ ⊢ 𝑀 : 𝐴 @𝐸,
and weaken it to µ[𝐹 ′] · . Note that typing judgements still hold after adding a lock to or removing a
lock from the left of the context, as long as the new contexts are still well-defined. □

The following lemma reflects the intuition that pure values can be used in any effect context.

Lemma A.13 (Pure Promotion). The following promotion rule is admissible.

Γ1, Γ ⊢ 𝑉 : 𝐴 @𝐸 Γ1 ⊢ 𝐴 : Abs
locks(Γ) : 𝐸 → 𝐹 locks(Γ′) : 𝐸′ → 𝐹 fv(𝑉) ∩ dom(Γ′) = ∅

Γ1, Γ
′ ⊢ 𝑉 : 𝐴 @𝐸′

1863

1864

1865

1866

1867

1868

1869

1870

1871

1872

1873

1874

1875

1876

1877

1878

1879

1880

1881

1882

1883

1884

1885

1886

1887

1888

1889

1890

1891

1892

1893

1894

1895

1896

1897

1898

1899

1900

1901

1902

1903

1904

1905

1906

1907

1908

1909

1910

1911

Modal Effect Types 39

Proof. By induction on the typing derivation of 𝑉 .
Case T-Var. Trivial.
Case

T-Mod
`𝐸 : 𝐹1 → 𝐸 Γ1, Γ,µ`𝐸 ⊢ 𝑉 : 𝐴 @ 𝐹1 (1)

Γ1, Γ ⊢ mod` 𝑉 : `𝐴 @𝐸

Case analysis on the shape of `.
Case ` is relative. By kinding, 𝐴 is also pure. By IH on (1), we have

Γ1, Γ
′,µ`𝐸′ ⊢ 𝑉 : 𝐴 @ 𝐹 ′1

where `𝐸′ : 𝐹 ′1 → 𝐸′. Then by T-Mod we have

Γ1, Γ
′ ⊢ mod` 𝑉 : `𝐴 @𝐸′

Case ` is absolute. We have ` = [𝐹1] and locks(Γ′,µ`𝐸′) = [𝐹1]𝐹 = locks(Γ,µ`𝐸). Thus,
replacing the context (Γ,µ`𝐸) with (Γ′,µ`𝐸′) in (1) does not influence all usages of
T-Var in the derivation tree of (1). We have

Γ1, Γ
′,µ`𝐸′ ⊢ 𝑉 : 𝐴 @ 𝐹1

Then by T-Mod we have

Γ1, Γ
′ ⊢ mod` 𝑉 : `𝐴 @𝐸′

Case T-TAbs. Follow from IH and Lemma A.11.5.
Case T-Abs. Impossible since function types are impure.
Case Data Types. Follow from IHs.

□

Lemma A.14 (Substitution). The following substitution rules are admissible.

1. Preservation of kinds under type substitution.

Γ ⊢ 𝐴 : 𝐾 Γ, 𝛼 : 𝐾, Γ′ ⊢ 𝐵 : 𝐾 ′

Γ, Γ′ ⊢ 𝐵 [𝐴/𝛼] : 𝐾 ′

2. Preservation of types under type substitution.

Γ ⊢ 𝐴 : 𝐾 Γ, 𝛼 : 𝐾, Γ′ ⊢ 𝑀 : 𝐵 @𝐸

Γ, Γ′ ⊢ 𝑀 [𝐴/𝛼] : 𝐵 [𝐴/𝛼] @𝐸

3. Preservation of types under value substitution.

Γ,µ`𝐹 ⊢ 𝑉 : 𝐴 @ 𝐹 ′ Γ, 𝑥 :`𝐹 𝐴, Γ
′ ⊢ 𝑀 : 𝐵 @𝐸

Γ, Γ′ ⊢ 𝑀 [𝑉 /𝑥] : 𝐵 @𝐸

Proof.
1. By straightforward induction on the kinding derivation.
2. By straightforward induction on the typing derivation of𝑀 .
3. By induction on the typing derivation of𝑀 . Trivial when variable 𝑥 is not used. In the following
induction we always assume 𝑥 is used.

1912

1913

1914

1915

1916

1917

1918

1919

1920

1921

1922

1923

1924

1925

1926

1927

1928

1929

1930

1931

1932

1933

1934

1935

1936

1937

1938

1939

1940

1941

1942

1943

1944

1945

1946

1947

1948

1949

1950

1951

1952

1953

1954

1955

1956

1957

1958

1959

1960

40 Wenhao Tang, Leo White, Stephen Dolan, Daniel Hillerström, Sam Lindley, and Anton Lorenzen

Case
T-Var
a𝐹 = locks(Γ′) : 𝐸 → 𝐹 `𝐹 ⇒ a𝐹 (1) or Γ ⊢ 𝐴 : Abs

Γ, 𝑥 :`𝐹 𝐴, Γ
′ ⊢ 𝑥 : 𝐴 @𝐸

Case analysis on the purity of 𝐴
Case Impure. By Γ,µ`𝐹 ⊢ 𝑉 : 𝐴 @ 𝐹 ′, (1), and Lemma A.11.3, we have

Γ,µa𝐹 ⊢ 𝑉 : 𝐴 @𝐸.

Then, by context equivalence, Lemma A.11.1, and Lemma A.11.4, we have

Γ, Γ′ ⊢ 𝑉 : 𝐴 @𝐸.

Case Pure. By Γ,µ`𝐹 ⊢ 𝑉 : 𝐴 @ 𝐹 ′ and Lemma A.13, we have

Γ, Γ′ ⊢ 𝑉 : 𝐴 @𝐸.

Case
T-Mod
`′𝐸 : 𝐹1 → 𝐸 Γ, 𝑥 :`𝐹 𝐴, Γ

′,µ`′
𝐸
⊢𝑊 : 𝐵 @ 𝐹1 (1)

Γ, 𝑥 :`𝐹 𝐴, Γ
′ ⊢ mod`′𝑊 : `′𝐵 @𝐸

By IH on (1) we have
Γ, Γ′,µ`′

𝐸
⊢𝑊 [𝑉 /𝑥] : 𝐵 @ 𝐹1 .

Then by T-Mod we have

Γ, Γ′ ⊢ (mod`′𝑊) [𝑉 /𝑥] : `′𝐵 @𝐸

Case
T-Letmod

a𝐸 : 𝐹1 → 𝐸

Γ, 𝑥 :`𝐹 𝐴, Γ
′,µa𝐸 ⊢𝑊 : `′𝐴′ @ 𝐹1 (1) Γ, 𝑥 :`𝐹 𝐴, Γ

′, 𝑦 :a𝐸◦`′𝐹1 𝐴
′ ⊢ 𝑀 : 𝐵 @𝐸 (2)

Γ, 𝑥 :`𝐹 𝐴, Γ
′ ⊢ leta mod`′ 𝑦 =𝑊 in 𝑀 : 𝐵 @𝐸

By IH on (1), we have

Γ, Γ′,µa𝐸 ⊢𝑊 [𝑉 /𝑥] : `′𝐴′ @ 𝐹1.

By IH on (2), we have

Γ, Γ′, 𝑦 :a𝐸◦`′𝐹1 𝐴
′ ⊢ 𝑀 [𝑉 /𝑥] : 𝐵 @𝐸.

Then by T-Letmod, we have

Γ, Γ′ ⊢ (leta mod`′ 𝑦 =𝑊 in 𝑀) [𝑉 /𝑥] : 𝐵 @𝐸

Case
T-Letmod’
a𝐸 : 𝐹1 → 𝐸 Γ, 𝑥 :`𝐹 𝐴, Γ

′,µa𝐸 , 𝛼 : 𝐾 ⊢ 𝑉 : `′𝐴′ @ 𝐹1 (1)
Γ, 𝑥 :`𝐹 𝐴, Γ

′, 𝑦 :a𝐸◦`′𝐹1 ∀𝛼
𝐾 .𝐴′ ⊢ 𝑀 : 𝐵 @𝐸 (2)

Γ, 𝑥 :`𝐹 𝐴, Γ
′ ⊢ leta mod`′ Λ𝛼𝐾 .𝑦 = 𝑉 in 𝑀 : 𝐵 @𝐸

Similar to the case for T-Letmod. Our goal follows from IH on (1), IH on (2), and T-Letmod’.

1961

1962

1963

1964

1965

1966

1967

1968

1969

1970

1971

1972

1973

1974

1975

1976

1977

1978

1979

1980

1981

1982

1983

1984

1985

1986

1987

1988

1989

1990

1991

1992

1993

1994

1995

1996

1997

1998

1999

2000

2001

2002

2003

2004

2005

2006

2007

2008

2009

Modal Effect Types 41

Case
T-Mask
Γ, 𝑥 :`𝐹 𝐴, Γ

′,µ⟨𝐿 |⟩𝐸 ⊢ 𝑀 : 𝐵 @𝐸 − 𝐿 (1)
Γ, 𝑥 :`𝐹 𝐴, Γ

′ ⊢ mask𝐿 𝑀 : ⟨𝐿 |⟩𝐵 @𝐸

By IH on (1) we have

Γ, Γ′,µ⟨𝐿 |⟩𝐸 ⊢ 𝑀 [𝑉 /𝑥] : 𝐵 @𝐸 − 𝐿.

Then by T-Mask we have

Γ, Γ′ ⊢ (mask𝐿 𝑀) [𝑉 /𝑥] : ⟨𝐿 |⟩𝐵 @𝐸

Case
T-Handler

𝐷 = {ℓ𝑖 : 𝐴𝑖 ↠ 𝐵𝑖 }𝑖 Γ, 𝑥 :`𝐹 𝐴, Γ
′,µ⟨|𝐷 ⟩𝐸 ⊢ 𝑀 : 𝐴0 @𝐷 + 𝐸 (1)

Γ, 𝑥 :`𝐹 𝐴, Γ
′, 𝑦 : ⟨|𝐷⟩𝐴0 ⊢ 𝑁 : 𝐵 @𝐸 (2)

[Γ, 𝑥 :`𝐹 𝐴, Γ
′, 𝑝𝑖 : 𝐴𝑖 , 𝑟𝑖 : 𝐵𝑖 → 𝐵 ⊢ 𝑁𝑖 : 𝐵 @𝐸 (3)]𝑖

Γ, 𝑥 :`𝐹 𝐴, Γ
′ ⊢ handle 𝑀 with {return 𝑦 ↦→ 𝑁 } ⊎ {ℓ𝑖 𝑝𝑖 𝑟𝑖 ↦→ 𝑁𝑖 }𝑖 : 𝐵 @𝐸

Follow from IH on (1),(2),(3), and reapplying T-Handler.
Case T-TAbs, T-TApp, T-Abs, T-App, T-Do. Follow from IH.
Case Extensions. Follow from IH.

□

A.6 Progress

Theorem 3.3 (Progress). If ⊢ 𝑀 : 𝐴 @𝐸, then either there exists 𝑁 such that𝑀 { 𝑁 or𝑀 is in

a normal form with respect to 𝐸.

Proof. By induction on the typing derivation ⊢ 𝑀 : 𝐴 @𝐸. The most non-trivial cases are
T-Mask and T-Handler. Other cases follow from IHs and reduction rules, using Lemma A.8.
Case 𝑀 is in a value normal form𝑈 . Trivial. Base case.
Case T-Do. Trivial. Base case.
Case T-Mod. mod` 𝑉 . By IH on 𝑉 .
Case T-Letmod. leta mod` 𝑥 = 𝑉 in 𝑁 . By IH on 𝑉 , if 𝑉 is reducible then 𝑀 is reducible;

otherwise, 𝑉 is in a value normal form, then by Lemma A.8 we have that𝑀 is reducible by
E-Letmod.

Case T-Letmod’. Similar to the case for T-Letmod.
Case T-TApp.𝑀𝐴. Similarly by IH on𝑀 , Lemma A.8, and E-TApp.
Case T-App.𝑀 𝑁 . Similarly by IH on𝑀 and 𝑁 , Lemma A.8, and E-App.
Case T-Mask. mask

𝐸 𝑀 . By IH on𝑀 .
Case 𝑀 is reducible. Trivial.
Case 𝑀 is in a value normal form. By E-Mask.
Case 𝑀 = E[do ℓ 𝑈] with 𝑛−free(ℓ, E). The whole term is in a normal form.

Case Handlers. The general form is handle𝛿 𝑀 with 𝐻 . By IH on𝑀 .
Case 𝑀 is reducible. Trivial.
Case 𝑀 is in a value normal form. By E-Ret.
Case 𝑀 = E[do ℓ 𝑈] with 𝑛−free(ℓ, E). If 𝑛 = 0 and ℓ ∈ 𝐻 , then reducible by E-Op.

Otherwise, the whole term is in a normal form.

2010

2011

2012

2013

2014

2015

2016

2017

2018

2019

2020

2021

2022

2023

2024

2025

2026

2027

2028

2029

2030

2031

2032

2033

2034

2035

2036

2037

2038

2039

2040

2041

2042

2043

2044

2045

2046

2047

2048

2049

2050

2051

2052

2053

2054

2055

2056

2057

2058

42 Wenhao Tang, Leo White, Stephen Dolan, Daniel Hillerström, Sam Lindley, and Anton Lorenzen

Case T-BoxAbs.mod[] 𝑀 . If𝑀 { 𝑁 , follow by IH on𝑀 . Otherwise,𝑀 must be in a value normal
form because the T-BoxAbs requires𝑀 to have the empty effect. In this case,mod[] 𝑀 is
also in a value normal form.

Case Data Types. Similar to other cases.
□

A.7 Subject Reduction

Theorem 3.4 (Subject Reduction). If Γ ⊢ 𝑀 : 𝐴 @𝐸 and𝑀 { 𝑁 , then Γ ⊢ 𝑁 : 𝐴 @𝐸.

Proof. By induction on the typing derivation Γ ⊢ 𝑀 : 𝐴 @𝐸.
Case T-Var. Impossible as there is no further reduction.
Case

T-Mod
`𝐹 : 𝐸 → 𝐹 Γ,µ`𝐹 ⊢ 𝑉 : 𝐴 @𝐸 (1)

Γ ⊢ mod` 𝑉 : `𝐴 @ 𝐹

The only way to reduce is by E-Lift and 𝑉 {𝑊 . IH on (1) gives

Γ,µ`𝐹 ⊢𝑊 : 𝐴 @𝐸.

Then by T-Mod we have
Γ ⊢ mod`𝑊 : `𝐴 @ 𝐹 .

Case
T-Letmod
a𝐹 : 𝐸 → 𝐹 Γ,µa𝐹 ⊢ 𝑉 : `𝐴 @𝐸 (1) Γ, 𝑥 :a𝐹 ◦`𝐸 𝐴 ⊢ 𝑀 : 𝐵 @ 𝐹 (2)

Γ ⊢ leta mod` 𝑥 = 𝑉 in 𝑀 : 𝐵 @ 𝐹

By case analysis on the reduction.
Case E-Lift with 𝑉 {𝑊 . By IH on (1) and reapplying T-Letmod.
Case E-Letmod. We have 𝑉 = mod` 𝑈 and

leta mod` 𝑥 = mod` 𝑈 in 𝑀 { 𝑀 [𝑈 /𝑥] .

Inversion on (1) gives

Γ,µa𝐹 ,µ`𝐸 ⊢ 𝑈 : 𝐴 @𝐸′ .

where `𝐸 : 𝐸′ → 𝐸. By context equivalence, we have

Γ,µa𝐹 ◦`𝐸 ⊢ 𝑈 : 𝐴 @𝐸′

where a𝐹 ◦ `𝐸 : 𝐸′ → 𝐹 . By Lemma A.14.3 and (2), we have

Γ ⊢ 𝑀 [𝑈 /𝑥] : 𝐵 @ 𝐹 .

Case
T-Letmod’
a𝐹 : 𝐸 → 𝐹 Γ,µa𝐹 , 𝛼 : 𝐾 ⊢ 𝑉 : `𝐴 @𝐸 (1) Γ, 𝑥 :a𝐹 ◦`𝐸 ∀𝛼𝐾 .𝐴 ⊢ 𝑀 : 𝐵 @ 𝐹 (2)

Γ ⊢ leta mod` Λ𝛼𝐾 .𝑥 = 𝑉 in 𝑀 : 𝐵 @ 𝐹

Similar to the case for T-Letmod’. By case analysis on the reduction.
Case E-Lift with 𝑉 {𝑊 . By IH on (1) and reapplying T-Letmod’.

2059

2060

2061

2062

2063

2064

2065

2066

2067

2068

2069

2070

2071

2072

2073

2074

2075

2076

2077

2078

2079

2080

2081

2082

2083

2084

2085

2086

2087

2088

2089

2090

2091

2092

2093

2094

2095

2096

2097

2098

2099

2100

2101

2102

2103

2104

2105

2106

2107

Modal Effect Types 43

Case E-Letmod’. We have 𝑉 = mod` 𝑈 and

leta mod` Λ𝛼𝐾 .𝑥 = mod` 𝑈 in 𝑀 { 𝑀 [(∀𝛼𝐾 .𝑈)/𝑥] .
Inversion on (1) gives

Γ,µa𝐹 , 𝛼 : 𝐾,µ`𝐸 ⊢ 𝑈 : `𝐴 @𝐸′ .

where `𝐸 : 𝐸′ → 𝐸. By Lemma A.11.5 we have

Γ,µa𝐹 ,µ`𝐸 , 𝛼 : 𝐾 ⊢ 𝑈 : 𝐴 @𝐸′ .

By context equivalence, we have

Γ,µa𝐹 ◦`𝐸 , 𝛼 : 𝐾 ⊢ 𝑈 : 𝐴 @𝐸′ .

where a𝐹 ◦ `𝐸 : 𝐸′ → 𝐹 . By T-TAbs we have

Γ,µa𝐹 ◦`𝐸 ⊢ Λ𝛼𝐾 .𝑈 : ∀𝛼𝐾 .𝐴 @𝐸′ .

By Lemma A.14.3 and (2), we have

Γ ⊢ 𝑀 [𝑈 /𝑥] : 𝐵 @ 𝐹 .

Case T-TAbs,T-Abs. Impossible as there is no further reduction.
Case

T-TApp
Γ ⊢ 𝑀 : ∀𝛼𝐾 .𝐵 @𝐸 (1) Γ ⊢ 𝐴 : 𝐾 (2)

Γ ⊢ 𝑀𝐴 : 𝐵 [𝐴/𝛼] @𝐸

By case analysis on the reduction.
Case E-Lift with𝑀 { 𝑁 . By IH on (1) and reapplying T-TApp.
Case E-TApp. We have𝑀 = Λ𝛼𝐾 .𝑉 and

(Λ𝛼𝐾 .𝑉)𝐴 { 𝑉 [𝐴/𝛼] .
Inversion on (1) gives

Γ, 𝛼 : 𝐾 ⊢ 𝑉 : 𝐵 @𝐸.

Then by Lemma A.14.2 on (2), we have

Γ ⊢ 𝑉 [𝐴/𝛼] : 𝐵 [𝐴/𝛼] @𝐸.

Case
T-App
Γ ⊢ 𝑀 : 𝐴 → 𝐵 @𝐸 (1) Γ ⊢ 𝑁 : 𝐴 @𝐸 (2)

Γ ⊢ 𝑀 𝑁 : 𝐵 @𝐸

By case analysis on the reduction.
Case E-Lift with𝑀 { 𝑀 ′. By IH on (1) and reapplying T-App.
Case E-Lift with 𝑁 { 𝑁 ′. By IH on (2) and reapplying T-App.
Case E-App. We have𝑀 = _𝑥𝐴 .𝑀 ′, 𝑁 = 𝑈 , and

𝑀 𝑁 { 𝑀 ′ [𝑈 /𝑥] .
Inversion on (1) gives

Γ, 𝑥 : 𝐴 ⊢ 𝑀 ′ : 𝐵 @𝐸.

Then by Lemma A.14.3 we have

Γ ⊢ 𝑀 ′ [𝑈 /𝑥] : 𝐵 @𝐸.

2108

2109

2110

2111

2112

2113

2114

2115

2116

2117

2118

2119

2120

2121

2122

2123

2124

2125

2126

2127

2128

2129

2130

2131

2132

2133

2134

2135

2136

2137

2138

2139

2140

2141

2142

2143

2144

2145

2146

2147

2148

2149

2150

2151

2152

2153

2154

2155

2156

44 Wenhao Tang, Leo White, Stephen Dolan, Daniel Hillerström, Sam Lindley, and Anton Lorenzen

Case T-Do. The only way to reduce is by E-Lift. Follow from IH and reapplying T-Do.
Case

T-Mask
Γ,µ⟨𝐿 |⟩𝐹 ⊢ 𝑀 : 𝐴 @ 𝐹 − 𝐿 (1)
Γ ⊢ mask𝐿 𝑀 : ⟨𝐿 |⟩𝐴 @ 𝐹

By case analysis on the reduction.
Case E-Lift with𝑀 { 𝑁 . By IH on (1) and reapplying T-Mask.
Case E-Mask. We have𝑀 = 𝑈 and

mask𝐿𝑈 { mod⟨𝐿 |⟩ 𝑈 .

By ⟨𝐿 |⟩𝐹 : 𝐹 − 𝐿 → 𝐹 and T-Mod, we have

Γ ⊢ mod⟨𝐿 |⟩ 𝑈 : ⟨𝐿 |⟩𝐴 @ 𝐹 .

Case
T-Handler

𝐻 = {return 𝑥 ↦→ 𝑁 } ⊎ {ℓ𝑖 𝑝𝑖 𝑟𝑖 ↦→ 𝑁𝑖 }𝑖
𝐷 = {ℓ𝑖 : 𝐴𝑖 ↠ 𝐵𝑖 }𝑖 Γ,µ⟨|𝐷 ⟩𝐹 ⊢ 𝑀 : 𝐴 @𝐷 + 𝐹 (1)

Γ, 𝑥 : ⟨|𝐷⟩𝐴 ⊢ 𝑁 : 𝐵 @ 𝐹 (2) [Γ, 𝑝𝑖 : 𝐴𝑖 , 𝑟𝑖 : 𝐵𝑖 → 𝐵 ⊢ 𝑁𝑖 : 𝐵 @ 𝐹 (3)]𝑖
Γ ⊢ handle 𝑀 with 𝐻 : 𝐵 @ 𝐹

By case analysis on the reduction.
Case E-Lift with𝑀 { 𝑀 ′. By IHs and reapplying T-Handler.
Case E-Ret. We have𝑀 = 𝑈 and

handle 𝑈 with 𝐻 { 𝑁 [(mod⟨|𝐷 ⟩ 𝑈)/𝑥] .
By (1), ⟨𝐷 |⟩𝐹 : 𝐹 → 𝐷 + 𝐹 , and T-Mod, we have

Γ ⊢ mod⟨|𝐷 ⟩ 𝑈 : 𝐴 @ 𝐹 .

Then by (2) and Lemma A.14.3 we have

Γ ⊢ 𝑁 [(mod⟨|𝐷 ⟩ 𝑈)/𝑥] : 𝐵 @ 𝐹 .

Case E-Op. We have𝑀 = E[do ℓ𝑗 𝑈], 0−free(ℓ𝑗 , E), ℓ𝑗 𝑝 𝑗 𝑟 𝑗 ↦→ 𝑁 𝑗 , and

handle 𝑀 with 𝐻 { 𝑁 𝑗 [𝑈 /𝑝, (_𝑦.handle E[𝑦] with 𝐻)/𝑟] .
Since 𝐷 is well-kinded, 𝐴 𝑗 and 𝐵 𝑗 are pure. By inversion on do ℓ𝑗 𝑈 we have

Γ,µ⟨|𝐷 ⟩𝐹 ⊢ 𝑈 : 𝐴 𝑗 @𝐷 + 𝐹 .
By 𝐴 𝑗 is pure and Lemma A.13, we have

Γ,µ⟨|𝐷 ⟩𝐹 ,µ⟨𝐿 |⟩𝐷+𝐹 ⊢ 𝑈 : 𝐴 𝑗 @ 𝐹

where 𝐿 = dom(𝐷). By context equivalence, we have

Γ ⊢ 𝑈 : 𝐴 𝑗 @ 𝐹 (4)
Observe that 𝐵 𝑗 being pure allows 𝑦 : 𝐵 𝑗 to be accessed in any context. By (1) and a
straightforward induction on E we have

Γ, 𝑦 : 𝐵 𝑗 ,µ⟨|𝐷 ⟩𝐹 ⊢ E[𝑦] : 𝐴 @𝐷 + 𝐹 .
Then by T-Handler and T-Abs we have

Γ ⊢ _𝑦.handle E[𝑦] with 𝐻 : 𝐵 𝑗 → 𝐵 @ 𝐹 (5).

2157

2158

2159

2160

2161

2162

2163

2164

2165

2166

2167

2168

2169

2170

2171

2172

2173

2174

2175

2176

2177

2178

2179

2180

2181

2182

2183

2184

2185

2186

2187

2188

2189

2190

2191

2192

2193

2194

2195

2196

2197

2198

2199

2200

2201

2202

2203

2204

2205

Modal Effect Types 45

Finally, by (3), (4), (5), and Lemma A.14.3 we have

Γ ⊢ 𝑁 𝑗 [𝑈 /𝑝, (_𝑦.handle E[𝑦] with 𝐻)/𝑟] : 𝐵 @ 𝐹 .

Case
T-HandleA

𝐻 = {return 𝑥 ↦→ 𝑁 } ⊎ {ℓ𝑖 𝑝𝑖 𝑟𝑖 ↦→ 𝑁𝑖 }𝑖
𝐿 = {ℓ𝑖 }𝑖 𝐸 = {ℓ𝑖 : 𝐴𝑖 ↠ 𝐵𝑖 }𝑖 Γ,µ[𝐷+𝐸]𝐹 ⊢ 𝑀 : 𝐴 @𝐷 + 𝐸 (1)

Γ, 𝑥 : [𝐷 + 𝐸]𝐴 ⊢ 𝑁 : 𝐵 @ 𝐹 (2) [Γ, 𝑝𝑖 : 𝐴𝑖 , 𝑟𝑖 : [𝐹] (𝐵𝑖 → 𝐵) ⊢ 𝑁𝑖 : 𝐵 @ 𝐹 (3)]𝑖
Γ ⊢ handleA 𝑀 with 𝐻 : 𝐵 @ 𝐹

By case analysis on the reduction.
Case E-Lift with𝑀 { 𝑀 ′. By IHs and reapplying T-HandleA.
Case E-RetA. We have𝑀 = 𝑈 and

handle 𝑀 with 𝐻 { 𝑁 [(mod[𝐷+𝐸]𝑈)/𝑥] .
By (1), [𝐷 + 𝐹]𝐹 : 𝐷 + 𝐸 → 𝐹 , and T-Mod, we have

Γ ⊢ mod[𝐷+𝐸] 𝑈 : [𝐷 + 𝐸]𝐴 @ 𝐹 .

Then by (2) and Lemma A.14.3 we have

Γ ⊢ 𝑁 [(mod[𝐷+𝐸] 𝑈)/𝑥] : 𝐵 @ 𝐹 .

Case E-OpA. We have𝑀 = E[do ℓ𝑗 𝑈], 0−free(ℓ𝑗 , E), ℓ𝑗 𝑝 𝑗 𝑟 𝑗 ↦→ 𝑁 𝑗 , and

handle
A 𝑀 with 𝐻 { 𝑁 𝑗 [𝑈 /𝑝, (mod[𝐸] (_𝑦.handleA E[𝑦] with 𝐻))/𝑟] .

Since 𝐷 is well-kinded, 𝐴 𝑗 and 𝐵 𝑗 are pure. By inversion on do ℓ𝑗 𝑈 , we have

Γ,µ[𝐷+𝐸]𝐹 ⊢ 𝑈 : 𝐴 𝑗 @𝐷 + 𝐸.
By 𝐴 𝑗 is pure and Lemma A.13, we have

Γ ⊢ 𝑈 : 𝐴 𝑗 @ 𝐹 (4).
Observe that 𝐵 𝑗 being pure allows 𝑦 to be accessed in any context. By (1) and a
straightforward induction on E we have

Γ, 𝑦 : 𝐵 𝑗 ,µ[𝐷+𝐸]𝐹 ⊢ E[𝑦] : 𝐴 @𝐷 + 𝐸.
By [𝐹]𝐹 ◦ [𝐷 + 𝐸]𝐹 = [𝐷 + 𝐸]𝐹 and context equivalence, we have

Γ, 𝑦 : 𝐵 𝑗 ,µ[𝐹]𝐹 ,µ[𝐷+𝐸]𝐹 ⊢ E[𝑦] : 𝐴 @𝐷 + 𝐸.
Since 𝐵 𝑗 is pure, we can swap 𝑦 : 𝐵 𝑗 with µ[𝐹]𝐹 and derive

Γ,µ[𝐹]𝐹 , 𝑦 : 𝐵 𝑗 ,µ[𝐷+𝐸]𝐹 ⊢ E[𝑦] : 𝐴 @𝐷 + 𝐸.
By T-HandlerA, we have

Γ,µ[𝐹]𝐹 , 𝑦 : 𝐵 𝑗 ⊢ handleA E[𝑦] with 𝐻 : 𝐵 @𝐸.

Then by T-Abs and T-Mod we have

Γ ⊢ mod[𝐹] (_𝑦.handleA E[𝑦] with 𝐻) : [𝐹] (𝐵 𝑗 → 𝐵) @ 𝐹 (5).
Finally, by (3), (4), (5), and Lemma A.14.3 we have

Γ ⊢ 𝑁 𝑗 [𝑈 /𝑝, (mod[𝐹] (_𝑦.handle E[𝑦] with 𝐻))/𝑟] : 𝐵 @ 𝐹 .

Case Shallow handlers. Similar to the cases of deep handlers.

2206

2207

2208

2209

2210

2211

2212

2213

2214

2215

2216

2217

2218

2219

2220

2221

2222

2223

2224

2225

2226

2227

2228

2229

2230

2231

2232

2233

2234

2235

2236

2237

2238

2239

2240

2241

2242

2243

2244

2245

2246

2247

2248

2249

2250

2251

2252

2253

2254

46 Wenhao Tang, Leo White, Stephen Dolan, Daniel Hillerström, Sam Lindley, and Anton Lorenzen

Case Data Types. Nothing more special than the cases we have already shown. Introduction
rules follows from IHs and reapplying the same typing rules. Elimination rules require to
additionally consider their corresponding reduction rules.

□

A.8 Proof of Encoding

We prove the encoding from F1eff into Met in Section 5.

Definition 5.1 (Well-scoped). A typing judgement Γ1, 𝑥 :Y 𝐴, Γ2 ⊢ 𝑀 : 𝐵 !𝐸 is well-scoped for 𝑥 if
either 𝑥 ∉ fv(𝑀) or qΛ

𝐹
∉ Γ2 or 𝐴 = ∀.𝐴′. A typing judgement Γ ⊢ 𝑀 : 𝐴 !𝐸 is well-scoped if it is

well-scoped for all 𝑥 ∈ Γ.

Lemma A.15 (Well-scopedness of Derivation Trees). If the judgement at the bottom of a

derivation tree is well-scoped, then every judgement in the derivation tree is well-scoped.

Proof. Assume the contrary. Let Γ1, 𝑥 :Y 𝐴, Γ2 ⊢ 𝑀 : 𝐵 !𝐸 be the top-most judgement in the
derivation tree with 𝑥 ∈ fv(𝑀) and qΛ

𝐹
∈ Γ2 and 𝐴 ≠ ∀.𝐴′. By case analysis on whether qΛ

𝐹
∈ Γ2

was introduced in the derivation tree.
Case not introduced in the derivation tree: Then the judgement at the bottom of the derivation

tree must contain both the marker and 𝑥 and is not well-scoped for 𝑥 . Contradiction.
Case introduced in the derivation tree: since we chose the top-most judgement, the judgement

must have introduced the marker by an application of the R-EAbs rule. Let Y′ be the effect
variable introduced at this judgement. Then Y ≠ Y′ by the side-condition of the R-EAbs rule.
We have that Y is the ambient effect at the R-Var rule where 𝑥 is used as a free variable,
since we chose the top-most judgement. By the side-condition of the R-Var rule, then Y = Y′
or 𝐴 = ∀.𝐴′. Contradiction.

□

In the special case we consider there are no absent signatures. This implies that submoding on
effects can only add labels to the end. Furthermore, all labels are drawn from a global environment
and thus have the same signatures. This allows us to freely permute them in the effect row. In this
case, we can strengthen the statement to the following:

Corollary A.16 (Transformation from Index). If ⟨𝐿1 |𝐷1⟩(𝐹) ⩽ ⟨𝐿2 |𝐷2⟩(𝐹) and 𝐿1 ⩽ 𝐹 and

𝐿2 ⩽ 𝐹 and 𝐿1 ⊲⊳ 𝐷1 = 𝐿2 ⊲⊳ 𝐷2, then ⟨𝐿1 |𝐷1⟩𝐹 ⇒ ⟨𝐿2 |𝐷2⟩𝐹 .

Proof. We show that for all 𝐹 ′ with 𝐹 ⩽ 𝐹 ′, we have ⟨𝐿1 |𝐷1⟩(𝐹 ′) ⩽ ⟨𝐿2 |𝐷2⟩(𝐹 ′). Since all
signatures are present in 𝐹 , we have that 𝐹 ′ = 𝐹 + 𝑙 for some collection of labels with signatures 𝑙 .
Then we use that 𝐿1 ⩽ 𝐹 :

⟨𝐿1 |𝐷1⟩(𝐹 ′) = ⟨𝐿1 |𝐷1⟩(𝐹 + 𝑙)

= 𝐷1 + ((𝐹 + 𝑙) − 𝐿1)

= 𝐷1 + ((𝐹 − 𝐿1) + 𝑙)

= ⟨𝐿1 |𝐷1⟩(𝐹) + 𝑙
and the same for ⟨𝐿2 |𝐷2⟩(𝐹 ′). Since ⟨𝐿1 |𝐷1⟩(𝐹) ⩽ ⟨𝐿2 |𝐷2⟩(𝐹) and we can freely permute labels,
we have that (⟨𝐿1 |𝐷1⟩(𝐹) + 𝑙) ⩽ (⟨𝐿2 |𝐷2⟩(𝐹) + 𝑙). □

The condition that 𝐿1 ⊲⊳ 𝐷1 = 𝐿2 ⊲⊳ 𝐷2 can be checked easily, where for the composition of
modalities we use the fact that for ⟨𝐿 |𝐷⟩ = ⟨𝐿1 |𝐷1⟩ ◦ ⟨𝐿2 |𝐷2⟩, we have 𝐿 ⊲⊳ 𝐷 = (𝐿1, 𝐿2) ⊲⊳ (𝐷1, 𝐷2).

2255

2256

2257

2258

2259

2260

2261

2262

2263

2264

2265

2266

2267

2268

2269

2270

2271

2272

2273

2274

2275

2276

2277

2278

2279

2280

2281

2282

2283

2284

2285

2286

2287

2288

2289

2290

2291

2292

2293

2294

2295

2296

2297

2298

2299

2300

2301

2302

2303

Modal Effect Types 47

Lemma A.17 (First Modality Transformation). For all 𝐸1, 𝐸2, 𝐸3:
(⟨𝐸1 − 𝐸2 |𝐸2 − 𝐸1⟩ ◦ ⟨𝐸2 − 𝐸3 |𝐸3 − 𝐸2⟩)𝐸1 ⇔ ⟨𝐸1 − 𝐸3 |𝐸3 − 𝐸1⟩𝐸1

Proof. We can use Corollary A.16 since (𝐸1 − 𝐸3) ⩽ 𝐸1 and (𝐸1 − 𝐸2) + 𝐿 ⩽ 𝐸1 where (𝐿, 𝐷) =
(𝐸2 − 𝐸3) ⊲⊳ (𝐸2 − 𝐸1). We have:

⟨𝐸1 − 𝐸3 |𝐸3 − 𝐸1⟩(𝐸1) = (𝐸3 − 𝐸1) + (𝐸1 − (𝐸1 − 𝐸3))
= (𝐸3 − 𝐸1) + (𝐸1 ∩ 𝐸3)
= 𝐸3

and using this calculation:
⟨𝐸1 − 𝐸2 |𝐸2 − 𝐸1⟩ ◦ ⟨𝐸2 − 𝐸3 |𝐸3 − 𝐸2⟩(𝐸1) = ⟨𝐸2 − 𝐸3 |𝐸3 − 𝐸2⟩(⟨𝐸1 − 𝐸2 |𝐸2 − 𝐸1⟩(𝐸1))

= ⟨𝐸2 − 𝐸3 |𝐸3 − 𝐸2⟩(𝐸2)
= 𝐸3

□

Lemma A.18 (Second Modality Transformation). For all 𝐿, 𝐸, 𝐹 :
⟨𝐿 + (𝐸 − 𝐹) |𝐹 − 𝐸⟩𝐿+𝐸 ⇒ ⟨(𝐿 + 𝐸) − 𝐹 |𝐹 − (𝐿 + 𝐸)⟩𝐿+𝐸

Proof. We can use Corollary A.16 since (𝐿 + 𝐸) − 𝐹 ⩽ 𝐿 + 𝐸 and 𝐿 + (𝐸 − 𝐹) ⩽ 𝐿 + 𝐸. We have:
⟨(𝐿 + 𝐸) − 𝐹 |𝐹 − (𝐿 + 𝐸)⟩(𝐿 + 𝐸) = (𝐹 − (𝐿 + 𝐸)) + ((𝐿 + 𝐸) − (𝐿 + 𝐸 − 𝐹))

= (𝐹 − (𝐿 + 𝐸)) + ((𝐿 + 𝐸) ∩ 𝐹)
= 𝐹

and:
⟨𝐿 + (𝐸 − 𝐹) |𝐹 − 𝐸⟩(𝐿 + 𝐸) = (𝐹 − 𝐸) + ((𝐿 + 𝐸) − (𝐿 + (𝐸 − 𝐹)))

= (𝐹 − 𝐸) + (𝐸 − (𝐸 − 𝐹))
= (𝐹 − 𝐸) + (𝐸 ∩ 𝐹)
= 𝐹

□

Lemma A.19 (Third Modality Transformation). For all ℓ𝑖 , 𝐸, 𝐹 :
(⟨|ℓ𝑖⟩ ◦ ⟨ℓ𝑖 , 𝐸 − 𝐹 |𝐹 − ℓ𝑖 , 𝐸⟩)𝐸 ⇒ ⟨𝐸 − 𝐹 |𝐹 − 𝐸⟩𝐸

Proof. We can use Corollary A.16 since (⟨|ℓ𝑖⟩ ◦ ⟨ℓ𝑖 , 𝐸 − 𝐹 |𝐹 − ℓ𝑖 , 𝐸⟩) = ⟨ℓ𝑖 , 𝐸 − 𝐹 |𝐹 − ℓ𝑖 , 𝐸⟩(ℓ𝑖 , 𝐸)
and ℓ𝑖 , 𝐸 − 𝐹 ⩽ ℓ𝑖 , 𝐸 and 𝐸 − 𝐹 ⩽ 𝐸. We have ⟨𝐸 − 𝐹 |𝐹 − 𝐸⟩(𝐸) = 𝐹 and:

⟨|ℓ𝑖⟩ ◦ ⟨ℓ𝑖 , 𝐸 − 𝐹 |𝐹 − ℓ𝑖 , 𝐸⟩(𝐸) = ⟨ℓ𝑖 , 𝐸 − 𝐹 |𝐹 − ℓ𝑖 , 𝐸⟩(⟨|ℓ𝑖⟩(𝐸))
= ⟨ℓ𝑖 , 𝐸 − 𝐹 |𝐹 − ℓ𝑖 , 𝐸⟩(ℓ𝑖 , 𝐸)
= 𝐹

□

Lemma A.20 (Translating Instantiated Types). For all F1eff types 𝐴: J𝐴K𝐸 = J𝐴[𝐸′/]K𝐸,𝐸′ .

Proof. By induction on the type 𝐴.
Case 𝐴 = Int. Trivial.

2304

2305

2306

2307

2308

2309

2310

2311

2312

2313

2314

2315

2316

2317

2318

2319

2320

2321

2322

2323

2324

2325

2326

2327

2328

2329

2330

2331

2332

2333

2334

2335

2336

2337

2338

2339

2340

2341

2342

2343

2344

2345

2346

2347

2348

2349

2350

2351

2352

48 Wenhao Tang, Leo White, Stephen Dolan, Daniel Hillerström, Sam Lindley, and Anton Lorenzen

Case 𝐴 = ∀.𝐴′. Trivial.
Case 𝐴 = 𝐴′ →𝐹 𝐵′. Then:

J𝐴K𝐸 = ⟨𝐸 − 𝐹 |𝐹 − 𝐸⟩(J𝐴′K𝐹 → J𝐵′K𝐹)
J𝐴[𝐸′/]K𝐸,𝐸′ = ⟨𝐸, 𝐸′ − 𝐹, 𝐸′ |𝐹, 𝐸′ − 𝐸, 𝐸′⟩(J𝐴′ [𝐸′/]K𝐹,𝐸′ → J𝐵′ [𝐸′/]K𝐹,𝐸′)

By the induction hypothesis we have:

J𝐴′K𝐹 = J𝐴′ [𝐸′/]K𝐹,𝐸′
J𝐵′K𝐹 = J𝐵′ [𝐸′/]K𝐹,𝐸′

Since we can freely permute labels:

⟨𝐸, 𝐸′ − 𝐹, 𝐸′ |𝐹, 𝐸′ − 𝐸, 𝐸′⟩ = ⟨𝐸′, 𝐸 − 𝐸′, 𝐹 |𝐸′, 𝐹 − 𝐸′, 𝐸⟩
= ⟨𝐸 − 𝐹 |𝐹 − 𝐸⟩

□

Lemma 5.2 (Type preservation of encoding). If Γ ⊢ 𝑀 : 𝐴 ! {𝐸 |Y} is well-scoped, then 𝑀 :
𝐴 !𝐸 d 𝑀 ′

and JΓK𝐸 ⊢ 𝑀 ′ : J𝐴K𝐸 @𝐸.

Proof. By induction on the typing derivation Γ ⊢ 𝑀 : 𝐴 !𝐸. We prove this for each rule of the
translation. As a visual aid, we repeat each rule where we replace the translation premises by the
Met judgement implied by the induction hypothesis and the translation in the conclusion by the
Met judgement we need to prove.

R-Var

JΓ1, 𝑥 : 𝐴, Γ2K𝐸 ⊢ rebox(𝑥 ;𝐴;𝐸) : J𝐴K𝐸 @𝐸

We use the rebox(𝑥 ;𝐴;𝐸) function defined as follows:

rebox(𝑥 ;𝐴;𝐸) =

mod⟨ | ⟩ 𝑥, if 𝐴 = Int

mod⟨𝐸−𝐹 |𝐹−𝐸⟩ 𝑥, if 𝐴 = 𝐴′ →𝐹 𝐵′

mod[] 𝑥, if 𝐴 = ∀.𝐴′

This function is exactly equivalent to mod` 𝑥 where ` = topmod(J𝐴K𝐸) We use the T-Mod rule
to introduce the box. By cases on the type 𝐴:
Case 𝐴 = Int. We can use the T-Var rule since · ⊢ Int : Abs.
Case 𝐴 = ∀.𝐴′. Then J𝐴K𝐹 = []J𝐴′K· for all 𝐹 . By rule MT-Abs, the pure modality transforms into

any other modality and so we can use the T-Var rule.
Case 𝐴 = 𝐴′ →𝐹 𝐵′. Since the F1eff judgement is well-scoped, we have that locks(Γ2) is the

composition of transition modalities. Furthermore, locks(Γ′) ◦ ⟨𝐸 − 𝐹 |𝐹 − 𝐸⟩ : 𝐹 → 𝐹 ′ for
the context 𝐹 ′ where 𝑥 as introduced and 𝑥 is annotated by the modality ⟨𝐹 ′ − 𝐹 |𝐹 − 𝐹 ′⟩𝐹 ′ :
𝐹 → 𝐹 ′. By Lemma A.17, we can use the T-Var rule.

R-App
JΓK𝐸 ⊢ 𝑀 ′ : J𝐴 →𝐸 𝐵K𝐸 @𝐸

JΓK𝐸 ⊢ 𝑁 ′ : J𝐴K𝐸 @𝐸 𝑥 fresh

JΓK𝐸 ⊢ let mod⟨ | ⟩ 𝑥 = 𝑀 ′
in 𝑥 𝑁 ′ : J𝐵K𝐸 @𝐸

We have J𝐴 →𝐸 𝐵K𝐸 = ⟨|⟩(J𝐴K𝐸 → J𝐵K𝐸). The claim follows by the T-Letmod and T-App rules.

2353

2354

2355

2356

2357

2358

2359

2360

2361

2362

2363

2364

2365

2366

2367

2368

2369

2370

2371

2372

2373

2374

2375

2376

2377

2378

2379

2380

2381

2382

2383

2384

2385

2386

2387

2388

2389

2390

2391

2392

2393

2394

2395

2396

2397

2398

2399

2400

2401

Modal Effect Types 49

R-Abs
JΓ, q𝐸, 𝑥 : 𝐴K𝐹 ⊢ 𝑀 ′ : J𝐵K𝐹 @ 𝐹 a ≔ ⟨𝐸 − 𝐹 |𝐹 − 𝐸⟩ ` ≔ topmod(J𝐴K𝐹)

JΓK𝐸 ⊢ moda (_𝑥J𝐴K𝐹 .let mod` 𝑥 = 𝑥 in 𝑀 ′) : J𝐴 →𝐹 𝐵K𝐸 @𝐸

We have JΓ, q
𝐸
, 𝑥 : 𝐴K𝐹 = JΓK𝐸,µ⟨𝐸−𝐹 |𝐹−𝐸⟩, 𝑥 :`𝐹 𝐴′ where `𝐴′ = J𝐴K𝐹 . Further J𝐴 →𝐹 𝐵K𝐸 =

⟨𝐸 − 𝐹 |𝐹 − 𝐸⟩(J𝐴K𝐹 → J𝐵K𝐹). The claim follows from the T-Letmod, T-Abs and T-Mod rules.

R-EAbs
JΓ, qΛ𝐸 K· ⊢ 𝑉 ′ : J𝐴K· @ ·

JΓK𝐸 ⊢ mod[] 𝑉
′ : J∀.𝐴K𝐸 @𝐸

We have JΓ, qΛ
𝐸
K· = JΓK𝐸,µ[] . Further, J∀.𝐴K𝐸 = []J𝐴K· . The claim follows from the T-Mod rule.

R-EApp
JΓK𝐸 ⊢ 𝑀 ′ : J∀.𝐴K𝐸 @𝐸 𝑥 fresh

JΓK𝐸 ⊢ let mod[] 𝑥 = 𝑀 ′
in 𝑥 : J𝐴[𝐸/]K𝐸 @𝐸

We have J∀.𝐴K𝐸 = []J𝐴K· . By Lemma A.20, J𝐴K· = J𝐴[𝐸/]K𝐸 . The claim follows by the T-Letmod
rule.

R-Do
ℓ : 𝐴 ↠ 𝐵 ∈ Σ

JΓKℓ,𝐸 ⊢ 𝑀 ′ : J𝐴Kℓ,𝐸 @ ℓ, 𝐸

JΓKℓ,𝐸 ⊢ do ℓ 𝑀 ′ : J𝐵Kℓ,𝐸 @ ℓ, 𝐸

Because we only allow pure values in the effect signatures of F1eff , we have that J𝐴Kℓ,𝐸 = J𝐴K·
and J𝐵Kℓ,𝐸 = J𝐵K· , where ℓ : J𝐴K· ↠ J𝐵K· in Met. The claim follows directly by the T-Do rule.

R-Mask
JΓ, q𝐿+𝐸K𝐸 ⊢ 𝑀 ′ : J𝐴K𝐸 @𝐸

`1 ≔ topmod(J𝐴K𝐸) `2 ≔ topmod(J𝐴K𝐿+𝐸)
JΓK𝐿+𝐸 ⊢ let mod⟨𝐿 |⟩;`1 𝑥 = mask𝐿 𝑀

′
in mod`2 𝑥 : J𝐴K𝐿+𝐸 @𝐿 + 𝐸

We have JΓ, q
𝐿+𝐸K𝐸 = JΓK𝐿+𝐸,µ⟨ (𝐿+𝐸)−𝐸 |𝐸−(𝐿+𝐸) ⟩ . By permuting labels, we have

⟨(𝐿 + 𝐸) − 𝐸 |𝐸 − (𝐿 + 𝐸)⟩ = ⟨𝐿 |⟩. The goal follows by the T-Letmod, T-Mask and T-Mod rules
if we can show that 𝑥 can be used under the box. This is clear for integers, since they are pure
and otherwise we need to show that (⟨𝐿 |⟩ ◦ `1)𝐿+𝐸 ⇒ (`2)𝐿+𝐸 . For 𝐴 = ∀.𝐴′ this is clear since
`1 = `2 = [] and ⟨𝐿 |⟩ ◦ [] = []. For functions, this follows from Lemma A.18.

R-Handler
JΓ, q𝐸Kℓ𝑖 ,𝐸 ⊢ 𝑀 ′ : J𝐴Kℓ𝑖 ,𝐸 @ ℓ𝑖 , 𝐸

JΓ, 𝑥 : 𝐴K𝐸 ⊢ 𝑁 ′ : J𝐵K𝐸 @𝐸 [JΓ, 𝑝𝑖 : 𝐴𝑖 , 𝑟𝑖 : 𝐵𝑖 →𝐸 𝐵K𝐸 ⊢ 𝑁 ′
𝑖 : J𝐵K𝐸 @𝐸]𝑖

` ≔ topmod(J𝐴Kℓ𝑖 ,𝐸) `′ ≔ topmod(J𝐴K𝐸)
𝑁 ′′ ≔ let mod⟨| ℓ𝑖 ⟩;` 𝑥 = 𝑥 in let`′ mod⟨ | ⟩ 𝑥 = mod⟨ | ⟩ 𝑥 in 𝑁 ′

[`𝑖 ≔ topmod(J𝐴𝑖K·) 𝑁 ′′
𝑖 ≔ let mod`𝑖 𝑝𝑖 = 𝑝𝑖 in 𝑁

′
𝑖]𝑖

𝐻 = {return 𝑥 ↦→ 𝑁 } ⊎ {ℓ𝑖 𝑝𝑖 𝑟𝑖 ↦→ 𝑁𝑖 }𝑖 𝐻 ′ ≔ {return 𝑥 ↦→ 𝑁 ′′} ⊎ {ℓ𝑖 𝑝𝑖 𝑟𝑖 ↦→ 𝑁 ′
𝑖 }𝑖

JΓK𝐸 ⊢ handle 𝑀 ′
with 𝐻 ′ : J𝐵K𝐸 @𝐸

2402

2403

2404

2405

2406

2407

2408

2409

2410

2411

2412

2413

2414

2415

2416

2417

2418

2419

2420

2421

2422

2423

2424

2425

2426

2427

2428

2429

2430

2431

2432

2433

2434

2435

2436

2437

2438

2439

2440

2441

2442

2443

2444

2445

2446

2447

2448

2449

2450

50 Wenhao Tang, Leo White, Stephen Dolan, Daniel Hillerström, Sam Lindley, and Anton Lorenzen

We have JΓ, q
𝐸
Kℓ𝑖 ,𝐸 = JΓK𝐸,µ⟨𝐸−ℓ𝑖 ,𝐸 | ℓ𝑖 ,𝐸−𝐸⟩ . By permuting labels, we have ⟨𝐸 − ℓ𝑖 , 𝐸 |ℓ𝑖 , 𝐸 − 𝐸⟩ =

⟨|ℓ𝑖⟩. In the operation clauses, we have that J𝐵𝑖 →𝐸 𝐵K𝐸 = ⟨|⟩(J𝐵𝑖K𝐸 → J𝐵K𝐸). Because the argument
and return of effects are pure, we have that J𝐵𝑖K𝐸 = J𝐵𝑖K· and J𝐴𝑖K𝐸 = J𝐴K· . We need to unbox the
argument 𝑝𝑖 though. In the return clause,Met gives us 𝑥 : ⟨|ℓ𝑖⟩J𝐴Kℓ𝑖 ,𝐸 , but we need 𝑥 : J𝐴K𝐸 . We
achieve this by unboxing 𝑥 fully and then re-boxing it with the modality `′. This is possible for
integers because they are pure, for ∀s because of the MT-Abs rule and for functions due to the
modality transformation in Lemma A.19.

□

B Full Specification of Metel

In this section, we give a full specification of Metel including the declarative type system, type
inference algorithm, meta theory of type inference, and elaboration to the core calculus. The proofs
are given in Appendix C.
We focus on formalising the core part of the type inference of Metel. We assume standard

language features like algebraic data types and pattern matching when writing examples; they are
largely orthogonal to our main contribution of type inference.

B.1 Syntax

The syntax of Metel is shown in Figure 12. The new parts compared toMet are highlighted.

Types 𝐴, 𝐵 ::= 𝛼 | 𝐴 → 𝐵 | `𝐴
Intuitionistic types 𝑆,𝑇 ::= 𝛼 | 𝑆 → 𝑇

Effects 𝐸 ::= · | Y | 𝐷, 𝐸 | 𝐸\𝐿
Masks and Extensions 𝐿, 𝐷 ::= · | ℓ, 𝐿
Modalities ` ::= [𝐸] | ⟨𝐿 |𝐷⟩
Type schemes 𝜎 ::= 𝐴 | ∀𝛼𝐾 .𝐴
Kinds 𝐾 ::= Abs | Any | Eff
Restrictions 𝑅 ::= i | m
Contexts Γ ::= · | Γ, 𝛼 : 𝐾 | Γ, 𝑥 :` 𝜎 | Γ,µ`
Type contexts Δ ::= · | Δ, 𝛼 : 𝐾
Label contexts Σ ::= · | Σ, ℓ : 𝐴 ↠ 𝐵

Modality decorations 𝜙 ::= · | `
Terms 𝑀, 𝑁 ::= 𝑥 | ⌈𝑥⌉ | _𝑥 .𝑀 | _𝑥𝐴 .𝑀 | 𝑀 𝑁 | mod` 𝑉

| leta 𝜙 𝑥 = 𝑀 in 𝑁 | let 𝑥𝜎 = 𝑀 in 𝑁

| do ℓ 𝑀 | mask𝐿𝑀 | handle 𝑀 with 𝐻

Values 𝑉 ,𝑊 ::= 𝑥 | ⌈𝑥⌉ | _𝑥.𝑀 | _𝑥𝐴 .𝑀 | mod` 𝑉

Handlers 𝐻 ::= {return 𝑥 ↦→ 𝑀} | {ℓ 𝑝 𝑟 ↦→ 𝑀} ⊎ 𝐻

Fig. 12. Syntax of Metel.

Following FreezeML [15], we always fully unbox variables unless they are explicitly frozen by
⌈𝑥⌉. Restrictions distinguish between intuitionistic types i, which cannot contain any modalities,
and modal types, which can contain modalities. Following FreezeML, though rigid type variables
𝛼 could technically be instantiated to modal types, we allow intuitionistic types to contain them
since they are rigid and cannot be unified with other types during type inference. As in ML, we
generalise type variables for let-bindings. We combine normal let-binding and modality elimination
into one syntax leta 𝜙 𝑥 = 𝑀 in 𝑁 . When 𝜙 = ·, it is a normal let-binding.

2451

2452

2453

2454

2455

2456

2457

2458

2459

2460

2461

2462

2463

2464

2465

2466

2467

2468

2469

2470

2471

2472

2473

2474

2475

2476

2477

2478

2479

2480

2481

2482

2483

2484

2485

2486

2487

2488

2489

2490

2491

2492

2493

2494

2495

2496

2497

2498

2499

Modal Effect Types 51

Different from the core calculus, we keep modalities ` in context. We will show in Appendix B.6
that this change does not break soundness and we can always elaborate well-typed closed terms in
Metel to well-typed closed terms in Mete.
We restrict extensions and effects to only contain present labels whose signatures are given by

a global context Σ for simplicity. We do not expect any specific challenges of generalising them
with signatures. Notice that we can still reuse all previous definitions of modes and modalities of
Met. The only differences are that labels with the same name always have the same signature and
absent labels are not allowed to appear explicitly.
For simplicity of type inference, we do not allow negative effects of form 𝐸\𝐿 to appear in the

surface syntax. We write ⊢ 𝑀 pos if all type and modality annotations in 𝑀 do not contain 𝐸\𝐿.
That is, all effect types should have form either 𝐷 or 𝐷, Y. It still allows annotations in𝑀 to contain
rigid type and effect variables. This is an acceptable restriction in practice since we rarely need
to use effect variables and masking at the same time. And even we do need, we can always just
refactor effect types to avoid negative effects to appear in type annotations.

We write ⊢ 𝐴 pos if type 𝐴 does not contain 𝐸\𝐿, and ⊢ Γ pos if all types 𝐴 of variable bindings
satisfy ⊢ 𝐴 pos. Note that ⊢ Γ pos still allows the modalities in 𝑥 :` _ and µ` to contain effect types
of any form including 𝐸\𝐿.

B.2 Statements in Context and Syntax-Directed Typing Rules

We formalise the syntax-directed type system and type inference algorithm following the approach
of type inference in context [20]. We first define statements.

Statements 𝐽 ::= 𝐽 ∧ 𝐽 ′ | 𝜎 : (𝐾, 𝑅) | 𝐴 ≡ 𝐵 | 𝜎 ⪯𝑅 𝐴 | 𝑀 ok | 𝜎 ⪯gen 𝜎
′

| (`, 𝜎) ⇒ a @𝐸 | (𝑀 ;Δ;𝐴) ⇕† 𝜎 | (𝑀 ;a ;𝜙 ;Δ;𝐴) ⇕ (b, 𝜎)
| (𝑀 ;Δ;𝐴) ⇓ 𝐵 | 𝑀 : 𝐴 @𝐸

For each statement, we define the judgement Γ ⊢ 𝐽 which means the statement 𝐽 holds in the
context Γ. All these judgements require implicit well-formedness conditions for the statements and
contexts. That is, all free type and term variables in statements should appear in the context Γ, and
all effect labels should appear in the global label context Σ. Contexts are ordered and types can
only refer to variables bound on the left of them in contexts.

The kinding 𝜎 : (𝐾, 𝑅), type equivalence 𝐴 ≡ 𝐵, instantiation 𝜎 ⪯𝑅 𝐴 and term well-formedness
𝑀 ok are defined in Figure 13. The conjunction of statements is standard and defined as follows.

Γ ⊢ 𝐽 Γ ⊢ 𝐽 ′

Γ ⊢ 𝐽 ∧ 𝐽 ′
Γ ⊢ 𝐽 ∧ 𝐽 ′

Γ ⊢ 𝐽
Γ ⊢ 𝐽 ∧ 𝐽 ′

Γ ⊢ 𝐽 ′

Some auxiliary statements and auxiliary functions for typing are defined in Figure 14. The
judgement Γ ⊢ (`, 𝜎) ⇒ a @𝐸 checks the accessibility condition for variables. The judgements
Γ ⊢ (𝑀 ;Δ;𝐴) ⇕† 𝜎 deals with value restriction for T-LetAnno. The judgements Γ ⊢ (𝑀 ;a ;𝜙 ;Δ;𝐴)
deals with value restriction for T-Letmod, as well as case analyses on the shape of 𝜙 .
The syntax-directed typing judgement 𝑀 : 𝐴 @𝐸 is defined in Figure 15. The typing rules

different from Figure 3 are highlighted. The T-Freeze rule is the relatively standard variable rule.
The T-Var additionally eliminates the modality for 𝑥 that is retrieved by split(Δ, 𝐴) defined in
Figure 14. It keeps splitting out the top-level modalities of 𝐴 until reaching a non-modal type or the
modality relies on rigid variables in Δ, which are quantified. The T-Letmod generalise𝑀 when𝑀
is a value; otherwise, it instantiate the principal type of𝑀 with intuitionistic types. The T-Handler
also instantiate the principal types of𝑀 and 𝑁 with intuitionistic types. This avoids solving global
non-trivial constraints on flexible modal or effect variables in type inference.

2500

2501

2502

2503

2504

2505

2506

2507

2508

2509

2510

2511

2512

2513

2514

2515

2516

2517

2518

2519

2520

2521

2522

2523

2524

2525

2526

2527

2528

2529

2530

2531

2532

2533

2534

2535

2536

2537

2538

2539

2540

2541

2542

2543

2544

2545

2546

2547

2548

52 Wenhao Tang, Leo White, Stephen Dolan, Daniel Hillerström, Sam Lindley, and Anton Lorenzen

Γ ⊢ 𝜎 : (𝐾, 𝑅)

Γ ∋ 𝛼 : 𝐾
Γ ⊢ 𝛼 : (𝐾, res(𝐾))

Γ ⊢ 𝜎 : (𝐾, i)
Γ ⊢ 𝜎 : (𝐾,m)

Γ ⊢ 𝜎 : (Abs, 𝑅)
Γ ⊢ 𝜎 : (Any, 𝑅)

Γ ⊢ 𝐴 : (𝐾,m)
Γ ⊢ ⟨𝐿 |𝐷⟩𝐴 : (𝐾,m)

Γ ⊢ 𝐸 : (Eff,m) Γ ⊢ 𝐴 : (Any,m)
Γ ⊢ [𝐸]𝐴 : (Abs,m)

Γ ⊢ 𝐴 : (Any, 𝑅) Γ ⊢ 𝐵 : (Any, 𝑅)
Γ ⊢ 𝐴 → 𝐵 : (Any, 𝑅)

Γ, 𝛼 : 𝐾 ⊢ 𝜎 : (𝐾 ′, 𝑅)
Γ ⊢ ∀𝛼𝐾 .𝜎 : (𝐾 ′, 𝑅) Γ ⊢ · : (Eff,m)

Γ ⊢ 𝐸 : (Eff,m)
Γ ⊢ ℓ, 𝐸 : (Eff,m)

Γ ⊢ 𝜎 ⪯𝑅 𝐴

Γ ⊢ 𝐴 ⪯𝑅 𝐴
Γ ⊢ 𝐵 : (𝐾, 𝑅) Γ ⊢ 𝜎 [𝐵/𝛼] ⪯𝑅 𝐴

Γ ⊢ ∀𝛼𝐾 .𝜎 ⪯𝑅 𝐴

Γ ⊢ 𝜎 ⪯gen 𝜎
′

Γ ⊢ 𝜎 ≡ 𝜎 ′

Γ ⊢ 𝜎 ⪯gen 𝜎
′

Γ ⊢ 𝐵 : (𝐾,m) Γ ⊢ 𝜎 [𝐵/𝛼] ⪯gen 𝜎
′

Γ ⊢ ∀𝛼𝐾 .𝜎 ⪯gen 𝜎
′

Γ, 𝛼 : 𝐾 ⊢ 𝜎 ⪯gen 𝜎
′

Γ ⊢ 𝜎 ⪯gen ∀𝛼𝐾 .𝜎 ′

Γ ⊢ 𝑀 ok

Γ ⊢ 𝑀 ok Γ ⊢ 𝑁 ok

Γ ⊢ leta 𝜙 𝑥 = 𝑀 in 𝑁 ok

Γ ⊢ ∀Δ.𝐴 : (Any,m) Γ,Δ ⊢ 𝑀 ok Γ ⊢ 𝑁 ok

Γ ⊢ let 𝑥∀Δ.𝐴 = 𝑀 in 𝑁 ok

Γ ⊢ 𝑥 ok Γ ⊢ ⌈𝑥⌉ ok
Γ ⊢ 𝐴 : (Any,m) Γ ⊢ 𝑀 ok

Γ ⊢ _𝑥𝐴 .𝑀 ok

Γ ⊢ 𝑀 ok

Γ ⊢ _𝑥.𝑀 ok

Γ ⊢ 𝑀 ok Γ ⊢ 𝑁 ok

Γ ⊢ 𝑀 𝑁 ok

Γ ⊢ 𝑀 ok

Γ ⊢ do ℓ 𝑀 ok

Γ ⊢ 𝑀 ok

Γ ⊢ mask𝐿𝑀 ok

𝐻 = {return 𝑥 ↦→ 𝑁 } ⊎ {ℓ𝑖 𝑝𝑖 𝑟𝑖 ↦→ 𝑁𝑖 }𝑖 𝐷 = ℓ𝑖
Γ ⊢ 𝑀 ok Γ ⊢ 𝑁 ok [Γ ⊢ 𝑁𝑖 ok]𝑖

Γ ⊢ handle 𝑀 with 𝐻 ok

Γ ⊢ 𝐴 ≡ 𝐵

Γ ∋ 𝛼 : 𝐾
Γ ⊢ 𝛼 ≡ 𝛼

Γ ⊢ ` ≡ a Γ ⊢ 𝐴 ≡ 𝐵
Γ ⊢ `𝐴 ≡ a𝐵

Γ ⊢ 𝐴 ≡ 𝐴′ Γ ⊢ 𝐵 ≡ 𝐵′

Γ ⊢ 𝐴 → 𝐵 ≡ 𝐴′ → 𝐵′
Γ ⊢ 𝐸 ≡ 𝐹

Γ ⊢ [𝐸] ≡ [𝐹]

𝐿 ≡ 𝐿′ 𝐷 ≡ 𝐷 ′

Γ ⊢ ⟨𝐿 |𝐷⟩ ≡ ⟨𝐿′ |𝐷 ′⟩
𝐸 ≡ 𝐹 Γ ⊢ 𝐸

Γ ⊢ 𝐸 ≡ 𝐹

Fig. 13. Statements in context forMetel.

2549

2550

2551

2552

2553

2554

2555

2556

2557

2558

2559

2560

2561

2562

2563

2564

2565

2566

2567

2568

2569

2570

2571

2572

2573

2574

2575

2576

2577

2578

2579

2580

2581

2582

2583

2584

2585

2586

2587

2588

2589

2590

2591

2592

2593

2594

2595

2596

2597

Modal Effect Types 53

Γ ⊢ (`, 𝜎) ⇒ a @𝐸 Γ ⊢ (𝑀 ;Δ;𝐴) ⇕† 𝜎 Γ ⊢ (𝑀 ;a ;𝜙 ;Δ;𝐴) ⇕ (b, 𝜎) Γ ⊢ (𝑀 ;Δ;𝐴) ⇓ 𝐵

Γ ⊢ 𝜎 : Abs
Γ ⊢ (`, 𝜎) ⇒ a @𝐸

`𝐹 ⇒ a𝐹 a𝐹 : 𝐸 → 𝐹

Γ ⊢ (`, 𝜎) ⇒ a @𝐸

𝑀 ∈ Val

Γ ⊢ (𝑀 ;Δ;𝐴) ⇕† ∀Δ.𝐴

𝑀 ∉ Val Δ = ·
Γ ⊢ (𝑀 ;Δ;𝐴) ⇕† 𝐴

principal(Γ;𝑀 ;Δ;𝐴) Γ ⊢ ∀Δ.𝐴 ⪯i 𝐵

Γ ⊢ (𝑀 ;Δ;𝐴) ⇓ 𝐵

𝑀 ∈ Val principal(Γ,µa ;𝑀 ;Δ;𝜙𝐴) b =

{
a ◦ `, 𝜙 = `

a, 𝜙 = ·
𝜙 ≠ · or a = 1

Γ ⊢ (𝑀 ;a ;𝜙 ;Δ;𝐴) ⇕ (b,∀Δ.𝐴)

𝑀 ∉ Val a = 1 Γ ⊢ (𝑀 ;Δ;𝐴) ⇓ 𝐵 b =

{
`, 𝜙 = `

1, 𝜙 = ·
Γ ⊢ (𝑀 ;a ;𝜙 ;Δ;𝐴) ⇕ (b, 𝐵)

principal(Γ;𝑀 ;Δ;𝐴) = Γ,Δ ⊢𝑠 𝑀 : 𝐴 @𝐸 for some 𝐸 such that
for any Δ′, 𝐴′, 𝐸′ with Γ,Δ′ ⊢𝑠 𝑀 : 𝐴′ @𝐸′,
we have Γ,Δ′ ⊢ ∀Δ.𝐴 ⪯m 𝐴

′ and 𝐸 ⩽ 𝐸′

split(Δ;𝐴) =

let (a, 𝐵) = split(Δ;𝐴′) in (` ◦ a, 𝐵),

if 𝐴 = `𝐴′ and ftv(`) ∩ dom(Δ) = ∅
(1, 𝐴), otherwise

Fig. 14. Auxiliary judgements and meta-functions forMetel.

2598

2599

2600

2601

2602

2603

2604

2605

2606

2607

2608

2609

2610

2611

2612

2613

2614

2615

2616

2617

2618

2619

2620

2621

2622

2623

2624

2625

2626

2627

2628

2629

2630

2631

2632

2633

2634

2635

2636

2637

2638

2639

2640

2641

2642

2643

2644

2645

2646

54 Wenhao Tang, Leo White, Stephen Dolan, Daniel Hillerström, Sam Lindley, and Anton Lorenzen

Γ ⊢𝑠 𝑀 : 𝐴 @𝐸

T-Freeze
b = alocks(Γ′) Γ, Γ′ ⊢ (`,∀Δ.𝐴) ⇒ b @𝐸

Γ, Γ′ ⊢ ∀Δ.𝐴 ⪯m 𝐵

Γ, 𝑥 :` ∀Δ.𝐴, Γ′ ⊢𝑠 ⌈𝑥⌉ : 𝐵 @𝐸

T-Var
b = alocks(Γ′) (a,𝐴′) = split(Δ;𝐴)

Γ, Γ′ ⊢ (` ◦ a,∀Δ.𝐴′) ⇒ b @𝐸

Γ, Γ′ ⊢ ∀Δ.𝐴′ ⪯m 𝐵

Γ, 𝑥 :` ∀Δ.𝐴, Γ′ ⊢𝑠 𝑥 : 𝐵 @𝐸

T-Mod
Γ,µ` ⊢𝑠 𝑉 : 𝐴 @𝐸 `𝐹 : 𝐸 → 𝐹

Γ ⊢𝑠 mod` 𝑉 : `𝐴 @ 𝐹

T-AbsAnno
Γ, 𝑥 : 𝐴 ⊢𝑠 𝑀 : 𝐵 @𝐸

Γ ⊢𝑠 _𝑥𝐴 .𝑀 : 𝐴 → 𝐵 @𝐸

T-Abs
Γ, 𝑥 : 𝑆 ⊢𝑠 𝑀 : 𝐵 @𝐸

Γ ⊢𝑠 _𝑥 .𝑀 : 𝑆 → 𝐵 @𝐸

T-App
Γ ⊢𝑠 𝑀 : 𝐴 → 𝐵 @𝐸

Γ ⊢𝑠 𝑁 : 𝐴 @𝐸

Γ ⊢𝑠 𝑀 𝑁 : 𝐵 @𝐸

T-Letmod
Γ ⊢ (𝑀 ;a ;Δ;𝜙 ;𝐴) ⇕ (b, 𝜎) Γ,µa ,Δ ⊢𝑠 𝑀 : 𝜙𝐴 @𝐸

a𝐹 : 𝐸 → 𝐹 Γ, 𝑥 :b 𝜎 ⊢𝑠 𝑁 : 𝐵 @ 𝐹

Γ ⊢𝑠 leta 𝜙 𝑥 = 𝑀 in 𝑁 : 𝐵 @ 𝐹

T-Mask
Γ,µ⟨𝐿 |⟩ ⊢𝑠 𝑀 : 𝐴 @ 𝐹 − 𝐿
Γ ⊢𝑠 mask𝐿 𝑀 : ⟨𝐿 |⟩𝐴 @ 𝐹

T-LetAnno
Γ ⊢ (𝑀 ;Δ;𝐴) ⇕† 𝜎 Γ,Δ ⊢𝑠 𝑀 : 𝐴 @𝐸

Γ, 𝑥 : 𝜎 ⊢𝑠 𝑁 : 𝐵 @𝐸

Γ ⊢𝑠 let 𝑥∀Δ.𝐴 = 𝑀 in 𝑁 : 𝐵 @𝐸

T-Do
Σ ∋ ℓ : 𝐴 ↠ 𝐵 𝐸 = ℓ, 𝐹

Γ ⊢𝑠 𝑀 : 𝐴 @𝐸

Γ ⊢𝑠 do ℓ 𝑀 : 𝐵 @𝐸

T-Handler
𝐷 = {ℓ𝑖 }𝑖 {ℓ𝑖 : 𝐴𝑖 ↠ 𝐵𝑖 } ⊆ Σ

Γ ⊢ (𝑀 ;Δ;𝐴0) ⇓ 𝐴 Γ,µ⟨|𝐷 ⟩,Δ ⊢𝑠 𝑀 : 𝐴0 @𝐷 + 𝐹
Γ ⊢ (𝑁 ;Δ′;𝐵0) ⇓ 𝐵 Γ, 𝑥 : ⟨|𝐷⟩𝐴,Δ′ ⊢𝑠 𝑁 : 𝐵0 @ 𝐹

[Γ, 𝑝𝑖 : 𝐴𝑖 , 𝑟𝑖 : 𝐵𝑖 → 𝐵 ⊢𝑠 𝑁𝑖 : 𝐵 @ 𝐹]𝑖
Γ ⊢𝑠 handle 𝑀 with {return 𝑥 ↦→ 𝑁 } ⊎ {ℓ𝑖 𝑝𝑖 𝑟𝑖 ↦→ 𝑁𝑖 }𝑖 : 𝐵 @ 𝐹

Fig. 15. Syntax-directed typing rules forMetel.

2647

2648

2649

2650

2651

2652

2653

2654

2655

2656

2657

2658

2659

2660

2661

2662

2663

2664

2665

2666

2667

2668

2669

2670

2671

2672

2673

2674

2675

2676

2677

2678

2679

2680

2681

2682

2683

2684

2685

2686

2687

2688

2689

2690

2691

2692

2693

2694

2695

Modal Effect Types 55

B.3 Algorithmic Contexts and Metasubstitutions

We distinguish between rigid type variables (which come from the object language and can only be
unified with intuitionistic types) and flexible type variables (which come from algorithms and can
be unified with both intuitionistic and modal types). We introduce flexible type variables 𝛼 and
extend the syntax of types and contexts as follows.

Types 𝐴, 𝐵 ::= · · · | 𝛼
Algorithmic contexts Θ ::= · | Θ, 𝛼 : 𝐾 | Θ, 𝑥 : 𝜎 | Θ,µ` | Θ, 𝛼 : (𝐾, 𝑅) | Θ, 𝛼 = 𝐴 | Θ#
Suffixes Ξ ::= · | Ξ, 𝛼 : (𝐾, 𝑅) | Ξ, 𝛼 = 𝐴

Flexible type variables in algorithmic contexts are either declarations 𝛼 : (𝐾, 𝑅) with kinds and
restrictions, or definitions 𝛼 = 𝐴 which indicate that these flexible variables have been solved.
We do not allow type annotations in terms to use flexible type variables. The syntax for type

schemes is still ∀Δ.𝐴.
We definemetasubstitutions \ ⦂ Θ ⊑ Θ′ from the algorithmic contextΘ toΘ′ and the equivalence

relation between metasubstitutions in Figure 16. They are the same as the definitions in Gundry
[20] except for adding more trivial cases for elements including bindings of rigid type variables
and locks. Metasubstitutions reflect information increase between contexts.

\ ⦂ Θ ⊑ Θ′

] ⦂ · ⊑ Ξ

\ ⦂ Θ ⊑ Θ′ Θ′ ⊢ 𝐴 : (𝐾, 𝑅)
\,𝐴/𝛼 ⦂ Θ, 𝛼 : (𝐾, 𝑅) ⊑ Θ′

\ ⦂ Θ ⊑ Θ′ Θ′ ⊢ \𝐴 ≡ 𝐵
\, 𝐵/𝛼 ⦂ Θ, 𝛼 = 𝐴 ⊑ Θ′

\ ⦂ Θ ⊑ Θ′

\ ⦂ Θ, 𝛼 : 𝐾 ⊑ Θ′, 𝛼 : 𝐾,Ξ
\ ⦂ Θ ⊑ Θ′

\ ⦂ Θ, 𝑥 : 𝜎 ⊑ Θ′, 𝑥 : \𝜎,Ξ

\ ⦂ Θ ⊑ Θ′

\ ⦂ Θ,µ` ⊑ Θ′,µ`,Ξ

\ ⦂ Θ ⊑ Θ′

\ ⦂ Θ, # ⊑ Θ′, #,Ξ

\ ≡ \ ′ ⦂ Θ ⊑ Θ′

] ≡] ⦂ · ⊑ Ξ

\ ≡ \ ′ ⦂ Θ ⊑ Θ′ Θ′ ⊢ 𝐴 : (𝐾, 𝑅) Θ′ ⊢ 𝐴 ≡ 𝐴′

\,𝐴/𝛼 ≡ \ ′, 𝐴′/𝛼 ⦂ Θ, 𝛼 : (𝐾, 𝑅) ⊑ Θ′

\ ≡ \ ′ ⦂ Θ ⊑ Θ′ Θ′ ⊢ \𝐴 ≡ 𝐵 Θ′ ⊢ 𝐵 ≡ 𝐵′

\, 𝐵/𝛼 ≡ \ ′, 𝐵′/𝛼 ⦂ Θ, 𝛼 = 𝐴 ⊑ Θ′
\ ≡ \ ′ ⦂ Θ ⊑ Θ′

\ ≡ \ ′ ⦂ Θ, 𝛼 : 𝐾 ⊑ Θ′, 𝛼 : 𝐾,Ξ

\ ≡ \ ′ ⦂ Θ ⊑ Θ′

\ ≡ \ ′ ⦂ Θ, 𝑥 : 𝜎 ⊑ Θ′, 𝑥 : \𝜎,Ξ
\ ≡ \ ′ ⦂ Θ ⊑ Θ′

\ ≡ \ ′ ⦂ Θ,µ` ⊑ Θ′,µ`,Ξ

\ ≡ \ ′ ⦂ Θ ⊑ Θ′

\ ≡ \ ′ ⦂ Θ, # ⊑ Θ′, #,Ξ

Fig. 16. Metasubstitutions and equivalence of metasubstitutions.

2696

2697

2698

2699

2700

2701

2702

2703

2704

2705

2706

2707

2708

2709

2710

2711

2712

2713

2714

2715

2716

2717

2718

2719

2720

2721

2722

2723

2724

2725

2726

2727

2728

2729

2730

2731

2732

2733

2734

2735

2736

2737

2738

2739

2740

2741

2742

2743

2744

56 Wenhao Tang, Leo White, Stephen Dolan, Daniel Hillerström, Sam Lindley, and Anton Lorenzen

Θ, 𝛼 : (𝐾, 𝑅),Θ′ ⊢ 𝛼 : (𝐾, 𝑅)
Θ ⊢ 𝐴 : (𝐾, 𝑅)

Θ, 𝛼 = 𝐴,Θ′ ⊢ 𝛼 : (𝐾, 𝑅)

Θ, 𝛼 : (𝐾, 𝑅),Θ′ ⊢ 𝛼 ≡ 𝛼
Θ,Θ′ ⊢ 𝐴 ≡ 𝐵

Θ, 𝛼 = 𝐴,Θ′ ⊢ 𝛼 ≡ 𝐵
Θ,Θ′ ⊢ 𝐴 ≡ 𝐵

Θ, 𝛼 = 𝐴,Θ′ ⊢ 𝐵 ≡ 𝛼

T-Freeze
b = alocks(Θ′) ∀Δ.𝐴 = subst(Θ;𝜎)

Θ,Θ′ ⊢ (`,∀Δ.𝐴) ⇒ b @𝐸 Θ,Θ′ ⊢ ∀Δ.𝐴 ⪯m 𝐵

Θ, 𝑥 :` 𝜎,Θ′ ⊢𝑠 ⌈𝑥⌉ : 𝐵 @𝐸

T-Var
b = alocks(Θ′) ∀Δ.𝐴 = subst(Θ;𝜎)

(a,𝐴′) = split(Δ, 𝐴) Θ,Θ′ ⊢ (` ◦ a,∀Δ.𝐴′) ⇒ b @𝐸 Θ,Θ′ ⊢ ∀Δ.𝐴′ ⪯m 𝐵

Θ, 𝑥 :` 𝜎,Θ′ ⊢𝑠 𝑥 : 𝐵 @𝐸

Fig. 17. Extended rules for statements in algorithmic contexts.

We define gen(Ξ;𝐴) as substituting solved flexible variables and generalising remaining flexible
variables in Ξ. We define subst(Θ;𝐴) as substituting solved flexible variables in Θ.

gen(·;𝐴) = 𝐴

gen(𝛼 : (𝐾, 𝑅),Ξ;𝐴) = ∀𝛼 : 𝐾.gen(Ξ;𝐴[𝛼/𝛼])
gen(𝛼 = 𝐵,Ξ;𝐴) = gen(Ξ[𝐵/𝛼];𝐴[𝐵/𝛼])

subst(·;𝐴) = 𝐴

subst(𝛼 = 𝐵,Θ;𝐴) = subst(Θ[𝐵/𝛼];𝐴[𝐵/𝛼])
subst(_,Θ;𝐴) = subst(Ξ;𝐴)

Although the judgements for statements in context are all defined on declarative context Γ,
it is easy to extend them to algorithmic contexts Θ. For any Γ ⊢ 𝐽 , we get Θ ⊢ 𝐽 almost freely
by just replacing letters from Γ to Θ. The only non-trivial modifications are to extend kinding
Θ ⊢ 𝐴 : (𝐾, 𝑅), type equivalence Θ ⊢ 𝐴 ≡ 𝐵, and typing Γ ⊢ 𝑀 : 𝐴 @𝐸 to cover flexible variables.
The extended rules are shown in Figure 17.

The essence of type inference for Metel is that we never guesses flexible modal and effect
variables in contexts. This property allows us to avoid collecting and solving non-trivial global
constraints on modalities in type inference. We define ⊢ Θ ng if all locks and variable bindings in
Θ do not contain unsolved flexible modal or effect variables.

⊢ · ng
⊢ Θ ng Θ ⊢ subst(Θ;𝜎) ng

⊢ Θ, 𝑥 :` 𝜎 ng

⊢ Θ ng

⊢ Θ,µ` ng
⊢ Θ ng

⊢ Θ # ng

⊢ Θ ng

⊢ Θ, 𝛼 : 𝐾 ng

⊢ Θ ng

⊢ Θ, 𝛼 : (𝐾, 𝑅) ng
⊢ Θ ng

⊢ Θ, 𝛼 = 𝐴 ng

The following lemma shows that metasubstitutions preserve this relation.

2745

2746

2747

2748

2749

2750

2751

2752

2753

2754

2755

2756

2757

2758

2759

2760

2761

2762

2763

2764

2765

2766

2767

2768

2769

2770

2771

2772

2773

2774

2775

2776

2777

2778

2779

2780

2781

2782

2783

2784

2785

2786

2787

2788

2789

2790

2791

2792

2793

Modal Effect Types 57

Lemma B.1 (No guess of modalities and effects in contexts). If ⊢ Θ0 ng and \ ⦂ Θ0 ⊑ Θ1,

then ⊢ Θ1 ng.

B.4 Algorithmic Moving between Contexts

Now we give algorithms to solve statements in contexts except for type inference, which is given
individually in the next section. All algorithms have form Θ0 ⊢ 𝐽 ⊣ Θ1, which starts from the
algorithmic context Θ0, solves the question of 𝐽 and ends up with the algorithmic context Θ1.

We first define the notion of questions, solutions, and minimal solutions for statements that we
need algorithms. Same as in the declarative version, we always require the algorithmic contexts Θ
for questions and solutions to satisfy ⊢ Θ pos.

Statements like kinding 𝜎 : (𝐾, 𝑅), type equivalence𝐴 ≡ 𝐵, and term well-formedness𝑀 ok only
have inputs; solving them only needs to make sure that the judgements are satisfied. We define
solutions and minimal solutions for them.

Definition B.2 (Questions without outputs and their solutions). A question for a statement 𝐽
which does not have outputs is a tuple (Θ0; 𝐽) where 𝐽 is well-scoped in Θ0. A solution to it is a
metasubstitution \ ⦂ Θ0 ⊑ Θ1 where Θ1 ⊢ \ 𝐽 . The solution is minimal if for any other solution
\ ′ ⦂ Θ0 ⊑ Θ′, there exists a metasubstitution Z ⦂ Θ1 ⊑ Θ′ such that \ ′ ≡ Z\ ⦂ Θ0 ⊑ Θ′ (say \ ′
factors through \ with cofactor Z). When 𝐽 is an equivalence statement 𝐴 ≡ 𝐵, we additionally
require ⊢ 𝐴 pos and ⊢ 𝐵 pos.

Other statements separate between inputs and outputs; solving them also requires giving outputs.
We define questions, solutions, and minimal solutions for those we need.

Definition B.3 (Questions with outputs and their solutions).

• An instantiation question is a tuple (Θ0;𝜎 ⪯𝑅 e) where 𝜎 is well-scoped in Θ0. A solution
to it is a tuple (\ ⦂ Θ0 ⊑ Θ1;𝐴) such that Θ1 ⊢ \𝜎 ⪯𝑅 𝐴. The solution is minimal if for any
other solution (\ ′ ⦂ Θ0 ⊑ Θ′;𝐴′), there exists a metasubstitution b ⦂ Θ1 ⊑ Θ′ such that
\ ′ ≡ b\ ⦂ Θ0 ⊑ Θ′ and Θ′ ⊢ b𝐴 ≡ 𝐴′.

• A transformation question is a tuple (Θ0; (`, 𝜎) ⇒ a @ e) where 𝜎 is well-scoped in Θ0.
A solution to it is a tuple (\ ⦂ Θ0 ⊑ Θ1;𝐸) such that Θ1 ⊢ (`, \𝜎) ⇒ a @𝐸. The solution
is minimal if for any other solution (\ ′ ⦂ Θ0 ⊑ Θ′;𝐸′), there exists a metasubstitution
b ⦂ Θ1 ⊑ Θ′ such that \ ′ ≡ b\ ⦂ Θ0 ⊑ Θ′ and 𝐸 ⩽ 𝐸′.

• A type inference question is a tuple (Θ0;𝑀 : e@ e) where ⊢ Θ0 ng, Θ0 ⊢ 𝑀 ok, and
⊢ 𝑀 pos. A solution to it is a tuple (\ ⦂ Θ0 ⊑ Θ1;𝐴;𝐸) such that Θ1 ⊢ 𝑀 : 𝐴 @𝐸.
The solution is minimal if for any other solution (\ ′ ⦂ Θ0 ⊑ Θ′;𝐴′;𝐸′), there exists a
metasubstitution b ⦂ Θ1 ⊑ Θ′ such that \ ′ ≡ b\ ⦂ Θ0 ⊑ Θ′ and Θ′ ⊢ b𝐴 ≡ 𝐴′ and 𝐸 ⩽ 𝐸′.

We define the algorithm for solving the questions we need in Figure 18. Note that for some
judgements, we only need their declarative forms.

2794

2795

2796

2797

2798

2799

2800

2801

2802

2803

2804

2805

2806

2807

2808

2809

2810

2811

2812

2813

2814

2815

2816

2817

2818

2819

2820

2821

2822

2823

2824

2825

2826

2827

2828

2829

2830

2831

2832

2833

2834

2835

2836

2837

2838

2839

2840

2841

2842

58 Wenhao Tang, Leo White, Stephen Dolan, Daniel Hillerström, Sam Lindley, and Anton Lorenzen

The algorithms for kinding uses the following auxiliary definitions.
res(Abs) = i

res(Any) = i

res(Eff) = m

𝐾 ⊓ 𝐾 ′ =

fail, if 𝐾 = Eff or 𝐾 ′ = Eff

Abs, if 𝐾 = Abs or 𝐾 ′ = Abs

Any, otherwise

𝐾 ⊓ 𝐾 ′ =

fail, if 𝐾 = Eff or 𝐾 ′ = Eff

Abs, if 𝐾 = Abs or 𝐾 ′ = Abs

Any, otherwise

We define the algorithm for unification in Figures 19 and 20. Note that unificationΘ ⊢ 𝐴 ≡ 𝐵 ⊣ Θ′

is only defined for statements𝐴 ≡ 𝐵 satisfying ⊢ 𝐴 pos and ⊢ 𝐵 pos. We will show later that during
type inference no negative effects would appear in types, as long as the input context and terms
also satisfy the restriction of no negative effects.
We list some important lemmas here which show the soundness, generality, and completeness

of kinding and unification.

Lemma B.4 (Soundness and generality of kind restriction). If Θ0 ⊢ 𝐴 : (𝐾, 𝑅) ⊣ Θ1, then

Θ0 ⊑ Θ1 is a minimal solution of (Θ0;𝐴 : (𝐾, 𝑅))

Lemma B.5 (Completeness of kind restriction). If \ ⦂ Θ0 ⊑ Θ is a solution to the kinding

question (Θ0;𝐴 : (𝐾, 𝑅)), then there exists Θ1 such that Θ0 ⊢ 𝐴 : (𝐾, 𝑅) ⊣ Θ1.

Lemma B.6 (Soundness and generality of unification).
1. If Θ0 ⊢ 𝐴 ≡ 𝐵 ⊣ Θ1, then Θ0 ⊑ Θ1 is a minimal solution of (Θ0;𝐴 ≡ 𝐵).
2. If Θ0 | Ξ ⊢ 𝛼 ≡ 𝐴 ⊣ Θ1, 𝐴 is not a flexible variable, and Ξ only contains declaration of flexible

variables appearing in 𝐴, then Θ0,Ξ ⊑ Θ1 is a minimal solution of (Θ0;𝛼 ≡ 𝐴).

Lemma B.7 (Completeness of unification).
1. If \ ⦂ Θ0 ⊑ Θ is a solution to the unification question (Θ0;𝐴 ≡ 𝐵), then there exists Θ1 such

that Θ0 ⊢ 𝐴 ≡ 𝐵 ⊣ Θ1.

2. If \ ⦂ Θ0,Ξ ⊑ Θ is a solution to the unification question (Θ0,Ξ;𝛼 ≡ 𝐴), then there exists Θ1
such that Θ0 | Ξ ⊢ 𝛼 ≡ 𝐴 ⊣ Θ1.

B.5 Type Inference

Figure 22 gives type inference algorithm forMetel. It is also in the form of algorithmic moving
between contexts Θ0 ⊢ 𝑀 : 𝐴 @𝐸 ⊣ Θ1.
We define solve(` : 𝐸 → 𝐹) and solve(` ⇒ a) in Figure 21 which find the minimal index for

certain modality and transformation to hold.
The following lemmas show their soundness, generality, and completeness.

Lemma B.8 (Soundness and generality of modality solving).
(1) If solve(` : 𝐸 → 𝐹) = 𝐹1, then `𝐹1 : 𝐸1 → 𝐹1 with 𝐸 ⩽ 𝐸1 and 𝐹 ⩽ 𝐹1. Moreover, for any

other `𝐹2 : 𝐸2 → 𝐹2 with 𝐹2 ⩽ 𝐹1 and 𝐹2 . 𝐹1, either 𝐸 ⩽ 𝐸2 or 𝐹 ⩽ 𝐹2 does not hold.

(2) If solve(` ⇒ a) = 𝐹 , then `𝐹 ⇒ a𝐹 . Moreover, for any other 𝐹 ′ ⩽ 𝐹 with 𝐹 ′ . 𝐹 , the relation
`𝐹 ′ ⇒ a𝐹 ′ does not hold.

2843

2844

2845

2846

2847

2848

2849

2850

2851

2852

2853

2854

2855

2856

2857

2858

2859

2860

2861

2862

2863

2864

2865

2866

2867

2868

2869

2870

2871

2872

2873

2874

2875

2876

2877

2878

2879

2880

2881

2882

2883

2884

2885

2886

2887

2888

2889

2890

2891

Modal Effect Types 59

Θ ⊢ ∀Δ.𝐴 ⪯𝑅 𝐵 ⊣ Θ′

Θ ⊢ 𝐴 ⪯𝑅 𝐴 ⊣ Θ
Θ, 𝛼 : (𝐾, 𝑅) ⊢ 𝜎 [𝛼/𝛼] ⪯𝑅 𝐴 ⊣ Θ′

Θ ⊢ ∀𝛼𝐾 .𝜎 ⪯𝑅 𝐴 ⊣ Θ′

Θ ⊢ 𝜎 : (𝐾, 𝑅) ⊣ Θ′

Θ ∋ 𝛼 : 𝐾 ′ 𝐾 ′ ⩽ 𝐾 res(𝐾) ⩽ 𝑅

Θ ⊢ 𝛼 : (𝐾, 𝑅) ⊣ Θ
Θ ⊢ 𝐴 : (𝐾, 𝑅) ⊣ Θ′′

Θ, 𝛼 = 𝐴,Θ′ ⊢ 𝛼 : (𝐾, 𝑅) ⊣ Θ′′, 𝛼 = 𝐴,Θ′

Θ, 𝛼 : (𝐾 ′, 𝑅′),Θ′ ⊢ 𝛼 : (𝐾, 𝑅) ⊣ Θ, 𝛼 : (𝐾 ′ ⊓ 𝐾, 𝑅′ ⊓ 𝑅),Θ′
Θ ⊢ 𝐴 : (𝐾,m) ⊣ Θ′

Θ ⊢ ⟨𝐿 |𝐷⟩𝐴 : (𝐾,m) ⊣ Θ′

Θ ⊢ 𝐸 : (Eff,m) ⊣ Θ′ Θ′ ⊢ 𝐴 : (Any,m) ⊣ Θ′′

Θ ⊢ [𝐸]𝐴 : (Abs,m) ⊣ Θ′′

Θ ⊢ 𝐴 : (Any, 𝑅) ⊣ Θ1 Θ1 ⊢ 𝐵 : (Any, 𝑅) ⊣ Θ2

Θ ⊢ 𝐴 → 𝐵 : (Any, 𝑅) ⊣ Θ2

Θ, 𝛼 : 𝐾 ′ ⊢ 𝜎 : (𝐾, 𝑅) ⊣ Θ′, 𝛼 : 𝐾 ′,Ξ

Θ ⊢ ∀𝛼𝐾 ′
.𝜎 : (𝐾, 𝑅) ⊣ Θ′,Ξ

Θ ⊢ · : (Eff,m) ⊣ Θ
Θ ⊢ 𝐸 : (Eff,m) ⊣ Θ′

Θ ⊢ 𝑙, 𝐸 : (Eff,m) ⊣ Θ′

Θ ⊢ (`, 𝜎) ⇒ a @𝐸 ⊣ Θ′

𝐹 = solve(` ⇒ a) a𝐹 : 𝐸 → 𝐹

Θ ⊢ (`, 𝜎) ⇒ a @𝐸 ⊣ Θ
solve(` ⇒ a) fails Θ ⊢ 𝜎 : (Abs,m) ⊣ Θ′

Θ ⊢ (`, 𝜎) ⇒ a ⊣ Θ′

Θ ⊢ (𝑀 ;a ;𝜙 ;Δ;𝐴) ⇕ (b, 𝜎) ⊣ Θ′ Θ ⊢ (𝑀 ;Δ;𝐴) ⇕† 𝜎 ⊣ Θ′ Θ ⊢ (𝑀 ;Δ;𝐴) ⇓ 𝜎 ⊣ Θ′

𝑀 ∈ Val b =

{
a ◦ `, 𝜙 = `

a, 𝜙 = ·
𝜙 ≠ · or a = 1

Θ ⊢ (𝑀 ;a ;𝜙 ;Ξ;𝐴) ⇕ (b, gen(Ξ;𝐴)) ⊣ Θ

𝑀 ∉ Val a = 1 Θ ⊢ (𝑀 ;Ξ;𝐴) ⇓ 𝐵 ⊣ Θ′ b =

{
`, 𝜙 = `

1, 𝜙 = ·
Θ ⊢ (𝑀 ;a ;𝜙 ;Ξ;𝐴) ⇕ (b, 𝐵) ⊣ Θ′

Θ ⊢ gen(Ξ;𝐴) ⪯i 𝐵 ⊣ Θ′

Θ ⊢ (𝑀 ;Ξ;𝐴) ⇓ 𝐵 ⊣ Θ′
𝑀 ∈ Val

Θ ⊢ (𝑀 ;Δ;𝐴) ⇕† ∀Δ.𝐴 ⊣ Θ
𝑀 ∉ Val Δ = ·

Θ ⊢ (𝑀 ;Δ;𝐴) ⇕† ∀Δ.𝐴 ⊣ Θ

Fig. 18. Algorithmic moving between contexts.

2892

2893

2894

2895

2896

2897

2898

2899

2900

2901

2902

2903

2904

2905

2906

2907

2908

2909

2910

2911

2912

2913

2914

2915

2916

2917

2918

2919

2920

2921

2922

2923

2924

2925

2926

2927

2928

2929

2930

2931

2932

2933

2934

2935

2936

2937

2938

2939

2940

60 Wenhao Tang, Leo White, Stephen Dolan, Daniel Hillerström, Sam Lindley, and Anton Lorenzen

Θ ⊢ 𝐴 ≡ 𝐵 ⊣ Θ′

U-Rigid-Rigid
Θ ∋ 𝛼 : 𝐾

Θ ⊢ 𝛼 ≡ 𝛼 ⊣ Θ

U-Flex-Flex-Id
Θ ∋ 𝛼 : (𝐾, 𝑅)
Θ ⊢ 𝛼 ≡ 𝛼 ⊣ Θ

U-Flex-Flex-L
𝛼 ≠ 𝛽 Θ ⊢ 𝛽 : (𝐾, 𝑅) ⊣ Θ′

Θ, 𝛼 : (𝐾, 𝑅) ⊢ 𝛼 ≡ 𝛽 ⊣ Θ′, 𝛼 = 𝛽

U-Flex-Flex-R
𝛼 ≠ 𝛽 Θ ⊢ 𝛼 : (𝐾, 𝑅) ⊣ Θ′

Θ, 𝛽 : (𝐾, 𝑅) ⊢ 𝛼 ≡ 𝛽 ⊣ Θ′, 𝛽 = 𝛼

U-Flex-Flex-Subst
Θ ⊢ 𝛼 [𝐴/𝛾] ≡ 𝛽 [𝐴/𝛾] ⊣ Θ′

Θ, 𝛾 = 𝐴 ⊢ 𝛼 ≡ 𝛽 ⊣ Θ′, 𝛾 = 𝐴

U-Flex-Flex-SkipFlex
𝛾 ≠ 𝛼 𝛾 ≠ 𝛽 Θ ⊢ 𝛼 ≡ 𝛽 ⊣ Θ′

Θ, 𝛾 : (𝐾, 𝑅) ⊢ 𝛼 ≡ 𝛽 ⊣ Θ′, 𝛾 : (𝐾, 𝑅)

U-Flex-Flex-SkipRigid
Θ ⊢ 𝛼 ≡ 𝛽 ⊣ Θ′

Θ, 𝛾 : 𝐾 ⊢ 𝛼 ≡ 𝛽 ⊣ Θ′, 𝛾 : 𝐾

U-Flex-Flex-SkipTerm
Θ ⊢ 𝛼 ≡ 𝛽 ⊣ Θ′

Θ, 𝑥 : 𝜎 ⊢ 𝛼 ≡ 𝛽 ⊣ Θ′, 𝑥 : 𝜎

U-Flex-Flex-SkipLock
Θ ⊢ 𝛼 ≡ 𝛽 ⊣ Θ′

Θ,µ` ⊢ 𝛼 ≡ 𝛽 ⊣ Θ′,µ`

U-Flex-Flex-SkipMark
Θ ⊢ 𝛼 ≡ 𝛽 ⊣ Θ′

Θ# ⊢ 𝛼 ≡ 𝛽 ⊣ Θ′#

U-Flex-Rigid-L
𝐴 non-flex-var Θ | · ⊢ 𝛼 := 𝐴 ⊣ Θ′

Θ ⊢ 𝛼 ≡ 𝐴 ⊣ Θ′

U-Flex-Rigid-R
𝐴 non-flex-var Θ | · ⊢ 𝛼 := 𝐴 ⊣ Θ′

Θ ⊢ 𝐴 ≡ 𝛼 ⊣ Θ′

U-Mod
Θ ⊢ 𝐴 ≡ 𝐴′ ⊣ Θ′ Θ′ ⊢ ` ≡ `′ ⊣ Θ′′

Θ ⊢ `𝐴 ≡ `′𝐴′ ⊣ Θ′

U-Arrow
Θ ⊢ 𝐴 ≡ 𝐴′ ⊣ Θ′ Θ′ ⊢ 𝐵 ≡ 𝐵′ ⊣ Θ′′

Θ ⊢ 𝐴 → 𝐵 ≡ 𝐴′ → 𝐵′ ⊣ Θ′′

U-Relative
𝐿 ≡ 𝐿′ 𝐷 ≡ 𝐷 ′

Θ ⊢ ⟨𝐿 |𝐷⟩ ≡ ⟨𝐿′ |𝐷 ′⟩ ⊣ Θ

U-Absolute
Θ ⊢ 𝐸 ≡ 𝐹 ⊣ Θ′

Θ ⊢ [𝐸] ≡ [𝐹] ⊣ Θ′

U-Effect-Closed
𝐿 ≡ 𝐿′

Θ ⊢ 𝐿 ≡ 𝐿′ ⊣ Θ

U-Effect-L
𝐿′ = labels(𝐸) Θ ⊢ 𝐸 : (Eff,m) ⊣ Θ
𝐿 ⊆ 𝐿′ Θ′ | · ⊢ Ŷ := 𝐸 − 𝐿 ⊣ Θ′

Θ ⊢ 𝐿; Ŷ ≡ 𝐸 ⊣ Θ′

U-Effect-R
𝐿′ = labels(𝐸) Θ ⊢ 𝐸 : (Eff,m) ⊣ Θ
𝐿 ⊆ 𝐿′ Θ | · ⊢ Ŷ := 𝐸 − 𝐿 ⊣ Θ′

Θ ⊢ 𝐸 ≡ 𝐿; Ŷ ⊣ Θ′

U-Effect-LR
𝐿1 ⊈ 𝐿2 𝐿2 ⊈ 𝐿1 Θ, Ŷ ⊢ Ŷ1 := 𝐿2 − 𝐿1, Ŷ ⊣ Θ1 Θ1 ⊢ Ŷ2 := 𝐿1 − 𝐿2, Ŷ ⊣ Θ2

Θ ⊢ 𝐿1, Ŷ1 ≡ 𝐿2, Ŷ2 ⊣ Θ2

Fig. 19. Unification (Part I).

Proof. 1. When ` is absolute, trivial. When ` is relative, the delta between the source and target
is fixed and we only need to case analysis whether 𝐸 or 𝐹 gives the lower bound.

2. When ` is absolute, the minimal index for the transformation is completely determined by a .
Otherwise, relative ` can only be transformed to relative a . The delta between 𝐿1 and 𝐷1 must be
the same as the delta between 𝐿2 and 𝐷2 in order to make the transformation hold. The index is
determined by the larger one among 𝐿1 and 𝐿2. □

2941

2942

2943

2944

2945

2946

2947

2948

2949

2950

2951

2952

2953

2954

2955

2956

2957

2958

2959

2960

2961

2962

2963

2964

2965

2966

2967

2968

2969

2970

2971

2972

2973

2974

2975

2976

2977

2978

2979

2980

2981

2982

2983

2984

2985

2986

2987

2988

2989

Modal Effect Types 61

Θ | Ξ ⊢ 𝛼 ≡ 𝐴 ⊣ Θ′

U-Flex-Rigid-Solve
Θ,Ξ ⊢ 𝐴 : (𝐾, 𝑅) ⊣ Θ′

Θ, 𝛼 : (𝐾, 𝑅) | Ξ ⊢ 𝛼 ≡ 𝐴 ⊣ Θ′, 𝛼 = 𝐴

U-Flex-Rigid-Subst
Θ,Ξ ⊢ 𝛼 [𝐵/𝛽] ≡ 𝐴[𝐵/𝛽] ⊣ Θ′

Θ, 𝛽 = 𝐵 | Ξ ⊢ 𝛼 ≡ 𝐴 ⊣ Θ′, 𝛽 = 𝐵

U-Flex-Rigid-Depend
𝛼 ≠ 𝛽 𝛽 ∈ ftv(𝐴)

Θ | 𝛽 : (𝐾, 𝑅),Ξ ⊢ 𝛼 ≡ 𝐴 ⊣ Θ′

Θ, 𝛽 : (𝐾, 𝑅) | Ξ ⊢ 𝛼 ≡ 𝐴 ⊣ Θ′

U-Flex-Rigid-SkipFlex
𝛼 ≠ 𝛽 𝛽 ∉ ftv(𝐴)
Θ | Ξ ⊢ 𝛼 ≡ 𝐴 ⊣ Θ′

Θ, 𝛽 : (𝐾, 𝑅) | Ξ ⊢ 𝛼 ≡ 𝐴 ⊣ Θ′, 𝛽 : (𝐾, 𝑅)

U-Flex-Rigid-SkipRigid
𝛽 ∉ ftv(𝐴) Θ | Ξ ⊢ 𝛼 ≡ 𝐴 ⊣ Θ′

Θ, 𝛽 : 𝐾 | Ξ ⊢ 𝛼 ≡ 𝐴 ⊣ Θ′, 𝛽 : 𝐾

U-Flex-Rigid-SkipTerm
Θ | Ξ ⊢ 𝛼 ≡ 𝐴 ⊣ Θ′

Θ, 𝑥 : 𝜎 | Ξ ⊢ 𝛼 ≡ 𝐴 ⊣ Θ′, 𝑥 : 𝜎

U-Flex-Rigid-SkipLock
Θ | Ξ ⊢ 𝛼 ≡ 𝐴 ⊣ Θ′

Θ,µ` | Ξ ⊢ 𝛼 ≡ 𝐴 ⊣ Θ′,µ`

U-Flex-Rigid-SkipMark
Θ | Ξ ⊢ 𝛼 ≡ 𝐴 ⊣ Θ′

Θ# | Ξ ⊢ 𝛼 ≡ 𝐴 ⊣ Θ′#

Fig. 20. Unification (Part II).

solve([𝐸′] : 𝐸 → 𝐹) =

{
𝐹, 𝐸 ⩽ 𝐸′

fail, otherwise

solve(⟨𝐿 |𝐷⟩ : 𝐸 → 𝐹) =

{
𝐹, 𝐸 ⩽ 𝐷 + (𝐹 − 𝐿)
𝐿 + (𝐸 − 𝐷), otherwise

solve([𝐸] ⇒ a) = solve(a : 𝐸 → ·)
solve(⟨𝐿 |𝐷⟩ ⇒ [𝐸]) = fail

solve(⟨𝐿1 |𝐷1⟩ ⇒ ⟨𝐿2 |𝐷2⟩) =

fail, (𝐿, 𝐷) ≠ (𝐿′, 𝐷 ′)

where (𝐿, 𝐷) = 𝐿1 ⊲⊳ 𝐷1 and (𝐿′, 𝐷 ′) = 𝐿2 ⊲⊳ 𝐷2

𝐿2, 𝐿1 ⩽ 𝐿2

𝐿1, otherwise

Fig. 21. Solvers for modalities.

Lemma B.9 (Completeness of solving).
• If `𝐹 ′ : 𝐸′ → 𝐹 ′ with 𝐸 ⩽ 𝐸′ and 𝐹 ⩽ 𝐹 ′, then solve(` : 𝐸 → 𝐹) = 𝐹 ′′ for some 𝐹 ′′.
• If `𝐹 ⇒ a𝐹 , then solve(` ⇒ a) = 𝐹 ′ for some 𝐹 ′.

Proof. By definition. □

We prove that type inference does not generate negative effects.

Lemma B.10 (No negative effects). For the type inference question (Θ0;𝑀 : e@ e) with the

implicit condition ⊢ Θ0 pos and ⊢ 𝑀 pos, if Θ0 ⊢ 𝑀 : 𝐴 @𝐸 ⊣ Θ1, then ⊢ Θ1 pos and ⊢ 𝐴 pos.

This lemma guarantees that though the unification algorithm is not defined for negative effects,
it would not fail because of negative effects during type inference.

2990

2991

2992

2993

2994

2995

2996

2997

2998

2999

3000

3001

3002

3003

3004

3005

3006

3007

3008

3009

3010

3011

3012

3013

3014

3015

3016

3017

3018

3019

3020

3021

3022

3023

3024

3025

3026

3027

3028

3029

3030

3031

3032

3033

3034

3035

3036

3037

3038

62 Wenhao Tang, Leo White, Stephen Dolan, Daniel Hillerström, Sam Lindley, and Anton Lorenzen

We prove the soundness, generality, and completeness for type inference.

Theorem B.11 (Soundness and generality of type inference). For the type inference question
(Θ0;𝑀 : e@ e), if Θ0 ⊢ 𝑀 : 𝐴 @𝐸 ⊣ Θ1, then (Θ0 ⊑ Θ1, 𝐴, 𝐸) is a minimal solution.

Theorem B.12 (Completeness of Type Inference). If ⊢ Θ0 ng, Θ0 ⊢ 𝑀 ok, \ ⦂ Θ0 ⊑ Θ, and
Θ ⊢𝑠 𝑀 : 𝐴 @ 𝐹 , then Θ0 ⊢ 𝑀 : 𝐵 @𝐸 ⊣ Θ1 for some Θ1, 𝐵, and 𝐸.

All proofs can be found in Appendix C.

3039

3040

3041

3042

3043

3044

3045

3046

3047

3048

3049

3050

3051

3052

3053

3054

3055

3056

3057

3058

3059

3060

3061

3062

3063

3064

3065

3066

3067

3068

3069

3070

3071

3072

3073

3074

3075

3076

3077

3078

3079

3080

3081

3082

3083

3084

3085

3086

3087

Modal Effect Types 63

Θ ⊢ 𝑀 : 𝐴 @𝐸 ⊣ Θ′

I-Freeze
b = alocks(Θ0) ∀Δ.𝐴 = subst(Θ;𝜎)

Θ,Θ0 ⊢ (`,∀Δ.𝐴) ⇒ b @𝐸 ⊣ Θ1
Θ1 ⊢ ∀Δ.𝐴 ⪯m 𝐵 ⊣ Θ2

Θ, 𝑥 :` 𝜎,Θ0 ⊢ ⌈𝑥⌉ : 𝐵 @𝐸 ⊣ Θ2

I-Var
b = alocks(Θ0) ∀Δ.𝐴 = subst(Θ;𝜎)

(a,𝐴′) = split(Δ, 𝐴)
Θ,Θ0 ⊢ (` ◦ a,∀Δ.𝐴′) ⇒ b @𝐸 ⊣ Θ1

Θ1 ⊢ ∀Δ.𝐴 ⪯m 𝐵 ⊣ Θ2

Θ, 𝑥 :` 𝜎,Θ0 ⊢ 𝑥 : 𝐵 @𝐸 ⊣ Θ2

I-Mod
Θ0,µ` ⊢ 𝑉 : 𝐴 @𝐸 ⊣ Θ1,µ`,Ξ1

𝐹 = solve(` : 𝐸 → ·)
Θ0 ⊢ mod` 𝑉 : `𝐴 @ 𝐹 ⊣ Θ1,Ξ1

I-App
Θ0 ⊢ 𝑀 : 𝐴 @𝐸 ⊣ Θ1 Θ1 ⊢ 𝑁 : 𝐵 @ 𝐹 ⊣ Θ2

Θ2, 𝛼 : (Any,m) ⊢ 𝐴 ≡ 𝐵 → 𝛼 ⊣ Θ3

Θ0 ⊢ 𝑀 𝑁 : 𝛼 @𝐸 ∪ 𝐹 ⊣ Θ3

I-AbsAnno
Θ0, 𝑥 : 𝐴 ⊢ 𝑀 : 𝐵 @𝐸 ⊣ Θ1, 𝑥 : 𝐴,Ξ1

Θ0 ⊢ _𝑥𝐴 .𝑀 : 𝐴 → 𝐵 @𝐸 ⊣ Θ1,Ξ1

I-Abs
Θ0, 𝛼 : (Any, i), 𝑥 : 𝛼 ⊢ 𝑀 : 𝐵 @𝐸 ⊣ Θ1, 𝑥 : 𝛼,Ξ1

Θ0 ⊢ _𝑥 .𝑀 : 𝛼 → 𝐵 @𝐸 ⊣ Θ1,Ξ1

I-LetAnno
Θ0 ⊢ (𝑀 ;Δ;𝐴) ⇕† 𝜎 ⊣ Θ1 Θ1 # Δ ⊢ 𝑀 : 𝐴′ @𝐸 ⊣ Θ2 # Δ,Ξ2

Θ2 # Δ,Ξ2 ⊢ 𝐴′ ≡ 𝐴 ⊣ Θ3 # Δ,Ξ3 Θ3, 𝑥 : 𝜎 ⊢ 𝑁 : 𝐵 @ 𝐹 ⊣ Θ4, 𝑥 : 𝜎,Ξ4

Θ0 ⊢ let 𝑥∀Δ.𝐴 = 𝑀 in 𝑁 : 𝐵 @𝐸 ∪ 𝐹 ⊣ Θ4,Ξ4

I-Letmod
Θ0,µa ⊢ 𝑀 : 𝐴 @𝐸 ⊣ Θ1,µa ,Ξ1

Θ1 # Ξ1, 𝛼 : (Any,m) ⊢ 𝐴 ≡ 𝜙𝛼 ⊣ Θ2 # Ξ2 Θ2 ⊢ (𝑀 ;a ;𝜙 ;Ξ2;𝛼) ⇕ (b, 𝜎) ⊣ Θ3
Θ3, 𝑥 :b 𝜎 ⊢ 𝑁 : 𝐵 @ 𝐹 ⊣ Θ4 𝐹 ′ = solve(a : 𝐸 → 𝐹)

Θ0 ⊢ leta 𝜙 𝑥 = 𝑀 in 𝑁 : 𝐵 @ 𝐹 ′ ⊣ Θ3

I-Do
Σ ∋ ℓ : 𝐴 ↠ 𝐵

Θ0 ⊢ 𝑀 : 𝐴1 @𝐸 ⊣ Θ1 Θ1 ⊢ 𝐴1 ≡ 𝐴 ⊣ Θ2

Θ0 ⊢ do ℓ 𝑀 : 𝐵 @ {ℓ} ∪ 𝐸 ⊣ Θ2

I-Mask
Θ0,µ⟨𝐿 |⟩ ⊢ 𝑀 : 𝐴 @𝐸 ⊣ Θ1
𝐹 = solve(⟨𝐿 |⟩ : 𝐸 → ·)

Θ0 ⊢ mask𝐿 𝑀 : ⟨𝐿 |⟩𝐴 @ 𝐹 ⊣ Θ2

I-Handler
𝐷 = {ℓ𝑖 }𝑖 {ℓ𝑖 : 𝐴𝑖 ↠ 𝐵𝑖 } ⊆ Σ

Θ,µ⟨|𝐷 ⟩ ⊢ 𝑀 : 𝐴0 @𝐸′ ⊣ Θ′,µ⟨|𝐷 ⟩,Ξ
′ Θ′ ⊢ (𝑀 ;Ξ′;𝐴0) ⇓ 𝐴 ⊣ Θ0

Θ0, 𝑥 : ⟨|𝐷⟩𝐴 ⊢ 𝑁 : 𝐵0 @𝐸𝑟 ⊣ Θ′
0, 𝑥 : _,Ξ′

0 Θ′
0 ⊢ (𝑁 ;Ξ′

0;𝐵0) ⇓ 𝐵 ⊣ Θ1
[Θ𝑖 , 𝑝𝑖 : 𝐴𝑖 , 𝑟𝑖 : 𝐵𝑖 → 𝐵 ⊢ 𝑁𝑖 : 𝐵𝑖 @𝐸𝑖 ⊣ Θ′

𝑖 , 𝑝𝑖 : _, 𝑟𝑖 : _,Ξ
′
𝑖 Θ′

𝑖 ,Ξ
′
𝑖 ⊢ 𝐵𝑖 ≡ 𝐵 ⊣ Θ𝑖+1]𝑛𝑖=1

𝐸 = solve(⟨|𝐷⟩ : 𝐸′ → ·) 𝐹 = 𝐸 ∪ 𝐸𝑟 ∪ (∪𝑖𝐸𝑖)
Θ ⊢ handle 𝑀 with {return 𝑥 ↦→ 𝑁 } ⊎ {ℓ𝑖 𝑝𝑖 𝑟𝑖 ↦→ 𝑁𝑖 }𝑛𝑖=1 : 𝐵 @ 𝐹 ⊣ Θ𝑛+1

Fig. 22. Type inference forMetel.

3088

3089

3090

3091

3092

3093

3094

3095

3096

3097

3098

3099

3100

3101

3102

3103

3104

3105

3106

3107

3108

3109

3110

3111

3112

3113

3114

3115

3116

3117

3118

3119

3120

3121

3122

3123

3124

3125

3126

3127

3128

3129

3130

3131

3132

3133

3134

3135

3136

64 Wenhao Tang, Leo White, Stephen Dolan, Daniel Hillerström, Sam Lindley, and Anton Lorenzen

B.6 Elaboration to the Core Calculus

The semantics of Metel is given by its elaboration to Mete.
We first fill the gap between Metel and Mete that contexts of Metel do not keep indexes

of modalities appearing in locks and variable bindings. Observe that for any typing judgement
of closed terms ⊢𝑠 𝑀 : 𝐴 @𝐸, the indexes of modalities for locks and bindings in contexts are
completely determined by the derivation tree. We derive a new presentation of the declarative
type system for Metel by keeping indexes of locks and bindings in context, and modify auxiliary
relations involving modalities to consider indexes as well. The interesting typing rules for the
new typing judgement Γ ⊢𝑠𝑖 𝑀 : 𝐴 @𝐸 and auxiliary relations are defined in the non-highlighted
parts of Figures 23 to 25. We inline the relation (𝑀 ;a ;𝜙 ;Δ;𝐴) and split T-Unmod into four rules for
clarity of elaboration. The following lemma shows the equivalence between the two type systems.

Lemma B.13 (Indexes in contexts can be ignored). ⊢𝑠𝑖 𝑀 : 𝐴 @𝐸 if and only if ⊢𝑠 𝑀 : 𝐴 @𝐸.

The proof follows from straightforward induction on the typing derivations. The only non-trivial
case is to show the equivalence of typing rules for variables, since they use the modality transfor-
mation relation in different ways. The following lemma shows that the modality transformation
relation holds regardless of the targets of modalities.

Lemma B.14 (Source determines transformation). If a𝐹 : 𝐸 → 𝐹 and `𝐹 ⇒ a𝐹 , then for any

𝐹 ′ such that a𝐹 ′ : 𝐸 → 𝐹 ′, we have `𝐹 ′ ⇒ a𝐹 ′ .

Proof. If a = [𝐸], we have ` = [𝐸′] where 𝐸′ ⩽ 𝐸. Otherwise, we can show 𝐹 = 𝐹 ′. □

As a corollary, for Γ ⊢ (`, 𝜎) ⇒ a @𝐸, we know that either Γ ⊢ 𝜎 : Abs or `𝐹 → a𝐹 for any 𝐹
with a𝐹 : 𝐸 → 𝐹 . The reverse direction also holds. This gives the equivalence of the variable rules.

Since the new type system is equivalent to the old one, and it is obvious to derive a derivation
tree of the new typing judgement from the old one for closed terms, we restrict elaboration to
closed terms and directly define the elaboration on the derivation tree of the new judgement
Γ ⊢𝑠𝑖 𝑀 : 𝐴 @𝐸. The elaboration is given as the highlighted parts of Figures 23 to 25. There is
nothing really surprising in the elaboration. For all terms that introduce variable bindings 𝑥 , we
immediately unbox it and bind the unboxed result to 𝑥 . For variable rules, we use the original 𝑥
for froze variables, and unboxed 𝑥 for usual variables which are automatically unboxed. Also, in
variable, let-binding rules and handler rules, we deal with generalisation and instantiation. The
following theorem showing the type preservation. Its proof follows from straightforward induction.

Theorem B.15 (Type preservation). If Γ ⊢𝑠𝑖 𝑀 : 𝐴 @𝐸 d 𝑀 ′
, then Γ ⊢ 𝑀 : 𝐴 @𝐸.

`𝐹 ⇒ a𝐹 or Γ ⊢ 𝜎 : Abs
Γ ⊢ (`𝐹 , 𝜎) ⇒ a𝐹 @𝐸

principal(Γ;𝑀 ;Δ;𝐴) Γ ⊢ ∀Δ.𝐴 ⪯i 𝐵 d 𝐴′

Γ ⊢ (𝑀 ;Δ;𝐴) ⇓ 𝐵 d 𝐴′

Γ ⊢ 𝐴 ⪯𝑅 𝐴 d ·

Γ ⊢ 𝐵 : (𝐾, 𝑅) Γ ⊢ 𝜎 [𝐵/𝛼] ⪯𝑅 𝐴 d 𝐴′

Γ ⊢ ∀𝛼𝐾 .𝜎 ⪯𝑅 𝐴 d 𝐵,𝐴′

unmod(𝑥 ;Δ;𝐴;𝑀) = let moda ΛΔ.𝑥 = 𝑥 Δ in 𝑀 where (a, _) = split(𝐴)

Fig. 23. Auxiliary definitions forMetel with indexed contexts and its elaboration.

3137

3138

3139

3140

3141

3142

3143

3144

3145

3146

3147

3148

3149

3150

3151

3152

3153

3154

3155

3156

3157

3158

3159

3160

3161

3162

3163

3164

3165

3166

3167

3168

3169

3170

3171

3172

3173

3174

3175

3176

3177

3178

3179

3180

3181

3182

3183

3184

3185

Modal Effect Types 65

T-Freeze
b𝐹 = alocks(Γ′) Γ, Γ′ ⊢ (`𝐹 ,∀Δ.𝐴) ⇒ b𝐹 @𝐸 Γ, Γ′ ⊢ ∀Δ.𝐴 ⪯m 𝐵 d 𝐴′

Γ, 𝑥 :`𝐹 ∀Δ.𝐴, Γ′ ⊢𝑠𝑖 ⌈𝑥⌉ d 𝑥 𝐴′ : 𝐵 @𝐸

T-Var
b𝐹 = alocks(Γ′) `𝐹 : 𝐹 ′ → 𝐹

(a,𝐴′) = split(Δ;𝐴) Γ, Γ′ ⊢ (`𝐹 ◦ a𝐹 ′ ,∀Δ.𝐴′) ⇒ b𝐹 @𝐸 Γ, Γ′ ⊢ ∀Δ.𝐴′ ⪯m 𝐵 d 𝐴′

Γ, 𝑥 :`𝐹 ∀Δ.𝐴, Γ′ ⊢𝑠𝑖 𝑥 d 𝑥 𝐴′ : 𝐵 @𝐸

T-AbsAnno
Γ, 𝑥 : 𝐴 ⊢𝑠𝑖 𝑀 : 𝐵 @𝐸 d 𝑀 ′

Γ ⊢𝑠𝑖 _𝑥𝐴 .𝑀
d _𝑥𝐴 .unmod(𝑥 ; ·;𝐴;𝑀 ′) : 𝐴 → 𝐵 @𝐸

T-Abs
Γ, 𝑥 : 𝑆 ⊢𝑠𝑖 𝑀 : 𝐵 @𝐸 d 𝑀 ′

Γ ⊢𝑠𝑖 _𝑥.𝑀
d _𝑥𝑆 .unmod(𝑥 ; ·; 𝑆 ;𝑀 ′) : 𝑆 → 𝐵 @𝐸

T-LetmodVal
a𝐹 : 𝐸 → 𝐹 b𝐹 = a𝐹 ◦ `𝐸
Γ,µa𝐹 ,Δ ⊢𝑠𝑖 𝑉 : `𝐴 @𝐸 d 𝑉 ′

Γ, 𝑥 :b𝐹 ∀Δ.𝐴 ⊢𝑠𝑖 𝑁 : 𝐵 @ 𝐹 d 𝑁 ′

𝑁 ′′ = unmod(𝑥 ;Δ;𝐴;𝑁 ′)
Γ ⊢𝑠𝑖 leta ` 𝑥 = 𝑉 in 𝑁

d leta mod` ΛΔ.𝑥 = 𝑉 ′
in 𝑁 ′′ : 𝐵 @ 𝐹

T-LetmodNonval
𝑀 ∉ Val (𝑀 ;Δ;𝐴) ⇓ 𝐴′ d 𝐴1
Γ,µ1𝐹 ,Δ ⊢𝑠𝑖 𝑀 : `𝐴 @𝐸 d 𝑀 ′

Γ, 𝑥 :`𝐹 𝐴
′ ⊢𝑠𝑖 𝑁 : 𝐵 @ 𝐹 d 𝑁 ′

𝑁 ′′ = unmod(𝑥 ; ·;𝐴′;𝑁 ′)
Γ ⊢𝑠𝑖 let1 ` 𝑥 = 𝑀 in 𝑁

d let1 mod` 𝑥 = 𝑀 ′ [𝐴1/Δ] in 𝑁 ′′ : 𝐵 @ 𝐹

T-LetVal
Γ,µ1𝐹 ,Δ ⊢𝑠𝑖 𝑉 : 𝐴 @𝐸 d 𝑉 ′

Γ, 𝑥 :1𝐹 ∀Δ.𝐴 ⊢𝑠𝑖 𝑁 : 𝐵 @ 𝐹 d 𝑁 ′

𝑁 ′′ = unmod(𝑥 ;Δ;𝐴;𝑁 ′)
Γ ⊢𝑠𝑖 let1 𝑥 = 𝑉 in 𝑁

d let 𝑥 = ΛΔ.𝑉 ′
in 𝑁 ′′ : 𝐵 @ 𝐹

T-LetNonval
𝑀 ∉ Val (𝑀 ;Δ;𝐴) ⇓ 𝐴′ d 𝐴1
Γ,µ1𝐹 ,Δ ⊢𝑠𝑖 𝑀 : 𝐴 @𝐸 d 𝑀 ′

Γ, 𝑥 :1𝐹 𝐴
′ ⊢𝑠𝑖 𝑁 : 𝐵 @ 𝐹 d 𝑁 ′

𝑁 ′′ = unmod(𝑥 ; ·;𝐴′;𝑁 ′)
Γ ⊢𝑠𝑖 let1 𝑥 = 𝑀 in 𝑁

d let 𝑥 = 𝑀 ′ [𝐴1/Δ] in 𝑁 ′′ : 𝐵 @ 𝐹

T-LetAnno
Γ ⊢ (𝑀 ;Δ;𝐴) ⇕† 𝜎 Γ,Δ ⊢𝑠𝑖 𝑀 : 𝐴 @𝐸 d 𝑀 ′

Γ, 𝑥 : 𝜎 ⊢𝑠𝑖 𝑁 : 𝐵 @𝐸 d 𝑁 ′

Γ ⊢𝑠𝑖 let 𝑥∀Δ.𝐴 = 𝑀 in 𝑁 d let 𝑥 = ΛΔ.𝑀 ′
in 𝑁 ′ : 𝐵 @𝐸

T-Handler
𝐷 = {ℓ𝑖 }𝑖 {ℓ𝑖 : 𝐴𝑖 ↠ 𝐵𝑖 } ⊆ Σ

Γ ⊢ (𝑀 ;Δ;𝐴0) ⇓ 𝐴 d 𝐴1 Γ,µ⟨|𝐷 ⟩𝐹 ,Δ ⊢𝑠𝑖 𝑀 : 𝐴0 @𝐷 + 𝐹 d 𝑀 ′

Γ ⊢ (𝑁 ;Δ′;𝐵0) ⇓ 𝐵 d 𝐵1 Γ, 𝑥 : ⟨|𝐷⟩𝐴,Δ′ ⊢𝑠𝑖 𝑁 : 𝐵0 @ 𝐹 d 𝑁 ′

[Γ, 𝑝𝑖 : 𝐴𝑖 , 𝑟𝑖 : 𝐵𝑖 → 𝐵 ⊢𝑠𝑖 𝑁𝑖 : 𝐵 @ 𝐹 d 𝑁 ′
𝑖]𝑖

Γ ⊢𝑠𝑖 handle 𝑀 with {return 𝑥 ↦→ 𝑁 } ⊎ {ℓ𝑖 𝑝𝑖 𝑟𝑖 ↦→ 𝑁𝑖 }𝑖
d handle 𝑀 ′ [𝐴1/Δ] with {return 𝑥 ↦→ 𝑁 ′ [𝐵1/Δ′]} ⊎ {ℓ𝑖 𝑝𝑖 𝑟𝑖 ↦→ 𝑁 ′

𝑖 }𝑖 : 𝐵 @ 𝐹

Fig. 24. Elaboration fromMetel with indexed contexts toMete (part I).

3186

3187

3188

3189

3190

3191

3192

3193

3194

3195

3196

3197

3198

3199

3200

3201

3202

3203

3204

3205

3206

3207

3208

3209

3210

3211

3212

3213

3214

3215

3216

3217

3218

3219

3220

3221

3222

3223

3224

3225

3226

3227

3228

3229

3230

3231

3232

3233

3234

66 Wenhao Tang, Leo White, Stephen Dolan, Daniel Hillerström, Sam Lindley, and Anton Lorenzen

T-Mod
Γ,µ` ⊢𝑠𝑖 𝑉 : 𝐴 @𝐸 d 𝑉 ′ `𝐹 : 𝐸 → 𝐹

Γ ⊢𝑠𝑖 mod` 𝑉 d mod` 𝑉
′ : `𝐴 @ 𝐹

T-App
Γ ⊢𝑠𝑖 𝑀 : 𝐴 → 𝐵 @𝐸 d 𝑀 ′

Γ ⊢𝑠𝑖 𝑁 : 𝐴 @𝐸 d 𝑁 ′

Γ ⊢𝑠𝑖 𝑀 𝑁 d 𝑀 ′ 𝑁 ′ : 𝐵 @𝐸

T-Mask
Γ,µ⟨𝐿 |⟩ ⊢𝑠𝑖 𝑀 : 𝐴 @ 𝐹 − 𝐿 d 𝑀 ′

Γ ⊢𝑠𝑖 mask𝐿 𝑀 d mask𝐿 𝑀
′ : ⟨𝐿 |⟩𝐴 @ 𝐹

T-Do
Σ ∋ ℓ : 𝐴 ↠ 𝐵 𝐸 = ℓ, 𝐹

Γ ⊢𝑠𝑖 𝑀 : 𝐴 @𝐸 d 𝑀 ′

Γ ⊢𝑠𝑖 do ℓ 𝑀 d do ℓ 𝑀 ′ : 𝐵 @𝐸

Fig. 25. Elaboration fromMetel with indexed contexts toMete (part II).

3235

3236

3237

3238

3239

3240

3241

3242

3243

3244

3245

3246

3247

3248

3249

3250

3251

3252

3253

3254

3255

3256

3257

3258

3259

3260

3261

3262

3263

3264

3265

3266

3267

3268

3269

3270

3271

3272

3273

3274

3275

3276

3277

3278

3279

3280

3281

3282

3283

Modal Effect Types 67

C Proofs forMetel

In this section, we prove the soundness and completeness of the type inference of Metel.

C.1 Definitions and Lemmas

Following Gundry [20], we define the notion of stable statements.

Definition C.1 (Stability). A statement 𝐽 is stable if it is preserved by metasubstitution. Formally,
if Θ0 ⊢ 𝐽 and \ ⦂ Θ0 ⊑ Θ1, then Θ1 ⊢ \ 𝐽 .

All our statements are stable under metasubstitution. Stability allows us to solve sub-questions
step-by-step and compose them to the solution of the whole question.
We have the following lemma showing we can compose minimal solutions of sub-questions to

obtain the minimal solution of the whole question.

Lemma C.2 (The Optimist’s lemma). If \0 ⦂ Θ0 ⊑ Θ1 is a minimal solution of 𝐽 and \1 ⦂ Θ1 ⊑ Θ2
is a minimal solution of 𝐽 ′, then \1\0 ⦂ Θ0 ⊑ Θ2 is a minimal solution of 𝐽 ∧ 𝐽 ′.

Proof. Same as Gundry [20]. Any solution 𝑡ℎ𝑒𝑡𝑎 ⦂ Θ0 ⊑ Θ to the question (Θ0, 𝐽 ∧ 𝐽 ′) should
solve (Θ0, 𝐽), thus factor through \0 with cofactor Z0 ⦂ Θ1 ⊑ Θ′. Then Z0 should solve (Θ1, \0 𝐽

′),
thus factor through \1 with cofactor Z1. Our goal follow from \ factors through \1\0 with cofactor
Z1 ⦂ Θ2 ⊑ Θ such that \ ≡ Z1\1\0 ⦂ Θ0 ⊑ Θ. □

Although this lemma only applies to questions without outputs defined in Definition B.2, we can
use similar ideas in proofs for questions with outputs defined in Definition B.3 .

C.2 Unification

Lemma B.4 (Soundness and generality of kind restriction). If Θ0 ⊢ 𝐴 : (𝐾, 𝑅) ⊣ Θ1, then

Θ0 ⊑ Θ1 is a minimal solution of (Θ0;𝐴 : (𝐾, 𝑅))

Proof. We want to show that Θ0 ⊑ Θ1, Θ1 ⊢ 𝐴 : (𝐾, 𝑅), and for any other solution \ ⦂ Θ0 ⊑ Θ′,
we have \ ⦂ Θ1 ⊑ Θ′. By straightforward induction on the judgement Θ ⊢ 𝐴 : (𝐾, 𝑅) ⊣ Θ′. The
most non-trivial case is when 𝐴 is a flexible variable.

Θ, 𝛼 : (𝐾 ′, 𝑅′),Θ′ ⊢ 𝛼 : (𝐾, 𝑅) ⊣ Θ, 𝛼 : (𝐾 ′ ⊓ 𝐾, 𝑅′ ⊓ 𝑅),Θ′

Soundness follows from 𝐾 ′ ⊓ 𝐾 ⩽ 𝐾 and 𝑅′ ⊓ 𝑅 ⩽ 𝑅. Generality follows from that 𝛼 : (𝐾 ′, 𝑅′)
and 𝛼 : (𝐾, 𝑅) must both hold for any solution, and the meet operation ⊓ gives the greatest lower
bounds. Other cases follow from IHs and Lemma C.2. □

Lemma B.5 (Completeness of kind restriction). If \ ⦂ Θ0 ⊑ Θ is a solution to the kinding

question (Θ0;𝐴 : (𝐾, 𝑅)), then there exists Θ1 such that Θ0 ⊢ 𝐴 : (𝐾, 𝑅) ⊣ Θ1.

Proof. Straightforward induction on the declarative kinding judgements. □

Lemma B.6 (Soundness and generality of unification).
1. If Θ0 ⊢ 𝐴 ≡ 𝐵 ⊣ Θ1, then Θ0 ⊑ Θ1 is a minimal solution of (Θ0;𝐴 ≡ 𝐵).
2. If Θ0 | Ξ ⊢ 𝛼 ≡ 𝐴 ⊣ Θ1, 𝐴 is not a flexible variable, and Ξ only contains declaration of flexible

variables appearing in 𝐴, then Θ0,Ξ ⊑ Θ1 is a minimal solution of (Θ0;𝛼 ≡ 𝐴).

Proof. For 1, we want to show that Θ1 ⊢ 𝐴 ≡ 𝐵, and for any other \ ⦂ Θ0 ⊑ Θ′ with
Θ′ ⊢ \𝐴 ≡ \𝐵, there exists Z ⦂ Θ1 ⊑ Θ′ such that \ ≡ Z ⦂ Θ0 ⊑ Θ′. For 2, we want to show that
Θ1 ⊢ 𝐴 ≡ 𝐵, and for any other \ ⦂ Θ0,Ξ ⊑ Θ′ with Θ′ ⊢ \𝛼 ≡ \𝐵, there exists Z ⦂ Θ1 ⊑ Θ′ such
that \ ≡ Z ⦂ Θ0 ⊑ Θ′. We prove 1 and 2 simultaneously by mutual induction on the unification

3284

3285

3286

3287

3288

3289

3290

3291

3292

3293

3294

3295

3296

3297

3298

3299

3300

3301

3302

3303

3304

3305

3306

3307

3308

3309

3310

3311

3312

3313

3314

3315

3316

3317

3318

3319

3320

3321

3322

3323

3324

3325

3326

3327

3328

3329

3330

3331

3332

68 Wenhao Tang, Leo White, Stephen Dolan, Daniel Hillerström, Sam Lindley, and Anton Lorenzen

judgement Θ0 ⊢ 𝐴 ≡ 𝐵 ⊣ Θ1 and Θ0 | Ξ ⊢ 𝛼 ≡ 𝐴 ⊣ Θ1. Similar to the proof of unification in
Gundry [20], the key observation is that most unification rules does not introduce new flexible
variables, and for all definitions 𝛽 = 𝐵 in Θ1, we must have Θ′ ⊢ \𝛽 ≡ \𝐵 for the problem to be
solved. Most cases follow from similar and routine usages of IHs. We only elaborate interesting
and representative cases.
Case U-Rigid-Rigid and U-Flex-Flex-Id. Trivial.
Case U-Flex-Flex-SkipMark.

Θ0 ⊢ 𝛼 ≡ 𝛽 ⊣ Θ1 (1)
Θ0# ⊢ 𝛼 ≡ 𝛽 ⊣ Θ1#

For any other solution \ ⦂ Θ0# ⊑ Θ′ # Ξ, we have \ ⦂ Θ0 ⊑ Θ′. IH on (1) gives a cofactor Z
such that \ ≡ Z ⦂ Θ0 ⊑ Θ′, which further gives \ ≡ Z ⦂ Θ0# ⊑ Θ′ # Ξ.

Case U-Flex-Flex-L and U-Flex-Flex-R. Follow from IH.
Case U-Flex-Flex-Subst. Follow from IH.
Case U-Flex-Flex-SkipFlex. Follow from IH.
Case U-Flex-Flex-SkipRigid. Follow from IH.
Case U-Flex-Flex-SkipTerm. Follow from IH.
Case U-Flex-Flex-SkipLock. Follow from IH.
Case U-Flex-Rigid-L and U-Flex-Rigid-R. Follow from IH.
Case U-Mod and U-Arrow. Follow from IH and Lemma C.2.
Case U-Relative and U-Effect-Closed. Trivial.
Case U-Absolute. Follow from IH.
Case U-Effect-L and U-Effect-R. Follow from IH.
Case U-Effect-LR.

𝐿1 ⊈ 𝐿2 𝐿2 ⊈ 𝐿1
Θ0, Ŷ ⊢ Ŷ1 := 𝐿2 − 𝐿1, Ŷ ⊣ Θ1 (1) Θ1 ⊢ Ŷ2 := 𝐿1 − 𝐿2, Ŷ ⊣ Θ2 (2)

Θ0 ⊢ 𝐿1, Ŷ1 ≡ 𝐿2, Ŷ2 ⊣ Θ2

For any other solution \ ⦂ Θ0 ⊑ Θ′, suppose \Ŷ1 = 𝐸1 and \Ŷ2 = 𝐸2. Since 𝐿1, 𝐸1 = 𝐿2, 𝐸2,
there exists 𝐸 such that 𝐸1 = 𝐿2 − 𝐿1, 𝐸 and 𝐸2 = 𝐿1 − 𝐿2, 𝐸. Then by IHs on (1) and (2), and
Lemma C.2, we can show that Z = \, 𝐸/Ŷ is the required cofactor.

Case U-Flex-Rigid-Solve. Any other solutions must solve 𝐴 : (𝐾, 𝑅) and 𝛼 ≡ 𝐴. Follow from IH.
Case U-Flex-Rigid-Subst and U-Flex-Rigid-Depend. Follow from IH.
Case U-Flex-Rigid-SkipFlex, U-Flex-Rigid-SkipRigid, U-Flex-Rigid-SkipTerm,

U-Flex-Rigid-SkipLock, and U-Flex-Rigid-SkipMark. Follow from IH.
□

Lemma B.7 (Completeness of unification).
1. If \ ⦂ Θ0 ⊑ Θ is a solution to the unification question (Θ0;𝐴 ≡ 𝐵), then there exists Θ1 such

that Θ0 ⊢ 𝐴 ≡ 𝐵 ⊣ Θ1.

2. If \ ⦂ Θ0,Ξ ⊑ Θ is a solution to the unification question (Θ0,Ξ;𝛼 ≡ 𝐴), then there exists Θ1
such that Θ0 | Ξ ⊢ 𝛼 ≡ 𝐴 ⊣ Θ1.

Proof. We prove 1 and 2 simultaneously. By a straightforward induction on the declarative
rules for unification, we can show that if \ is a solution for (Θ0;𝐴 ≡ 𝐵), then it must also solve the
questions of all premises forΘ0 ⊢ 𝐴 ≡ 𝐵 ⊣ _ in the algorithmic rules. Then by IHs and Lemma B.5 we
can show that there exists Θ1 such that Θ0 ⊢ 𝐴 ≡ 𝐵 ⊣ Θ1 holds. The same applies to (Θ0,Ξ;𝛼 ≡ 𝐴).
Base cases 𝛼 ≡ 𝛼 and 𝛼 ≡ 𝛼 hold trivially. The only case where the algorithmic rules require extra

3333

3334

3335

3336

3337

3338

3339

3340

3341

3342

3343

3344

3345

3346

3347

3348

3349

3350

3351

3352

3353

3354

3355

3356

3357

3358

3359

3360

3361

3362

3363

3364

3365

3366

3367

3368

3369

3370

3371

3372

3373

3374

3375

3376

3377

3378

3379

3380

3381

Modal Effect Types 69

conditions to succeed is U-Flex-Rigid-Solve where in the premise the kinding of𝐴 cannot depend
on the flexible variable 𝛼 . For 𝛼 ≡ 𝐴 where 𝐴 is not a flexible variable and 𝛼 is not assigned to
a type in Θ0, we can show that Θ ⊢ \𝛼 ≡ \𝐴 does not hold for any solutions if 𝐴 contains 𝛼 by
induction on the declarative rules of type equivalence. □

C.3 Type Inference

Lemma C.3 (Soundness and generality of transformation). For the question (Θ0, (`, 𝜎) ⇒
a @ e), if Θ0 ⊢ (`, 𝜎) ⇒ a @𝐸 ⊣ Θ1, then (Θ0 ⊑ Θ1, 𝐸) is a minimal solution.

Proof. Follow from Lemma B.4 and Lemma B.8. □

Lemma C.4 (Soundness and generality of instantiation). For the question (Θ0, 𝜎 ⪯𝑅 e), if
Θ0 ⊢ 𝜎 ⪯𝑅 𝐴 ⊣ Θ1, then (Θ0 ⊑ Θ1, 𝐴) is a minimal solution.

Proof. By definition, Θ1 = Θ0,Ξ where Ξ contains exactly all flexible type variables introduced
by this instantiation. It is obvious that all other solutions can factor through Θ0 ⊑ Θ0,Ξ by
substituting flexible variables in Ξ with proper types. □

Lemma C.5 (Polymorphic weakening). If Γ, 𝑥 :` 𝜎, Γ′ ⊢𝑠 𝑀 : 𝐴 @𝐸 and 𝜎 ⪯gen 𝜎 ′, then
Γ, 𝑥 :` 𝜎 ′, Γ′ ⊢𝑠 𝑀 : 𝐴 @𝐸.

Lemma B.10 (No negative effects). For the type inference question (Θ0;𝑀 : e@ e) with the

implicit condition ⊢ Θ0 pos and ⊢ 𝑀 pos, if Θ0 ⊢ 𝑀 : 𝐴 @𝐸 ⊣ Θ1, then ⊢ Θ1 pos and ⊢ 𝐴 pos.

Proof. By straightforward induction on the typing judgement of type inference. □

Theorem B.11 (Soundness and generality of type inference). For the type inference question
(Θ0;𝑀 : e@ e), if Θ0 ⊢ 𝑀 : 𝐴 @𝐸 ⊣ Θ1, then (Θ0 ⊑ Θ1, 𝐴, 𝐸) is a minimal solution.

Proof. We want to show that if ⊢ Θ0 ng, Θ0 ⊢ 𝑀 ok and Θ0 ⊢ 𝑀 : 𝐴 @𝐸 ⊣ Θ1, then Θ0 ⊑ Θ1
and Θ1 ⊢ 𝑀 : 𝐴 @𝐸. Moreover, for any \ ′ ⦂ Θ0 ⊑ Θ′ with Θ′ ⊢ 𝑀 : 𝐴′ @𝐸′, there exists
Z ⦂ Θ1 ⊑ Θ′ such that \ ′ ≡ Z ⦂ Θ0 ⊑ Θ′, Θ′ ⊢ Z𝐴 ⪯gen 𝐴

′, and 𝐸 ⩽ 𝐸′.
By induction on the derivation of Θ0 ⊢ 𝑀 : 𝐴 @𝐸 ⊣ Θ1. Soundness follows from routine usages

of IHs straightforwardly. The only non-trivial cases is for T-Letmod and T-Handler where we
probably need to show the principal condition for some terms. They follow from the generality of
corresponding sub-judgements, and generality follows from IHs on these sub-judgements.
We focus on proving generality.

Case
I-Freeze

b = alocks(Θ0) ∀Δ.𝐴 = subst(Θ;𝜎)
Θ,Θ0 ⊢ (`,∀Δ.𝐴) ⇒ b @𝐸 ⊣ Θ1 (1) Θ1 ⊢ ∀Δ.𝐴 ⪯m 𝐵 ⊣ Θ2 (2)

Θ, 𝑥 :` 𝜎,Θ0 ⊢ ⌈𝑥⌉ : 𝐵 @𝐸 ⊣ Θ2

For any other solution (\ ′ ⦂ Θ, 𝑥 :` 𝜎,Θ0 ⊑ Θ′
0, 𝑥 :` \ ′𝜎,Θ′

1;𝐵
′;𝐸′)whereΘ′ = Θ′

0, 𝑥 :` \ ′𝜎,Θ′
1,

by ⊢ Θ, 𝑥 :` 𝜎,Θ0 ng and Lemma B.1, we have ` and b unchanged after metasubstitution of
\ ′. Moreover, subst(Θ′

0;\
′𝜎) is pure only if subst(Θ;𝜎) is pure since substitution preserves

purity. Thus, \ ′ must solve the question of (1). By Lemma C.3 on (1), we have 𝐸 ⩽ 𝐸′ (3)
and \ ′ factors through Θ,Θ0 ⊑ Θ1 (the metasubstitution of (1)) with cofactor Z1 ⦂ Θ1 ⊑ Θ′.
Then (Z1, 𝐵′) must solve (2). By Lemma C.4 on (2), Z1 factors through Θ1 ⊑ Θ2 (the meta-
substitution of (2)) with cofactor Z2 ⦂ Θ2 ⊑ Θ′ such that Θ′ ⊢ Z2𝐵 ≡ 𝐵′ (4), Thus, \ ′ factors
through Θ, 𝑥 :` 𝜎,Θ0 ⊑ Θ2 with cofactor Z2 ⦂ Θ2 ⊑ Θ′. Our goal follows from cofactor Z2,
(3), and (4).

3382

3383

3384

3385

3386

3387

3388

3389

3390

3391

3392

3393

3394

3395

3396

3397

3398

3399

3400

3401

3402

3403

3404

3405

3406

3407

3408

3409

3410

3411

3412

3413

3414

3415

3416

3417

3418

3419

3420

3421

3422

3423

3424

3425

3426

3427

3428

3429

3430

70 Wenhao Tang, Leo White, Stephen Dolan, Daniel Hillerström, Sam Lindley, and Anton Lorenzen

Case
I-Var

b = alocks(Θ0) ∀Δ.𝐴 = subst(Θ;𝜎) (a,𝐴′) = split(Δ, 𝐴)
Θ,Θ0 ⊢ (` ◦ a,∀Δ.𝐴′) ⇒ b @𝐸 ⊣ Θ1 (1) Θ1 ⊢ ∀Δ.𝐴 ⪯m 𝐵 ⊣ Θ2 (2)

Θ, 𝑥 :` 𝜎,Θ0 ⊢ 𝑥 : 𝐵 @𝐸 ⊣ Θ2

For any other solution (\ ′ ⦂ Θ, 𝑥 :` 𝜎,Θ0 ⊑ Θ′;𝐵′;𝐸′), by ⊢ Θ, 𝑥 :` 𝜎,Θ0 ng, Lemma B.1,
and the definition of split(−), we have `, a , and b unchanged after metasubstitution of \ ′.
The remaining part is almost the same as the proof for I-Freeze.

Case
I-Letmod

Θ0,µa ⊢ 𝑀 : 𝐴 @𝐸 ⊣ Θ1,µa ,Ξ1 (1)
Θ1 # Ξ1, 𝛼 : (Any,m) ⊢ 𝐴 ≡ 𝜙𝛼 ⊣ Θ2 # Ξ2 (2) Θ2 ⊢ (𝑀 ;a ;𝜙 ;Ξ2;𝛼) ⇕ (b, 𝜎) ⊣ Θ3 (3)

Θ3, 𝑥 :b 𝜎 ⊢ 𝑁 : 𝐵 @ 𝐹 ⊣ Θ4 (4) 𝐹 ′ = solve(a : 𝐸 → 𝐹) (5)
Θ0 ⊢ leta 𝜙 𝑥 = 𝑀 in 𝑁 : 𝐵 @ 𝐹 ′ ⊣ Θ3

For any other solution (\ ′ ⦂ Θ0 ⊑ Θ′;𝐵′; 𝐹 ′1), we have Θ′ ⊢ leta 𝜙 𝑥 = 𝑀 in 𝑁 : 𝐵′ @ 𝐹 ′1.
Inversion gives

Θ′ ⊢ (𝑀 ;a ;Δ;𝜙 ;𝐴′) ⇕ (b ′, 𝜎 ′)
Θ′,µa ,Δ ⊢𝑠 𝑀 : 𝜙𝐴′ @𝐸′

Θ′, 𝑥 :b ′ 𝜎 ′ ⊢𝑠 𝑀 : 𝐵′ @ 𝐹 ′1
a𝐹 ′1 : 𝐸

′ → 𝐹 ′1
By definition, we have b ′ = b . Since a does not contain flexible variables, by

Θ′,µa ,Δ ⊢𝑠 𝑀 : 𝜙𝐴′ @𝐸′

we have (\ ′ ⦂ Θ0,µa ⊑ Θ′,µa ,Δ;𝐴′;𝐸′) solves the question of (1). By IH on (1), we have \ ′
factors through the metasubstitution of (1) with cofactor Z1 ⦂ Θ1,µa ,Ξ1 ⊑ Θ′,µa ,Δ such
that 𝐸 ⩽ 𝐸′ and Θ′ ⊢ Z1𝐴 ≡ 𝜙𝐴′.
Then Z ′1 = Z1, 𝐴

′/𝛼 must solve the statement of (2). By Lemma B.6 on (2), we have Z ′1 factors
through the metasubstitution of (2) with cofactor Z2 ⦂ Θ2 # Ξ2 ⊑ Θ′ # Δ. Case analysis on
whether value restriction is satisfied.
Case 𝑀 ∈ Val. We have 𝜎 = gen(Ξ2;𝛼) and 𝜎 ′ = ∀Δ.𝐴′. By Z2 ⦂ Θ2 # Ξ2 ⊑ Θ′ # Δ and

Z2𝛼 ≡ 𝐴′, we have Θ′ ⊢ 𝜎 ⪯gen 𝜎
′. Then by Lemma C.5 on Θ′, 𝑥 :b ′ 𝜎 ′ ⊢𝑠 𝑀 : 𝐵′ @ 𝐹 ′

and b = b ′, we have

Θ′, 𝑥 :b 𝜎 ⊢𝑠 𝑀 : 𝐵′ @ 𝐹 ′1

Thus, (Z2 ⦂ Θ3, 𝑥 :b 𝜎 ⊑ Θ′, 𝑥 :b 𝜎 ;𝐵′; 𝐹 ′1) solves the question of (4). Observe that
by (1) and (2), 𝜎 cannot contain flexible modal or effect variables; otherwise it would
violate ⊢ Θ0 ng since the only way for the type of𝑀 to rely on flexible modal or effect
variables in Θ0 is via usage of term variables in Θ0. Thus we have ⊢ Θ3, 𝑥 :b 𝜎 ng. Then
by IH on (4), we have Z2 factors through the metasubstitution of (4) with cofactor Z3
such that 𝐹 ⩽ 𝐹 ′1 and Θ ⊢ Z3𝐵 ≡ 𝐵′ (6). By Lemma B.8 on (5) and a𝐹 ′1 : 𝐸′ → 𝐹 ′1, we
have 𝐹 ′ ⩽ 𝐹 ′1 (7). Our goal follows from cofactor Z3, (6), and (7).

Case 𝑀 ∉ Val. We have

Θ2 ⊢ gen(Ξ2;𝛼) ⪯i 𝜎 ⊣ Θ3
Θ′ ⊢ ∀Δ.𝐴′ ⪯i 𝜎

′

Same as the above sub-case, we have Θ′ ⊢ gen(Ξ2;𝛼) ⪯gen ∀Δ.𝐴′. By definition of
algorithmic ⪯i, we have Θ3 = Θ2,Ξ3 where Ξ3 contains the flexible intuitionistic

3431

3432

3433

3434

3435

3436

3437

3438

3439

3440

3441

3442

3443

3444

3445

3446

3447

3448

3449

3450

3451

3452

3453

3454

3455

3456

3457

3458

3459

3460

3461

3462

3463

3464

3465

3466

3467

3468

3469

3470

3471

3472

3473

3474

3475

3476

3477

3478

3479

Modal Effect Types 71

variables appearing in 𝜎 . Thus, by Z2 ⦂ Θ2 ⊑ Θ′, there exists a metasubstitution
Z ′2 ⦂ Θ2,Ξ3 ⊑ Θ2 which substitutes flexible variables in Ξ3 such that Θ′ ⊢ Z2Z ′2𝜎 ≡ 𝜎 ′.
Then we have Z2Z ′2 ⦂ Θ3, 𝑥 :b 𝜎 ⊑ Θ′, 𝑥 :b 𝜎 ′, which gives that (Z2Z ′2 ;𝐵′; 𝐹 ′1) solves (4).
Similar to the above sub-case, 𝜎 does not contain flexible modal or effect variables
since we use ⪯i and have ⊢ Θ0 ng. Then by IH on (4), we have Z2Z ′2 factors through
the metasubstitution of (4) with cofactor Z3 such that 𝐹 ⩽ 𝐹 ′1 and Θ ⊢ Z3𝐵 ≡ 𝐵′ (6).
By Lemma B.8 on (5) and a𝐹 ′1 : 𝐸

′ → 𝐹 ′1, we have 𝐹
′ ⩽ 𝐹 ′1 (7). Our goal follows from

cofactor Z3, (6), and (7).
Case

I-Abs
Θ0, 𝛼 : (Any, i), 𝑥 : 𝛼 ⊢ 𝑀 : 𝐵 @𝐸 ⊣ Θ1, 𝑥 : 𝛼,Ξ1 (1)

Θ0 ⊢ _𝑥.𝑀 : 𝛼 → 𝐵 @𝐸 ⊣ Θ1,Ξ1

For any other solution (\ ′ ⦂ Θ0 ⊑ Θ′;𝐴′ → 𝐵′;𝐸′), we have Θ′ ⊢𝑠 _𝑥 .𝑀 : 𝐴′ → 𝐵′ @𝐸′.
Inversion gives

Θ′, 𝑥 : 𝐴′ ⊢𝑠 𝑀 : 𝐵′ @𝐸′

Letting \1 = \ ′, 𝐴′/𝛼 , we have that (\1, 𝐵′, 𝐸′) solves the question of (1). By ⊢ Θ0 ng

we have ⊢ Θ0, 𝛼 : (Any, i), 𝑥 : 𝛼 ng. Then by IH on (1), we have \1 factors through the
metasubstitution of (1) with cofactor Z ⦂ Θ1, 𝑥 : 𝛼,Ξ1 ⊑ Θ′, 𝑥 : 𝛼, 𝑥 : 𝐴′ such that 𝐸 ⩽ 𝐸′ (2)
and Θ′ ⊢ Z𝐵 ≡ 𝐵′ (3). Observe that \ ′ ≡ \1 ≡ Z ⦂ Θ0 ⊑ Θ′. Our goal follows from cofactor Z ,
(2), and (3).

Case
I-AbsAnno
Θ0, 𝑥 : 𝐴 ⊢ 𝑀 : 𝐵 @𝐸 ⊣ Θ1, 𝑥 : 𝐴,Ξ1 (1)

Θ0 ⊢ _𝑥𝐴 .𝑀 : 𝐴 → 𝐵 @𝐸 ⊣ Θ1,Ξ1

Our goal follows from IH on (1).
Case

I-App
Θ0 ⊢ 𝑀 : 𝐴 @𝐸 ⊣ Θ1 (1)

Θ1 ⊢ 𝑁 : 𝐵 @ 𝐹 ⊣ Θ2 (2) Θ2, 𝛼 : (Any,m) ⊢ 𝐴 ≡ 𝐵 → 𝛼 ⊣ Θ3 (3)
Θ0 ⊢ 𝑀 𝑁 : 𝛼 @𝐸 ∪ 𝐹 ⊣ Θ3

For any other solution (\ ′ ⦂ Θ0 ⊑ Θ′;𝐴1;𝐸1), we have Θ′ ⊢ 𝑀 𝑁 : 𝐴1 @𝐸1. Inversion gives

Θ′ ⊢𝑠 𝑀 : 𝐴′ → 𝐴1 @𝐸1
Θ′ ⊢𝑠 𝑁 : 𝐵′ @𝐸1

Then (\ ′;𝐴′ → 𝐴1;𝐸1) must solve the question of (1). By IH on (1), we have \ ′ factors
through the metasubstitution of (1) with cofactor Z1 ⦂ Θ1 ⊑ Θ′ such that 𝐸 ⩽ 𝐸1 and
Θ′ ⊢ Z1𝐴 ≡ 𝐴′ → 𝐴1.
Then (Z1;𝐵′;𝐸1) must solve the question (2). By IH on (2), we have Z1 factors through the
metasubstitution of (2) with cofactor Z2 ⦂ Θ2 ⊑ Θ′ such that 𝐹 ⩽ 𝐸1 and Θ′ ⊢ Z2𝐵 ≡ 𝐵′.
Letting Z ′2 = Z2, 𝐴1/𝛼 , we have Z ′2 solves the statement of (3). By Lemma B.6 on (3), Z ′2
factors through the metasubstitution of (3) with cofactor Z3 ⦂ Θ3 ⊑ Θ′. By Z2 ≡ Z3 ⦂ Θ2, 𝛼 :
(Abs,m) ⊑ Θ′, we have Θ′ ⊢ Z3𝛼 ≡ 𝐴1 (4). By 𝐸 ⩽ 𝐸1 and 𝐹 ⩽ 𝐹1 we have 𝐸 ∪ 𝐹 ⩽ 𝐸1 (5).
Our goal follows from cofactor Z3, (4), and (5).

3480

3481

3482

3483

3484

3485

3486

3487

3488

3489

3490

3491

3492

3493

3494

3495

3496

3497

3498

3499

3500

3501

3502

3503

3504

3505

3506

3507

3508

3509

3510

3511

3512

3513

3514

3515

3516

3517

3518

3519

3520

3521

3522

3523

3524

3525

3526

3527

3528

72 Wenhao Tang, Leo White, Stephen Dolan, Daniel Hillerström, Sam Lindley, and Anton Lorenzen

Case
I-LetAnno

Θ0 ⊢ (𝑀 ;Δ;𝐴) ⇕† 𝜎 ⊣ Θ1 (1) Θ1 # Δ ⊢ 𝑀 : 𝐴′ @𝐸 ⊣ Θ2 # Δ,Ξ2 (2)
Θ2 # Δ,Ξ2 ⊢ 𝐴′ ≡ 𝐴 ⊣ Θ3 # Δ,Ξ3 (3) Θ3, 𝑥 : 𝜎 ⊢ 𝑁 : 𝐵 @ 𝐹 ⊣ Θ4, 𝑥 : 𝜎,Ξ4 (4)

Θ0 ⊢ let 𝑥∀Δ.𝐴 = 𝑀 in 𝑁 : 𝐵 @𝐸 ∪ 𝐹 ⊣ Θ4,Ξ4

By definition of ⇕† and (1), Θ0 = Θ1. For any other solution (\ ′ ⦂ Θ0 ⊑ Θ′, 𝐵′, 𝐸1), we have

Θ′ ⊢𝑠 let 𝑥∀Δ.𝐴 = 𝑀 in 𝑁 : 𝐵′ @𝐸1.

Inversion gives
Θ′ ⊢ (𝑀,Δ, 𝐴) ⇕† 𝜎
Θ′,Δ ⊢𝑠 𝑀 : 𝐴 @𝐸1
Θ′, 𝑥 : 𝜎 ⊢𝑠 𝑁 : 𝐵′ @𝐸1

We have \ ′ ⦂ Θ0 # Δ ⊑ Θ′ # Δ and Θ′ # Δ ⊢𝑠 𝑀 : 𝐴 @𝐸1, which gives that (\ ′, 𝐴, 𝐸1) solves
the question of (2). By IH on (2), we have \ ′ factors through the metasubstitution of (2) with
cofactor Z1 ⦂ Θ2 # Δ,Ξ2 ⊑ Θ′ # Δ such that Θ′ # Δ ⊢ Z1𝐴′ ≡ 𝐴 and 𝐸 ⩽ 𝐸1.
Then Z1 solves the statement of (3). By Lemma B.6 on (3), Z1 factors through the metasubsti-
tution of (3) with cofactor Z2 ⦂ Θ3 # Δ,Ξ3 ⊑ Θ′ # Δ.
Since 𝜎 does not contain any flexible variable, we have Z2 ⦂ Θ3, 𝑥 : 𝜎 ⊑ Θ′, 𝑥 : 𝜎 . Thus,
we have (Z2, 𝐵′, 𝐸1) solves the question of (4). By IH on (4), we have Z2 factors through the
metasubstitution of (4) with cofactor Z3 ⦂ Θ4, 𝑥 : 𝜎,Ξ4 ⊑ Θ′, 𝑥 : 𝜎 such thatΘ′ ⊢ Z3𝐵 ≡ 𝐵′ (5)
and 𝐹 ⩽ 𝐸1. By 𝐸 ⩽ 𝐸1 and 𝐹 ⩽ 𝐸1 we have 𝐸 ∪ 𝐹 ⩽ 𝐸1 (6). Our goal follows from cofactor
Z3, (5), and (6).

Case
I-Do
Σ ∋ ℓ : 𝐴 ↠ 𝐵 Θ0 ⊢ 𝑀 : 𝐴1 @𝐸 ⊣ Θ1 (1) Θ1 ⊢ 𝐴1 ≡ 𝐴 ⊣ Θ2 (2)

Θ0 ⊢ do ℓ 𝑀 : 𝐵 @ {ℓ} ∪ 𝐸 ⊣ Θ2

Our goal follows from IH on (1) and Lemma B.6 on (2).
Case

I-Mask
Θ0,µ⟨𝐿 |⟩ ⊢ 𝑀 : 𝐴 @𝐸 ⊣ Θ1 (1) 𝐹 = solve(⟨𝐿 |⟩ : 𝐸 → ·) (2)

Θ0 ⊢ mask𝐿 𝑀 : ⟨𝐿 |⟩𝐴 @ 𝐹 ⊣ Θ2

Our goal follows from IH on (1) and Lemma B.8 on (2).
Case

I-Handler
𝐷 = {ℓ𝑖 }𝑖 {ℓ𝑖 : 𝐴𝑖 ↠ 𝐵𝑖 } ⊆ Σ

Θ,µ⟨|𝐷 ⟩ ⊢ 𝑀 : 𝐴0 @𝐸′ ⊣ Θ−1,µ⟨|𝐷 ⟩,Ξ
′ (1) Θ−1 ⊢ (𝑀 ;Ξ′;𝐴0) ⇓ 𝐴 ⊣ Θ0 (2)

Θ0, 𝑥 : ⟨|𝐷⟩𝐴 ⊢ 𝑁 : 𝐵0 @𝐸𝑟 ⊣ Θ′
0, 𝑥 : _,Ξ′

0 (3) Θ′
0 ⊢ (𝑁 ;Ξ′

0;𝐵0) ⇓ 𝐵 ⊣ Θ1 (4)
[Θ𝑖 , 𝑝𝑖 : 𝐴𝑖 , 𝑟𝑖 : 𝐵𝑖 → 𝐵 ⊢ 𝑁𝑖 : 𝐵𝑖 @𝐸𝑖 ⊣ Θ′

𝑖 , 𝑝𝑖 : _, 𝑟𝑖 : _,Ξ
′
𝑖 (5)

Θ′
𝑖 ,Ξ

′
𝑖 ⊢ 𝐵𝑖 ≡ 𝐵 ⊣ Θ𝑖+1 (6)]𝑛𝑖=1

𝐸 = solve(⟨|𝐷⟩ : 𝐸′ → ·) 𝐹 = 𝐸 ∪ 𝐸𝑟 ∪ (∪𝑖𝐸𝑖)
Θ ⊢ handle 𝑀 with {return 𝑥 ↦→ 𝑁 } ⊎ {ℓ𝑖 𝑝𝑖 𝑟𝑖 ↦→ 𝑁𝑖 }𝑛𝑖=1 : 𝐵 @ 𝐹 ⊣ Θ𝑛+1

Though this rule looks scary, there is nothing special we need for proving it compared to
the cases we have shown. For any other solution (\ ′ ⦂ Θ ⊑ Θ′;𝐵′; 𝐹 ′), we have

Θ′ ⊢𝑠 handle 𝑀 with 𝐻 : 𝐵′ @ 𝐹 ′ .

3529

3530

3531

3532

3533

3534

3535

3536

3537

3538

3539

3540

3541

3542

3543

3544

3545

3546

3547

3548

3549

3550

3551

3552

3553

3554

3555

3556

3557

3558

3559

3560

3561

3562

3563

3564

3565

3566

3567

3568

3569

3570

3571

3572

3573

3574

3575

3576

3577

Modal Effect Types 73

Inversion gives
Θ′ ⊢𝑠 (𝑀 ;Δ;𝐴′

0) ⇓ 𝐴′

Θ′ ⊢𝑠 (𝑁 ;Δ′;𝐵′0) ⇓ 𝐵′
Θ′,µ⟨|𝐷 ⟩,Δ ⊢𝑠 𝑀 : ⟨|𝐷⟩𝐴′

0 @𝐷 + 𝐹 ′
Θ′, 𝑥 : ⟨|𝐷⟩𝐴′,Δ′ ⊢𝑠 𝑁 : 𝐵′0 @ 𝐹 ′

[Θ′, 𝑝𝑖 : 𝐴𝑖 , 𝑟𝑖 : 𝐵𝑖 → 𝐵′ ⊢𝑠 𝑁𝑖 : 𝐵′ @ 𝐹 ′]𝑖
Our goal follow from IHs on (1), (3), (5), and Lemma B.6 on (6). To use IH on (3), we need
to show that ⊢ Θ0, 𝑥 : ⟨|𝐷⟩𝐴 ng is satisfied and ⟨|𝐷⟩𝐴 can be transformed to ⟨|𝐷⟩𝐴′ via a
proper metasubstitution. We can show both using (2) similarly to the proof for T-Letmod
when value restriction is not satisfied. Similarly, to use IHs on (4), we can again show that
⊢ Θ𝑖 , 𝑝𝑖 : 𝐴𝑖 , 𝑟𝑖 : 𝐵𝑖 → 𝐵 ng is satisfied and 𝐵𝑖 → 𝐵 can be transformed to 𝐵𝑖 → 𝐵′ via a
proper metasubstitution using (5).

□

Theorem B.12 (Completeness of Type Inference). If ⊢ Θ0 ng, Θ0 ⊢ 𝑀 ok, \ ⦂ Θ0 ⊑ Θ, and
Θ ⊢𝑠 𝑀 : 𝐴 @ 𝐹 , then Θ0 ⊢ 𝑀 : 𝐵 @𝐸 ⊣ Θ1 for some Θ1, 𝐵, and 𝐸.

Proof. By induction on the typing derivation Θ ⊢𝑠 𝑀 : 𝐴 @ 𝐹 .
Case

T-Freeze
b = alocks(Θ′) ∀Δ.𝐴 = subst(Θ;𝜎)

Θ,Θ′ ⊢ (`,∀Δ.𝐴) ⇒ b @𝐸 (1) Θ,Θ′ ⊢ ∀Δ.𝐴 ⪯m 𝐵

Θ, 𝑥 :` 𝜎,Θ′ ⊢𝑠 ⌈𝑥⌉ : 𝐵 @𝐸

Suppose Θ0 = Θ−1, 𝑥 :`′ 𝜎 ′,Θ′
0. By Lemma B.1 and ⊢ Θ0 ng, we have ⊢ Θ, 𝑥 :` 𝜎,Θ′

ng,
`′ = `, and alocks(Θ′

0) = b . Case analysis on (1).
Case There exists 𝐹 such that `𝐹 ⇒ b𝐹 . Then Θ−1,Θ′

0 ⊢ (`, 𝜎 ′) ⇒ b @𝐸′ ⊣ Θ1 also
succeeds. Our goal follows from I-Freeze.

Case Otherwise. We have Θ,Θ′ ⊢ ∀Δ.𝐴 : Abs and solve(` ⇒ b) fails. Let ∀Δ.𝐴′ =

subst(Θ−1;𝜎 ′). By Θ,Θ′ ⊢ ∀Δ.𝐴 : Abs and Θ,Θ′ ⊢ 𝜎 = \𝜎 ′, we have Θ,Θ′ ⊢ ∀Δ.𝐴 =

\ (∀Δ.𝐴′). Then by \ ⦂ Θ−1,Θ0 ⊑ Θ,Θ′, we have Θ−1,Θ′
0 ⊢ ∀Δ.𝐴′ : (Abs,m) ⊣ Θ1

succeeds for some Θ1. Our goal follows from I-Freeze.
Case

T-Var
b = alocks(Θ′) ∀Δ.𝐴 = subst(Θ;𝜎)

(a,𝐴1) = split(Δ, 𝐴) Θ,Θ′ ⊢ (` ◦ a,∀Δ.𝐴1) ⇒ b @𝐸 Θ,Θ′ ⊢ ∀Δ.𝐴1 ⪯m 𝐵

Θ, 𝑥 :` 𝜎,Θ′ ⊢𝑠 𝑥 : 𝐵 @𝐸

Suppose Θ0 = Θ−1, 𝑥 :`′ 𝜎 ′,Θ′
0 and ∀Δ.𝐴′ = subst(Θ−1;𝜎 ′). Let (a ′, 𝐴′

1) = split(Δ, 𝐴′). By
Lemma B.1 and ⊢ Θ0 ng, we have ⊢ Θ, 𝑥 :` 𝜎,Θ′

ng. Thus, 𝜎 and 𝜎 ′ do not contain flexible
modal and effect variables, which implies that a = a ′. The remaining part is similar to the
case of T-Freeze.

Case
T-Mod
Θ,µ` ⊢𝑠 𝑉 : 𝐴 @𝐸 (1) `𝐹 : 𝐸 → 𝐹 (2)

Θ ⊢𝑠 mod` 𝑉 : `𝐴 @ 𝐹

IH on (1) gives
Θ0,µ` ⊢ 𝑉 : 𝐴′ @𝐸′ ⊣ Θ1,µ`,Ξ1

3578

3579

3580

3581

3582

3583

3584

3585

3586

3587

3588

3589

3590

3591

3592

3593

3594

3595

3596

3597

3598

3599

3600

3601

3602

3603

3604

3605

3606

3607

3608

3609

3610

3611

3612

3613

3614

3615

3616

3617

3618

3619

3620

3621

3622

3623

3624

3625

3626

74 Wenhao Tang, Leo White, Stephen Dolan, Daniel Hillerström, Sam Lindley, and Anton Lorenzen

for some 𝐴′, 𝐸′, Θ1 and Ξ1. By (2) and Lemma B.9, we have 𝐹 ′ = solve(` : 𝐸′ → ·). Our goal
follows from I-Mod.

Case
T-AbsAnno
Θ, 𝑥 : 𝐴 ⊢𝑠 𝑀 : 𝐵 @𝐸 (1)
Θ ⊢𝑠 _𝑥𝐴 .𝑀 : 𝐴 → 𝐵 @𝐸

Our goal follows from IH on (1) and I-AbsAnno.
Case

T-Abs
Θ, 𝑥 : 𝑆 ⊢𝑠 𝑀 : 𝐵 @𝐸 (1)
Θ ⊢𝑠 _𝑥 .𝑀 : 𝑆 → 𝐵 @𝐸

Let \ ′ = \, 𝑆/𝛼 . We have \ ′ ⦂ Θ0, 𝛼 : (Any, i), 𝑥 : 𝛼 ⊑ Θ, 𝑥 : 𝑆 . Our goal follows from IH on
(1) and \ ′, and I-Abs.

Case
T-App
Θ ⊢𝑠 𝑀 : 𝐴 → 𝐵 @𝐸 (1) Θ ⊢𝑠 𝑁 : 𝐴 @𝐸 (2)

Θ ⊢𝑠 𝑀 𝑁 : 𝐵 @𝐸

IH on (1) gives
Θ0 ⊢ 𝑀 : 𝐴′ @𝐸′ ⊣ Θ1 (3)

for some 𝐴′, 𝐸′, and Θ1. By Theorem B.11 we have \ factors through the metasubstitution
of (3) with cofactor Z1 ⦂ Θ1 ⊑ Θ such that Θ ⊢ Z1𝐴′ ≡ 𝐴 → 𝐵. Then IH on (2) gives

Θ1 ⊢ 𝑁 : 𝐵′ @ 𝐹 ′ ⊣ Θ2 (4)
for some 𝐵′, 𝐹 ′, and Θ2. Again by Theorem B.11 we have Z1 factors through the metasub-
stitution of (4) with cofactor Z2 ⦂ Θ2 ⊑ Θ such that Θ ⊢ Z2𝐵′ ≡ 𝐴. Then by Lemma B.6,
Z3 = Z2, 𝐵/𝛼 factors through

Θ2, 𝛼 : (Any,m) ⊢ 𝐴′ ≡ 𝐵′ → 𝛼 ⊣ Θ3 (5)
with some cofactor. Our goal follows from I-App, (3), (4), and (5).

Case
T-Letmod
Θ ⊢ (𝑀 ;a ;Δ;𝜙 ;𝐴) ⇕ (b, 𝜎) Θ,µa ,Δ ⊢𝑠 𝑀 : 𝜙𝐴 @𝐸 (1)

a𝐹 : 𝐸 → 𝐹 Θ, 𝑥 :b 𝜎 ⊢𝑠 𝑁 : 𝐵 @ 𝐹 (2)
Θ ⊢𝑠 leta 𝜙 𝑥 = 𝑀 in 𝑁 : 𝐵 @ 𝐹

IH on (1) gives
Θ0,µa ,Δ ⊢ 𝑀 : 𝐴1 @𝐸′ ⊣ Θ1,µa ,Δ,Ξ1 (3)

for some 𝐴1, 𝐸′, Θ1, and Ξ1. By Theorem B.11, \ factors through the metasubstitution of
(3) with cofactor Z1 ⦂ Θ1,µa ,Δ,Ξ1 ⊑ Θ,µa ,Δ such that Θ,Δ ⊢ Z1𝐴1 ≡ 𝜙𝐴. Observe that
since𝑀 does not mention Δ in type annotations, 𝐴1 cannot contain any rigid variables in
Δ, which gives

Θ0,µa ⊢ 𝑀 : 𝐴1 @𝐸′ ⊣ Θ1,µa ,Ξ1 (4)
Z1 ⦂ Θ1,µa ,Ξ1 ⊑ Θ,µa ,Δ

Letting Z ′1 = Z1, 𝐴/𝛼 , by Lemma B.7, we have

Θ1 # Ξ1, 𝛼 : (Any,m) ⊢ 𝐴1 ≡ 𝜙𝛼 ⊣ Θ2 # Ξ2 (5)

3627

3628

3629

3630

3631

3632

3633

3634

3635

3636

3637

3638

3639

3640

3641

3642

3643

3644

3645

3646

3647

3648

3649

3650

3651

3652

3653

3654

3655

3656

3657

3658

3659

3660

3661

3662

3663

3664

3665

3666

3667

3668

3669

3670

3671

3672

3673

3674

3675

Modal Effect Types 75

By Lemma B.6, Z1 factors through the metasubstitution of (5) with cofactor Z2 ⦂ Θ2,µa ,Ξ2 ⊑
Θ,µa ,Δ. Case analysis on whether value restriction is satisfied.
Case 𝑀 ∈ Val. We have 𝜎 = ∀Δ.𝐴, 𝜎 ′ = gen(Ξ2;𝛼), and

Θ2 ⊢ (𝑀 ;a ;𝜙 ;Ξ2;𝛼) ⇕ (b, 𝜎 ′) ⊣ Θ2 (6).

By Z2 ⦂ Θ2,µa ,Ξ2 ⊑ Θ,µa ,Δ, we have Θ ⊢ Z2𝜎 ′ ⪯gen 𝜎 . Then by Lemma C.5 on (2) we
have

Θ, 𝑥 :b Z2𝜎 ′ ⊢𝑠 𝑁 : 𝐵 @ 𝐹 (7).

By principal(Θ,µa ;𝑀 ;Δ;𝜙𝐴) and ⊢ Θ ng, 𝜎 does not contain flexible modal or effect
variables. Otherwise, 𝜎 would not be the principal type since these flexible variables
could be further generalised. Thus, Z2𝜎 ′ does neither contain flexible modal or effect
variables, which gives ⊢ Θ, 𝑥 : Z1𝜎 ′ ng. Our goal follows from IH on (7), I-Let, (4), (5),
(6), and Lemma B.9.

Case 𝑀 ∉ Val. We have

Θ ⊢ ∀Δ.𝐴 ⪯i 𝜎

Θ2 ⊢ gen(Ξ2;𝛼) ⪯i 𝜎
′ ⊣ Θ3

Θ2 ⊢ (𝑀 ;a ;𝜙 ;Ξ2;𝛼) ⇕ (b, 𝜎 ′) ⊣ Θ3 (8)

By definition of ⪯i, we have Θ3 = Θ2,Ξ3 where Ξ3 only contains flexible variables in 𝜎 ′.
By Z2 ⦂ Θ2,µa ,Ξ2 ⊑ Θ,µa ,Δ, there exists Z ′2 ⦂ Θ2,Ξ3 ⊑ Θ2 such that Θ ⊢ Z2Z ′2𝜎 ′ ≡ 𝜎 .
Then we have Z2Z ′2 ⦂ Θ2,Ξ3, 𝑥 : 𝜎 ′ ⊑ Θ, 𝑥 : 𝜎 . By principal(Θ, 𝑀,Δ, 𝐴) and ⊢ Θ ng, 𝜎0
does not contain flexible modal or effect variables, which further gives that 𝜎 does not
contain flexible modal or effect variables. Thus we have ⊢ Θ, 𝑥 : 𝜎 ng. Our goal follows
from IH on (2), I-Let, (4), (5), and (8).

Case

T-LetAnno
Θ ⊢ (𝑀 ;Δ;𝐴) ⇕† 𝜎 Θ,Δ ⊢𝑠 𝑀 : 𝐴 @𝐸 (1) Θ, 𝑥 : 𝜎 ⊢𝑠 𝑁 : 𝐵 @𝐸 (2)

Θ ⊢𝑠 let 𝑥∀Δ.𝐴 = 𝑀 in 𝑁 : 𝐵 @𝐸

By definition, we have Θ0 ⊢ (𝑀 ;Δ;𝐴) ⇕† 𝜎 ⊣ Θ1 where Θ0 = Θ1. Our goal follows from IH
on (1), Theorem B.11, Lemma B.6, and IH on (2).

Case

T-Do
Σ ∋ ℓ : 𝐴 ↠ 𝐵 𝐸 = ℓ, 𝐹 Θ ⊢𝑠 𝑀 : 𝐴 @𝐸 (1)

Θ ⊢𝑠 do ℓ 𝑀 : 𝐵 @𝐸

Our goal follows from IH on (1) and Theorem B.11.
Case

T-Mask
Θ,µ⟨𝐿 |⟩ ⊢𝑠 𝑀 : 𝐴 @ 𝐹 − 𝐿 (1)
Θ ⊢𝑠 mask𝐿 𝑀 : ⟨𝐿 |⟩𝐴 @ 𝐹

Our goal follows from IH on (1) and Lemma B.9.

3676

3677

3678

3679

3680

3681

3682

3683

3684

3685

3686

3687

3688

3689

3690

3691

3692

3693

3694

3695

3696

3697

3698

3699

3700

3701

3702

3703

3704

3705

3706

3707

3708

3709

3710

3711

3712

3713

3714

3715

3716

3717

3718

3719

3720

3721

3722

3723

3724

76 Wenhao Tang, Leo White, Stephen Dolan, Daniel Hillerström, Sam Lindley, and Anton Lorenzen

Case
T-Handler

𝐷 = {ℓ𝑖 }𝑖 {ℓ𝑖 : 𝐴𝑖 ↠ 𝐵𝑖 } ⊆ Σ
Γ ⊢ (𝑀 ;Δ;𝐴0) ⇓ 𝐴 (1) Γ,µ⟨|𝐷 ⟩,Δ ⊢𝑠 𝑀 : 𝐴0 @𝐷 + 𝐹 (2)
Γ ⊢ (𝑁 ;Δ′;𝐵0) ⇓ 𝐵 (3) Γ, 𝑥 : ⟨|𝐷⟩𝐴,Δ′ ⊢𝑠 𝑁 : 𝐵0 @ 𝐹 (4)

[Γ, 𝑝𝑖 : 𝐴𝑖 , 𝑟𝑖 : 𝐵𝑖 → 𝐵 ⊢𝑠 𝑁𝑖 : 𝐵 @ 𝐹 (5)]𝑖
Γ ⊢𝑠 handle 𝑀 with {return 𝑥 ↦→ 𝑁 } ⊎ {ℓ𝑖 𝑝𝑖 𝑟𝑖 ↦→ 𝑁𝑖 }𝑖 : 𝐵 @ 𝐹

Though this rule looks scary, there is nothing special we need for proving it compared to
the cases we have shown. Our goal follows from IHs on (2), (4), and (5), using Theorem B.11
and Lemma B.9. To use IHs on (4) and (5), we need to connect the declarative intuitionistic
instantiations of (1) and (3) with their corresponding algorithmic intuitionistic instantiations,
as well as main the ⊢ − ng invariant using the principal condition of (1) and (3), similarly
to the proof for T-Letmod when value restriction is not satisfied.

□

	Abstract
	1 Introduction
	1.1 Annotating Effect Transitions
	1.2 Contributions

	2 Programming with Modal Effect Types
	2.1 Seamless First-Class Higher-Order Functions
	2.2 Absolute Modalities Define Full Effect Contexts
	2.3 Relative Modalities Define Effect Transformations
	2.4 Effect Safety and No Accidental Handling
	2.5 Composing Handlers
	2.6 Effect Transformations
	2.7 Escaping Handlers and Absolute Kinds
	2.8 Masking
	2.9 Cooperative Concurrency
	2.10 Modal Types with Effect Variables
	2.11 Modalities Anywhere

	3 A Multimodal Core Calculus with Effect Handlers
	3.1 Syntax
	3.2 Effect Contexts as Modes
	3.3 Modalities Manipulating Effect Contexts
	3.4 Kinds and Contexts
	3.5 Typing
	3.6 Masking and Handling with Absolute Kinds
	3.7 Operational Semantics
	3.8 Type Soundness and Effect Safety

	4 Extensions to the Core Calculus
	4.1 Data Types and Crisp Induction
	4.2 Commuting Modalities and Type Abstraction
	4.3 Boxing Computations under Empty Effect Contexts
	4.4 Absolute and Shallow Handlers
	4.5 Effect Variables

	5 Encoding Row-based Effect Systems into Met
	5.1 Row Effect Types with a Single Effect Variable
	5.2 Encoding
	5.3 Extensibility of the Encoding

	6 A Surface Language with Type Inference
	7 Discussion and Related Work
	7.1 Do Be Do Be Do
	7.2 Capability-based Effect Systems
	7.3 Relationship between Met and Multimodal Type Theory
	7.4 Other Related Work

	8 Conclusion
	References
	A Full Specification, Meta Theory, and Proofs for Met
	A.1 Extra Rules
	A.2 Full Specification for Extensions to Met
	A.3 The Double Category of Effects
	A.4 Lemmas for Modes and Modalities
	A.5 Lemmas for Met
	A.6 Progress
	A.7 Subject Reduction
	A.8 Proof of Encoding

	B Full Specification of Metel
	B.1 Syntax
	B.2 Statements in Context and Syntax-Directed Typing Rules
	B.3 Algorithmic Contexts and Metasubstitutions
	B.4 Algorithmic Moving between Contexts
	B.5 Type Inference
	B.6 Elaboration to the Core Calculus

	C Proofs for Metel
	C.1 Definitions and Lemmas
	C.2 Unification
	C.3 Type Inference

