1 2

16

17

18

19

20

21 22

23

24

25

26

27

28 29 30

31

32

33

34 35 36

37

38

39

40

41

42

43

44 45

46

47

- 3 WENHAO TANG, The University of Edinburgh, UK
- 4 LEO WHITE, Jane Street, UK
- 5 STEPHEN DOLAN, Jane Street, UK
- ⁶ DANIEL HILLERSTRÖM, The University of Edinburgh, UK
- ⁷ SAM LINDLEY, The University of Edinburgh, UK
- ANTON LORENZEN, The University of Edinburgh, UK

We propose a novel type system for effects and handlers using modal types. Conventional effect systems attach effects to function types, which can lead to verbose effect-polymorphic types, especially for higher-order functions. Our modal effect system provides succinct types for higher-order first-class functions without losing modularity and reusability. The core idea is to decouple effects from function types and instead to track effects through *relative* and *absolute* modalities, which represent transformations on the ambient effects provided by the context.

We formalise the idea of modal effect types in a multimodal System F-style core calculus MET with effects and handlers. MET supports modular effectful programming via modalities without relying on effect variables. We encode a practical fragment of a conventional row-based effect system with effect polymorphism, which captures most common use-cases, into MET in order to formally demonstrate the expressive power of modal effect types. To recover the full power of conventional effect systems beyond this fragment, we seamlessly extend MET to METE with effect variables. We propose a surface language METEL for METE with a sound and complete type inference algorithm inspired by FREEZEML.

1 Introduction

Effect systems allow a typed programming language to express information about what a function does when running, instead of merely providing information about what sort of results it might produce when finished.

Consider the standard map function:

$$\mathsf{map}: \forall \alpha \ \beta. \ (\mathsf{List} \ \alpha, \ \alpha \to \beta) \quad \to \quad \mathsf{List} \ \beta$$

In a typical functional programming language, this type is a statement about the values that map accepts and returns (that it takes a list of α and a function from α to β , and returns a list of β), but is silent about which effects may occur during its evaluation.

The effect systems of, say, KOKA [31] or LINKS [21] give the following more precise type to map:

$$\operatorname{map}: \forall \alpha \, \beta \, \varepsilon. \, (\operatorname{List} \, \alpha, \, \alpha \xrightarrow{\varepsilon} \beta) \xrightarrow{\varepsilon} \operatorname{List} \beta$$

This type uses *effect polymorphism*, quantifying over an *effect variable* ε , in order to express that the effects that may be performed by map (xs, f) are precisely those that may be performed by calls to f. That is, map performs no effects of its own, beyond those of the callback f.

While this type precisely expresses what we want to say about map, the annotation burden of this style of effect system is larger than it might first appear. While only a small amount of text needs to be added to turn the first type into the second, the problem lies in the quantity and location of places where it is needed. Functions like map that use no effectful features themselves still need to be annotated, as does essentially every higher-order function.

Authors' Contact Information: Wenhao Tang, wenhao.tang@ed.ac.uk, The University of Edinburgh, UK; Leo White, lwhite@janestreet.com, Jane Street, UK; Stephen Dolan, sdolan@janestreet.com, Jane Street, UK; Daniel Hillerström, daniel.hillerstrom@ed.ac.uk, The University of Edinburgh, UK; Sam Lindley, sam.lindley@ed.ac.uk, The University of Edinburgh, UK; Anton Lorenzen, anton.lorenzen@ed.ac.uk, The University of Edinburgh, UK.

This is a mild burden to the authors of new code, but a significant obstacle to extending an existing language with effectful features: signatures of much existing library code must be rewritten to support effect polymorphism, even in old libraries that do not use the new features at all. The need to update such libraries makes it difficult to add an effect system to a language in a backwardscompatible way. Instead, our goal is to support precise tracking of effects, without polluting the type of non-effectful functions like map.

1.1 **Annotating Effect Transitions**

Important steps towards this goal were taken by the languages FRANK [12, 33] and EFFEKT [7, 8], both of which use the original type for map, allowing use of effectful callbacks without requiring effect polymorphism annotations in the type of map.

The key idea enabling use of these simpler types in both languages is the *ambient effect context*. All functions are typed assuming a certain set of possible effects, and annotations are required at transitions between different effect contexts. Since the argument to map uses the same effects as map itself, there is no transition and hence no annotation is required.

Both FRANK and EFFEKT achieve this by special typing support for computations that appear 66 in argument position. In FRANK, an *adjustment* is attached to each argument, specifying how the ambient effects of the called function relate to the effects provided to its argument. In EFFEKT, arrow types appearing in argument position are parsed as *blocks*, second-class function types that 69 inherit ambient effects. While different, both of these mechanisms give elegant typings of handlers, 70 but become more complicated with more advanced uses of arrow types, such as when closures are captured and/or inserted into data structures. The essential reason is that both argument types decorated with adjustments in FRANK and block types in EFFEKT are second-class, and they use different methods to bypass this restriction. In FRANK, first-class higher-order functions rely on 74 some syntactic sugar to insert effect variables. In EFFEKT, first-class use of closures was initially disallowed entirely, and now supported with extra annotations on captured capabilities. 76

We build on this insight that types should mark transitions between effect contexts, rather than repeating the full effect context. We extend the idea by decoupling it from function arguments, and making effect transitions available as a true type constructor, usable in any context.

We work in the framework of modal types, following multimodal type theory (MTT) [17, 18], where each possible effect context is a mode, and each possible transition between effect contexts is a modality. We support both relative modalities, which describe a local change to an effect context such as entering a new handler (similar to FRANK's adjustments), and *absolute* modalities, which describe the full effect context (similar to FRANK's abilities).

Unlike FRANK and EFFEKT, our modalities are not tied to function arrows, and can be applied anywhere, even nested inside complex data structures. Our modal effect system also works smoothly with pure first-class higher-order functions; they all type check without requiring hidden effect variables or extra annotations, and can be applied to effectful arguments.

1.2 Contributions

The main contributions of this paper are:

- We give high-level overview of the main ideas through a series of examples that illustrate the verbosity of conventional effect systems, how they can be simplified by the absolute and relative modalities, and how modal effect types enable us to write expressive effectful programs in a sound and succinct way (Section 2).
 - We introduce MET, a multimode and multimodal core calculus with effect handlers and modal effect types (Section 3). We prove its type soundness and effect safety.

- 2
- 53 54 55 56 57 58 59

60

61

62

63

64

65

67

68

71

72

73

75

77

78

79

80

81

82

83

84

85

86

87

88 89

90

91

92

93

94

95

96

97 98

50

100

101

102

103

104

105

106

107 108

109 110

119

120

127

128

129 130

131

132

133

134

135

136

137

138

139

140

3

- We extend MET with data types and richer kinds of handlers. We further extend it to METE with effect variables to recover the full power of traditional effect systems (Section 4).
 - To illustrate the expressiveness of modal effect types, we formally prove that a practical fragment of traditional row-based effect systems is encodable in MET. (Section 5).
 - To demonstrate the feasibility of programming with modal effect types, we introduce METEL, a surface language based on METE with a sound and complete type inference algorithm which can automatically unbox modalities for variables (Section 6).
 - We discuss the relationships of modal effect types with the FRANK language, capability-based effect systems, and multimodal type theory. (Section 7).

Section 7 also discusses other related work and Section 8 concludes.

2 Programming with Modal Effect Types

In this section we give a series of examples to illustrate the main ideas of modal effect types. We demonstrate how modal effect types allow composition of higher-order functions and effect handlers in a modular manner with succinct types. The key enablers for this programming style are the relative and absolute modalities, which provide the programmer with a novel typing mechanism to manage effect contexts. The examples are written in METEL, whose core calculus we introduce in Sections 3 and 4, and whose design we discuss further in Section 6. METEL is a typed functional language equipped with a modal effect type system for programming with effects and handlers.

2.1 Seamless First-Class Higher-Order Functions

First-class higher-order functions are a staple ingredient of functional programming. As we explained in the introduction, extending an existing language with traditional row-based effect typing requires adding effect variables to the type signatures of pure higher-order functions. Modal effect types offer a backwards-compatible alternative, requiring no extra effect variables for types of higher-order functions that do not themselves use effects. For instance, in METEL we write the standard type for the curried implementation of map.

```
\begin{array}{l} \mathsf{map}: \forall a \ b \ . \ (a \rightarrow b) \rightarrow \mathsf{List} \ a \rightarrow \mathsf{List} \ b \\ \mathsf{map} \ f \ \mathsf{nil} \qquad = \ \mathsf{nil} \\ \mathsf{map} \ f \ (\mathsf{cons} \ x \ \mathsf{xs}) \ = \ \mathsf{cons} \ (f \ \mathsf{x}) \ \mathsf{xs} \end{array}
```

This is a genuine first-class higher-order function which can be partially applied, passed around, stored in data types, and so forth. METEL, unlike FRANK, does not implicitly insert any effect variables in the type signature of map. We may still apply map to any function that performs any effects from the effect context in which map is invoked.

The effect context for global definitions is empty (though in a practical programming language it could include some built-in effects). METEL captures this fact by implicitly *boxing* the type signature of each global definition in the *empty absolute* modality []. The elaborated type signature for map is:

map : \forall a b . []((a \rightarrow b) \rightarrow List a \rightarrow List b)

Since map itself is pure, the default empty effect context suffices. As we shall see shortly, map can be invoked under any effect context by way of unboxing and sub-effecting.

In general an *absolute* modality has the form [E], which specifies that the effect context is E. In Section 2.2 we further consider absolute modalities. In Section 2.3 we also discuss *relative modalities*.

METEL automatically unboxes variables like map when they are used, meaning that programmers may omit empty absolute modalities from the signatures of pure functions. Consequently, modal effect types can be retrofitted onto an existing programming language, while preserving the signatures of pure functions.

Wenhao Tang, Leo White, Stephen Dolan, Daniel Hillerström, Sam Lindley, and Anton Lorenzen

148 2.2 Absolute Modalities Define Full Effect Contexts

¹⁴⁹ In METEL, modalities are used to change the effect context. An absolute modality is absolute in ¹⁵⁰ the sense that it specifies an entire new effect context to replace the current one with. As an ¹⁵¹ example consider an implementation of a yield-style generator [24] using an effectful operation ¹⁵² yield : Int \Rightarrow 1 which takes an integer and returns a unit.

```
gen : [yield](List Int \rightarrow 1)
gen xs = map (fun x \rightarrow do yield x) xs; ()
```

4

153

154

155

156

157

158

159

160

161

162

163

164

165 166

167

168

169 170 171

172

173

174

175

176

177

178

179

180

181

The gen function implements an integer generator which reflects a given list as a computation by yielding each element of the list. In the function body we apply map to an effectful function that invokes the operation gen via the keyword **do**. The absolute modality [yield] specifies the effect context required to run gen (it must be able to perform yield). The type signature tells METEL to implicitly box gen with the modality [yield].

The use of map is implicitly unboxed enabling implicit sub-effecting to coerce the empty effects of its definition to the yield effect of its invocation site. In general unboxing and sub-effecting allow functions to be used in a larger effect context than the one in which it was defined, for instance:

```
gen' : [yield, foo, bar, baz](List Int \rightarrow 1)
gen' xs = gen xs
```

In a traditional row-based effect system, the effect context is changed by way of effect polymorphism, and we would give the following type signature to gen.

```
gen : \forall e . List Int \xrightarrow{\text{yield, e}} 1
```

2.3 Relative Modalities Define Effect Transformations

Henceforth, we will frequently refer to the effect context in which a given term or variable is used as the *ambient* effect context. Pure higher-order functions like map are local in the sense that they do not change the ambient effect context. Modal effect types come into their own when the programming language has facilities that act on effect contexts, such as handlers and masks [4].

For example, we can implement an effect handler for yield that reifies a given computation into a list by interpreting each yield as consing the element onto the list.

```
asList m = handle m () with
return () \Rightarrow nil
yield x r \Rightarrow cons x (r ())
```

182 The body of asList applies the function m inside a handler. In the handler we have to consider 183 two things: 1) what happens when m returns; and 2) what happens when m performs yield. In the 184 first case, we map the unit value () to the empty list nil. In the second case, we cons the yielded 185 element x onto the list returned by the application of r. Here r is bound to the continuation of 186 performing yield inside m. Its argument type is given by the return type of the operation being 187 handled (unit in the case of yield) and its return type is given by the return type of the handler, 188 i.e. $r : 1 \rightarrow List$ Int. The continuation r reinstalls the handler such that residual invocations of 189 yield are handled in the same manner. This style is known as deep handlers in the literature [26]. 190

We can annotate this function with an absolute modality.

```
asList : [yield](1 \rightarrow 1) \rightarrow List Int
```

Often this type is not the one we want as it means that the function parameter is *only* allowed to use the yield operation. The absolute modality fixes the effect context, preventing the function argument from using other effects. Sometimes it may be desirable to do so, however, more often

195 196

191

192

193

200

201

202

203

204

205

206

207

208

209 210

211

212

213

214

215

216

217

218

224

225

226

227

228

229

230

231

232 233

234

235

236

237

238

239

we want to be able to handle the specific yield operation of an arbitrary effectful function that performs multiple different operations. To this end, we can instead use *relative modalities*, which enable us to describe the relative change that the handler makes to the ambient effect context, e.g.

Int

asList :
$$\langle yield \rangle (1 \rightarrow 1) \rightarrow List$$

The relative modality <yield> is part of the parameter type and indicates that the effect context for the term inside is derived by extending the ambient effect context with yield. Thus, when m is automatically unboxed and used in asList, the effect context required by m matches the effect context in the scope of the yield handler. The relative modality here captures the fact that asList handles the yield effect when invoking m, but also allows m to perform other effects (which will be forwarded to an outer handler). In a traditional row-based effect system, we would give the following type signature to asList.

asList :
$$\forall$$
 e . (1 $\xrightarrow{\text{yield, e}}$ 1) $\xrightarrow{\text{e}}$ List Int

To run asList, we must box its argument with <yield>.

> asList <yield>(fun () \rightarrow gen [3,1,4,1,5,9])

[3,1,4,1,5,9] : List Int

The syntax <yield>(...) boxes the term inside with the relative modality <yield>. It extends the ambient effect context with yield for the program inside, allowing the effectful function gen to be used. Note that both asList and gen are automatically unboxed as usual.

In general, relative modalities have the form <L |D>, where L is a row of operations that is masked from the ambient effect context, and D is a row of operations that extends the ambient effect context. We write <D> as shorthand for <|D>. We expand more on masking in Section 2.8.

2.4 Effect Safety and No Accidental Handling

In asList, the parameter m is used under the same effect context in which it is introduced. In general, METEL restricts the use of any variable whose value depends on the effect context at the time of its binding occurrence (e.g., a function *not* boxed by an absolute modality). Such a variable may only be used under an effect context compatible with one at the binding occurrence.

This property is important for guaranteeing effect safety, i.e., that all effects are handled. For instance, the following program is ill-typed

```
asListWrong : <yield>(1 \rightarrow 1) \rightarrow List Int # ill-typed
asListWrong m = m (); [37,42]
```

because m requires an effect context that permits the yield effect and yet the effect context of the definition of asListWrong is empty.

This property also forces effect types to reflect where effects are handled, thus preventing the accidental handling problem [54]. For instance, we cannot give the following type to asList.

```
asList : (1 \rightarrow 1) \rightarrow \text{List Int} # ill-typed
asList m = handle m () with ... # same as in Section 2.3
```

The problem is that the handler extends the effect context with yield, and yet m is introduced before this extension. As a result, the value bound to m might use a yield operation from its effect context provided by a different handler instead of asList (we follow Leijen [30] to allow duplicated labels). If this type was allowed, asList would handle this yield unexpectedly

244

Wenhao Tang, Leo White, Stephen Dolan, Daniel Hillerström, Sam Lindley, and Anton Lorenzen

246 2.5 Composing Handlers

6

251

252

253

254

255

256

257

258

259

260 261

262

263

264

265

266

267

268

269

270 271 272

273

274

275

276

277

278

279

280

281

282

283

284

289

We can compose handlers modularly in METEL. For example, consider two integer state operations get : $1 \Rightarrow$ Int and put : Int \Rightarrow 1. We can implement a standard state handler by interpreting a computation over state operations as a state-passing function.

```
state : \forall [a] . <get, put>(1 \rightarrow a) \rightarrow Int \rightarrow (a, Int)
state m = handle m () with
return x \Rightarrow fun s \rightarrow (x, s)
get () r \Rightarrow fun s \rightarrow r s s
put s' r \Rightarrow fun s \rightarrow r () s'
```

The attentive reader may have observed that the type variable a is declared inside a box. We shall discuss the reason for this syntax in Section 2.7.

With state operations, we can write a generator which yields the prefix sum of a list.

```
prefixSum : [yield, get, put](List Int \rightarrow 1)
prefixSum xs = map (fun x \rightarrow do put (do get + x); do yield (do get)) xs; ()
```

The absolute modality [yield, get, put] aggregates all effects performed in the definition. We can now handle prefixSum by composing two handlers in sequence.

```
> asList <yield>(fun () →
    state <get,put>(fun () → prefixSum [3,1,4,1,5,9]) 0; ())
# [3,4,8,9,14,23] : List Int
```

Following the pattern we saw previously for handlers, we explicitly box the arguments with relative modalities in order to extend the effect context with the handled effects. Observe how we use state modularly: its type signature mentions only get and put even though it is applied to a computation which invokes prefixSum, which also uses yield.

2.6 Effect Transformations

We give an example similar to the one from Section 2.2 of Brachthäuser et al. [7], in which an effect handler is used to transform a computation by reperforming the handled effect. The following handler transforms all generated integers with a function and then re-generates them.

```
regen : [yield]((Int \rightarrow Int) \rightarrow <yield>(1 \rightarrow 1) \rightarrow 1)
regen f m = handle m () with
return () \Rightarrow ()
yield s r \Rightarrow do yield (f s); r ()
```

The intuition behind the type signature for regen is as follows: we handle the yield operation for the second argument (as indicated by <yield>), and the whole function also uses yield (as indicated by [yield]). This type is similar to those given by EFFEKT and FRANK modulo syntactic differences. In contrast, KOKA infers the following more verbose type.

```
\forall < e>. (f : (int) \rightarrow < yield|e> int) \rightarrow ((g : () \rightarrow < yield, yield|e> ()) \rightarrow < yield|e> ())
```

2.7 Escaping Handlers and Absolute Kinds

One of the fundamental ideas of modal effect types is to track transformations on effect contexts, rather than just full effect contexts. As a consequence, when a value leaves the scope of a handler, its ambient effect context changes, and we must keep track of this change. For instance, the most general type for the state handler define in Section 2.5 is as follows.

```
state : \forall a . <get, put>(1 \rightarrow a) \rightarrow Int \rightarrow (<get, put>a, Int)
```

The return value has type <get, put>a instead of just a because it comes from an effect context which extends the ambient one with get and put. However, this handler does not handle operations in return values. We must guarantee that the effect context in which the return value is used provides operations get and put.

As a special case, values boxed with absolute modalities do not depend on the current effect context, and thus can flexibly leave the scope of handlers. We can also give the following specialised type for the state handler where a is always boxed with the empty absolute modality [].

state : \forall a . <get, put>(1 \rightarrow []a) \rightarrow Int \rightarrow (a, Int)

Because of automatic unboxing, this is a valid type for state without changing its definition.

In practice, it is useful to allow a value of base type or an algebraic data type that contains only base types or a type boxed with absolute modalities to appear anywhere, including escaping escaping the scope of a handler. Such values can never depend on the effect context in which they are used. We introduce a kind system to METEL in which the Abs kind classifies only such absolute data types, whereas the Any kind classifies all data types. Subkinding allows any Abs type to be treated as an Any type. By default all type variables have kind Any. Recall the type for the state handler in Section 2.5.

```
state : \forall [a] . <get, put>(1 \rightarrow a) \rightarrow Int \rightarrow (a, Int)
```

The syntax ∀ [a] ascribes kind Abs to a, and thus allows values of type a to leave the scope of the handler. In practice it is usually desirable for return types of computations inside handler scopes to have absolute kind, so that they can escape, but if a handler is used locally then this need not always be the case.

2.8 Masking

Handlers extend the ambient effect context with those effects that they handle. Dually, masks remove the effects they mask from the ambient effect context [4]. Masking is a useful device to conceal private implementation details [35].

We give an example of implementing find with yield to show how masks work in METEL.

```
findWrong : (Int \rightarrow Bool) \rightarrow List Int \rightarrow Maybe Int # ill-typed
findWrong p xs = handle (map (fun x \rightarrow if p x then do yield x else ()) xs) with
return _ \Rightarrow nothing
yield x _ \Rightarrow just x
```

This program is ill-typed as the predicate p is bound under the ambient effect context but used in the scope of a handler.

To fix it, we can mask yield and rewrite the handled expression as follows.

```
(map (fun x \rightarrow if maska<yield>(p x) then do yield x else ()) xs)
```

The **maska**<yield>(...) form masks the operation yield from the ambient effect context. Now the effect context for p is equivalent to the ambient one, since the transformations of extending with yield followed by masking with yield cancel each other.

We use the keyword **maska** rather than simply **mask** because leaving the scope of masks also changes the effect context. The situation is similar to the one we encountered in Section 2.7 where we were concerned with allowing some values to escape the scope of a handler. The term **mask** <yield>(p x) yields a value of type <yield|>Bool instead of Bool, where <yield|> is a relative modality masking yield from the ambient effect context. Even though p x returns a boolean value

here, METEL cannot automatically unbox the value in order to ensure completeness of type inference.
 The maska form enables the special case of yielding values of absolute kind such as booleans.

2.9 Cooperative Concurrency

We now consider an example of a richer effect handler which implements cooperative concurrency with a UNIX-style fork operation [23, 44]. We simplify the signature of fork ever-so-slightly such that it returns a boolean to indicate whether the parent or child process should be evaluated, i.e. ufork : $1 \Rightarrow Bool$. In addition, we require an operation suspend : $1 \Rightarrow 1$ that suspends the current process such that another process can run.

We model a process as a data type that embeds a continuation function which takes the list of suspended processes as input and returns unit. In addition, we define auxiliary functions push for appending a process onto a queue and next which pops and runs the next process.

```
data Proc = proc (List Proc \rightarrow ())next : List Proc \rightarrow ()push : \forall a . a \rightarrow List a \rightarrow List anil\rightarrow ()push x xs = xs ++ cons x nilcons (proc p) ps \rightarrow p ps
```

The following handler implements a scheduler by using the state-passing technique to thread the process queue through the handler activations.

```
364schedule : <ufork, suspend>(1 \rightarrow 1) \rightarrow List Proc \rightarrow 1365schedule m = handle m () with366return () \Rightarrow fun q \rightarrow next q367suspend () r \Rightarrow fun q \rightarrow next (push (proc (r ())) q)368ufork () r \Rightarrow fun q \rightarrow r true (push (proc (r false)) q)
```

The **return**-case is triggered when a process finishes, thus we run the next available process. In the suspend-case we enqueue the continuation, before we run the next available process. Finally, in the ufork-case we implement the process duplication behaviour of UNIX fork by first enqueuing one application of the continuation, and then immediately applying the continuation to resume one of the process copies. Note that in the above code we seamlessly store effectful functions in data types, similar to how one would do it in a functional language without an effect type system.

2.10 Modal Types with Effect Variables

There is no free lunch; modal effect types cannot offer everything that row-based effect types provide
 without some cost. An important use case that requires explicit effect variables is implementing
 higher-order operations [49, 50, 52].

In METEL, we restrict argument and result types of operations to be absolute for effect safety. This is because effect handlers provide non-trivial manipulation of control-flow, which allows operation arguments and results to seamlessly move between different effect contexts. For example, suppose we were to allow an operation leak : $(1 \rightarrow Int) \Rightarrow 1$, we could write the following unsafe program.

```
handle (handle (do leak (fun _ \rightarrow do yield 42)) { yield \rightarrow ... }) { leak p \rightarrow p }
```

The yield operation is used under an effect context containing yield, which is added by the yield handler. However, the handler of leak binds the closure (fun $_{-} \rightarrow$ do yield 42) to p and leaks it. Requiring leak to have the signature [yield](1 \rightarrow Int) \Rightarrow 1 fixes the leakage problem as it specifies the full effect context for the argument of leak.

392

386

387

8

346 347

348

349

350

351

352

353

354

355

356 357

358

359

360

361

362

363

369

370

371

372

373

374

375 376

393

394

395 396

397

398

399

400

401

402

403 404 405

406

407

408

409

410

411

419 420

421

428 429

430

431

Using such an absolute modality in this fashion impedes modularity. As another example, consider a higher-order fork operation which takes a thunk as an argument. We may specify the full effect context for the child process, such as the following signature.

```
effect fork : [fork, suspend] (1 \rightarrow 1) \Rightarrow 1
```

However, if we want to support processes that use other effects as well then either we have to change the signature or we need to extend our modal type system with effect variables. With an effect variable e, we can define the following parameterised signature.

```
effect fork e : [fork e, suspend, e](1 \rightarrow 1) \Rightarrow 1
```

Fortunately, as we demonstrate in Section 4.5, modal effect types are compatible with explicit effect variables, and indeed METEL supports them.

2.11 Modalities Anywhere

Unlike adjustments in FRANK and block annotations in EFFEKT mentioned in Section 1.1, modal types are first-class types just like data types and can appear anywhere. For instance, we can put two functions with modal types in a pair and handle them separately.

handleTwo : (<yield>(1 \rightarrow 1), <yield>(1 \rightarrow 1)) \rightarrow (List Int, List Int) handleTwo (x, y) = (asList ~x, asList ~y)

The syntax ~x freezes the variable x, and prevents it from being automatically unboxed, following
 FREEZEML [15]. Thus we can directly apply asList to it without re-boxing.

The type inference algorithm of METEL also supports instantiation of type variables with modal types, by analogy to impredicativity of first-class polymorphism. As a consequence, METEL enjoys various stability properties. For instance, given the standard identity function id and application function app, type inference of METEL is stable under replacing any term t with id t and any application t1 t2 with app t1 t2.

3 A Multimodal Core Calculus with Effect Handlers

In this section, we introduce MET, a System F-style call-by-value core calculus with effect handlers and modal effect types. We present its static and dynamic semantics as well as its meta theory. We defer extensions including data types, alternative forms of handlers, and explicit effect variables to Section 4. MET is closely related to multimodal type theory (MTT) [17, 18], especially its simplytyped fragment [29]. We present MET without assuming any background on MTT, and discuss the relationships in Section 7.3.

3.1 Syntax

The syntax of MET is as follows.

432 433 434	Types	$A, B ::= \alpha \mid \forall \alpha^{K}. A$ $\mid A \to B \mid \mu A$	Contexts $\Gamma ::= \cdot \Gamma, \alpha : K \Gamma, x :_{\mu_F} A \Gamma, \square_{\mu_F}$ Terms $M, N ::= x \lambda x^A . M M N \Lambda \alpha^K . V M A$
435	Masks	$L ::= \cdot \mid \ell, L$	$\mod_{\mu} V \mid \operatorname{let}_{\nu} \operatorname{mod}_{\mu} x = V \text{ in } M$
436	Extensions	$D ::= \cdot \mid \ell : P, D$	$do f M mask_T M$
137	Effect Contexts	$E,F::=\cdot \mid \ell:P,E$	handle M with H
438	Signatures	$P ::= A \twoheadrightarrow B \mid -$	Values $V, W ::= x \mid \lambda x^A, M \mid \Delta \alpha^K, V \mid VA \mid \mathbf{mod}, V$
439	Modalities	$\mu ::= [E] \mid \langle L D \rangle$	Handlers $H ::= \{ \mathbf{return} \ x \mapsto M \} \mid \{ \ell \ p \ r \mapsto M \} \ \forall H$
440	Kinds	K ::= Abs Any	
441			

$$\begin{array}{c|c} \hline D+E & \hline E-L & \hline L \bowtie D \\ \hline D+E & = D, E \\ & \cdot -L & = \cdot \\ (\ell:P,E) - L &= \begin{cases} E-L' & \text{if } L \equiv \ell, L' \\ \ell:P, (E-L) & \text{otherwise} \end{cases} \quad & \forall D = \begin{pmatrix} \cdot, D \end{pmatrix} \\ (\ell,L) \bowtie D &= \begin{cases} (L',D'') & \text{if } D' \equiv \ell:P, D'' \\ ((\ell,L'),D') & \text{otherwise} \end{cases}$$

Fig. 1. Operations on Effect Contexts for MET.

MET extends a System F-style calculus with standard constructs for effects and handlers as well as the main novelty of this work: modal effect types. We highlight the novel features in grey.

3.2 Effect Contexts as Modes

The modes of MET are effect contexts *E*, which are scoped rows of effect labels [30]. Each label denotes an effectful operation. An effect may contain the same label multiple times. Each label has a signature. A signature can be an arrow of the form $A \rightarrow B$, which takes an argument of type *A* and returns a value of type *B*, or absent – (similar to presence types [43]), which indicates that the operation of this label cannot be invoked.

Following Rémy [43] and Leijen [30], we identify effects up to reordering of distinct labels, and allow absent labels to be freely added to or removed from the right of effect contexts. For instance, $\ell : P, \ell' : -$ is equivalent to $\ell : P$. We can think of an effect context as denoting a map from labels to infinite sequences of signatures where a cofinite tail of each sequence contains only -.

Extensions *D* and masks *L* are used respectively to extend effect contexts with more labels or removes some labels from them. Extensions are like effect contexts except that we do not ignore labels with absent signatures in their equivalence relation, so $\ell : P, \ell' : -$ and $\ell : P$ are distinct.

We define a sub-effecting relation on effect contexts: $E \leq E'$ if we can replace the absent signatures in *E* with proper signatures to obtain *E'*. We also have a subtyping relation on extensions $D \leq D'$. Different from sub-effecting, it requires *D* and *D'* to contain the same row of labels, but allows absent signatures in *D* to be replaced by other signatures in *D'*. We give the full rules for type equivalence and sub-effecting in Appendix A.1.

Masks *L* are simply multi-sets of labels without signatures, as we do not require signatures when masking labels from effect contexts. The actions of extending D + E and masking E - L are defined in Figure 1. We write $L \bowtie D = (L', D')$ for the difference between *L* and *D*. The *L'* are those labels in *L* not appearing in the domain of *D*, and the *D'* are those labels in *D* not appearing in *L*.

3.3 Modalities Manipulating Effect Contexts

In conventional row-based effect systems, such as KOKA or LINKS, an effect annotation on a function type specifies all of the effects that the function may perform when it is invoked. In MET, effect annotations only specify effects relative to the ambient effect context, as functions may also use any operations from the ambient effect context. Effect annotations are given via *modalities*, which construct a new effect context relative to an ambient effect context as follows.

$$[E](F) = E \qquad \langle L|D\rangle(F) = D + (F - L)$$

The absolute modality [E] replaces the ambient effect context *F* with *E*. This is similar to how effect annotations on functions in row-based effect systems work. Intuitively, we may think of the type $[E](A \rightarrow B)$ as corresponding roughly to the type $A \rightarrow^E B$ in traditional effect type systems. The relative modality $\langle L|D \rangle$ is the key feature that makes effectful programming without effect

490

477

478

484 485 10

450 451

452

453 454

variables viable in MET. It specifies the a transformation on the ambient effect context. It masks the labels *L* in *F* before extending the resulting context with *D*. We call $\langle D \rangle$ an extension modality, $\langle L \rangle$ a mask modality, and $\langle | \rangle$ the identity modality. We write $\mathbb{1}$ for the identity modality.

Modalities are monotone total functions on effect contexts. If $E \leq F$, we have $\mu(E) \leq \mu(F)$.

We write μ_F for the pair of μ and F where F is the effect context that μ acts on. We refer to such a pair as an indexed modality. We write $\mu_F : E \to F$ if $\mu(F) = E$. (The arrow goes from E to F instead of the other direction to keep closer to MTT [17, 18]. For readers familiar with MTT, indexed modalities μ_F correspond to the notion of modalities in MTT as they are concrete morphisms between modes and our modalities μ actually correspond to indexed families of modalities in MTT.)

Modality Composition. We can compose the actions of modalities in the intuitive way.

$$\mu \circ [E] = [E]$$

$$[E] \circ \langle L|D \rangle = [D + (E - L)]$$

$$\langle L_1|D_1 \rangle \circ \langle L_2|D_2 \rangle = \langle L_1 + L|D_2 + D \rangle \text{ where } (L, D) = L_2 \bowtie D_1$$

To keep close to MTT, our composition reads from left to right. First, an absolute modality completely specifies the new effect context, thus shadowing any other modality μ . Second, replacing the effect context with *E* and then masking *L* and extending with *D* is equivalent to just replacing with D + (E - L). Third, sequential masking and extending can be combined into one by using $L_2 \bowtie D_1$ to cancel the overlapping part of L_2 and D_1 . For instance, we have $\langle | \ell : P \rangle \circ \langle \ell | \rangle = \langle | \rangle$.

Composition is well-defined since composing followed by applying is equivalent to sequentially applying $(\mu \circ \nu)(E) = \nu(\mu(E))$. We also have associativity $(\mu \circ \nu) \circ \xi = \mu \circ (\nu \circ \xi)$ and identity $\mathbb{1}$.

The definition of composition naturally generalises to indexed modalities μ_F . We can compose $\mu_F : E \to F$ and $\nu_E : E' \to E$ to get $\mu_F \circ \nu_E : E' \to F$ which is defined as $(\mu \circ \nu)_F$.

Modality Transformations. Just as modalities allow us to manipulate effect contexts, we need transformations that allow us to change modalities¹.

We write $\mu_F \Rightarrow v_F$ for a transformation between indexed modalities $\mu_F : E \to F$ and $v_F : E' \to F$. Intuitively, such a transformation describes how under ambient effect context *F*, the action of μ can be replaced by the action of *v*. In particular, if we have a variable boxed by μ under the effect context *F*, we can use it under a new effect context derived by applying *v* to *F*.

What properties do we expect from $\mu_F \Rightarrow \nu_F$? To guarantee effect safety, the new effect context *E* given by applying ν should be larger than the *E'* given by applying μ . To avoid accidental handling, when μ is relative (which means the variable depends on the ambient effect context), the new effect context *E'* should not accidentally capture more effects than those specified by μ and the ambient effect context. Moreover, we want the transformation to be stable under sub-effecting. We formally define $\mu_F \Rightarrow \nu_F$ by the transitive closure of the following three rules.

$$\frac{\text{MT-ABS}}{\mu_F : E' \to F} \qquad E \leqslant E' \qquad \qquad \frac{\text{MT-UPCAST}}{\langle L|D \rangle_F \Rightarrow \langle L|D' \rangle_F} \qquad \qquad \frac{\text{MT-EXPAND}}{\langle \ell, L|D, \ell : P \rangle_F \Leftrightarrow \langle L|D \rangle_F}$$

MT-ABS allows us to transform an absolute modality to any other modality as long as no effect leaks. MT-UPCAST allow us to upcast a label with an absent signature in D to an arbitrary signature, since the corresponding operation is unused. Recall that the subtyping relation between extensions only upcasts signatures. MT-EXPAND is bidirectional. It allows us to simultaneously mask and extend some operations given that these operations exist in the ambient effect context F.

¹The interested reader may wonder if we would need yet another notion of transforming a modality transformation, but thankfully this is not necessary: there is only one modality transformation between any two modalities

Let us give some examples here. First, $[]_E \Rightarrow \mu_E$ always holds, consistent with the intuition that pure values can be used anywhere. Second, $\langle \ell : - \rangle_E \Rightarrow \langle \ell : P \rangle_E$ always holds. Third, we have $\langle \ell | \ell : P \rangle_{\ell:P,E} \Leftrightarrow \langle | \rangle_{\ell:P,E}$ in both directions. Last, $\langle \ell : P \rangle_E \Rightarrow \langle \ell : P, \ell' : P' \rangle_E$ does not hold for any *E*, avoiding accidental handling.

The following lemma shows that the syntactic definition of transformation matches the semantics of our intuition. The proof is in Appendix A.4.

LEMMA 3.1 (SEMANTICS OF MODALITY TRANSFORMATION). We have $\mu_F \Rightarrow v_F$ if and only if $\mu(F') \leq v(F')$ for all F' with $F \leq F'$.

Attentive readers may have observed that this lemma characterises the essence of effect safety, but does not mention accidental handling explicitly. Actually, since MET allows same labels to have different signatures, effect safety implies that there is no accidental handling. For instance, $\langle | \rangle_F \Rightarrow \langle l : P \rangle_F$ violates Lemma 3.1 since $F, l : P' \leq l : P, F, l : P'$ when $P \leq P'$.

3.4 Kinds and Contexts

$\Gamma \vdash A : K \Gamma$	$\vdash P \Gamma \vdash$	$(\mu, A) \Rightarrow v @$	PF			
$\Gamma \ni \alpha : K$	$\Gamma \vdash Z$	A: Abs	$\Gamma \vdash [E]$	$\Gamma \vdash A : Any$	$\Gamma \vdash \langle L D \rangle$	$\Gamma \vdash A: K$
$\overline{\Gamma \vdash \alpha : K}$	$\Gamma \vdash Z$	A : Any	Γ + [E]A : Abs	$\Gamma \vdash \langle L L$	$D\rangle A:K$
$\Gamma \vdash A : A$	۸ny	$\Gamma \vdash A : A$	bs			
$\Gamma \vdash B : A$	ny	$\Gamma \vdash B : A$	bs	$\Gamma \vdash A : Abs$	μ_F	$\Rightarrow v_F$
$\overline{\Gamma \vdash A \to B}$: Any	$\overline{\Gamma \vdash A \twoheadrightarrow}$	B Γ	$\vdash (\mu, A) \Longrightarrow v @ F$	$\overline{\Gamma} \vdash (\mu, \mu)$	$A) \Rightarrow v @ F$
Γ@Ε						
Г	@ F	$\mu_F: E \longrightarrow F$	$\Gamma \vdash A : K$	Γ@Ε	Γ@ F	$\mu_F: E \longrightarrow F$
• @ <u>E</u>	-	$\Gamma, x :_{\mu_F} A @ I$	F	$\overline{\Gamma, \alpha: K @ I}$	Ξ Γ,	$\mathbf{A}_{\mu_F} @ E$

Fig. 2. Selected kinding, well-formedness, and auxiliary rules for MET.

As illustrated in Section 2.7, we have two kinds Abs and Any. The Abs kind is a sub-kind of the kind of all types Any, and denotes types of values that are guaranteed not to use operations from the ambient effect context.

We show the kinding and well-formedness rules for types and signatures in Figure 2, relying on the well-formedness of modalities and effect contexts, which is standard and defined in Appendix A.1. Function arrows have kind Any due to the possibility of using operations from the ambient effect context. Boxing a type by the absolute modality yields an absolute type as it cannot depend on the ambient effect context.

A type at kind Abs may still contain an effectful computation, as long as it is contained within an absolute modality. We restrict the kind of the argument and return value of effects to be Abs in order to prevent effect leakage as discussed in Section 2.10.

⁵⁸⁴ Contexts are ordered. We define the relation $\Gamma \oslash E$ that context Γ is well-formed at effect context ⁵⁸⁵ *E* in Figure 2. Each term variable binding $x :_{\mu F} A$ in contexts is tagged with an indexed modality μ_F ⁵⁸⁶ which arises from unboxing. Intuitively, this annotation means that the term bound to *x* is defined ⁵⁸⁷ inside modality μ under the effect context *F*.

⁵⁸⁹ Contexts contain locks carrying indexed modalities which track effect transformations for ⁵⁹⁰ variable bindings. For instance, the following context is well-formed at effect context *E*. Reading ⁵⁹¹ from left to right, the lock $\mathbf{\hat{e}}_{[E]_F}$ switches the effect context from *F* to *E*.

$$x:_{\mu_{F}}A_{1}, y:_{\nu_{F}}A_{2}, \bigoplus_{[E]_{F}}, z:_{\xi_{E}}A_{3} @ E$$

Following MTT, we define locks(-) to compose all the modalities on the locks in a context.

$$\begin{aligned} \mathsf{locks}(\cdot) &= \mathbb{1} & \mathsf{locks}(\Gamma, x :_{\mu_F} A) = \mathsf{locks}(\Gamma) \\ \mathsf{locks}(\Gamma, \mathbf{A}_{\mu_F}) &= \mathsf{locks}(\Gamma) \circ \mu_F & \mathsf{locks}(\Gamma, \alpha : K) = \mathsf{locks}(\Gamma) \end{aligned}$$

Following MTT, we identify contexts up to the following two equations.

$$\Gamma, \mathbf{\Phi}_{\mathbb{1}_{E}} @ E = \Gamma @ E \qquad \Gamma, \mathbf{\Phi}_{\mu_{F}}, \mathbf{\Phi}_{\nu_{F'}} @ E = \Gamma, \mathbf{\Phi}_{\mu_{F} \circ \nu_{F'}} @ E$$

3.5 Typing

The typing rules of MET are shown in Figure 3. The typing judgement $\Gamma \vdash M : A @ E$ means that the term *M* has type *A* under context Γ and effect context *E*. As usual, we require $\Gamma @ E, \Gamma \vdash E, \Gamma \vdash A : K$ for some *K*, and well-formedness for type annotations as well-formedness conditions. We explain the interesting rules, which are highlighted in grey; the other rules are standard.

 $\Gamma \vdash M : A @ E$

$ \frac{\text{T-VAR}}{\nu_F = \text{locks}(\Gamma') : E \to F} \\ \frac{\Gamma \vdash (\mu, A) \Rightarrow \nu @ F}{\Gamma, x :_{\mu_F} A, \Gamma' \vdash x : A @ E} $	T-Mod $\mu_{F}: E \to F$ $\Gamma, \bigoplus_{\mu_{F}} \vdash V: A @ E$ $\overline{\Gamma \vdash \mathbf{mod}_{\mu} V: \mu A @ F}$	$ \begin{array}{c} \text{T-LETMOD} \\ \nu_F : E \to F \\ \Gamma, \mathbf{A} :_{\nu_F \circ \mu_E} A \vdash M : B @ F \\ \hline \Gamma \vdash \mathbf{let}_{\nu} \operatorname{mod}_{\mu} x = V \operatorname{in} M : B @ F \end{array} $
T-TABS $\Gamma, \alpha : K \vdash V : A @ E$ $\overline{\Gamma} \vdash A \alpha^{K} V : \forall \alpha^{K} A @ E$	T-ABS $\frac{\Gamma, x : A \vdash M : B @ E}{\Gamma \vdash \lambda r^A M : A \rightarrow B @ E}$	$\frac{T\text{-}TAPP}{\Gamma \vdash M : \forall \alpha^{K}.B @ E} \qquad \Gamma \vdash A : K$
$\frac{\text{T-App}}{\Gamma \vdash M : A \to B @ E}{\Gamma \vdash M N : E}$	$\frac{\Gamma \vdash N : A @ E}{3 @ E} \qquad \qquad \frac{\Gamma \vdash E}{E}$	$Do = \ell : A \to B, F \qquad \Gamma \vdash N : A @ E$ $\Gamma \vdash \mathbf{do} \ \ell \ N : B @ E$
$\frac{\Gamma \cdot Mask}{\Gamma, \bigoplus_{\langle L \rangle_F} \vdash M : A @ F - L}{\Gamma \vdash mask_L M : \langle L \rangle A @ F}$	T-HANDLER $H = \{ \text{return} \\ \Gamma, \bigoplus_{(D\rangle_F} \vdash M : A @ D = \{ \ell_i : A_i \twoheadrightarrow B_i \}_i \\ \hline \Gamma \vdash \text{har}$	$ x \mapsto N \} \uplus \{ \ell_i \ p_i \ r_i \mapsto N_i \}_i $ $ p \to F \qquad \Gamma, x : \langle D \rangle A \vdash N : B @ F $ $ [\Gamma, p_i : A_i, r_i : B_i \to B \vdash N_i : B @ F]_i $ $ ndle \ M \ with \ H : B @ F $

Fig. 3. Typing rules for core MET.

⁶³¹ *Modality Introduction and Elimination.* Modalities are introduced by T-MoD and eliminated by ⁶³² T-LETMOD. The term $\mathbf{mod}_{\mu}V$ introduces modality μ to the type of the conclusion and lock $\mathbf{\hat{h}}_{\mu_{F}}$ into ⁶³³ the context of the premise, and requires the value V to be well-typed under the new effect context E ⁶³⁴ manipulated by μ . The lock $\mathbf{\hat{h}}_{\mu_{F}}$ tracks the change to the effect context. We restrict **mod** to values ⁶³⁵ as it manipulates effect contexts [2, 34]. Otherwise, a term such as $\mathbf{mod}_{\langle | \ell \rangle}$ (**do** ℓV) would type ⁶³⁶ check under the empty effect context but get stuck.

Following MTT, we use let-style modality elimination which takes another modality v in addition to the modality μ that is eliminated from V. This is crucial for sequential unboxing. For instance, y and z in the following term are bound as $y :_{v} \mu A$ and $z :_{vo\mu} A$, respectively.

$\lambda x^{\nu\mu A}$.let mod_{ν} y = x in let_{ν} mod_{μ} z = y in M

As with boxing, unboxing is restricted to values. We treat a type application of a value as itself a value as type application does not perform any effects. Consequently, we gain the flexibility to use type applications in boxing and unboxing.

Masking and Handling. Masking and handling provide specialised means to introduce values with relative modalities. A mask $mask_L M$ introduces the mask modality $\langle L \rangle$, and a handler **handle** M with H binds a value boxed with the extension modality $\langle D \rangle$ in its return clause. Unlike **mod**, these constructs apply to computations as they perform masking and handling semantically.

As shown in Section 2.7, entering the scope of a handler for operations D means that D is extended with the ambient effect context. Values escaping a handler must be boxed with $\langle D \rangle$ since they may use these previously extended operations. Similarly, going into the scope of **mask**_L means that effect labels L are removed from the ambient effects F. For those values leaving masks, they need to be boxed with $\langle L \rangle$ since they cannot use these previously masked operations.

Accessing Variables. The T-VAR rule uses the auxiliary judgement $\Gamma \vdash (\mu, A) \Rightarrow v \oslash F$ defined in Figure 2. Variables of absolute types can always be used as they do not depend on the ambient effect context. For a non-absolute term variable binding $x :_{\mu F} A$ from context $\Gamma, x :_{\mu F} A, \Gamma'$, we must guarantee that it is safe to use x in the current effect context. The effect context where x is introduced is F. As we track all transformations on effect contexts up to the binding of x as locks in Γ' , the current effect context E is obtained by applying all modalities on locks in Γ' to F. Thus, the condition $\mu_F \Rightarrow \operatorname{locks}(\Gamma')_F$ defined in Section 3.3 is needed for effect safety.

Let us look at some examples. Consider the following judgement.

$$\widehat{\bullet}_{\langle | \ell_2 \rangle}, \ y :_{\langle | \ell_1 \rangle_{\ell_2}} 1 \rightarrow \text{Int} \vdash \text{handle } y () \text{ with } \{ \ell_1 \} : _ @ \ell_2$$

The handler introduces a lock $\mathbf{O}_{\langle |\ell_1 \rangle_{\ell_2}}$. This judgement is valid because we have $\langle |\ell_1 \rangle_{\ell_2} \Rightarrow \langle |\ell_1 \rangle_{\ell_2}$. It would be invalid if we were to extend the handler to handle ℓ_2 , as $\langle |\ell_1 \rangle_{\ell_2} \Rightarrow \langle |\ell_1, \ell_2 \rangle_{\ell_2}$ does not hold. Otherwise, the function y might use ℓ_2 which is accidentally handled here.

$$\mathbf{A}_{(|\ell_2)}, y:_{(|\ell_1|)_{\ell_1}} 1 \rightarrow \text{Int} \vdash_{\mathbf{wrong}} \mathbf{handle} y() \mathbf{with} \{\ell_1, \ell_2\}: _ @ \ell_2$$

We can fix this judgement by masking ℓ_2 . The transformation $\langle \ell_1 \rangle_{\ell_2} \Rightarrow (\langle \ell_1, \ell_2 \rangle_{\ell_2} \circ \langle \ell_2 \rangle_{\ell_1,\ell_2,\ell_2})$ is well-defined since $\langle \ell_1, \ell_2 \rangle_{\ell_2} \circ \langle \ell_2 \rangle_{\ell_1,\ell_2,\ell_2} = \langle \ell_1 \rangle_{\ell_2}$.

 $\mathbf{a}_{\langle | \ell_2 \rangle}, \ y :_{\langle | \ell_1 \rangle_{\ell_1}} 1 \rightarrow \mathsf{Int} \vdash \mathsf{handle} \ \mathsf{mask}_{\ell_2} \ (y \ ()) \ \mathsf{with} \ \{\ell_1, \ell_2\} : _ @ \ell_2$

Subeffecting. Subeffecting is incorporated into the T-VAR rule within the transformation relation $\mu_F \Rightarrow \nu_F$. We have seen how subeffecting works in Section 2.2. We give another example here upcasting [] to [*E*].

 $\lambda x^{[](\text{Int} \to \text{Int})}$.let mod_[] y = x in mod_[E] $y : [](\text{Int} \to \text{Int}) \to [E](\text{Int} \to \text{Int})$

Due to subeffecting, given a variable binding $x : 1 \rightarrow 1$ under ambient effect context *E*, we cannot assume *E* is exactly the effect context required to invoke a function bound to *x*. For instance, consider the following program.

let $f = \text{mod}_{[]}(\lambda x^{1 \to 1}.x())$ in let $\text{mod}_{[]} g = f$ in $g(\lambda_...do \ell V; ())$

Though the function $\lambda x^{1 \to 1} x$ is typed checked with the empty ambient effect context, the term bound to *x* in the application of *q* actually invokes ℓ .

687 3.6 Masking and Handling with Absolute Kinds

Masking attaches a mask modality to the return value of the term being masked, and handling attaches an extension modality to the return value of the term being handled. In practice, these return values often have absolute kind, which means these modalities can be omitted. We provide the following syntactic sugar to treats absolute return values specially for masking and handling. We also introduce syntactic sugar for specialised unboxing.

700 701

702 703

704

705

706

707

708 709

710 711

712 713

714

715

716 717

718

693

 $\begin{aligned} \max \mathbf{k}_{L}^{\mathrm{Abs}} M &\doteq \operatorname{let} \operatorname{mod}_{\langle L \rangle} x = \operatorname{mask}_{L} M \operatorname{in} x \\ \operatorname{handle}^{\mathrm{Abs}} M \operatorname{with} H &\doteq \operatorname{handle} M \operatorname{with} H' \\ \operatorname{where} & H = \{\operatorname{return} x \mapsto N\} \uplus \{\ell_{i} \ p_{i} \ r_{i} \mapsto N_{i}\}_{i} \\ & H' = \{\operatorname{return} x \mapsto \operatorname{let} \operatorname{mod}_{\langle D \rangle} x = x \operatorname{in} N\} \uplus \{\ell_{i} \ p_{i} \ r_{i} \mapsto N_{i}\}_{i} \\ \operatorname{let} \operatorname{mod}_{\mu} = M \operatorname{in} N &\doteq (\lambda x.\operatorname{let} \operatorname{mod}_{\mu} x = x \operatorname{in} N) M \\ \operatorname{let} \operatorname{mod}_{\mu;\nu} x = V \operatorname{in} M &\doteq \operatorname{let} \operatorname{mod}_{\mu} x = V \operatorname{in} \operatorname{let}_{\mu} \operatorname{mod}_{\nu} x = x \operatorname{in} M \end{aligned}$

The following typing rules are derivable for absolute *A*, which allow us to elide modalities:

 $\frac{T\text{-MASKABS}}{\Gamma \vdash A : \text{Abs}} = \frac{\Gamma, \bigoplus_{\langle L \rangle_F} \vdash M : A @ F - L}{\Gamma \vdash \text{mask}_{Abs}^{Abs} M : A @ F} = \frac{\text{T-HANDLEABS}}{\Gamma \vdash A : \text{Abs}} = \frac{T\text{-HANDLEABS}}{\{I \in A : Abs} = \{\text{return } x \mapsto N\} \uplus \{\ell_i \ p_i \ r_i \mapsto N_i\}_i}{\Gamma \vdash A : Abs} = \frac{\Gamma \vdash A : Abs}{\Gamma \vdash A : Abs} = \{\text{return } x \mapsto N\} \uplus \{\ell_i \ p_i \ r_i \mapsto N_i\}_i}{\Gamma \vdash A : Abs} = \frac{\Gamma \vdash A : Abs}{\Gamma \vdash A : Abs} = \frac{\Gamma \vdash Abs}{\Gamma \vdash Abs} = \frac{\Gamma \vdash$

3.7 Operational Semantics

The operational semantics for MET is quite standard. As type application values can reduce, we first define value normal forms U that cannot reduce, and evaluation contexts \mathcal{E} :

Value normal forms $U ::= x | \lambda x^A . M | \Lambda \alpha^K . V | \operatorname{mod}_{\mu} U$ Evaluation contexts $\mathcal{E} ::= [] | \mathcal{E} A | \mathcal{E} N | U \mathcal{E} | \operatorname{mod}_{\mu} \mathcal{E} | \operatorname{let}_{\nu} \operatorname{mod}_{\mu} x = \mathcal{E} \text{ in } M$ $| \operatorname{do} \ell \mathcal{E} | \operatorname{mask}_L \mathcal{E} | \operatorname{handle} \mathcal{E} \text{ with } H$

The reduction rules are as follows.

719 $(\lambda x^A . M) U \rightsquigarrow M[U/x]$ E-App 720 $(\Lambda \alpha. V) A \rightsquigarrow V[A/\alpha]$ Е-ТАрр 721 $\operatorname{let}_{v} \operatorname{mod}_{\mu} x = \operatorname{mod}_{\mu} U \text{ in } M \rightsquigarrow M[U/x]$ E-Letmod 722 E-Mask $\mathsf{mask}_L U \rightsquigarrow \mathsf{mod}_{(L)} U$ 723 handle U with $H \rightsquigarrow N[(\mathsf{mod}_{\langle | D \rangle} U)/x]$, where $(\mathsf{return} \ x \mapsto N) \in H$ E-Ret 724 handle $\mathcal{E}[\operatorname{do} \ell U]$ with $H \rightsquigarrow N[U/p, (\lambda y.\operatorname{handle} \mathcal{E}[y] \text{ with } H)/r]$, E-Op 725 where $0 - \text{free}(\ell, \mathcal{E})$ and $(\ell \ p \ r \mapsto N) \in H$ $\mathcal{E}[M] \rightsquigarrow \mathcal{E}[N],$ 726 if $M \rightsquigarrow N$ E-Lift 727

The only slightly non-standard aspect of the rules is the boxing of values escaping masks and handlers. In E-RET, we assume handlers are decorated with the operations *D* that they handle.

Following Biernacki et al. [4], the predicate n-free(ℓ, \mathcal{E}) is defined inductively on evaluation contexts as follows. The meta function count($\ell; L$) yields the number of ℓ labels in L. We omit the inductive cases that do not change n. Notice that the cases for introduction and elimination of modalities fall into this category as they require values which cannot be of the form **do** ℓV .

735

 $\frac{n - \operatorname{free}(\ell, \mathcal{E})}{0 - \operatorname{free}(\ell, [])} \qquad \frac{n - \operatorname{free}(\ell, \mathcal{E})}{(n) - \operatorname{free}(\ell, \operatorname{do} \ell' \mathcal{E})} \qquad \frac{n - \operatorname{free}(\ell, \mathcal{E}) \quad \operatorname{count}(l; L) = m}{(n + m) - \operatorname{free}(\ell, \operatorname{mask}_L \mathcal{E})}$ $\frac{(n + 1) - \operatorname{free}(\ell, \mathcal{E}) \quad \ell \in \operatorname{dom}(H)}{n - \operatorname{free}(\ell, \operatorname{handle} \mathcal{E} \text{ with } H)} \qquad \frac{n - \operatorname{free}(\ell, \mathcal{E}) \quad \ell \notin \operatorname{dom}(H)}{n - \operatorname{free}(\ell, \operatorname{handle} \mathcal{E} \text{ with } H)}$

3.8 Type Soundness and Effect Safety

We prove type soundness and effect safety for MET. Our proofs cover the extensions in Section 4. MET enjoys relatively standard substitution properties along the lines of Kavvos and Gratzer [29]. For example, we have the following rule for substituting values with modalities into terms.

 $\frac{\Gamma, \bigoplus_{\mu_F} \vdash V : A @ F' \qquad \Gamma, x :_{\mu_F} A, \Gamma' \vdash M : B @ E}{\Gamma, \Gamma' \vdash M[V/x] : B @ E}$

We state and prove the relevant properties in Appendix A.5.

To state syntactic type soundness, we first define normal forms.

Definition 3.2 (Normal Forms). We say a term M is in a normal form with respect to effect type E, if it is either in value normal form M = U or of form $M = \mathcal{E}[\mathbf{do} \ \ell \ U]$ for $\ell \in E$ and n-free (ℓ, \mathcal{E}) .

We have the following theorems which in together give type soundness and effect safety, proved in Appendices A.6 and A.7.

THEOREM 3.3 (PROGRESS). If $\vdash M : A @ E$, then either there exists N such that $M \rightsquigarrow N$ or M is in a normal form with respect to E.

THEOREM 3.4 (SUBJECT REDUCTION). If $\Gamma \vdash M : A \oslash E$ and $M \rightsquigarrow N$, then $\Gamma \vdash N : A \oslash E$.

4 Extensions to the Core Calculus

In this section we demonstrate that MET scales to support data types, richer handlers, and other useful primitives that provide extra expressiveness. We also introduce METE, an extension of MET with effect variables, recovering the full expressive power of row-based effect systems. We prove type soundness and effect safety for all extensions.

4.1 Data Types and Crisp Induction

We demonstrate the extensibility of MET with data types by extending it with pair and sum types. Figure 4 shows the syntax and typing rules. The T-PAIR, T-INL, and T-INR are standard introduction rules. The elimination rules T-CRISPPAIR and T-CRISPSUM are more interesting. In addition to normal pattern matching, they interpret the value V under the effect context transformed by certain modalities v, which can then be tagged to the variable bindings in case clauses. They follow the crisp induction principles of multimodal type theory [18, 45]. These crisp elimination rules provide extra expressiveness. For example, we can write the following function which transforms a sum of type $\mu(A + B)$ to another sum of type ($\mu A + \mu B$). This function is not expressible without crisp elimination rules.

$$\lambda x^{\mu(A+B)}$$
.let mod_µ $y = x$ in case_µ y of {inl $x_1 \mapsto$ inl (mod_µ x_1), inr $x_2 \mapsto$ inr (mod_µ x_2)}

The semantics of this extension is standard and shown in Appendix A.2.

785 786	$\begin{array}{l} \text{T-Pair} \\ \Gamma \vdash M : A @ E \\ \end{array} \qquad \Gamma \vdash N : B @ E \\ \end{array}$	$\begin{array}{c} \text{T-Inl} \\ \Gamma \vdash M : A @ E \end{array}$	$\begin{array}{c} \text{T-Inr} \\ \Gamma \vdash M : B @ E \end{array}$
787	$\Gamma \vdash (M,N) : (A,B) @ E$	$\overline{\Gamma \vdash inl \ M : A + B \ @ E}$	$\overline{\Gamma \vdash \operatorname{inr} M : A + B @ E}$
789	T-CrispPair	T-CrispSum	
790 791	$\nu_F : E \to F \qquad \Gamma, \blacksquare_{\nu_F} \vdash V : (A, B) @ E$ $\Gamma, x :_{\nu_F} A, y :_{\nu_F} B \vdash M : A' @ F$	$\nu_F : E \to F \qquad \Gamma, \bullet$ $\Gamma, x :_{\nu_F} A \vdash M_1 : A' \oslash F$	$\blacksquare_{V_F} \vdash V : A + B @ E$ $\Gamma, y :_{V_F} B \vdash M_2 : A' @ F$
792 793	$\Gamma \vdash \mathbf{case}_{\nu} V \mathbf{ of } (x, y) \mapsto M : A' @ F$	$\overline{\Gamma \vdash \mathbf{case}_{\nu} \ V \ \mathbf{of} \ \{\mathbf{inl} \ x \mapsto \mathbf{inl} \ \mathbf{inl} \ x \mapsto \mathbf{inl} \ \mathbf{inl} \$	$M_1, \operatorname{inr} y \mapsto M_2\} : A' @ F$

Fig. 4. Typing rules for data types in MET.

Commuting Modalities and Type Abstraction 4.2

Crisp elimination rules in Section 4.1 allow us to commute modalities and data types. Similarly, it is also sound and useful to commute type abstractions and modalities. However, the current modality elimination rule cannot do so, for a similar reason to why it is not possible to transform $\forall \alpha.A + B$ to $(\forall \alpha.A) + (\forall \alpha.B)$ in System F. We extend modality elimination to the form let_v $\mathbf{mod}_{\mu} \Lambda \overline{\alpha^{K}} x =$ V in M which allows V to use additional type variables in $\overline{\alpha^{K}}$ which are abstracted when bound to *x*. The extended typing and reduction rules are as follows.

- T-LETMOD'

 $\frac{\nu_F: E \to F}{\Gamma, \bigoplus_{\nu_F}, \overline{\alpha: K} \vdash V: \mu A @ E} \quad \Gamma, x:_{\nu_F \circ \mu_E} \forall \overline{\alpha^K}. A \vdash M: B @ F}{\Gamma \vdash \mathbf{let}_{\nu} \operatorname{mod}_{\mu} \Lambda \overline{\alpha^K}. x = V \operatorname{in} M: B @ F}$

E-LETMOD' let_v mod_u $\Lambda \overline{\alpha^{K}} . x = \text{mod}_{u} U$ in $M \rightsquigarrow M[(\Lambda \overline{\alpha^{K}} . U)/x]$

For instance, we can now write a function of type $\forall \alpha^{K}.\mu A \rightarrow \mu(\forall \alpha.A)$ where $\alpha \notin \text{ftv}(\mu)$ as follows.

 $\lambda x^{\forall \alpha^{K}.\mu A}$.let mod_{*u*} $\Lambda \alpha^{K}.y = x \alpha$ in mod_{*u*} *y*

Boxing Computations under Empty Effect Contexts 4.3

We have restricted boxes to values in order to guarantee effect safety. This restriction is not essential for []. For example, suppose we have $f := (A \to B)$ and x := A, it is sound to treat $\mathbf{mod}_{\Box}(fx)$ as a computation which returns a value of type [B. As f x is evaluated under the empty effectcontext, we can guarantee that it cannot get stuck on unhandled operations.

We extend the introduction rule for the empty absolute modality to allow non-value terms with the following typing rule.

$$\frac{\Gamma\text{-BoxAbs}}{\Gamma, \mathbf{G}_{[]_F} \vdash M : A @ \cdot}{\Gamma \vdash \mathbf{mod}_{[]} M : []A @ F}$$

The same generalisation applies to T-MASK and T-HANDLER. As an example, we can write the following *app* function.

$$\begin{array}{rcl} app & : & \forall \alpha. \forall \beta. [] (\alpha \to \beta) \to [] \alpha \to [] \beta \\ app & = & \Lambda \alpha. \Lambda \beta. \lambda f. \lambda x. \texttt{let mod}_{[]} f = f \texttt{ in let mod}_{[]} x = x \texttt{ in mod}_{[]} (f x) \end{array}$$

The formula corresponding to the type of this function is commonly referred to as Axiom K in modal logic and is also satisfied by other similar modalities such as the safe modality of Choudhury and Krishnaswami [10].

834 4.4 Absolute and Shallow Handlers

⁸³⁵ Up to now we have considered only *deep* handlers of the form **handle** M **with** H where M depends ⁸³⁶ on the ambient effect contexts. Deep handlers automatically wrap the handler around the body of ⁸³⁷ the continuation r captured in a handler clause, and thus r depends on the ambient effect context. ⁸³⁸ Though this usually suffices in practice, in some cases we may want the computation M or the ⁸³⁹ continuation to be absolute, i.e., independent from the ambient effect context. This situation is ⁸⁴⁰ more prevalent in METE with effect variables.

We extend the handler syntax to **handle**^{\mathbb{A}} *M* with *H* with the following typing rule.

T-Handler^A

$$D = \{\ell_i : A_i \to B_i\}_i \qquad \Gamma, \bigoplus_{[D+E]_F} \vdash M : A @ D + E$$

$$\Gamma, x : [D + E]A \vdash N : B @ F \qquad [\Gamma, p_i : A_i, r_i : [F](B_i \to B) \vdash N_i : B @ F]_i$$

$$\overline{\Gamma} \vdash \mathbf{handle}^{\mathbb{A}} M \text{ with } \{\mathbf{return } x \mapsto N\} \uplus \{\ell_i \ p_i \ r_i \mapsto N_i\}_i : B @ F$$

The T-HANDLER^A rule extends the context with an absolute lock $\Box_{[D+E]_F}$ specifying the effect context for M, and boxes the continuation r with the absolute modality [F], where F exactly gives the effect context after handling. We also extend the handler syntax with shallow handlers **handle**[†] M with H, in which the handler is not automatically wrapped around the body of continuations, and absolute shallow handlers **handle**^{A†} M with H [22, 26]. The full syntax, typing rules, and semantics for these handlers are shown in Appendix A.2.

4.5 Effect Variables

Though MET suffices for many common use-cases of effects and handlers in practice, there are situations in which it is useful to refer to one or more effect contexts that differ from the ambient one (such as the higher-order fork operation in Section 2.10).

METE, the extension of MET with effect variables, is quite lightweight and straightforward.

Effects
$$E ::= \cdot | \ell : P, E | \epsilon | E \setminus L$$
 Kinds $K ::= \cdots |$ Eff
 $E \equiv F | E \leq F$
 $\overline{E \setminus \cdot \equiv E}$ $\overline{\cdot \setminus L \equiv \cdot}$ $\overline{(\ell : P, E) \setminus (\ell, L) \equiv E \setminus L}$ $\overline{(\ell : P, E) \setminus L \equiv \ell : P, E \setminus L}$
 $\overline{(\epsilon \setminus L) \setminus L' \equiv \epsilon \setminus (L, L')}$ $\overline{\epsilon \setminus L \equiv \epsilon \setminus L}$ $\overline{\cdot \leq \epsilon \setminus L}$ $\overline{\epsilon \setminus L \leq \epsilon \setminus L}$
 $\overline{E - L}$
 $\epsilon \setminus L - L' = \epsilon \setminus (L, L')$

We extend the syntax of effect contexts *E* with effect variables ε . As is typical for row polymorphism, we restrict each effect type to contain at most one effect variable. We also extend the syntax with effect masking $E \setminus L$, which means the effect types given by masking *L* from *E*. The latter is needed to keep the syntax of effect contexts closed under the masking operation E - L; otherwise we cannot define $\varepsilon - L$. In other words, the syntax of effects is the free algebra generated from extending *D*, *E* and masking $E \setminus L$ with base elements \cdot and ε .

The effect equivalence and subeffecting rules are extended in a relatively standard way. We do not allow non-trivial equivalence or subtyping between different effect variables. We always identity effects up to the equivalence relation. That is, we can directly treat syntax of effects as the free algebra quotiented by the equivalence relation $E \equiv F$. Observe that using the equivalence

898

899

900

901

902

relation, all open effect types with effect variable ε can be simplified to an equivalent normal form $D, \varepsilon \setminus L$. We assume the operation E - L is defined for effects E in normal form and extend it with one case for effect variables.

As the extension of METE is local and only influences relevant definitions of effects, the meta theory and proofs for MET directly apply to METE without any non-trivial changes.

889 5 Encoding Row-based Effect Systems into MET

890 Even without effect variables, MET is expressive enough to encode programs from conventional 891 row-based effect systems as long as effect variables on function arrows always refer to the lexically 892 closest one. This is an important special case, since most functions in practice use at most one 893 effect variable. For example, as of July 2024, the KOKA repository contains 520 effectful functions 894 across 112 files but only 86 functions across 5 files use more than one effect variable, almost all of 895 them internal primitives for handlers not exposed to programmers. Moreover, almost all programs 896 in the FRANK repository make no mention of effect variables at all, relying on syntactic sugar to hide the single effect variable. 897

5.1 Row Effect Types with a Single Effect Variable

We define F_{eff}^1 , a System F-style core calculus with row-based effect types in the style of Koka [31], but where each scope can only refer to a single effect variable. The syntax is defined as follows.

903	Types	$A, B ::= $ Int $ A \rightarrow {E \varepsilon} B \forall \varepsilon. A$
904	Terms	$M N := \mathbf{x} \mid \lambda^{\{E \varepsilon\}} \mathbf{x}^A M \mid M N \mid \Lambda_{\varepsilon} V \mid M \{E \varepsilon\}$
905	Terms	$ mask_L M do \ell M handle M with H$
906	Values	$V, W ::= x \mid \lambda^{\{\overline{E} \mid \varepsilon\}} x^A . M \mid \Lambda \varepsilon . V$
907	Effects	$E, F, L, D ::= \cdot \mid \ell, E$
908	Contexts	$\Gamma ::= \cdot \mid \Gamma, x := A \mid \Gamma, \bullet_{T} \mid \Gamma, \bullet_{T}^{A}$
909	Somenie	$-\cdots$ $-\cdots$ $-\cdots$ $-\cdots$ $-\cdots$ $-\cdots$ $-\cdots$ $-\cdots$

We include integers, effectful function arrows, and effect abstraction $\forall \varepsilon.A$. As we consider only 910 one effect variable at a time, we need not track effect variables on function types and effect type 911 abstraction. Nonetheless, we include them in grey font for easier comparison with existing calculi. 912 In Γ , we track for each variable the effect variable at which effect context it was introduced. Further, 913 we add markers \bullet_E and \bullet_E^{Λ} to the context, which track the change of effect context due to functions, 914 masks, handlers, and effect abstraction. These markers are not needed by the typing rules but help 915 with the encoding. As with MET, we require contexts to be ordered. To convey the essential idea of 916 the encoding, we omit type polymorphism and data types from F_{eff}^1 ; we discuss these extensions 917 in Section 5.3. For simplicity we also assume operation signatures come from a global context 918 $\Sigma = \{\ell : A \rightarrow B\}$, thus unifying extensions, masks, and effects (effect contexts) into one syntactic 919 category. Mirroring our kind restriction for operation signatures in MET, we assume that these A 920 and B are not function arrows, but they can be effect abstractions (which may themselves contain 921 function arrows). 922

Figure 5 gives the typing rules of F_{eff}^1 . The judgement $\Gamma \vdash M : A \mid \{E \mid \varepsilon\}$ states that in context Γ , the term *M* has type *A* under an effect context consisting of concrete effects *E* extended with effect variable ε . The typing rules are mostly standard for row-based effect type systems.

In the R-VAR rule, we ensure that either the current effect variable matches the effect variable at which the variable was introduced or that the value is an effect abstraction. These constraints guarantee programs can only use one effect variable in one scope.

The R-APP, R-Do, R-MASK, and R-HANDLER rules are standard, while the R-ABS rule is standard except for requiring the effect variable to remain unchanged.

930 931

926

927

928

The R-EABS rule introduces a new effect variable ε' and the R-EAPP rule instantiates an effect abstraction. While conventional systems allow instantiating with any effect row, this rule only allows instantiation with the ambient effects. The instantiation operator $[\{E|\varepsilon\}/]$ implements standard type substitution for the single effect variable.

 $\begin{array}{rcl} \operatorname{Int}[\{E|\varepsilon\}/] &=& \operatorname{Int}\\ (A \to^{\{F|\varepsilon'\}} B)[\{E|\varepsilon\}/] &=& A[\{E|\varepsilon\}/] \to^{\{F,E|\varepsilon\}} B[\{E|\varepsilon\}/]\\ (\forall \varepsilon'.A)[\{E|\varepsilon\}/] &=& \forall \varepsilon'.A \end{array}$

Revisiting the example from Section 2.6, we can write the regen function in F_{eff}^1 as follows:

regen :
$$\forall$$
.(Int $\rightarrow^{\text{Yield}}$ Int) $\rightarrow^{\text{Yield}}$ ((1 $\rightarrow^{\text{Yield}}$ 1) $\rightarrow^{\text{Yield}}$ 1)
regen = $\Lambda \lambda f . \lambda m$.handle m () with {return $x \mapsto x$, Yield $s r \mapsto$ do Yield ($f s$); r ()}

5.2 Encoding

We now give translations for types and contexts of F_{eff}^1 into MET. We transform F_{eff}^1 types at effect context *E* to modal types in MET by the translation $[-]_E$. For integer types, we insert the identity modality. For function arrows, the relative modality $\langle E - F | F - E \rangle$ heralds the transition from effect context E to effect context F as we enter the function. For effect abstraction, the empty absolute modality simulates entering a new effect context with different effect variables. We translate contexts by translating each type and moving top-level modalities to their bindings. For each marker, we insert a corresponding lock to reflect the changes of effect context.

$\Gamma \vdash M : A \,!\, \{E \,|\, \varepsilon\}$

R-VAR	R-Abs	$\Gamma \vdash M : A \to {E \varepsilon} B! \{E \varepsilon\}$		
$\varepsilon = \varepsilon' \text{ or } A = \forall \varepsilon''.A'$	$\Gamma, \blacklozenge_E, x :_{\varepsilon} A \vdash M : B ! \{F \varepsilon\}$	$\Gamma \vdash N : A ! \{E \varepsilon\}$		
$\overline{\Gamma_1, x:_{\varepsilon'} A, \Gamma_2 \vdash x: A ! \{E \varepsilon\}}$	$\overline{\Gamma \vdash \lambda^{\{F \varepsilon\}} x^A . M : A \to^{\{F \varepsilon\}} B! \{E \varepsilon\}}$	$\Gamma \vdash MN : B! \{E \varepsilon\}$		

D Ann

967 968 969	$ \begin{array}{l} \text{R-EAbs} \\ \varepsilon' \notin ftv(\Gamma) \\ \Gamma, \bullet_E^{\Lambda} \vdash V : A ! \{ \cdot \varepsilon' \} \end{array} $	$ \begin{array}{l} \text{R-EApp} \\ \Gamma \vdash M : \forall \varepsilon' . A ! \{E \varepsilon\} \end{array} $	R-Mask $\Gamma, _{L+E} \vdash M : A ! \{E \varepsilon\}$
970	$\overline{\Gamma \vdash \Lambda \varepsilon'.V: \forall \varepsilon'.A! \{E \varepsilon\}}$	$\overline{\Gamma \vdash M\left\{E \mid \varepsilon\right\} : A[\left\{E \mid \varepsilon\right\} /] ! \left\{E \mid \varepsilon\right\}}$	$\overline{\Gamma \vdash \mathbf{mask}_L M : A ! \{L + E \varepsilon\}}$
971 972	P Do	R-Handler $\Gamma \bullet_{r} \vdash M : A \mid \{\overline{f_{i}} \mid E \mid \varepsilon\}$	$\Gamma : r : A \vdash N : B \mid \{E \mid s\}$
973 974 975	$(\ell : A \twoheadrightarrow B) \in \Sigma$ $\Gamma \vdash M : A ! \{\ell, E \epsilon\}$	$\{\ell_i : A_i \twoheadrightarrow B_i\} \subseteq \Sigma \qquad [\Gamma, p_i :_{\varepsilon} A_i]$ $H = \{\text{return } x \mapsto N_i\} \in \mathbb{N}$	$ \begin{array}{l} 1, x \in E \\ \lambda_i, r_i :_{\varepsilon} B_i \to^E B \vdash N_i : B! \{E \varepsilon\} \\ i \\ t \} \not = \{\ell_i \ p_i \ r_i \mapsto N_i\}_i \end{array} $
976	$\Gamma \vdash \mathbf{do} \ \ell \ M : B ! \{\ell, E \varepsilon\}$	$\Gamma \vdash handle \ M w$	with $H: B! \{E \varepsilon\}$
977 978 979		Fig. 5. Typing rules of F_{eff}^1	

$$\begin{split} & \llbracket \operatorname{Int} \rrbracket_E = \langle | \rangle \operatorname{Int} & \llbracket \cdot \rrbracket_E = \cdot \\ & \llbracket A \to^F B \rrbracket_E = \langle E - F | F - E \rangle (\llbracket A \rrbracket_F \to \llbracket B \rrbracket_F) & \llbracket \Gamma, x : A \rrbracket_E = \llbracket \Gamma \rrbracket_E, x :_{\mu_E} A' \text{ for } \mu A' = \llbracket A \rrbracket_E \\ & \llbracket \forall . A \rrbracket_E = \llbracket 1 \llbracket A \rrbracket. & \llbracket \Gamma, \bullet_F \rrbracket_E = \llbracket \Gamma \rrbracket_F, \bigoplus_{\langle F - E | E - F \rangle} \\ & \operatorname{topmod}(\mu A) = \mu & \llbracket \Gamma, \bullet_F^{\wedge} \rrbracket_E = \llbracket \Gamma \rrbracket_F, \bigoplus_{\langle F - E | E - F \rangle} \end{split}$$

Observe that not every valid typing judgement in F_{eff}^1 can be transformed to valid typing judgement in MET, because the translation depends on markers in contexts, while the typing of F_{eff}^1 does not. We define well-scoped typing judgements, which characterise the typing judgements for which our encoding is well-defined, as follows.

Definition 5.1 (Well-scoped). A typing judgement $\Gamma_1, x :_{\varepsilon} A, \Gamma_2 \vdash M : B ! E$ is well-scoped for x if either $x \notin fv(M)$ or $\blacklozenge_F^{\Lambda} \notin \Gamma_2$ or $A = \forall . A'$. A typing judgement $\Gamma \vdash M : A ! E$ is well-scoped if it is well-scoped for all $x \in \Gamma$.

In particular, if the judgement at the bottom of a derivation tree is well-scoped, then every judgement in the derivation tree is well-scoped.

Figure 6 shows the translation from F_{eff}^1 terms with their types and effect contexts to MET terms. We have the following type preservation theorem. The proof is given in Appendix A.8.

LEMMA 5.2 (TYPE PRESERVATION OF ENCODING). If $\Gamma \vdash M : A ! \{E \mid \varepsilon\}$ is well-scoped, then $M : A ! E \dashrightarrow M'$ and $\llbracket \Gamma \rrbracket_E \vdash M' : \llbracket A \rrbracket_E @ E$.

In the term translation, all terms are translated to boxed terms with proper modalities consistent with those given by the type translation, such that used term variables are always accessible after translation. We *greedily unbox* top-level modalities of term variables when they are bound, and *lazily box* them when they are used. Throughout, we use the syntax defined in Section 3.6.

Greedy unboxing happens for variable bindings such as λ -abstractions and handlers. In the R-ABS case, we unbox the top-level modality of variable x immediately after x is bound. Additionally, we box the whole function with the relative modality $\langle E - F | F - E \rangle$, reflecting the effect context transition. In the R-HANDLER case, we similarly unbox the variable bindings for return clauses and operation clauses immediately after they are bound. In the operation clauses, we need only unbox the argument to the handler p_i ; the resume function r_i is introduced under the current effect context E. In the return clause, we unbox x with $\langle \overline{t_i} \rangle \circ \mu$ and then transform this modality to μ' given by topmod($[\![A]\!]_E$) in order to match the current effect context E. We have proved this modality transformation and the ones mentioned below in Appendix A.8.

Similar to the R-ABS case, the R-EABS case boxes the translated value with the empty absolute modality. Similar to the return clauses of the R-HANDLER case, the R-MASK case transforms the modality $\langle L \rangle \circ \mu_1$ to μ_2 in order to match the current effect context L + E.

Lazy boxing happens when variables are used in the R-VAR rule. Note that variables might be used at a different effect context than they were introduced, in which case we must establish the existence of a modality transformation.

As a result of translating all terms to boxed terms, we must insert unboxing for elimination rules such as R-APP and R-EAPP. Nothing special happens for the R-Do case.

 $M:A!E \dashrightarrow M'$ 1030 1031 R-App $\frac{\text{R-VAR}}{\mu \coloneqq \text{topmod}(\llbracket A \rrbracket_E)} \qquad \qquad M: A \to^E B \mathrel{!} E \dashrightarrow M' \\ \frac{\mu \coloneqq \text{topmod}(\llbracket A \rrbracket_E)}{x : A \mathrel{!} E \dashrightarrow \text{mod}_{\mu} x} \qquad \qquad M: A \mathrel{!} E \dashrightarrow M' \\ \frac{N: A \mathrel{!} E \dashrightarrow N' \qquad x \text{ fresh}}{MN: B \mathrel{!} E \dashrightarrow \text{let mod}_{\langle | \rangle} x = M' \text{ in } x N'}$ 1032 1033 1034 1035 1036 R-Авs R-EABS $\frac{M:B!F \dashrightarrow M' \quad v \coloneqq \langle E - F | F - E \rangle}{\lambda^F x^A \cdot M : A \to^F B!E \longrightarrow \mathsf{mod}_v \left(\lambda x^{\llbracket A \rrbracket_F} \cdot \mathsf{let} \operatorname{mod}_\mu x = x \operatorname{in} M'\right)} \qquad \frac{V:A! \cdot \dashrightarrow V'}{\Lambda \cdot V : \forall \cdot A!E \dashrightarrow \mathsf{mod}_{[]} V'}$ 1037 1038 1039 1040 **R-EApp** R-Do $\frac{M: \forall .A \,!\, E \, \dashrightarrow \, M' \quad x \text{ fresh}}{M @: A[E/] \,!\, E \, \dashrightarrow \, \text{let mod}_{[]} \, x = M' \text{ in } x} \qquad \frac{M: A \,!\, \ell, E \, \dashrightarrow \, M'}{\text{do } \ell M \,: B \,!\, \ell, E \, \dashrightarrow \, \text{do } \ell M'}$ 1041 1042 1043 1044 R-Mask $\frac{M:A!E \dashrightarrow M' \quad \mu_1 \coloneqq \operatorname{topmod}(\llbracket A \rrbracket_E) \quad \mu_2 \coloneqq \operatorname{topmod}(\llbracket A \rrbracket_{L+E})}{\operatorname{mask}_L M:A!L+E \dashrightarrow \operatorname{let} \operatorname{mod}_{\langle L \rangle;\mu_1} x = \operatorname{mask}_L M' \text{ in } \operatorname{mod}_{\mu_2} x}$ 1045 1046 1047 1048 **R-HANDLER** $M: A \, ! \, \overline{\ell_i}, E \, \dashrightarrow \, M' \qquad N: B \, ! \, E \, \dashrightarrow \, N' \qquad [N_i: B \, ! \, E \, \dashrightarrow \, N_i']_i$ 1049 $\mu \coloneqq \operatorname{topmod}(\llbracket A \rrbracket_{\overline{\ell_i},E}) \qquad \mu' \coloneqq \operatorname{topmod}(\llbracket A \rrbracket_E)$ $N'' \coloneqq \operatorname{let} \operatorname{mod}_{\langle [\overline{\ell_i} \rangle; \mu} x = x \text{ in } \operatorname{let}_{\mu'} \operatorname{mod}_{\langle [\rangle} x = \operatorname{mod}_{\langle [\rangle} x \text{ in } N'$ 1050 1051 1052 $[\mu_i \coloneqq \text{topmod}([\tilde{A}_i]])$ $N''_i \coloneqq \text{let mod}_{\mu_i} p_i = p_i \text{ in } N'_i]_i$ $H = \{ \mathbf{return} \ x \mapsto N \} \uplus \{ \ell_i \ p_i \ r_i \mapsto N_i \}_i \qquad H' \coloneqq \{ \mathbf{return} \ x \mapsto N'' \} \uplus \{ \ell_i \ p_i \ r_i \mapsto N_i' \}_i$ 1053 1054 handle M with $H: B \colon E \longrightarrow$ handle M' with H'1055 1056 Fig. 6. Encoding of F_{eff}^1 in Met. 1057 1058 1059 Revisiting the regen example from Section 2.6, we can directly translate the F_{eff}^1 version above as 1060 follows into MET, omitting boxing and unboxing of the identity modality (|). 1061 regen : [Yield](($\langle | \rangle (Int \rightarrow Int) \rightarrow \langle | \rangle (\langle Yield \rangle (1 \rightarrow 1) \rightarrow 1)))$ 1062 1063

regen = $mod_{[]}(mod_{(|Y|)}(\lambda f.(\lambda m.let mod_{(|Y|)} m = m in handle m)))$ with {

return $x \mapsto \text{let mod}_{\langle |Y| \text{ield} \rangle} x = x \text{ in } x$,

 $Yield s r \mapsto do Yield (f s); r () \})))$

This is essentially the same program as in Section 2.6, but with significant noise due to the greedy 1067 unboxing and (omitted) identity boxes. In practice, identity boxes are not necessary - they are 1068 only generated here to keep the encoding uniform. On the other hand, greedy unboxing is useful 1069 in practice. In Section 6, we show how METEL can automatically infer unboxing. 1070

5.3 Extensibility of the Encoding 1072

1064

1065

1066

1071

We have omitted value type polymorphism and data types in our encoding in order to focus on 1073 conveying the core idea. We now discuss how to extend the encoding to support these features. 1074

Recall that the encoding in Section 5.2 translates each F_{eff}^1 type and term to a boxed MeT type and 1075 term consistently such that variable accessibility is preserved. Generalising the encoding to type 1076 polymorphism is relatively easy, as we need only ensure variable accessibility. For a polymorphic 1077 1078

value with type $\forall \alpha.A$, the translation on the value of type *A* would give a value of modal type $\mu A'$ in MET. We can use our extension in Section 4.2 to commute the quantifier and modality to obtain a value of type $\mu(\forall \alpha.A')$.

Generalising the encoding to data types is more involved. For instance, given a pair of type 1082 (A, B), the translation on its components might give terms of type $\mu A'$ and $\nu B'$ with unrelated 1083 modalities. This makes it impossible to give the pair a modality other than $\langle | \rangle$, which can not be 1084 used in all contexts where the pair can be used in F_{eff}^1 . To ensure variable accessibility, we need to 1085 greedily destruct the pair and unbox its components with modalities μ and v respectively. The uses 1086 of this pair variable in the translated function body are replaced by fresh pairs of these unboxed 1087 components. For variable bindings of recursive data types, we need to greedily destruct only to the 1088 extent that the data type is unfolded in the function body (where we may treat recursive invocations 1089 as opaque). While this requires a somewhat global translation, it does not require destructing and 1090 1091 unboxing the recursive data type more than a small number of times.

The essential reason for the translation being global comes from the fact that we use let-style unboxing following MTT. For modalities with certain structure (right adjoints), it is possible to use Fitch-style unboxing [11] which allows terms to be directly unboxed without binding [17, 46]. We are interested in exploring whether we could extend MET to use Fitch-style unboxing and thus give a compositional local encoding for recursive data types. Fortunately, these issues appear not to cause problems in practice. Functional programs typically use pattern-matching in a structured way that plays nicely with automatic unboxing.

1100 6 A Surface Language with Type Inference

In this section we briefly outline the design of METEL, a call-by-value surface language based on
 METE with Hindley-Milner type inference [13] for ML types and modalities without complicated
 constraint solving (albeit some annotations are required for modalities).

The problem of inferring modal effect types is closely related to that of inferring first-class 1104 polymorphism. Box introduction is analogous to type abstraction (which type inference algorithms 1105 realise through generalisation). Box elimination is analogous to type application (which type 1106 1107 inference algorithms realise through instantiation). As such, one can adapt any of the myriad techniques for combining first-class polymorphism with Hindley-Milner type inference. METEL is 1108 inspired by the approach of FREEZEML [15], a system that supports full impredicative polymorphism 1109 with a combination of type annotations and *frozen* term variables which disable instantiation. METEL 1110 is a conservative extension of ML, and thus can fully infer types for any ML programs without 1111 the need for any annotations. METEL uses the machinery of FREEZEML to support modal effect 1112 types, but does not support first-class polymorphism (although incorporating it using FREEZEML's 1113 mechanism would be relatively straightforward). 1114

A central feature of METEL that makes it more convenient to program with than METE is that it infers unboxing when variables are used. For instance, the following METEL program

$\lambda m^{\langle |Ask\rangle(1 \rightarrow lnt)}$.handle m() with $\{Ask _ r \mapsto r 42\}$

is elaborated to the following METE program:

 $\lambda m^{\langle |Ask\rangle(1\to |Int)}$.let mod $_{\langle |Ask\rangle}$ $\hat{m} = m$ in handle \hat{m} () with $\{Ask _ r \mapsto r 42\}$

1122 We now summarise the key ideas behind the design of METEL.

- The underlying philosophy of METEL is to "never guess modalities". This is analogous to the underlying philosophy of FREEZEML to "never guess polymorphism".
- Following FREEZEML (and algorithmic presentations of ML) instantiation is performed by default when a variable is used (*x*).
- 1127

1117

1118

1120

1121

1123

1124

Wenhao Tang, Leo White, Stephen Dolan, Daniel Hillerström, Sam Lindley, and Anton Lorenzen

- Similarly, METEL also performs unboxing for variables by default via elaboration.
- METEL allows type variables to be instantiated with modal types. This is analogous to allowing type variables to be instantiated with polymorphic types (giving rise to impredicative polymorphism) in FREEZEML.
 - Following FREEZEML, variables can be *frozen* in order to suppress such instantiation ([x], written ~x in ASCII text as shown in Section 2.11).
- Boxing is never inferred. Though it would be possible to infer limited use of boxing in let-bindings (following FREEZEML and algorithmic presentations of ML), this would yield the most general modality which is not typically what we require for handlers.
 - Type annotations are required for function argument types that contain modal types.
 - Type annotations are only required for those bindings that contain modal types.

We lack space to include full technical details of METEL in the body of the paper, and in any case most of the subtleties and design choices are in essence the same as those one encounters in treating type inference with first-class polymorphism. The full specification for METEL is given in Appendix B. We formalise the type inference algorithm following the approach of type inference in context [19, 20]. Soundness and completeness of type inference is proved in Appendix C.

We have chosen a design inspired by FREEZEML in the full knowledge that other designs may be better suited to other circumstances. But as a means for enabling us to write the examples in Section 2 and for demonstrating the feasibility of implementing sound and complete type inference for modal effect types it has fulfilled its purpose. In the future, we intend to explore and implement an alternative design as an extension to OCAML, building on and complementing recent work on modal types for OCAML [34], and making use of existing means for supporting first-class polymorphism in OCAML.

1152 7 Discussion and Related Work

We first discuss the most relevant systems: FRANK [12, 33], EFFEKT [7, 8], and CC_{<:□} [6]. Then we discuss the relationship between MET and MTT [17, 18, 29]. Finally we discuss other related work.

¹¹⁵⁶ 7.1 Do Be Do Be Do

1157 Our absolute and relative modalities are inspired by the *abilities* and *adjustments* in FRANK [12, 33]. 1158 Absolute modalities and abilities both specify the whole effect context required to run some 1159 computation, while relative modalities and adjustments both specify deltas to the ambient effect 1160 context. A key difference is that FRANK restricts adjustments to appear only beside function 1161 parameters and essentially treats these parameters as second-class computation variables. To write 1162 higher-order programs, FRANK implicitly inserts effect variables to pass ambient effects around. MET 1163 generalises abilities and adjustments to modalities which can appear flexibly in types, eliminating 1164 effect variables altogether. As demonstrated in Section 5, FRANK with implicit effect variables and 1165 no closed abilities is expressible in MET. FRANK's adaptors are richer than MET's masking, although 1166 we expect relative modalities to extend readily to cover this use. 1167

7.2 Capability-based Effect Systems

Capability-based effect systems [6–8] interpret effects as capabilities and offer a form of implicit
 effect polymorphism through capability passing.

For example, in EFFEKT the asList for Yield has the following type:

def asList{ f: $1 \Rightarrow \text{List[Int]} / \{ \text{Yield} \} \}$: List[Int] / {}

Here the block parameter f is allowed to use the capability Yield in addition to those from thecontext. The capability annotation {Yield} on its type is similar to our relative modalities.

1176

1168

1172

1173

24

1132

1133

1137

1182

1208

1209

A key difference between EFFEKT and MET is that EFFEKT requires blocks to be second-class,
while MET supports first-class functions. Brachthäuser et al. [7] recovers first-class functions by
boxing blocks. However, such boxed blocks cannot use capabilities from the context any more,
because the boxes on types fully specifies the required capabilities, similar to our absolute modalities.
For example, we can obtain a curried version of map in EFFEKT by boxing the result.

map1[A, B]{ f: A \Rightarrow B }: List[A] \Rightarrow List[B] at {f} / {}

The return value has type List[A] \Rightarrow List[B] at {f}. The decoration {f} indicates that the return function captures the capability f. This sort of annotation is reminiscent of an effect variable. This is telling for why MET is not expressive enough to encode EFFEKT. To encode captured capability variables, as in map1, we need the expressiveness provided by effect variables in METE.

Another key difference is that EFFEKT uses named handlers [5, 51, 54] where operations are dispatched to a specific named handler, whereas MET uses Plotkin and Pretnar [41]-style handlers where operations dispatched to the first matching handler in the evaluation context. Named handlers provide a form of effect generativity. In the future it would be interesting to explore variants of modal effect types with capabilities and generative effects [14].

¹¹⁹⁶ 7.3 Relationship between MET and Multimodal Type Theory

The literature on multimodal type theory organises the structure of modes (objects), modalities 1198 (morphisms between objects), and their transformations (2-cells between morphisms) in a 2-1199 category [17, 18, 29] (or, in the case of a single mode, a semiring [1, 9, 39, 40]). In MET, modes 1200 are effect contexts *E*, modalities are $\mu_F : E \to F$, and transformations are $\mu_F \Rightarrow v_F$. However, we 1201 have found that 2-categories are not sufficient in a system that also includes submoding. To deal 1202 with this extra structure, we extend the 2-category to a *double category* with an additional kind of 1203 vertical morphisms between objects (in MET, vertical morphisms are the preorder relation $E \leq F$), 1204 as also proposed by Katsumata [28]. As a result, the transformations do not strictly require the 1205 two modalities to have the same sources and targets, enabling us to have $[]_F \Rightarrow [E]_F$ in MET. The 1206 relationship between MET and MTT is explained in detail in Appendix A.3. 1207

7.4 Other Related Work

1210 We discuss other related work on effect systems and modal types.

1211 Row-based Effect Systems. Row polymorphism is one popular approach to implementing effect 1212 systems for effect handlers. LINKS [21] use Rémy-style row polymorphism with presence types 1213 [43], while KOKA [31] and FRANK [33] use scoped rows [30] which allow duplicated labels. Morris 1214 and McKinna [36] proposes a general framework for comparing different kinds of row types, and 1215 Yoshioka et al. [53] proposes a similar framework focusing on comparing effect rows. MET adopts 1216 Leijen-style scoped rows meanwhile allows operation signatures to be absent, similar to presence 1217 types. Mete extends Met with effect variables by row polymorphism and extending the algebraic 1218 structure of row types to be closed under extensions and masks. 1219

Subtyping-based Effect Systems. EFF [3, 42] is equipped with an effect system with both effect variables and sub-effecting, based on the type inference and elaboration described in Karachalias et al. [27], which supports constraint solving for sub-effecting between effect variables. The effect system of HELIUM [5] is based on finite sets, offering a natural sub-effecting relation corresponding to set-inclusion. As such, their system aligns closely with Lucassen and Gifford [35]-style effect left

systems. Tang et al. [47] proposes an effectful calculus with effect polymorphism and sub-effecting 1226 via qualified types [25] following Rose [36]. We have both effect variables and sub-effecting in 1227 METE and METEL but do not consider non-trivial constraint solving. 1228

Modal Types and Effects. Nanevski [37] proposes a modal calculus for handling exceptions, using 1230 a necessity modality indexed by the set of names of used effects. Zyuzin and Nanevski [55] extends 1231 contextual modal types [38] to algebraic effects and handlers, using a contextual necessity modality 1232 to track effects and modelling context reachability as effect handling. Both of their necessity 1233 modalities are similar to our absolute modalities. They do not have similar constructs to our relative 1234 modalities. They both give comonadic semantics to the modalities, while MET adopts the standard 1235 CBV semantics and restrict modalities to values. They focus on theoretical work, while we aim 1236 to design a practical effect system with succinct types and backward compatibility. Choudhury and Krishnaswami [10] proposes to use the necessity modality to recover purity from an effectful calculus. This is similar to our empty absolute modality, especially when extended as in Section 4.3. 1239

Effects in Call-By-Push-Value. In CBPV [32], effects are usually tracked on typing judgements for computations and captured into types when switching to values [16, 26, 48]. MET tracks effect contexts as modes for all terms in typing judgements to have succinct effect types.

Conclusion 8

We have proposed a novel modal effect type system which manages effect contexts by tracking changes to them via absolute and relative modalities. We formalised modal effect types in a core calculus following multimodal type theory. We illustrated our design through a collection of examples in a surface language with sound and complete type inference. We demonstrated the expressiveness of the calculus by encoding a practical fragment of a traditional effect system.

Future work includes: implementing our system as an extension to OCAML; exploring extensions of modal effect types with Fitch-style unboxing, named handlers, generative effects, and capabilities; combining modal effect types with control-flow linearity; and developing a denotational semantics.

References

- [1] Andreas Abel and Jean-Philippe Bernardy. 2020. A unified view of modalities in type systems. Proc. ACM Program. Lang. 4, ICFP, Article 90 (aug 2020), 28 pages. https://doi.org/10.1145/3408972
- 1257 [2] Danel Ahman. 2023. When Programs Have to Watch Paint Dry. In Foundations of Software Science and Computation Structures, Orna Kupferman and Pawel Sobocinski (Eds.). Springer Nature Switzerland, Cham, 1-23. 1258
- [3] Andrej Bauer and Matija Pretnar. 2013. An Effect System for Algebraic Effects and Handlers. In Algebra and Coalgebra 1259 in Computer Science, Reiko Heckel and Stefan Milius (Eds.). Springer Berlin Heidelberg, Berlin, Heidelberg, 1-16. 1260
- [4] Dariusz Biernacki, Maciej Piróg, Piotr Polesiuk, and Filip Sieczkowski. 2018. Handle with care: relational interpretation 1261 of algebraic effects and handlers. Proc. ACM Program. Lang. 2, POPL (2018), 8:1-8:30. https://doi.org/10.1145/3158096
- 1262 [5] Dariusz Biernacki, Maciej Piróg, Piotr Polesiuk, and Filip Sieczkowski. 2020. Binders by day, labels by night: effect instances via lexically scoped handlers. Proc. ACM Program. Lang. 4, POPL (2020), 48:1-48:29. https://doi.org/10.1145/ 1263 3371116 1264
- [6] Aleksander Boruch-Gruszecki, Martin Odersky, Edward Lee, Ondrej Lhoták, and Jonathan Immanuel Brachthäuser. 1265 2023. Capturing Types. ACM Trans. Program. Lang. Syst. 45, 4 (2023), 21:1-21:52. https://doi.org/10.1145/3618003 1266
- [7] Jonathan Immanuel Brachthäuser, Philipp Schuster, Edward Lee, and Aleksander Boruch-Gruszecki. 2022. Effects, 1267 capabilities, and boxes: from scope-based reasoning to type-based reasoning and back. Proc. ACM Program. Lang. 6, OOPSLA1 (2022), 1-30. https://doi.org/10.1145/3527320 1268
- [8] Jonathan Immanuel Brachthäuser, Philipp Schuster, and Klaus Ostermann. 2020. Effects as capabilities: effect handlers 1269 and lightweight effect polymorphism. Proc. ACM Program. Lang. 4, OOPSLA (2020), 126:1-126:30. https://doi.org/10. 1270 1145/3428194
- 1271 [9] Pritam Choudhury, Harley Eades III, Richard A. Eisenberg, and Stephanie Weirich. 2021. A graded dependent 1272 type system with a usage-aware semantics. Proc. ACM Program. Lang. 5, POPL, Article 50 (jan 2021), 32 pages. https://doi.org/10.1145/3434331 1273

26

1229

1237

1238

1240

1241

1242

1243 1244

1245

1246

1247

1248

1249

1250

1251

1252

1253 1254

1255

1256

- [10] Vikraman Choudhury and Neel Krishnaswami. 2020. Recovering purity with comonads and capabilities. Proc. ACM
 Program. Lang. 4, ICFP (2020), 111:1–111:28. https://doi.org/10.1145/3408993
- [11] Ranald Clouston. 2018. Fitch-Style Modal Lambda Calculi. In Foundations of Software Science and Computation Structures
 21st International Conference, FOSSACS 2018, Held as Part of the European Joint Conferences on Theory and Practice of Software, ETAPS 2018, Thessaloniki, Greece, April 14-20, 2018, Proceedings (Lecture Notes in Computer Science, Vol. 10803), Christel Baier and Ugo Dal Lago (Eds.). Springer, 258–275. https://doi.org/10.1007/978-3-319-89366-2_14
- [12] Lukas Convent, Sam Lindley, Conor McBride, and Craig McLaughlin. 2020. Doo bee doo bee doo. J. Funct. Program. 30
 (2020), e9. https://doi.org/10.1017/S0956796820000039
- [13] Luis Damas and Robin Milner. 1982. Principal Type-Schemes for Functional Programs. In *Proceedings of the 9th ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages* (Albuquerque, New Mexico) (*POPL '82*).
 ¹²⁸³ Association for Computing Machinery, New York, NY, USA, 207–212. https://doi.org/10.1145/582153.582176
- [14] Paulo Emílio de Vilhena and François Pottier. 2023. A Type System for Effect Handlers and Dynamic Labels. In Programming Languages and Systems - 32nd European Symposium on Programming, ESOP 2023, Held as Part of the European Joint Conferences on Theory and Practice of Software, ETAPS 2023, Paris, France, April 22-27, 2023, Proceedings (Lecture Notes in Computer Science, Vol. 13990), Thomas Wies (Ed.). Springer, 225–252. https://doi.org/10.1007/978-3-031-30044-8_9
- [15] Frank Emrich, Sam Lindley, Jan Stolarek, James Cheney, and Jonathan Coates. 2020. FreezeML: complete and easy type inference for first-class polymorphism. In *Proceedings of the 41st ACM SIGPLAN International Conference on Programming Language Design and Implementation, PLDI 2020, London, UK, June 15-20, 2020, Alastair F. Donaldson and Emina Torlak (Eds.). ACM, 423–437. https://doi.org/10.1145/3385412.3386003*
- [16] Yannick Forster, Ohad Kammar, Sam Lindley, and Matija Pretnar. 2019. On the expressive power of user-defined effects: Effect handlers, monadic reflection, delimited control. *J. Funct. Program.* 29 (2019), e15. https://doi.org/10. 1017/S0956796819000121
- [17] Daniel Gratzer. 2023. Syntax and semantics of modal type theory. Ph. D. Dissertation. Aarhus University.
- [18] Daniel Gratzer, G. A. Kavvos, Andreas Nuyts, and Lars Birkedal. 2020. Multimodal Dependent Type Theory. In *LICS* ^{20:} 35th Annual ACM/IEEE Symposium on Logic in Computer Science, Saarbrücken, Germany, July 8-11, 2020, Holger
 Hermanns, Lijun Zhang, Naoki Kobayashi, and Dale Miller (Eds.). ACM, 492–506. https://doi.org/10.1145/3373718.
 ³³⁹⁴⁷³⁶
- [19] Adam Gundry, Conor McBride, and James McKinna. 2010. Type Inference in Context. In MSFP@ICFP. ACM, 43–54.
- [20] Adam Michael Gundry. 2013. Type inference, Haskell and dependent types. Ph. D. Dissertation. University of Strathclyde,
 Glasgow, UK. http://oleg.lib.strath.ac.uk/R/?func=dbin-jump-full&object_id=22728
- 1301[21] Daniel Hillerström and Sam Lindley. 2016. Liberating Effects with Rows and Handlers (*TyDe 2016*). Association for1302Computing Machinery, New York, NY, USA, 15–27. https://doi.org/10.1145/2976022.2976033
- [22] Daniel Hillerström and Sam Lindley. 2018. Shallow Effect Handlers. In Programming Languages and Systems 16th Asian Symposium, APLAS 2018, Wellington, New Zealand, December 2-6, 2018, Proceedings (Lecture Notes in Computer Science, Vol. 11275), Sukyoung Ryu (Ed.). Springer, 415–435. https://doi.org/10.1007/978-3-030-02768-1_22
- [23] Daniel Hillerström. 2022. Foundations for Programming and Implementing Effect Handlers. Ph. D. Dissertation. The
 University of Edinburgh, UK. https://doi.org/10.7488/era/2122
- [24] Roshan P. James and Amr Sabry. 2011. Yield: Mainstream Delimited Continuations. Informal proceedings of TPDC@RDP'11. https://legacy.cs.indiana.edu/~sabry/papers/yield.pdf.
 [308] [308] [309] [
- [25] Mark P. Jones. 1994. A Theory of Qualified Types. *Sci. Comput. Program.* 22, 3 (1994), 231–256. https://doi.org/10.
 1016/0167-6423(94)00005-0
- [26] Ohad Kammar, Sam Lindley, and Nicolas Oury. 2013. Handlers in action. In ACM SIGPLAN International Conference on Functional Programming, ICFP'13, Boston, MA, USA - September 25 - 27, 2013, Greg Morrisett and Tarmo Uustalu (Eds.).
 ACM, 145–158. https://doi.org/10.1145/2500365.2500590
- [27] Georgios Karachalias, Matija Pretnar, Amr Hany Saleh, Stien Vanderhallen, and Tom Schrijvers. 2020. Explicit effect subtyping. J. Funct. Program. 30 (2020), e15. https://doi.org/10.1017/S0956796820000131
- [28] Shin-ya Katsumata. 2018. A Double Category Theoretic Analysis of Graded Linear Exponential Comonads. In *Founda- tions of Software Science and Computation Structures*, Christel Baier and Ugo Dal Lago (Eds.). Springer International
 Publishing, Cham, 110–127.
- [29] G. A. Kavvos and Daniel Gratzer. 2023. Under Lock and Key: a Proof System for a Multimodal Logic. *Bull. Symb. Log.* 29, 2 (2023), 264–293. https://doi.org/10.1017/BSL.2023.14
 [318] [318] [318] [319] [31
- [30] Daan Leijen. 2005. Extensible records with scoped labels. In *Revised Selected Papers from the Sixth Symposium on Trends in Functional Programming, TFP 2005, Tallinn, Estonia, 23-24 September 2005 (Trends in Functional Programming, Vol. 6)*, Marko C. J. D. van Eekelen (Ed.). Intellect, 179–194.
- 1321[31] Daan Leijen. 2017. Type Directed Compilation of Row-Typed Algebraic Effects. In Proceedings of the 44th ACM1322SIGPLAN Symposium on Principles of Programming Languages (Paris, France) (POPL '17). Association for Computing

- 1324 Machinery, New York, NY, USA, 486–499. https://doi.org/10.1145/3009837.3009872
- [32] Paul Blain Levy. 2004. Call-By-Push-Value: A Functional/Imperative Synthesis. Semantics Structures in Computation,
 Vol. 2. Springer.
- [33] Sam Lindley, Conor McBride, and Craig McLaughlin. 2017. Do Be Do Be Do. In *Proceedings of the 44th ACM SIGPLAN Symposium on Principles of Programming Languages* (Paris, France) (*POPL 2017*). Association for Computing Machinery, New York, NY, USA, 500–514. https://doi.org/10.1145/3009837.3009897
- [34] Anton Lorenzen, Leo White, Stephen Dolan, Richard A. Eisenberg, and Sam Lindley. 2024. Oxidizing OCaml with
 Modal Memory Management. *Proc. ACM Program. Lang.* 8, ICFP (2024). https://antonlorenzen.de/oxidizing-ocaml modal-memory-management.pdf
- [35] John M. Lucassen and David K. Gifford. 1988. Polymorphic Effect Systems. In POPL. ACM Press, 47–57. https://doi.org/10.1145/73560.73564
- [36] J. Garrett Morris and James McKinna. 2019. Abstracting Extensible Data Types: Or, Rows by Any Other Name. Proc.
 ACM Program. Lang. 3, POPL, Article 12 (jan 2019), 28 pages. https://doi.org/10.1145/3290325
- [37] Aleksandar Nanevski. 2005. A modal calculus for exception handling. In *Intuitionistic Modal Logics and Applications* Workshop (IMLA'05), Chicago, IL.
- [38] Aleksandar Nanevski, Frank Pfenning, and Brigitte Pientka. 2008. Contextual modal type theory. ACM Trans. Comput. Log. 9, 3 (2008), 23:1–23:49. https://doi.org/10.1145/1352582.1352591
- [39] Dominic Orchard, Vilem-Benjamin Liepelt, and Harley Eades III. 2019. Quantitative program reasoning with graded
 modal types. *Proc. ACM Program. Lang.* 3, ICFP, Article 110 (jul 2019), 30 pages. https://doi.org/10.1145/3341714
- [40] Tomas Petricek, Dominic Orchard, and Alan Mycroft. 2014. Coeffects: a calculus of context-dependent computation. In Proceedings of the 19th ACM SIGPLAN International Conference on Functional Programming (Gothenburg, Sweden) (ICFP '14). Association for Computing Machinery, New York, NY, USA, 123–135. https://doi.org/10.1145/2628136.2628160
- [41] Gordon D. Plotkin and Matija Pretnar. 2013. Handling Algebraic Effects. Log. Methods Comput. Sci. 9, 4 (2013).
 [42] Matija Pretnar. 2014. Inferring Algebraic Effects. Log. Methods Comput. Sci. 10, 3 (2014). https://doi.org/10.2168/LMCS-10(3:21)2014
- 1345[43]Didier Rémy. 1994. Type Inference for Records in a Natural Extension of ML. In Theoretical Aspects of Object-Oriented1346Programming: Types, Semantics, and Language Design. Citeseer.
- [44] Dennis Ritchie and Ken Thompson. 1974. The UNIX Time-Sharing System. *Commun. ACM* 17, 7 (1974), 365–375.
- [45] Michael Shulman. 2018. Brouwer's fixed-point theorem in real-cohesive homotopy type theory. *Math. Struct. Comput. Sci.* 28, 6 (2018), 856–941. https://doi.org/10.1017/S0960129517000147
- [46] Michael Shulman. 2023. Semantics of multimodal adjoint type theory. In *Proceedings of the 39th Conference on the* Mathematical Foundations of Programming Semantics, MFPS XXXIX, Indiana University, Bloomington, IN, USA, June 21-23,
 2023 (EPTICS, Vol. 3), Marie Kerjean and Paul Blain Levy (Eds.). EpiSciences. https://doi.org/10.46298/ENTICS.12300
- [47] Wenhao Tang, Daniel Hillerström, Sam Lindley, and J. Garrett Morris. 2024. Soundly Handling Linearity. Proc. ACM Program. Lang. 8, POPL, Article 54 (jan 2024), 29 pages. https://doi.org/10.1145/3632896
- [48] Cassia Torczon, Emmanuel Suárez Acevedo, Shubh Agrawal, Joey Velez-Ginorio, and Stephanie Weirich. 2023. Effects
 and Coeffects in Call-By-Push-Value (Extended Version). arXiv:2311.11795 [cs.PL] https://arxiv.org/abs/2311.11795
- [49] Birthe van den Berg and Tom Schrijvers. 2023. A Framework for Higher-Order Effects & Handlers. *CoRR* abs/2302.01415 (2023). https://doi.org/10.48550/arXiv.2302.01415 arXiv:2302.01415
- 1356 (2023). https://doi.org/10.4035/arXiv.2502.01413
 1357 [50] Nicolas Wu, Tom Schrijvers, and Ralf Hinze. 2014. Effect Handlers in Scope. SIGPLAN Not. 49, 12 (Sept. 2014), 1–12. https://doi.org/10.1145/2775050.2633358
- [1358 [51] Ningning Xie, Youyou Cong, Kazuki Ikemori, and Daan Leijen. 2022. First-class names for effect handlers. Proc. ACM
 Program. Lang. 6, OOPSLA2 (2022), 30–59. https://doi.org/10.1145/3563289
- [52] Zhixuan Yang and Nicolas Wu. 2023. Modular Models of Monoids with Operations. Proc. ACM Program. Lang. 7, ICFP
 (2023), 566–603. https://doi.org/10.1145/3607850
- [53] Takuma Yoshioka, Taro Sekiyama, and Atsushi Igarashi. 2024. Abstracting Effect Systems for Algebraic Effect Handlers. CoRR abs/2404.16381 (2024). https://doi.org/10.48550/ARXIV.2404.16381 arXiv:2404.16381
- [54] Yizhou Zhang and Andrew C. Myers. 2019. Abstraction-safe effect handlers via tunneling. Proc. ACM Program. Lang.
 3, POPL (2019), 5:1–5:29. https://doi.org/10.1145/3290318
- [55] Nikita Zyuzin and Aleksandar Nanevski. 2021. Contextual modal types for algebraic effects and handlers. *Proc. ACM Program. Lang.* 5, ICFP (2021), 1–29. https://doi.org/10.1145/3473580
- 1367
- 1368
- 1369
- 1370
- 1371
- 1372

1373 A Full Specification, Meta Theory, and Proofs for MET

We provide the specification, meta theory, and proofs for MET omitted in Section 3. Our proofs for
 meta theory of MET consider all extensions in Section 4 including effect variables (METE).

1377 A.1 Extra Rules

The full kinding and well-formedness rules for MET are shown in Figure 7. We include the kind Eff and syntax $E \setminus L$ to also cover METE. The type equivalence and sub-effecting rules are shown in Figure 8. We highlight the special rule that allows us to add or remove absent labels from the right.

$\Gamma \vdash A : K \Gamma \vdash$	$-\mu \ \Gamma \vdash E:K \ \Gamma$	$\vdash L \Gamma \vdash D \Gamma$	$\vdash P \Gamma \vdash ($	$\mu, A) \Longrightarrow \nu$	@ F		
$\Gamma \ni \alpha : K$	$\Gamma \vdash A : Abs$	$\Gamma \vdash [E]$	$\Gamma \vdash A : A$	Any	$\Gamma \vdash \langle L D$)	$\Gamma \vdash A : K$
$\overline{\Gamma \vdash \alpha : K}$	$\Gamma \vdash A : Any$	Г⊦	[E]A: Abs		Γ ⊢ 🔇	$ L D\rangle A$	$\overline{A:K}$
$\Gamma \vdash A : Any$	$\Gamma \vdash B : Any$	$\Gamma, \alpha: K \vdash I$	A:K'	$\Gamma \vdash L$	$\Gamma \vdash D$	Ι	$` \vdash E : Eff$
$\Gamma \vdash A$ -	$\rightarrow B$: Any	$\Gamma \vdash \forall \alpha^K . A$	A:K'	Γ⊢ ⟨	$L D\rangle$	_	$\Gamma \vdash [E]$
			E:Eff	Г⊦	E: Eff	$\Gamma \vdash L$,
Γ +	· : Eff	$\Gamma \vdash \ell : P, E :$	Eff		$\Gamma \vdash E \backslash L : I$	Eff	
	$\Gamma \vdash A : Abs$	$\Gamma \vdash B : Abs$			Г	$\vdash P$	$\Gamma \vdash D$
$\overline{\Gamma \vdash -}$	$\Gamma \vdash A \rightarrow$	» B	$\overline{\Gamma \vdash L}$	<u>Γ</u> +	. –	$\Gamma \vdash \ell$: <i>P</i> , <i>D</i>
	$\Gamma \vdash A : A$	Abs		$\mu_F \Rightarrow 1$	VF		
	$\Gamma \vdash (\mu, A) =$	> ν @ F	Γ H	$-(\mu, A) =$	→ v @ F		
	Fig. 7. Full kind	ling and well-for	medness rul	es for Met	and METE.		

A.2 Full Specification for Extensions to Мет

Figure 9 gives the syntax and typing rules for data types, absolute and shallow handlers. Figure 10
gives the extensions to value normal forms, evaluation contexts, and operational semantics for the
extensions with data types, absolute and relative handlers in Section 4.

1408

1402

- 1409 1410
- 1410
- 1412
- 1413 1414

- 1416
- 1417
- 1418 1419
- 141)
- 1421

$L \equiv L' \qquad D \equiv D'$	$' \ E \equiv F \ P \equiv P' \ \mu$	$\iota \equiv \nu \qquad A \equiv B$	3			
3	$L_1 \equiv L_2$ L_2	$\equiv L_3$	$L \equiv L'$	ł	$\neq \ell' \qquad L$	$\equiv L'$
$5 \cdot \equiv \cdot$	$L_1 \equiv L_3$		$\ell, L \equiv \ell, L'$	· -	$\ell, \ell', L \equiv \ell',$, ℓ, L
5 7 D ₁ ≡	$\equiv D_2 \qquad D_2 \equiv D_3$	$P \equiv P'$	$D \equiv D'$		$\ell \neq \ell'$	
·≡·	$D_1 \equiv D_3$	$\overline{\ell:P,D}\equiv$	$\ell: P', D'$	$\ell: P, \ell':$	$P',D\equiv\ell'$	$: P', \ell : P, D$
E_1	$\equiv E_2 \qquad E_2 \equiv E_3$	$P \equiv P'$	$E \equiv E'$		$\ell \neq \ell'$	
·≡·	$E_1 \equiv E_3$	$\overline{\ell:P,E}\equiv$	$\ell: P', E'$	$\ell: P, \ell':$	$P', E \equiv \ell'$	$: P', \ell : P, E$
	$\Lambda - \Lambda' = D$	- <i>D</i> ′				$\Lambda - P$
	$\frac{A = A}{A = B = A'}$	= D			$\frac{\mu = v}{m}$	A = D
$E, \ell : - \equiv E$	$A \twoheadrightarrow B \equiv A^*$	→ <i>B</i>	- = -	$\alpha \equiv \alpha$	μΑ	$\equiv \nu B$
$E \equiv F$	$L \equiv L'$ $D \equiv$	$\equiv D'$	$A \equiv A'$	$B \equiv B'$	A =	$\equiv B$
$[E] \equiv [F]$	$\langle L D\rangle \equiv \langle L' $	$D'\rangle$	$\overline{A \to B \equiv A}$	$' \rightarrow B'$	$\forall \alpha^K . A =$	$\equiv \forall \alpha^K . B$
$P \leqslant P' E \leqslant F$	$D \leqslant D'$					
					_	
	$P \leqslant P$	- <	$\leq P$	$\cdot \leqslant$	•	
$E_1 \equiv \ell$	$: P_1, E'_1 \qquad E_2 \equiv \ell :$	P_{2}, E'_{2}	$D_1 \equiv \ell$:	$P_1, D'_1 = I$	$D_2 \equiv \ell : P_2,$	D'_2
1	$P_1 \leqslant P_2$ $E_1' \leqslant E_2'$	2, 2	P ₁	$\leqslant P_2$ L	$D_1' \leqslant D_2'$	2
	$E_1 \leqslant E_2$			$D_1 \leqslant D$	2	
	Fig. 8. Type	equivalence a	nd sub-effecti	ng for Мет.		

1520	Value normal forms	$U ::= \cdots \mid (U_1, U_2) \mid \text{inl } U \mid \text{inr } U$
1521	Evaluation contexts	$\mathcal{E} ::= \cdots \mid (\mathcal{E}, N) \mid (U, \mathcal{E}) \mid \text{inl } \mathcal{E} \mid \text{inr } \mathcal{E} \mid \text{case}_{\mathcal{V}} \mathcal{E} \text{ of } \{\overline{O \mapsto M}\}$
1522		\perp handle ^{δ} \mathcal{E} with H
1523		
1524	E-CrispPair	$case_{\mu}(U_1, U_2)$ of $(x, y) \mapsto N \rightsquigarrow N[U_1/x, U_2/y]$
1525	E-CrispInl	case _u inl U of {inl $x \mapsto N_1, \dots$ } $\rightsquigarrow N_1[U/x]$
1526	E-CrispInr	case _u inr U of {inr $y \mapsto N_2, \cdots$ } $\rightsquigarrow N_2[U/y]$
1527	$\operatorname{E-Ret}^{\operatorname{A}}$	handle U with $H \rightsquigarrow N[(\text{mod}_{[D+E]} U)/x]$
1528		where (return $x \mapsto N$) $\in H$
1529	E-Op ^A	handle ^A \mathcal{E} [do ℓU] with $H \rightsquigarrow$
1530		$N[U/p, (\mathbf{mod}_{[F]}(\lambda y.\mathbf{handle}^{\mathbb{A}} \mathcal{E}[y] \text{ with } H))/r]$
1531		where $0-\text{free}(\ell, \mathcal{E})$ and $(\ell \ p \ r \mapsto N) \in H$
1532	E-Ret^\dagger	handle [†] U with $H \rightsquigarrow N[(mod_{(D)} U)/x]$
1533		where (return $x \mapsto N$) $\in H$
1534	E-Op [†]	handle [†] $\mathcal{E}[do \ \ell \ U]$ with $H \sim N[U/p_{\ell}(\lambda u \mathcal{E}[u])/r]$
1535		where 0-free (ℓ, \mathcal{E}) and ($\ell, p, r \mapsto N$) $\in H$
1536	E-RETA [†]	handle \mathbb{A}^{\dagger} U with $H \simeq N[(mod_{D,D} U)/r]$
1537		where (return $x \mapsto N \in H$
1538	E-Op ^{A†}	handle \mathbb{A}^{\dagger} $\mathcal{E}[do \ \ell \ U]$ with $H_{\Delta \lambda}$
1539	L-Or	$\frac{N[U/p (mod_{12}, m)(\lambda \mu \mathcal{E}[\mu]))/r]}{N[U/p (mod_{12}, m)(\lambda \mu \mathcal{E}[\mu]))/r]}$
1540		where $0 - \text{free}(l, \mathcal{E})$ and $(l, p, r \mapsto N) \in H$
1541		where $0 - \operatorname{hee}(i, O)$ and $(i \ p \ i \mapsto N) \in \Pi$
1542		
1543	Fig. 10. Op	erational semantics for data types and more handlers in MeT.
1544		
1545		
1546		
1547		
1548		
1549		
1550		
1551		
1552		
1553		
1554		
1555		
1556		
1557		
1558		
1559		
1560		
1561		
1562		
1563		
1564		
1565		
1566		

The Double Category of Effects A.3

 $E \xrightarrow{\mu_F} F$

Fig. 11. 2-cells in a 2-category compared to 2-cells in a double category.

 $\begin{array}{c} \overbrace{\downarrow}\leqslant \\ F' \end{array}$

A double category extends a 2-category with an additional kind of morphisms. Alongside the regular morphisms, now called horizontal morphisms, there are also vertical morphisms that connect the objects of the 2-category. This makes it possible to generalise the 2-cells to transform arbitrary morphisms, whose source and target are connected by vertical morphisms. Figure 11 shows the differences between 2-cells in a 2-category and those in a double category using syntax of MET.

In MET, objects/modes are given by effect contexts, the horizontal morphisms by modalities, the vertical morphisms by the sub-effecting relation, and 2-cells by the modality transformations.

Now we show that it indeed has the structure of a double category.

Since the sub-effecting relation is a preorder, effect contexts (objects) *E* and sub-effecting (vertical morphisms) $E \leq F$ obviously form a category given by the poset.

We repeat the definition of modalities and modality composition from Section 3.3 here for easy reference. We directly define them directly in terms of morphisms between modes.

$$\begin{split} [E]_F &: E \to F \\ \langle L|D\rangle_F &: D + (F-L) \to F \end{split}$$
$$\begin{split} [E']_F &\circ [E]_{E'} &= [E]_F \\ \langle L|D\rangle_F &\circ [E]_{D+(F-L)} &= [E]_F \\ [E]_F &\circ \langle L|D\rangle_E &= [D + (E-L)]_F \\ \langle L_1|D_1\rangle_F &\circ \langle L_2|D_2\rangle_{D_1+(F-L_1)} &= \langle L_1 + L|D_2 + D\rangle_F \quad \text{where } (L,D) = L_2 \bowtie D \end{split}$$

The effect contexts (objects) and modalities (horizontal morphisms) also form a category since modality composition possesses associativity and identity. We have the following lemma.

LEMMA A.1 (MODES AND MODALITIES FORM A CATEGORY). Modes and modalities form a category with the identity morphism $\mathbb{1}_E = \langle | \rangle_E : E \to E$ and the morphism composition $\mu_F \circ v_{F'}$ such that

- (1) Identity: $\mathbb{1}_F \circ \mu_F = \mu_F = \mu_F \circ \mathbb{1}_E$ for $\mu_F : E \to F$.
- (2) Associativity: $(\mu_{E_1} \circ \nu_{E_2}) \circ \xi_{E_3} = \mu_{E_1} \circ (\nu_{E_2} \circ \xi_{E_3})$ for $\mu_{E_1} : E_2 \to E_1, \nu_{E_2} : E_3 \to E_2$, and $\xi_{E_3}: E \to E_3.$

PROOF. By inlining the definitions of modalities and checking each case.

In Section 3, we only define the modality transformations of shape $\mu_F \Rightarrow \nu_F$ where the targets of μ and v are required to be the same effect context F. This is enough for presenting the calculus, but we can further extend it to allow $\mu_F \Rightarrow \nu_{F'}$ where $F \leq F'$. This is used in the meta theory for MET such as the lock weakening lemma (Lemma A.11.3).

The extended modality transformation relation is defined by the transitive closure of the following rules. Compared to the definition in Section 3.3, the only new rule is MT-MONO.

$$\frac{\mu_F : E' \to F}{[E]_F \Rightarrow \mu_F} \qquad \frac{\text{MT-UPCAST}}{\langle L|D \rangle_F \Rightarrow \langle L|D' \rangle_F} \qquad \frac{\text{MT-EXPAND}}{\langle F - L \rangle \equiv \ell : P, E} \qquad \frac{\text{MT-Mono}}{\langle F \leqslant F'}$$

П

The following lemmas shows that the transformation $\mu_F \Rightarrow \nu_{F'}$ satisfies the requirement of being 2-cells in the double category of effects with well-defined vertical and horizontal composition.

LEMMA A.2 (MODALITY TRANSFORMATIONS ARE 2-CELLS). If $\mu_F \Rightarrow v_{F'}$, $\mu_F : E \rightarrow F$, and $v_{F'} : E' \rightarrow F'$, then $E \leq E'$ and $F \leq F'$. Moreover, the transformation relation is closed under vertical and horizontal composition as shown by the following admissible rules.

$$\frac{\mu_{F_1} \Rightarrow \nu_{F_2} \quad \nu_{F_2} \Rightarrow \xi_{F_3}}{\mu_{F_1} \Rightarrow \xi_{F_3}} \qquad \frac{\mu_F \Rightarrow \mu'_{F'} \quad \nu_E \Rightarrow \nu'_{E'} \quad \mu_F : E \to F \quad \mu'_{F'} : E' \to F'}{\mu_F \circ \nu_E \Rightarrow \mu'_{F'} \circ \nu'_{E'}}$$

PROOF. To make proving easier, we give the resulting rules by taking the transitive closure.

$$\frac{\mu_{F'}: E' \to F' \quad E \leqslant E' \quad F \leqslant F'}{[E]_F \Rightarrow \mu_{F'}}$$

$$\frac{L = \operatorname{dom}(D) \qquad D_1 \leqslant D'_1 \qquad (F' - L_1) \equiv D, E \qquad F \leqslant F'}{\langle L_1 | D_1 \rangle_F \Rightarrow \langle L, L_1 | D'_1, D \rangle_{F'}}$$

 $\frac{L = \operatorname{dom}(D) \qquad D_1 \leqslant D_1' \qquad (F' - L_1) \equiv D, E \qquad F \leqslant F'}{\langle L, L_1 | D_1, D \rangle_F \Rightarrow \langle L_1 | D_1' \rangle_{F'}}$

It is easy to see that sources and targets of morphisms increase. Vertical composition follows directly from the fact that we take the transitive closure. Horizontal compositions follows from case analysis on shapes of modalities being composed.

More on Relationships between MET and Multimodal Type Theory. In addition to extending to a double category, MET also differs from MTT in the usage of morphism families. In types and terms we use μ , indexed families of morphisms between modes, instead of concrete morphisms μ_F . This is very useful to allow term variables to be used flexibly in different effect contexts larger than where they are defined. As a result, every type is always well-defined at any modes, which implies that we do not need to define the judgement A @ E as in MTT. Moreover, one important benefit of having types well-defined at any modes is that type quantifiers do not need to carry the additional information about the modes at which the type variables can be used, greatly simplifying the type system. Otherwise, polymorphic types would have forms $\forall \alpha^{K @ E} . A$, where *E* indicates the mode of the type variable α .

In contexts, we still keep concrete morphisms μ_F , which makes the proof trees of terms much more structured than using morphism families.

A.4 Lemmas for Modes and Modalities

Beyond the structure and properties of double categories shown in Appendix A.3, we have some extra properties on modes and modalities in MET.

The most important one is that horizontal morphisms (sub-effecting) act functorially on vertical ones (modalities). In other words, the action of μ on effect contexts gives a total monotone function.

LEMMA A.3 (MONOTONE MODALITIES). If $\mu_F : E \to F$ and $F \leq F'$, then $\mu_{F'} : E' \to F'$ with $E \leq E'$.

PROOF. By definition.

We prove the lemma on the equivalence between syntactic and semantic definition of modality transformation in Section 3.3. This lemma can be generalised to the general form of 2-cells in a double category $\mu_F \Rightarrow v_{F'}$ where $F \leq F'$.

1669

1670

1671

1681

1696

1697

1667 LEMMA 3.1 (SEMANTICS OF MODALITY TRANSFORMATION). We have $\mu_F \Rightarrow v_F$ if and only if 1668 $\mu(F') \leq v(F')$ for all F' with $F \leq F'$.

PROOF. From left to right, it is obvious that the semantics is preserved after taking the transitive closure. We only need to show the transformation given by each rule satisfies the semantics.

1672 Case MT-ABS. Follow from Lemma A.3.

1673 Case MT-UPCAST. Since $D \leq D'$, we have $D + (F - L) \leq D' + (F - L)$ for any *F*.

Case MT-EXPAND. Since $(F - L) \equiv \ell : P, E$, for any $F \leq F'$ we have $(F' - L) \equiv \ell : P, E'$ for some E'. Both sides act on F' give $D, \ell : P, E'$.

From left to right, we need to show that for all pairs μ_F and ν_F satisfying the semantic definition, we have $\mu_F \Rightarrow \nu_F$ in the transitive closure of the three syntactic rules. This obviously holds for those transformation starting from absolute modalities. For those transformation starting from relative modalities, observe that they can only be transformed other relative modalities by the semantic definition. By taking the transitive closure of the last two rules, we have

$$\frac{L = \operatorname{dom}(D) \quad D_1 \leqslant D'_1 \quad (F - L_1) \equiv D, E}{\langle L_1 | D_1 \rangle_F \Rightarrow \langle L, L_1 | D'_1, D \rangle_F}$$
$$\frac{L = \operatorname{dom}(D) \quad D_1 \leqslant D'_1 \quad (F - L_1) \equiv D, E}{\langle L, L_1 | D_1, D \rangle_F \Rightarrow \langle L_1 | D'_1 \rangle_F}$$

Suppose $\langle L_1 | D_1 \rangle_F$ and $\langle L_2 | D_2 \rangle_F$ satisfies that $D_1 + (F' - L_1) \leq D_2 + (F' - L_2)$ (1) for all $F \leq F'$. Case analysis on the relationship between D_1 and D_2 .

- Case D_2 is longer than D_1 . By (1) we have $D_2 \equiv D'_1$, D for $D_1 \leq D'_1$. Let L = dom(D). Using proof by contradiction, we can show that $L_2 \equiv L$, L_1 and $(F - L_1) \equiv D$, E for some E; otherwise, we can always properly set F' to violate (1) meanwhile satisfying $F \leq F'$. Thus, this case is covered by the first rule of the transitive closure.
- Case D_1 is longer than D_2 . We have $D_1 \equiv D'_2$, D for $D'_2 \leq D_2$. Similar to the above case, using proof by contradiction we can show that it is covered by the second rule of the transitive closure.

Our proofs for type soundness of MET do not use ad-hoc case analysis on shapes of modalities or reply on any specific properties about the definition of composition and transformation (except for the parts about effect handlers since they specify the required modalities in the typing rules). As a result, it should be able to generalise our calculus and proofs to other mode theories satisfying certain extra properties. We state some properties of the mode theory as the following lemmas for easier reference in proofs. Most of them directly follow from the definition.

1704 LEMMA A.4 (VERTICAL COMPOSITION). If
$$\mu_{F_1} \Rightarrow \nu_{F_2}$$
 and $\nu_{F_2} \Rightarrow \xi_{F_3}$, then $\mu_{F_1} \Rightarrow \xi_{F_3}$.
1705 PROOF. Follow from Lemma A.2

1708 LEMMA A.5 (HORIZONTAL COMPOSITION). If $\mu_F : E \to F$, $\mu'_{F'} : E' \to F'$, $\mu_F \Rightarrow \mu'_{F'}$, and $v_E \Rightarrow v'_{E'}$, 1709 then $\mu_F \circ v_E \Rightarrow \mu'_{F'} \circ v'_{E'}$.

1711 PROOF. Follow from Lemma A.2

LEMMA A.6 (MONOTONE MODALITY TRANSFORMATION). If $\mu_F \Rightarrow v_F$ and $F \leqslant F'$, then $\mu_{F'} \Rightarrow v_{F'}$.

1714 PROOF. Follow from Lemma 3.1

1715

1710

Wenhao Tang, Leo White, Stephen Dolan, Daniel Hillerström, Sam Lindley, and Anton Lorenzen

1716 LEMMA A.7 (Asymmetric reflexivity of modality transformation). If $F \leq F'$ and $\mu_F : E \rightarrow$ 1717 *F*, then $\mu_F \Rightarrow \mu_{F'}$.

PROOF. By definition.

¹⁷²⁰ A.5 Lemmas for MET

We prove structural and substitution lemmas for MET as well as some other auxiliary lemmas for proving type soundness.

1724 LEMMA A.8 (CANONICAL FORMS).

17251. If $\vdash U : \mu A @ E$, then U is of shape $\mathbf{mod}_{\mu} U'$.17262. If $\vdash U : A \rightarrow B @ E$, then U is of shape $\lambda x^A . M$.17273. If $\vdash U : \forall \alpha . A @ E$, then U is of shape $\Lambda \alpha . V$.17284. If $\vdash U : (A, B) @ E$, then U is of shape (U_1, U_2) .17295. If $\vdash U : A + B @ E$, then U is either of shape inl U' or of shape inr U'.

1731 PROOF. Directly follows from the typing rules.

¹⁷³² In order to define the lock weakening lemma, we first define a context update operation $(|\Gamma|)_{F'}$ ¹⁷³³ which gives a new context derived from updating the indexes of all locks and variable bindings in ¹⁷³⁵ Γ such that $(|\Gamma|)_{F'} @ F'$.

$$\begin{array}{rcl} (\cdot)_F &=& \cdot \\ (\mathbf{ } \mathbf{ }_{[E]_{F'}}, \Gamma')_F &=& \mathbf{ } \mathbf{ }_{[E]_F}, \Gamma' \\ (\mathbf{ } \mathbf{ } _{\langle L|D \rangle_{F'}}, \Gamma')_F &=& \mathbf{ } _{\langle L|D \rangle_F}, (\Gamma')_{D+(F-L)} \\ (x :_{\mu_{F'}} A, \Gamma')_F &=& x :_{\mu_F} A, (\Gamma')_F \\ (\alpha : K, \Gamma')_F &=& \alpha : K, (\Gamma')_F \end{array}$$

The have the following lemma showing that the index update operation preserves the locks(-) operation except for updating the index.

1744 LEMMA A.9 (INDEX UPDATE PRESERVES COMPOSITION). If $\mu_F = \text{locks}(\Gamma) : E \to F, F \leq F'$, and 1745 $\text{locks}((\Gamma)_{F'}) : E' \to F'$, then $\text{locks}((\Gamma)_{F'}) = \mu_{F'}$.

PROOF. By straightforward induction on the context and using the property that $(\mu \circ \nu)_F = \mu_F \circ \nu_E$ for $\mu_F : E \to F$.

¹⁷⁴⁹ COROLLARY A.10 (INDEX UPDATE PRESERVES TRANSFORMATION). If locks(Γ) : $E \to F, F \leq F'$, ¹⁷⁵⁰ and locks($(\Gamma)_{F'}$) : $E' \to F'$, then locks(Γ) \Rightarrow locks($(\Gamma)_{F'}$).

PROOF. Immediately follow from Lemma A.9 and Lemma A.7.

We have the following structural lemmas.

LEMMA A.11 (STRUCTURAL RULES). The following structural rules are admissible.

1. Variable weakening.

$$\frac{\Gamma, \Gamma' \vdash M : B @ E \qquad \Gamma, x :_{\mu_F} A, \Gamma' @ E}{\Gamma, x :_{\mu_F} A, \Gamma' \vdash M : B @ E}$$

2. Variable swapping.

 $\frac{\Gamma, x:_{\mu_F} A, y:_{\nu_F} B, \Gamma' \vdash M: A' @ E}{\Gamma, y:_{\nu_F} B, x:_{\mu_F} A, \Gamma' \vdash M: A' @ E}$

1742

1743

1746

1747

1748

1752

1755 1756

1757 1758 1759

1760

1761

1762 1763 1764
3. Lock weakening.

$$\frac{\Gamma, \mathbf{\Phi}_{\mu_F}, \Gamma' \vdash M : A @ E}{\Gamma, \mathbf{\Phi}_{\nu_F}, (\Gamma')_{F'} \vdash M : A @ E'} = \frac{\Gamma, \mathbf{\Phi}_{\mu_F}, \Gamma' \vdash M : A @ E'}{\Gamma, \mathbf{\Phi}_{\nu_F}, (\Gamma')_{F'} \vdash M : A @ E'}$$

4. Type variable weakening.

$$\frac{\Gamma, \Gamma' \vdash M : B @ E}{\Gamma, \alpha : K, \Gamma' \vdash M : B @ E}$$

5. Type variable swapping.

$$\frac{\Gamma_1, \Gamma_2, \alpha : K, \Gamma_3 \vdash M : A @ E}{\Gamma_1, \alpha : K, \Gamma_3 \vdash M : A @ E} \qquad \qquad \frac{\alpha \notin \mathsf{ftv}(\Gamma_2) \qquad \Gamma_1, \alpha : K, \Gamma_3 \vdash M : A @ E}{\Gamma_1, \Gamma_2, \alpha : K, \Gamma_3 \vdash M : A @ E}$$

PROOF. 1, 2, 4, and 5 follow from straightforward induction on the typing derivation. For 3, we also proceed by induction on the typing derivation. The most interesting case is T-VAR. Other cases mostly follow from IHs.

Case

$$\frac{\Gamma\text{-Var}}{\nu'_{F_1} = \text{locks}(\Gamma_2) : E \to F_1 \qquad \mu'_{F_1} \Rightarrow \nu'_{F_1} \text{ (1) or } \Gamma \vdash A : \text{Abs}}{\Gamma_1, x :_{\mu'_{F_1}}, \Gamma_2 \vdash x : A @ E}$$

Trivial when A is pure. Otherwise, case analysis on where the lock weakening happens.

Case Γ . Supposing $\Gamma_1 = \Gamma$, \square_{μ_F} , Γ_0 and after lock weakening we have Γ , \square_{ν_F} , Γ'_0 , $x :_{\mu'_{F'}}$, Γ'_2 where $\Gamma'_2 = (\Gamma_2)_{F'_1} : E' \to F'_1$ and $\Gamma'_0 = (\Gamma_0)_{F'} : F'_1 \to F'$. By Lemma A.9 on $\Gamma_0, F \leq F'$, and Lemma A.3, we have $F_1 \leq F'_1$. Then by (1) and Lemma A.6, we have $\mu'_{F'_1} \Rightarrow \nu'_{F'_1}$. Then by Lemma A.9 we have $v'_{F'_{\star}} = \text{locks}(\Gamma'_2)$. Finally by T-VAR we have

 $\Gamma, \bigoplus_{v_F}, \Gamma'_0, x :_{\mu'_{F'}}, \Gamma'_2 \vdash x : A @ E'$

Case Γ_2 . Suppose $\Gamma_2 = \Gamma_0, \bigoplus_{\mu_F}, \Gamma'$. is weakened to $\Gamma'_2 = \Gamma_0, \bigoplus_{\nu_F}, (\Gamma')_{F'}$. By Corollary A.10 we have $\operatorname{locks}(\Gamma') \Rightarrow \operatorname{locks}((\Gamma')_{F'})$. Then by Lemma A.5 we have we have $\operatorname{locks}(\Gamma_2) \Rightarrow$ $locks(\Gamma'_2)$. By Lemma A.4 and (1), we have $\mu'_{F_1} \Rightarrow locks(\Gamma'_2)$. Finally by T-VAR we have

$$\Gamma, x :_{\mu'_{F_1}}, \Gamma'_2 \vdash x : A @ E'$$

 $\frac{\mu'_{E}:F_{1} \rightarrow E}{\Gamma, \bigoplus_{\mu_{E}}, \Gamma', \bigoplus_{\mu'_{E}} \vdash V: A @ F_{1} (1)}{\Gamma, \bigoplus_{\mu_{E}}, \Gamma' \vdash \mathbf{mod}_{\mu'} V: \mu' A @ E}$

Case

$$\begin{split} \left(\!\!\left[\Gamma', \widehat{\boldsymbol{\Theta}}_{\mu'_{E}}\right]_{F'} &= \left(\!\!\left[\Gamma'\right]_{F'}, \left(\!\!\left[\widehat{\boldsymbol{\Theta}}_{\mu'_{E'}}\right]_{E'} &= \left(\!\!\left[\Gamma'\right]_{F'}, \widehat{\boldsymbol{\Theta}}_{\mu'_{E'}}\right] \\ \text{Supposing } \mu'_{E'} &: F'_{1} \to E', \text{ by locks}(\left(\!\left[\Gamma'\right]_{F'}, \widehat{\boldsymbol{\Theta}}_{\mu'_{E'}}\right]) &: F'_{1} \to F' \text{ and IH on (1), we have} \\ \Gamma, \widehat{\boldsymbol{\Theta}}_{\mu_{F}}, \left(\!\!\left[\Gamma'\right]_{F'}, \widehat{\boldsymbol{\Theta}}_{\mu'_{E'}} &\vdash V : A @ F'_{1}. \end{split}$$

Then by T-Mop we have

)

We have

T-Mod

$$\Gamma, \bigoplus_{\mu_F}, (\Gamma')_{F'} \vdash \mathbf{mod}_{\mu'} V : \mu' A @ E'$$

Case **T-LETMOD** $\frac{\nu'_{E}:F_{1} \rightarrow E}{\Gamma, \bigoplus_{\mu_{F}}, \Gamma', \bigoplus_{\nu'_{E}} \vdash V: \mu'A @ F_{1}(1)} \Gamma, \bigoplus_{\mu_{F}}, \Gamma', x:_{\nu'_{E} \circ \mu'_{F_{1}}} A \vdash M: B @ E(2)}{\Gamma, \bigoplus_{\mu_{F}}, \Gamma' \vdash \mathsf{let}_{\nu'} \mathsf{mod}_{\mu'} x = V \mathsf{ in } M: B @ E}$ By IH on (1), we have $\Gamma, \bigoplus_{V_F}, (\Gamma')_{F'}, \bigoplus_{V_{F'}} \vdash V : \mu' A @ F'_1$ where $v'_{E'}: F'_1 \to E'$. By IH on (2), we have $\Gamma, \bigoplus_{v_F}, (\Gamma')_{F'}, x :_{v'_{F'} \circ \mu'_{F'}} A \vdash M : B @ E'.$ Then by T-LETMOD, we have $\Gamma, \bigoplus_{\mu_F}, (\Gamma')_{F'} \vdash \operatorname{let}_{\nu'} \operatorname{mod}_{\mu'} x = V \text{ in } M : B @ E'$ Case T-LETMOD' $v'_{E}: F_{1} \to E$ $\Gamma, \bigoplus_{\mu_{F}}, \Gamma', \bigoplus_{\nu'_{E}}, \overline{\alpha:K} \vdash V: \mu'A @ F_{1} (1) \qquad \Gamma, \bigoplus_{\mu_{F}}, \Gamma', x:_{\nu'_{E} \circ \mu'_{F_{1}}} \forall \overline{\alpha^{K}}.A \vdash M: B @ E (2)$ $\Gamma, \mathbf{\hat{h}}_{\mu_{F}}, \Gamma' \vdash \mathsf{let}_{\nu'} \mathsf{mod}_{\mu'} \Lambda \overline{\alpha^{K}} . x = V \mathsf{in} M : B \oslash E$ Similar to the case for T-LETMOD. BY IH on (1), we have $\Gamma, \mathbf{\Phi}_{V_{F}}, (\Gamma')_{F'}, \mathbf{\Phi}_{V_{\alpha'}}, \overline{\alpha:K} \vdash V: \mu'A @ F'_{1}$ where $v'_{E'}: F'_1 \to E'$. By IH on (2), we have $\Gamma, \bigoplus_{V_F}, (\Gamma')_{F'}, x :_{V'_{E'} \circ \mu'_{E'}} \forall \overline{\alpha^K}. A \vdash M : B @ E'.$ Then by T-LETMOD', we have $\Gamma, \bigoplus_{V_{\mathcal{E}}}, (|\Gamma'|)_{E'} \vdash \mathsf{let}_{V'} \mathsf{mod}_{u'} \Lambda \overline{\alpha^K} . x = V \mathsf{ in } M : B @ E'$ Case T-TABS, T-ABS, T-TAPP, T-APP, T-DO, T-MASK, T-HANDLER, and extensions. Follow from IH. Similar to the two cases T-MOD and T-LETMOD we have shown. As a corollary of Lemma A.11.3, the following sub-effecting rule is admissible. COROLLARY A.12 (SUB-EFFECTING). The following rule is admissible. $\frac{\operatorname{locks}(\Gamma): E \to F \quad F \leqslant F' \quad \operatorname{locks}(\langle\!\! \langle \Gamma \rangle\!\! \rangle_{F'}): E' \to F'}{\langle\!\! \langle \Gamma \rangle\!\! \rangle_{F'} \vdash M: A @ E'}$ $\Gamma \vdash M : A @ E$ **PROOF.** Follow from Lemma A.11.3 by adding the lock $\Box_{[\Gamma]}$ to the left of Γ in $\Gamma \vdash M : A \oslash E$, and weaken it to $\mathbf{\Phi}_{[F']}$. Note that typing judgements still hold after adding a lock to or removing a lock from the left of the context, as long as the new contexts are still well-defined. The following lemma reflects the intuition that pure values can be used in any effect context. LEMMA A.13 (PURE PROMOTION). The following promotion rule is admissible.

 $\frac{\Gamma_1, \Gamma \vdash V : A @ E}{\mathsf{locks}(\Gamma) : E \to F} \frac{\Gamma_1 \vdash A : \mathsf{Abs}}{\mathsf{locks}(\Gamma') : E' \to F} \quad \mathsf{fv}(V) \cap \mathsf{dom}(\Gamma') = \emptyset$ $\Gamma_{i} \Gamma' \vdash V \cdot A \oslash F'$

PROOF. By induction on the typing derivation of V. Case T-VAR. Trivial. Case T-Mod $\frac{\mu_E: F_1 \to E \qquad \Gamma_1, \Gamma, \bigoplus_{\mu_E} \vdash V : A @ F_1 (1)}{\Gamma_1, \Gamma \vdash \mathbf{mod}_{\mu} V : \mu A @ E}$ Case analysis on the shape of μ . Case μ is relative. By kinding, A is also pure. By IH on (1), we have $\Gamma_1, \Gamma', \square_{\mu_{F'}} \vdash V : A @ F'_1$ where $\mu_{E'}: F'_1 \to E'$. Then by T-MoD we have $\Gamma_1, \Gamma' \vdash \mathbf{mod}_{\mu} V : \mu A @ E'$ Case μ is absolute. We have $\mu = [F_1]$ and $\operatorname{locks}(\Gamma', \bigoplus_{\mu_{F'}}) = [F_1]_F = \operatorname{locks}(\Gamma, \bigoplus_{\mu_F})$. Thus, replacing the context $(\Gamma, \mathbf{a}_{\mu_{E}})$ with $(\Gamma', \mathbf{a}_{\mu_{E'}})$ in (1) does not influence all usages of T-VAR in the derivation tree of (1). We have $\Gamma_1, \Gamma', \bigoplus_{II_{\Gamma'}} \vdash V : A @ F_1$ Then by T-Mod we have $\Gamma_1, \Gamma' \vdash \mathbf{mod}_{\mu} V : \mu A \oslash E'$ Case T-TABS. Follow from IH and Lemma A.11.5. Case T-ABS. Impossible since function types are impure. Case Data Types. Follow from IHs. LEMMA A.14 (SUBSTITUTION). The following substitution rules are admissible. 1. Preservation of kinds under type substitution. $\frac{\Gamma \vdash A : K \qquad \Gamma, \alpha : K, \Gamma' \vdash B : K'}{\Gamma, \Gamma' \vdash B[A/\alpha] : K'}$ 2. Preservation of types under type substitution. $\frac{\Gamma \vdash A : K \qquad \Gamma, \alpha : K, \Gamma' \vdash M : B @ E}{\Gamma, \Gamma' \vdash M[A/\alpha] : B[A/\alpha] @ E}$ 3. Preservation of types under value substitution. $\frac{\Gamma, \bigoplus_{\mu_F} \vdash V : A @ F' \qquad \Gamma, x :_{\mu_F} A, \Gamma' \vdash M : B @ E}{\Gamma, \Gamma' \vdash M[V/x] : B @ E}$ Proof. 1. By straightforward induction on the kinding derivation. 2. By straightforward induction on the typing derivation of M. 3. By induction on the typing derivation of M. Trivial when variable x is not used. In the following induction we always assume x is used.

1912	Case	
1913		T-VAR
1914		$v_F = \text{locks}(\Gamma') : E \to F \qquad \mu_F \Rightarrow v_F(1) \text{ or } \Gamma \vdash A : \text{Abs}$
1915		$\Gamma, x :_{UE} A, \Gamma' \vdash x : A @ E$
1916		
1917		Case analysis on the purity of A Case Lawrence De $\mathbf{P} = \mathbf{P} \cdot \mathbf{P} + \mathbf{V} + \mathbf{A} \cap \mathbf{P}'$ (1) and Lawrence A 11.2 area have
1918		Case impure. By 1, $\blacksquare_{\mu F} \vdash V : A (@ r)$, (1), and Lemma A.11.5, we have
1919		$\Gamma, lacksquare{}_{V_F} \vdash V : A @ E.$
1920 1921		Then, by context equivalence, Lemma A.11.1, and Lemma A.11.4, we have
1922		$\Gamma, \Gamma' \vdash V : A @ E.$
1923 1924		Case Pure. By $\Gamma, \bigoplus_{\mu_F} \vdash V : A \oslash F'$ and Lemma A.13, we have
1925		$\Gamma, \Gamma' \vdash V : A @ E.$
1926	C	
1927	Case	m 1/
1928		$\begin{array}{cccccccccccccccccccccccccccccccccccc$
1929		$\frac{\mu_E \cdot \Gamma_1}{\mu_E} + \frac{\Gamma_1 \cdot \Gamma_2}{\mu_E} + \Gamma_$
1930		$\Gamma, x :_{\mu_F} A, \Gamma' \vdash \mathbf{mod}_{\mu'} W : \mu' B @ E$
1932		By IH on (1) we have
1933		$\Gamma, \Gamma', \mathbf{a}_{U'_{-}} \vdash W[V/x] : B \oslash F_1.$
1934		Then by T-MoD we have
1935		$\Gamma \Gamma' \vdash (\mathbf{mod}_{\mathcal{A}} W)[V/r] : \mu' B \oslash F$
1936	~	$1,1 + (\mathbf{mod}_{\mu}, \mu)[\nu, \mu] \cdot \mu \mathbf{D} \oplus \mathbf{D}$
1938	Case	
1939		T-LETMOD
1940		$V_E: \Gamma_1 \to L$ $\Gamma : Y \to W : u'A' \oslash F_1(1) = \Gamma : Y \to A \Gamma' : u : u'A' \vdash M : B \oslash F_2(2)$
1941		$\frac{1}{1}, x, \mu_F, \mu_F, \mu_F, \mu_F, \mu_F, \mu_F, \mu_F, \mu_F$
1942		$\Gamma, x :_{\mu_F} A, \Gamma' \vdash let_{\nu} mod_{\mu'} y = W in M : B @ E$
1943 1944		By IH on (1), we have
1945		$\Gamma, \Gamma', lacksymbol{eq}_{V_E} \vdash W[V/x] : \mu'A' @ F_1.$
1946		By IH on (2), we have
1947		$\Gamma, \Gamma', y:_{{}^{V_E \circ \mu'_{F_1}}} A' \vdash M[V/x]: B @ E.$
1949		Then by T-LETMOD, we have
1950		$\Gamma, \Gamma' \vdash (\text{let}, \text{mod}, y = W \text{ in } M)[V/x] : B \oslash E$
1952		$1, 1 \cdot (100 \mu m m \mu g - m m m) [1, 1 m m) [2, 2 \in \mathbb{Z}$
1953	Case	
1954		T-Letmod'
1955		$\nu_E: F_1 \to E \qquad \Gamma, x:_{\mu_F} A, \Gamma', \underbrace{\blacksquare}_{\nu_E}, \alpha: K \vdash V: \mu'A' \ (@F_1(1))$
1956		$\Gamma, x :_{\mu_{F}} A, \Gamma', y :_{\nu_{E} \circ \mu'_{F_{1}}} \forall \alpha^{K}.A' \vdash M : B @ E (2)$
1957		$\Gamma, x :_{u_E} A, \Gamma' \vdash let_v mod_{u'} \Lambda \overline{\alpha^K} . u = V in M : B \oslash E$
1958		$(x_1, y_2, y_3, y_4, y_5, y_4, y_4, y_5, y_4, y_4, y_5, y_5, y_5, y_5, y_5, y_5, y_5, y_5$
1959		Similar to the case for I-LETMOD. Our goal follows from IH on (1), IH on (2), and T-LETMOD'.
1960		

Case 1961 1962 T-MASK $\frac{\Gamma, x :_{\mu_F} A, \Gamma', \bigoplus_{\langle L \rangle_E} \vdash M : B @ E - L (1)}{\Gamma, x :_{\mu_F} A, \Gamma' \vdash \mathsf{mask}_L M : \langle L \rangle B @ E}$ 1963 1964 1965 By IH on (1) we have 1966 1967 $\Gamma, \Gamma', \bigoplus_{\langle L \rangle_E} \vdash M[V/x] : B @ E - L.$ 1968 1969 Then by T-MASK we have 1970 $\Gamma, \Gamma' \vdash (\mathbf{mask}_L M)[V/x] : \langle L \rangle B @ E$ 1971 1972 Case 1973 **T-HANDLER** 1974 $D = \{\ell_i : A_i \twoheadrightarrow B_i\}_i \qquad \Gamma, x :_{\mu_F} A, \Gamma', \bigoplus_{(D)_E} \vdash M : A_0 @ D + E(1) \\ \Gamma, x :_{\mu_F} A, \Gamma', y : \langle D \rangle A_0 \vdash N : B @ E(2) \end{cases}$ 1975 $\frac{[\Gamma, x:_{\mu_F} A, \Gamma', p_i: A_i, r_i: B_i \to B \vdash N_i: B @ E (3)]_i}{[\Gamma, x:_{\mu_F} A, \Gamma' \vdash \text{handle } M \text{ with } \{\text{return } y \mapsto N\} \uplus \{\ell_i \ p_i \ r_i \mapsto N_i\}_i: B @ E$ 1976 1977 1978 1979 Follow from IH on (1),(2),(3), and reapplying T-HANDLER. 1980 Case T-TABS, T-TAPP, T-ABS, T-APP, T-DO. Follow from IH. 1981 Case Extensions. Follow from IH. 1982 1983

A.6 Progress

1984

1985

1986

1987 1988

1989

1990

THEOREM 3.3 (PROGRESS). If $\vdash M : A @ E$, then either there exists N such that $M \rightsquigarrow N$ or M is in a normal form with respect to E.

PROOF. By induction on the typing derivation $\vdash M : A @ E$. The most non-trivial cases are T-MASK and T-HANDLER. Other cases follow from IHs and reduction rules, using Lemma A.8.

- 1991 Case M is in a value normal form U. Trivial. Base case.
- 1992 Case T-Do. Trivial. Base case.
- 1993 Case T-Mod. $\mathbf{mod}_{\mu} V$. By IH on V.
- Case T-LETMOD. $let_{\nu} \mod_{\mu} x = V$ in N. By IH on V, if V is reducible then M is reducible; otherwise, V is in a value normal form, then by Lemma A.8 we have that M is reducible by E-LETMOD.
- 1997 Case T-LETMOD'. Similar to the case for T-LETMOD.
- 1998 Case T-TAPP. *MA*. Similarly by IH on *M*, Lemma A.8, and E-TAPP.
- 1999 Case T-App. MN. Similarly by IH on M and N, Lemma A.8, and E-App.
- 2000 Case T-MASK. $mask^E M$. By IH on M.
- 2001 Case *M* is reducible. Trivial.
- 2002 Case *M* is in a value normal form. By E-MASK.
- Case $M = \mathcal{E}[\operatorname{do} \ell U]$ with $n \operatorname{free}(\ell, \mathcal{E})$. The whole term is in a normal form.
- 2004 Case Handlers. The general form is **handle**^{δ} M with H. By IH on M.
- 2005 Case *M* is reducible. Trivial.
- 2006 Case M is in a value normal form. By E-Ret.
- Case $M = \mathcal{E}[\operatorname{do} \ell U]$ with n-free (ℓ, \mathcal{E}) . If n = 0 and $\ell \in H$, then reducible by E-OP. Otherwise, the whole term is in a normal form.
- 2009

Case T-BoxABS. $mod_{[]}M$. If $M \rightarrow N$, follow by IH on M. Otherwise, M must be in a value normal form because the T-BoxABS requires M to have the empty effect. In this case, $\mathbf{mod}_{[]}M$ is also in a value normal form.

Case Data Types. Similar to other cases.

A.7	Subject Reduction					
Τı	HEOREM 3.4 (SUBJECT REDUCTION). If $\Gamma \vdash M : A @ E$ and $M \rightsquigarrow N$, then $\Gamma \vdash N : A @ E$.					
Pr	OOF. By induction on the typing derivation $\Gamma \vdash M : A @ E$.					
Case Case	T-VAR. Impossible as there is no further reduction.					
	T-Mod					
	$\frac{\mu_F: E \to F}{\Gamma, \bigoplus_{\mu_F} \vdash V: A @ E(1)}$					
	$\mathbf{I} \vdash \mathbf{mod}_{\mu} V : \mu A @ \mathbf{F}$					
	The only way to reduce is by E-LIFT and $V \rightsquigarrow W$. IH on (1) gives					
	$\Gamma, lacksquare{}_{\mu_F} \vdash W : A @ E.$					
	Then by T-MoD we have					
0	$\Gamma \vdash \mathbf{mod}_{\mu} W : \mu A @ F.$					
Case	TIETMOD					
	$\nu_{F}: E \to F \qquad \Gamma, \bigoplus_{\nu_{F}} \vdash V : \mu A @ E (1) \qquad \Gamma, x :_{\nu_{F} \circ \mu_{E}} A \vdash M : B @ F (2)$					
	$\Gamma \vdash \mathbf{let}_{v} \mathbf{mod}_{\mu} x = V \mathbf{in} M : B @ F$					
	By case analysis on the reduction. Case E-LIFT with $V \rightsquigarrow W$. By IH on (1) and reapplying T-LETMOD. Case E-LETMOD. We have $V = \mathbf{mod}_{\mu} U$ and					
	$\mathbf{let}_{\nu} \mathbf{mod}_{\mu} x = \mathbf{mod}_{\mu} U \mathbf{in} M \rightsquigarrow M[U/x].$					
	Inversion on (1) gives					
	$\Gamma, lacksquare$ $_{ u_{E}}, lacksquare$ $\vdash U : A @ E'.$					
	where $\mu_E : E' \to E$. By context equivalence, we have					
	$\Gamma, \bigoplus_{V \in OUF} \vdash U : A @ E'$					
	where $\nu_F \circ \mu_E : E' \to F$. By Lemma A.14.3 and (2), we have					
	$\Gamma \vdash M[II/r] \cdot B \oslash F$					
Case						
Case	Т-Lетмор'					
	$\nu_F: E \to F \qquad \Gamma, \bigoplus_{\nu_F}, \overline{\alpha: K} \vdash V: \mu A @ E(1) \qquad \Gamma, x:_{\nu_F \circ \mu_E} \forall \overline{\alpha^K}. A \vdash M: B @ F(2)$					
	$\Gamma \vdash \mathbf{let}_{\nu} \mathbf{mod}_{\mu} \Lambda \overline{\alpha^{K}} . x = V \mathbf{in} M : B \oslash F$					
	Similar to the case for T-LETMOD'. By case analysis on the reduction. Case E-LIFT with $V \rightsquigarrow W$. By IH on (1) and reapplying T-LETMOD'.					

2059	Case E-LETMOD'. We have $V = \mathbf{mod}_{\mu} U$ and
2060	let. mod. $\sqrt{\alpha^K} x = \text{mod} U \text{ in } M \rightsquigarrow M[(\forall \alpha^K U)/x]$
2061	
2062	Inversion on (1) gives
2063	$\Gamma, lacksymbol{\Theta}_{\nu_F}, \overline{lpha}: K, lacksymbol{\Theta}_{\mu_E} \vdash U: \mu A @ E'.$
2065	where $\mu_E : E' \to E$. By Lemma A.11.5 we have
2066	$\Gamma, \bigoplus_{U_{\alpha}}, \bigoplus_{U_{\alpha}}, \overline{\alpha: K} \vdash U : A \oslash E'.$
2067	By context equivalence we have
2068	$E \mathbf{Q} = \overline{\mathbf{K}} + U = \mathbf{A} \odot E'$
2069	$\mathbf{I}, \blacksquare_{V_F \circ \mu_E}, \alpha : \mathbf{K} \vdash U : \mathbf{A} \ (\underline{\omega} \mathrel{E}).$
2070	where $\nu_F \circ \mu_E : E' \to F$. By T-TABs we have
2072	$\Gamma, \mathbf{\widehat{h}}_{\nu_{F} \circ \mu_{E}} \vdash \Lambda \overline{\alpha^{K}}.U : \forall \overline{\alpha^{K}}.A @ E'.$
2073	By Lemma A.14.3 and (2), we have
2074	$\Gamma \vdash M[U/x] : B \oslash F.$
2075	Case TTART Are Impossible as there is no further reduction
2076	Case 1-TABS, 1-ABS. Impossible as there is no further reduction.
2077	Т-ТАрр
2079	$\Gamma \vdash M : \forall \alpha^{K}.B @ E (1) \qquad \Gamma \vdash A : K (2)$
2080	$\Gamma \vdash MA : B[A/\alpha] \oslash E$
2081	
2082	By case analysis on the reduction.
2083	Case E-LIFT with $M \sim N$. By IFI on (1) and reapplying 1-TAPP.
2084	(A K X) A = X (A A A A A A A A A A A A A A A A A A
2085	$(\Lambda \alpha^{-1} . V) A \rightsquigarrow V [A/\alpha].$
2086	Inversion on (1) gives
2087	$\Gamma, \alpha: K \vdash V: B @ E.$
2089	Then by Lemma A.14.2 on (2) , we have
2090	$\Gamma \vdash V[A/\alpha] \cdot B[A/\alpha] \oslash E$
2091	
2092	Case
2093	$\Gamma \vdash M : A \to B \oslash E(1) \qquad \Gamma \vdash N : A \oslash E(2)$
2094	$\Gamma + M N \cdot P \otimes F$
2095	$\Gamma \vdash M I N : D (U) L$
2096	By case analysis on the reduction.
2097	Case E-LIFT with $M \rightsquigarrow M'$. By IH on (1) and reapplying T-APP.
2098	Case E-LIFT with $N \rightsquigarrow N'$. By IH on (2) and reapplying T-APP.
2100	Case E-APP. we have $M = \lambda x^{-1} M$, $N = U$, and
2101	$MN \rightsquigarrow M'[U/x].$
2102	Inversion on (1) gives
2103	$\Gamma \cdot x : A \vdash M' : B \oslash E$
2104	Then by Lemma $\wedge 142$ we have
2105	Then by Lemma A.14.5 we have
2106	$\Gamma \vdash M'[U/x] : B @ E.$
2107	

	44	Wenhao Tang, Leo White, Stephen Dolan, Daniel Hillerström, Sam Lindley, and Anton Lorenzen
2108	Case	T-Do. The only way to reduce is by E-LIFT. Follow from IH and reapplying T-Do.
2109	Case	m 1 /
2110		I-MASK $\Gamma = M \cdot A \oslash F = I(1)$
2111		$\frac{1}{2} \frac{1}{2} \frac{1}$
2112		$1 \vdash mask_L M : \langle L \rangle A \otimes F$
2114		By case analysis on the reduction.
2115		Case E-LIFT with $M \rightsquigarrow N$. By IH on (1) and reapplying T-MASK.
2116		Case E-MASK. We have $M = U$ and
2117		$mask_L U \rightsquigarrow mod_{\langle L \rangle} U.$
2118		By $\langle L \rangle_{F} : F - L \to F$ and T-Mop, we have
2119		
2120		$1 \vdash mod_{\langle L \rangle} U : \langle L \rangle A @ F.$
2121	Case	
2122		T-HANDLER
2125		$H = \{ \operatorname{return} x \mapsto N \} \oplus \{ \ell_i \ p_i \ r_i \mapsto N_i \}_i$ $D = \{ \ell_i \land \Lambda \oplus R \} = \sum \mathbf{A} = \{ M \land \Lambda \oplus R \} \in \mathbb{R} $
2125		$D = \{t_i : A_i \twoheadrightarrow D_i\}_i \qquad 1, \blacksquare \langle D \rangle_F \vdash M : A \oplus D + F(1)$ $\Gamma : r : A \cup N : B \oplus F(2) \qquad [\Gamma : p_i : A_i : r_i : B_i \longrightarrow B \vdash N_i : B \oplus F(3)].$
2126		$\frac{1_{\mathcal{N}} \cdot 1_{\mathcal{D}} 1_{\mathcal{D}} \cdot $
2127		$1 \vdash$ handle M with $H : B @ F$
2128		By case analysis on the reduction.
2129		Case E-LIFT with $M \rightsquigarrow M'$. By IHs and reapplying T-HANDLER.
2130		Case E-Ret. We have $M = U$ and
2131		handle U with $H \rightsquigarrow N[(mod_{(D)} U)/x]$.
2132		By (1), $\langle D \rangle_F : F \to D + F$, and T-MoD, we have
2133		$\Gamma \vdash \mathbf{mod}_{(D)} U \cdot A \oslash F$
2135		Then by (2) and Lemma $\wedge 14.2$ we have
2136		Then by (2) and Lemma A.14.5 we have
2137		$\Gamma \vdash N[(mod_{\langle\! D \rangle} U)/x] : B \oslash F.$
2138		Case E-OP. We have $M = \mathcal{E}[\mathbf{do} \ \ell_j \ U], 0-\text{free}(\ell_j, \mathcal{E}), \ell_j \ p_j \ r_j \mapsto N_j$, and
2139		handle M with $H \rightsquigarrow N_j[U/p, (\lambda y.handle \mathcal{E}[y] with H)/r]$.
2141		Since D is well-kinded. A, and B, are pure. By inversion on do ℓ_i U we have
2142		$\Gamma \Phi$
2143		$1, \blacksquare \langle D \rangle_F \vdash U : A_j \boxtimes D + F.$
2144		By A_j is pure and Lemma A.13, we have
2145		$\Gamma, \bigoplus_{\langle D\rangle_F}, \bigoplus_{\langle L \rangle_{D+F}} \vdash U : A_j \oslash F$
2140		where $L = \text{dom}(D)$. By context equivalence, we have
2148		$\Gamma + U = A \cap \Gamma(A)$
2149		$1 \vdash U : A_j (@P(4))$
2150		Observe that B_j being pure allows $y : B_j$ to be accessed in any context. By (1) and a
2151		straightforward induction on ${\mathcal E}$ we have
2152		$\Gamma, y: B_j, \mathbf{a}_{\langle D \rangle_F} \vdash \mathcal{E}[y]: A @ D + F.$
2153		Then by T-HANDLER and T-ABS we have
2154		$\mathbf{P}_{\mathbf{r}} = \frac{1}{2} \left[\frac{1}{2$
2155		$1 \vdash \lambda y$.handle $\mathcal{O}[y]$ with $H: B_j \to B \ (@F(5))$.
2156		

2157	Finally, by (3), (4), (5), and Lemma A.14.3 we have
2158	$\Gamma \vdash N_i[U/p, (\lambda y.handle \mathcal{E}[y] \text{ with } H)/r] : B @ F.$
2159	Case
2160	T-HANDLE ^A
2162	$H = \{ \mathbf{return} \ x \mapsto N \} \uplus \{ \ell_i \ p_i \ r_i \mapsto N_i \}_i$
2163	$L = \{\ell_i\}_i \qquad E = \{\ell_i : A_i \twoheadrightarrow B_i\}_i \qquad \Gamma, \bigoplus_{[D+E]_F} \vdash M : A @ D + E (1)$
2164	$\Gamma, \mathbf{x} : [D + E]A \vdash N : B @ F (2) \qquad [\Gamma, p_i : A_i, r_i : [F](B_i \to B) \vdash N_i : B @ F (3)]_i$
2165	$\Gamma \vdash handle^A M with H : B \oslash F$
2166	By case analysis on the reduction.
2168	Case E-LIFT with $M \rightsquigarrow M'$. By IHs and reapplying T-HANDLE ^A .
2169	Case E-Ret ^A . We have $M = U$ and
2170	handle M with $H \rightsquigarrow N[(mod_{[D+E]}U)/x]$.
2171 2172	By (1), $[D + F]_F : D + E \to F$, and T-MoD, we have
2173	$\Gamma \vdash \mathbf{mod}_{[D+E]} U : [D+E]A @ F.$
2174	Then by (2) and Lemma A.14.3 we have
2175 2176	$\Gamma \vdash N[(\mathbf{mod}_{[D+F]}U)/x] : B \oslash F.$
2177	Case E Op^A We have $M = \mathcal{E}[do \ell, U]$ $0 = free(\ell, \mathcal{E})$ $\ell, p, r, \mapsto N_{\ell}$ and
2178	Case L-OF . We have $M = O[uo i_j O]$, $O[uo i_j O$
2179	handle ^A M with $H \rightsquigarrow N_j[U/p, (\text{mod}_{[E]}(\lambda y.\text{handle}^A \mathcal{E}[y] \text{ with } H))/r].$
2180	Since <i>D</i> is well-kinded, A_j and B_j are pure. By inversion on do $\ell_j U$, we have
2181	$\Gamma, \mathbf{\Phi}_{[D+E]_F} \vdash U : A_j @ D + E.$
2182	By A_j is pure and Lemma A.13, we have
2184	$\Gamma \vdash U : A_j \oslash F(4).$
2185	Observe that B_i being pure allows u to be accessed in any context. By (1) and a
2187	straightforward induction on \mathcal{E} we have
2188	$\Gamma, y: B_j, \mathbf{\Phi}_{[D+E]_F} \vdash \mathcal{E}[y]: A @ D + E.$
2189 2190	By $[F]_F \circ [D + E]_F = [D + E]_F$ and context equivalence, we have
2190	$\Gamma, u : B_i, \bigoplus_{[D]_{\tau}} \bigoplus_{[D]_{\tau}} \vdash \mathcal{E}[u] : A \oslash D + E.$
2192	Since R is pure we can swap $4 + R$ with \mathbf{A}_{res} and derive
2193	Since D_j is pure, we can swap $g : D_j$ with $\blacksquare_{[F]_F}$ and derive
2194	$\Gamma, \blacksquare_{[F]_F}, y : B_j, \blacksquare_{[D+E]_F} \vdash \mathcal{E}[y] : A @ D + E.$
2195	By T-Handler ^{\mathbb{A}} , we have
2197	$\Gamma, lacksymbol{a}_{[F]_F}, y: B_j \vdash handle^{\mathbb{A}} \mathcal{E}[y] with H: B @ E.$
2198	Then by T-ABS and T-MOD we have
2199 2200	$\Gamma \vdash \mathbf{mod}_{[F]}(\lambda y.\mathbf{handle}^{\mathbb{A}} \mathcal{E}[y] \mathbf{ with } H) : [F](B_j \to B) @ F(5).$
2201	Finally, by (3) , (4) , (5) , and Lemma A.14.3 we have
2202	$\Gamma \vdash N[U/n \pmod{m}(\lambda u \text{ handle } \mathcal{E}[u] \text{ with } H))/r] \cdot R \oslash F$
2203	$C_{res} = C_{res} = C_{r$
2204	Case Shallow handlers. Similar to the cases of deep handlers.
2203	

Case Data Types. Nothing more special than the cases we have already shown. Introduction 2206 rules follows from IHs and reapplying the same typing rules. Elimination rules require to 2207 additionally consider their corresponding reduction rules. 2208

A.8 Proof of Encoding 2211

We prove the encoding from F_{eff}^1 into MET in Section 5.

Definition 5.1 (Well-scoped). A typing judgement $\Gamma_1, x :_{\epsilon} A, \Gamma_2 \vdash M : B ! E$ is well-scoped for x if either $x \notin fv(M)$ or $\bigoplus_{F} \notin \Gamma_2$ or $A = \forall .A'$. A typing judgement $\Gamma \vdash M : A ! E$ is well-scoped if it is well-scoped for all $x \in \Gamma$.

LEMMA A.15 (Well-scopedness of Derivation Trees). If the judgement at the bottom of a derivation tree is well-scoped, then every judgement in the derivation tree is well-scoped.

2220 **PROOF.** Assume the contrary. Let $\Gamma_1, x :_{\varepsilon} A, \Gamma_2 \vdash M : B \colon E$ be the top-most judgement in the 2221 derivation tree with $x \in fv(M)$ and $\blacklozenge_F^A \in \Gamma_2$ and $A \neq \forall A'$. By case analysis on whether $\blacklozenge_F^A \in \Gamma_2$ 2222 was introduced in the derivation tree.

Case not introduced in the derivation tree: Then the judgement at the bottom of the derivation tree must contain both the marker and x and is not well-scoped for x. Contradiction.

Case introduced in the derivation tree: since we chose the top-most judgement, the judgement must have introduced the marker by an application of the R-EABs rule. Let ε' be the effect variable introduced at this judgement. Then $\varepsilon \neq \varepsilon'$ by the side-condition of the R-EABS rule. We have that ε is the ambient effect at the R-VAR rule where x is used as a free variable, since we chose the top-most judgement. By the side-condition of the R-VAR rule, then $\varepsilon = \varepsilon'$ or $A = \forall A'$. Contradiction.

2233 In the special case we consider there are no absent signatures. This implies that submoding on effects can only add labels to the end. Furthermore, all labels are drawn from a global environment and thus have the same signatures. This allows us to freely permute them in the effect row. In this case, we can strengthen the statement to the following:

COROLLARY A.16 (TRANSFORMATION FROM INDEX). If $\langle L_1 | D_1 \rangle (F) \leq \langle L_2 | D_2 \rangle (F)$ and $L_1 \leq F$ and $L_2 \leq F$ and $L_1 \bowtie D_1 = L_2 \bowtie D_2$, then $\langle L_1 | D_1 \rangle_F \Rightarrow \langle L_2 | D_2 \rangle_F$.

PROOF. We show that for all F' with $F \leq F'$, we have $\langle L_1 | D_1 \rangle (F') \leq \langle L_2 | D_2 \rangle (F')$. Since all signatures are present in F, we have that F' = F + l for some collection of labels with signatures l. Then we use that $L_1 \leq F$:

$$\langle L_1 | D_1 \rangle (F') = \langle L_1 | D_1 \rangle (F+l)$$
$$= D_1 + ((F+\overline{l}) - L_1)$$
$$= D_1 + ((F-L_1) + \overline{l})$$
$$= \langle L_1 | D_1 \rangle (F) + \overline{l}$$

and the same for $\langle L_2 | D_2 \rangle (F')$. Since $\langle L_1 | D_1 \rangle (F) \leq \langle L_2 | D_2 \rangle (F)$ and we can freely permute labels, we have that $(\langle L_1 | D_1 \rangle (F) + \overline{l}) \leq (\langle L_2 | D_2 \rangle (F) + \overline{l}).$

The condition that $L_1 \bowtie D_1 = L_2 \bowtie D_2$ can be checked easily, where for the composition of modalities we use the fact that for $\langle L|D \rangle = \langle L_1|D_1 \rangle \circ \langle L_2|D_2 \rangle$, we have $L \bowtie D = (L_1, L_2) \bowtie (D_1, D_2)$.

2253 2254

2250

2251

2252

46

2209

2210

2212

2213

2214

2215

2216 2217

2218

2219

2223

2224

2225

2226

2227

2228

2229

2230

2231

2232

2234

2235

2236 2237

2238

2239

2240 2241

2242

LEMMA A.17 (FIRST MODALITY TRANSFORMATION). For all E_1, E_2, E_3 : $(\langle E_1 - E_2 | E_2 - E_1 \rangle \circ \langle E_2 - E_3 | E_3 - E_2 \rangle)_{E_1} \Leftrightarrow \langle E_1 - E_3 | E_3 - E_1 \rangle_{E_2}$ **PROOF.** We can use Corollary A.16 since $(E_1 - E_3) \leq E_1$ and $(E_1 - E_2) + L \leq E_1$ where (L, D) = $(E_2 - E_3) \bowtie (E_2 - E_1)$. We have: $\langle E_1 - E_3 | E_3 - E_1 \rangle (E_1) = (E_3 - E_1) + (E_1 - (E_1 - E_3))$ $= (E_3 - E_1) + (E_1 \cap E_3)$ $= E_3$ and using this calculation: $\langle E_1 - E_2 | E_2 - E_1 \rangle \circ \langle E_2 - E_3 | E_3 - E_2 \rangle (E_1) = \langle E_2 - E_3 | E_3 - E_2 \rangle (\langle E_1 - E_2 | E_2 - E_1 \rangle (E_1))$ $= \langle E_2 - E_3 | E_3 - E_2 \rangle \langle E_2 \rangle$ $= E_3$ LEMMA A.18 (SECOND MODALITY TRANSFORMATION). For all L, E, F: $\langle L + (E - F) | F - E \rangle_{L+E} \Rightarrow \langle (L + E) - F | F - (L + E) \rangle_{L+E}$ **PROOF.** We can use Corollary A.16 since $(L + E) - F \leq L + E$ and $L + (E - F) \leq L + E$. We have: $\langle (L+E) - F | F - (L+E) \rangle (L+E) = (F - (L+E)) + ((L+E) - (L+E-F))$ $= (F - (L + E)) + ((L + E) \cap F)$ = Fand: $\langle L + (E - F) | F - E \rangle (L + E) = (F - E) + ((L + E) - (L + (E - F)))$ = (F - E) + (E - (E - F)) $= (F - E) + (E \cap F)$ = FLEMMA A.19 (THIRD MODALITY TRANSFORMATION). For all $\overline{\ell_i}$, E, F: $(\langle \overline{\ell_i} \rangle \circ \langle \overline{\ell_i}, E - F | F - \overline{\ell_i}, E \rangle)_F \Longrightarrow \langle E - F | F - E \rangle_F$ PROOF. We can use Corollary A.16 since $(\langle \overline{t_i} \rangle \circ \langle \overline{t_i}, E - F | F - \overline{t_i}, E \rangle) = \langle \overline{t_i}, E - F | F - \overline{t_i}, E \rangle (\overline{t_i}, E)$ and $\overline{\ell_i}, E - F \leq \overline{\ell_i}, E$ and $E - F \leq E$. We have $\langle E - F | F - E \rangle (E) = F$ and: $\langle \overline{\ell_i} \rangle \circ \langle \overline{\ell_i}, E - F | F - \overline{\ell_i}, E \rangle (E) = \langle \overline{\ell_i}, E - F | F - \overline{\ell_i}, E \rangle (\langle \overline{\ell_i} \rangle (E))$ $= \langle \overline{\ell_i}, E - F | F - \overline{\ell_i}, E \rangle (\overline{\ell_i}, E)$ = FLEMMA A.20 (TRANSLATING INSTANTIATED TYPES). For all F_{eff}^1 types A: $[\![A]\!]_E = [\![A[E']]\!]_{E,E'}$. PROOF. By induction on the type A. Case A = Int. Trivial.

Case $A = \forall A'$. Trivial. 2304 Case $A = A' \rightarrow^F B'$. Then: 2305 2306 $\llbracket A \rrbracket_E = \langle E - F | F - E \rangle (\llbracket A' \rrbracket_F \to \llbracket B' \rrbracket_F)$ 2307 $[\![A[E'/]]\!]_{E,E'} = \langle E, E' - F, E' | F, E' - E, E' \rangle ([\![A'[E'/]]]_{F,E'} \to [\![B'[E'/]]]_{F,E'})$ 2308 2309 By the induction hypothesis we have: 2310 $[A']_F = [A'[E'/]]_{E,E'}$ 2311 $[B']_F = [B'[E'/]]_{FE'}$ 2312 2313 Since we can freely permute labels: 2314 $\langle E, E' - F, E' | F, E' - E, E' \rangle = \langle E', E - E', F | E', F - E', E \rangle$ 2315 2316 $= \langle E - F | F - E \rangle$ 2317 2318 2319 LEMMA 5.2 (Type preservation of encoding). If $\Gamma \vdash M : A \mid \{E \mid \varepsilon\}$ is well-scoped, then M :2320 $A \colon E \dashrightarrow M' \text{ and } \llbracket \Gamma \rrbracket_E \vdash M' : \llbracket A \rrbracket_E @ E.$ 2321 2322 **PROOF.** By induction on the typing derivation $\Gamma \vdash M : A ! E$. We prove this for each rule of the translation. As a visual aid, we repeat each rule where we replace the translation premises by the 2323 2324 MET judgement implied by the induction hypothesis and the translation in the conclusion by the 2325 MET judgement we need to prove. 2326 R-VAR 2327 2328 $\overline{\llbracket\Gamma_1, x : A, \Gamma_2\rrbracket_E} \vdash \operatorname{rebox}(x; A; E) : \llbracketA\rrbracket_F \oslash E$ 2329 2330 We use the rebox(x; A; E) function defined as follows: 2331 $\operatorname{rebox}(x;A;E) = \begin{cases} \operatorname{\mathbf{mod}}_{\langle | \rangle} x, & \text{if } A = \operatorname{Int} \\ \operatorname{\mathbf{mod}}_{\langle E-F|F-E \rangle} x, & \text{if } A = A' \to^F B' \\ \operatorname{\mathbf{mod}}_{[]} x, & \text{if } A = \forall A' \end{cases}$ 2332 2333

2335 This function is exactly equivalent to $\mathbf{mod}_{\mu} x$ where $\mu = \text{topmod}(\llbracket A \rrbracket_E)$ We use the T-MoD rule to introduce the box. By cases on the type A:

Case A = Int. We can use the T-VAR rule since $\cdot \vdash Int$: Abs. 2338 Case $A = \forall A'$. Then $[A]_F = [[A']]$. for all F. By rule MT-ABS, the pure modality transforms into 2339 any other modality and so we can use the T-VAR rule. 2340

Case $A = A' \rightarrow^F B'$. Since the F^1_{eff} judgement is well-scoped, we have that locks(Γ_2) is the 2341 composition of transition modalities. Furthermore, $\text{locks}(\Gamma') \circ \langle E - F | F - E \rangle : F \to F'$ for 2342 the context F' where x as introduced and x is annotated by the modality $\langle F' - F | F - F' \rangle_{F'}$: 2343 $F \rightarrow F'$. By Lemma A.17, we can use the T-VAR rule. 2344

R-App

$$[[\Gamma]]_{E} \vdash M' : [[A \rightarrow^{E} B]]_{E} @ E$$

$$[[\Gamma]]_{E} \vdash N' : [[A]]_{E} @ E \quad x \text{ fresh}$$

$$[[\Gamma]]_{E} \vdash \text{let mod}_{\langle | \rangle} x = M' \text{ in } x N' : [[B]]_{E} @ E$$

We have $[\![A \to^E B]\!]_E = \langle | \rangle ([\![A]\!]_E \to [\![B]\!]_E)$. The claim follows by the T-LETMOD and T-APP rules. 2351

48

2334

2336

2337

2345 2346

 $\frac{\mathbb{R}\text{-}ABS}{\llbracket\Gamma, \bullet_E, x : A\rrbracket_F \vdash M' : \llbracketB\rrbracket_F @ F \qquad \nu \coloneqq \langle E - F | F - E \rangle \qquad \mu \coloneqq \text{topmod}(\llbracketA\rrbracket_F)}{\llbracket\Gamma\rrbracket_E \vdash \mathbf{mod}_{\nu} (\lambda x^{\llbracketA\rrbracket_F}.\mathbf{let mod}_{\mu} \ x = x \ \mathbf{in} \ M') : \llbracketA \to^F B\rrbracket_E @ E}$

We have $\llbracket \Gamma, \bullet_E, x : A \rrbracket_F = \llbracket \Gamma \rrbracket_E, \bigoplus_{\langle E-F | F-E \rangle}, x :_{\mu_F} A'$ where $\mu A' = \llbracket A \rrbracket_F$. Further $\llbracket A \to^F B \rrbracket_E = \langle E-F | F-E \rangle (\llbracket A \rrbracket_F \to \llbracket B \rrbracket_F)$. The claim follows from the T-LETMOD, T-ABS and T-MOD rules.

$$\frac{\mathbb{R}\text{-}\mathsf{E}\mathsf{A}\mathsf{B}\mathsf{s}}{\llbracket \Gamma, \bigstar_E^{\Lambda} \rrbracket. \vdash V' : \llbracket A \rrbracket. @ \cdot \\ \hline \llbracket \Gamma \rrbracket_E \vdash \mathbf{mod}_{[1]} V' : \llbracket \forall . A \rrbracket_E @ E$$

We have $\llbracket \Gamma, \bullet_E^{\Lambda} \rrbracket$. = $\llbracket \Gamma \rrbracket_E, \clubsuit$. Further, $\llbracket \forall .A \rrbracket_E = \llbracket I \rrbracket \llbracket A \rrbracket$. The claim follows from the T-MoD rule.

$$\frac{\mathbb{R}\text{-}\mathbb{E}A_{PP}}{\llbracket\Gamma\rrbracket_E \vdash M' : \llbracket\forall .A\rrbracket_E @ E \qquad x \text{ fresh}}$$
$$\frac{\llbracket\Gamma\rrbracket_E \vdash \text{let mod}_{[]} x = M' \text{ in } x : \llbracketA[E/]\rrbracket_E @ E}{\llbracket\Gamma\rrbracket_E \vdash \mathbb{E} \text{ mod}_{[]} x = M' \text{ in } x : \llbracketA[E/]\rrbracket_E @ E}$$

We have $[\![\forall .A]\!]_E = [\!][\![A]\!]_.$ By Lemma A.20, $[\![A]\!]_. = [\![A[E/]]\!]_E$. The claim follows by the T-LETMOD rule.

R-Do
$\ell:A\twoheadrightarrow B\in\Sigma$
$\llbracket \Gamma \rrbracket_{\ell,E} \vdash M' : \llbracket A \rrbracket_{\ell,E} @ \ell, E$
$\llbracket \Gamma \rrbracket_{\ell,E} \vdash \mathbf{do} \ \ell \ M' : \llbracket B \rrbracket_{\ell,E} @ \ell, E$

Because we only allow pure values in the effect signatures of F_{eff}^1 , we have that $[\![A]\!]_{\ell,E} = [\![A]\!]_{\ell,E}$ and $[\![B]\!]_{\ell,E} = [\![B]\!]_{\ell,E} = [\![A]\!]_{\ell,E} = [\![A]\!]_{\ell,E}$ in MET. The claim follows directly by the T-Do rule.

R-Mask

$$[[\Gamma, \bullet_{L+E}]]_E \vdash M' : [[A]]_E @ E \mu_1 \coloneqq \operatorname{topmod}([[A]]_E) \quad \mu_2 \coloneqq \operatorname{topmod}([[A]]_{L+E}) [[\Gamma]]_{L+E} \vdash \operatorname{let} \operatorname{mod}_{\langle L| \rangle; \mu_1} x = \operatorname{mask}_L M' \text{ in } \operatorname{mod}_{\mu_2} x : [[A]]_{L+E} @ L + E$$

We have $\llbracket \Gamma, \bullet_{L+E} \rrbracket_E = \llbracket \Gamma \rrbracket_{L+E}, \bigoplus_{\langle (L+E) - E | E - (L+E) \rangle}$. By permuting labels, we have $\langle (L+E) - E | E - (L+E) \rangle = \langle L \rangle$. The goal follows by the T-LETMOD, T-MASK and T-MOD rules

 $\langle (L+E) - E|E - (L+E) \rangle = \langle L \rangle$. The goal follows by the 1-LETMOD, 1-MASK and 1-MOD rules if we can show that x can be used under the box. This is clear for integers, since they are pure and otherwise we need to show that $(\langle L \rangle \circ \mu_1)_{L+E} \Rightarrow (\mu_2)_{L+E}$. For $A = \forall A'$ this is clear since $\mu_1 = \mu_2 = []$ and $\langle L \rangle \circ [] = []$. For functions, this follows from Lemma A.18.

R-HANDLER

$$\begin{split} \llbracket \Gamma, \bullet_E \rrbracket_{\overline{t_i,E}} \vdash M' : \llbracket A \rrbracket_{\overline{t_i,E}} @ \overline{t_i,E} \\ \llbracket \Gamma, x : A \rrbracket_E \vdash N' : \llbracket B \rrbracket_E @ E \qquad [\llbracket \Gamma, p_i : A_i, r_i : B_i \to^E B \rrbracket_E \vdash N'_i : \llbracket B \rrbracket_E @ E \rrbracket_i \\ \mu \coloneqq \operatorname{topmod}(\llbracket A \rrbracket_{\overline{t_i},E}) \qquad \mu' \coloneqq \operatorname{topmod}(\llbracket A \rrbracket_E) \\ N'' \coloneqq \operatorname{let} \operatorname{mod}_{\langle |\overline{t_i} \rangle; \mu} x = x \text{ in } \operatorname{let}_{\mu'} \operatorname{mod}_{\langle | \rangle} x = \operatorname{mod}_{\langle | \rangle} x \text{ in } N' \\ \llbracket \mu_i \coloneqq \operatorname{topmod}(\llbracket A_i \rrbracket) \qquad N''_i \coloneqq \operatorname{let} \operatorname{mod}_{\mu_i} p_i = p_i \text{ in } N'_i \rrbracket_i \\ H = \{\operatorname{return} x \mapsto N\} \uplus \{\ell_i \ p_i \ r_i \mapsto N_i\}_i \qquad H' \coloneqq \{\operatorname{return} x \mapsto N''\} \uplus \{\ell_i \ p_i \ r_i \mapsto N'_i\}_i \\ \llbracket \Gamma \rrbracket_E \vdash \operatorname{handle} M' \text{ with } H' \coloneqq \llbracket B \rrbracket_E @ E \end{split}$$

We have $[\![\Gamma, \bullet_E]\!]_{\overline{t_i,E}} = [\![\Gamma]\!]_E, \bigoplus_{(E-\overline{t_i,E}|\overline{t_i,E-E})}$. By permuting labels, we have $\langle E - \overline{t_i}, E | \overline{t_i}, E - E \rangle = \langle \overline{t_i} \rangle$. In the operation clauses, we have that $[\![B_i]\!]_E \to B]\!]_E = \langle | \rangle ([\![B_i]\!]_E \to [\![B]\!]_E)$. Because the argument and return of effects are pure, we have that $[\![B_i]\!]_E = [\![B_i]\!]$. and $[\![A_i]\!]_E = [\![A]\!]_L$. We need to unbox the argument p_i though. In the return clause, MET gives us $x : \langle \overline{t_i} \rangle [\![A]\!]_{\overline{t_i,E}}$, but we need $x : [\![A]\!]_E$. We achieve this by unboxing x fully and then re-boxing it with the modality μ' . This is possible for integers because they are pure, for \forall s because of the MT-ABS rule and for functions due to the modality transformation in Lemma A.19.

2411 B Full Specification of METEL

In this section, we give a full specification of METEL including the declarative type system, type
 inference algorithm, meta theory of type inference, and elaboration to the core calculus. The proofs
 are given in Appendix C.

We focus on formalising the core part of the type inference of METEL. We assume standard language features like algebraic data types and pattern matching when writing examples; they are largely orthogonal to our main contribution of type inference.

2419 B.1 Syntax

The syntax of METEL is shown in Figure 12. The new parts compared to MET are highlighted.

2422	Types	$A, B ::= \alpha \mid A \to B \mid \mu A$
2423	Intuitionistic types	$S, T ::= \alpha \mid S \to T$
2424	Effects	$E ::= \cdot \varepsilon D, E E \setminus L$
2425	Masks and Extensions	$L, D ::= \cdot \mid \ell, L$
2426	Modalities	$\mu ::= [E] \mid \langle L \mid D \rangle$
2427	Type schemes	$\sigma ::= A \mid \forall \alpha^K . A$
2428	Kinds	K ::= Abs Any Eff
2429	Restrictions	$R := i \mid m$
2430	Contexts	$\Gamma ::= \cdot \mid \Gamma, \alpha : K \mid \Gamma, x := \sigma \mid \Gamma, \mathbf{A}$
2431	Type contexts	$\Lambda \cdots \cdot \mid \Lambda \alpha \cdot K$
2432	Label contexts	$\Sigma := \cdot \mid \Sigma, \ell : A \twoheadrightarrow B$
2433	Modality decorations	$\Delta \cdots = u$
2434	T	$\varphi \cdots = \mu $
2435	lerms	$M, N ::= x \mid x \mid \lambda x.M \mid \lambda x^{\prime \prime}.M \mid M N \mid mod_{\mu} V$
2436		$\operatorname{let}_{\nu}\phi x = M \text{ in } N \operatorname{let} x^{\sigma} = M \text{ in } N$
2437		do ℓM mask _L M handle M with H
2438	Values	$V, W ::= x \mid \lceil x \rceil \mid \lambda x.M \mid \lambda x^A.M \mid \mathbf{mod}_{\mu} V$
2439	Handlers	$H ::= \{ \mathbf{return} \ x \mapsto M \} \mid \{ \ell \ p \ r \mapsto M \} \uplus H$

2440 2441 2442

Fig. 12. Syntax of METEL.

Following FREEZEML [15], we always fully unbox variables unless they are explicitly frozen by [x]. Restrictions distinguish between intuitionistic types i, which cannot contain any modalities, and modal types, which can contain modalities. Following FREEZEML, though rigid type variables α could technically be instantiated to modal types, we allow intuitionistic types to contain them since they are rigid and cannot be unified with other types during type inference. As in ML, we generalise type variables for let-bindings. We combine normal let-binding and modality elimination into one syntax let_v ϕ x = M in N. When ϕ = ·, it is a normal let-binding.

50

2409

2410

2469

2476

2477

2478

2479

2480

2481

2486

2487

2488

2489

2490

2491

2492

2493

2494

2495

2496

2497 2498 2499

Different from the core calculus, we keep modalities μ in context. We will show in Appendix B.6 that this change does not break soundness and we can always elaborate well-typed closed terms in METEL to well-typed closed terms in METE.

2454 We restrict extensions and effects to only contain present labels whose signatures are given by 2455 a global context Σ for simplicity. We do not expect any specific challenges of generalising them 2456 with signatures. Notice that we can still reuse all previous definitions of modes and modalities of 2457 MET. The only differences are that labels with the same name always have the same signature and 2458 absent labels are not allowed to appear explicitly.

For simplicity of type inference, we do not allow negative effects of form $E \ L$ to appear in the surface syntax. We write $\vdash M$ **pos** if all type and modality annotations in M do not contain $E \ L$. That is, all effect types should have form either D or D, ε . It still allows annotations in M to contain rigid type and effect variables. This is an acceptable restriction in practice since we rarely need to use effect variables and masking at the same time. And even we do need, we can always just refactor effect types to avoid negative effects to appear in type annotations.

2465 We write $\vdash A$ pos if type A does not contain $E \setminus L$, and $\vdash \Gamma$ pos if all types A of variable bindings 2466 satisfy $\vdash A$ pos. Note that $\vdash \Gamma$ pos still allows the modalities in $x :_{\mu}$ and \mathbf{a}_{μ} to contain effect types 2467 of any form including $E \setminus L$.

B.2 Statements in Context and Syntax-Directed Typing Rules

We formalise the syntax-directed type system and type inference algorithm following the approachof type inference in context [20]. We first define statements.

Statements
$$J ::= J \land J' \mid \sigma : (K, R) \mid A \equiv B \mid \sigma \leq_R A \mid M \text{ ok } \mid \sigma \leq_{\text{gen}} \sigma'$$

 $\mid (\mu, \sigma) \Rightarrow \nu @ E \mid (M; \Delta; A) \ \uparrow^{\dagger} \sigma \mid (M; \nu; \phi; \Delta; A) \ \uparrow (\xi, \sigma)$
 $\mid (M; \Delta; A) \Downarrow B \mid M : A @ E$

For each statement, we define the judgement $\Gamma \vdash J$ which means the statement J holds in the context Γ . All these judgements require implicit well-formedness conditions for the statements and contexts. That is, all free type and term variables in statements should appear in the context Γ , and all effect labels should appear in the global label context Σ . Contexts are ordered and types can only refer to variables bound on the left of them in contexts.

The kinding σ : (*K*, *R*), type equivalence $A \equiv B$, instantiation $\sigma \leq_R A$ and term well-formedness *M* ok are defined in Figure 13. The conjunction of statements is standard and defined as follows.

$$\frac{\Gamma \vdash J \quad \Gamma \vdash J'}{\Gamma \vdash J \land J'} \qquad \qquad \frac{\Gamma \vdash J \land J'}{\Gamma \vdash J} \qquad \qquad \frac{\Gamma \vdash J \land J'}{\Gamma \vdash J'}$$

Some auxiliary statements and auxiliary functions for typing are defined in Figure 14. The judgement $\Gamma \vdash (\mu, \sigma) \Rightarrow \nu @ E$ checks the accessibility condition for variables. The judgements $\Gamma \vdash (M; \Delta; A) \ \uparrow^{\dagger} \sigma$ deals with value restriction for T-LETANNO. The judgements $\Gamma \vdash (M; v; \phi; \Delta; A)$ deals with value restriction for T-LETMOD, as well as case analyses on the shape of ϕ .

The syntax-directed typing judgement M : A @ E is defined in Figure 15. The typing rules different from Figure 3 are highlighted. The T-FREEZE rule is the relatively standard variable rule. The T-VAR additionally eliminates the modality for x that is retrieved by split(Δ , A) defined in Figure 14. It keeps splitting out the top-level modalities of A until reaching a non-modal type or the modality relies on rigid variables in Δ , which are quantified. The T-LETMOD generalise M when Mis a value; otherwise, it instantiate the principal type of M with intuitionistic types. The T-HANDLER also instantiate the principal types of M and N with intuitionistic types. This avoids solving global non-trivial constraints on flexible modal or effect variables in type inference.

 $\Gamma \vdash \sigma : (K, R)$ 2500 2501 $\frac{\Gamma \ni \alpha : K}{\Gamma \vdash \alpha : (K, \operatorname{res}(K))} \qquad \frac{\Gamma \vdash \sigma : (K, \mathsf{i})}{\Gamma \vdash \sigma : (K, \mathsf{m})} \qquad \frac{\Gamma \vdash \sigma : (\operatorname{Abs}, R)}{\Gamma \vdash \sigma : (\operatorname{Any}, R)} \qquad \frac{\Gamma \vdash A : (K, \mathsf{m})}{\Gamma \vdash \langle L | D \rangle A : (K, \mathsf{m})}$ 2502 2503 2504 $\frac{\Gamma \vdash E : (\text{Eff, m}) \quad \Gamma \vdash A : (\text{Any, m})}{\Gamma \vdash [E]A : (\text{Abs, m})} \qquad \qquad \frac{\Gamma \vdash A : (\text{Any, R}) \quad \Gamma \vdash B : (\text{Any, R})}{\Gamma \vdash A \rightarrow B : (\text{Any, R})}$ 2505 2506 2507 2508 $\Gamma, \alpha : K \vdash \sigma : (K', R)$ $\Gamma \vdash E : (Eff, m)$ $\overline{\Gamma \vdash \forall \alpha^{K} . \sigma : (K', R)} \qquad \overline{\Gamma \vdash \cdot : (\text{Eff, m})}$ 2509 $\Gamma \vdash \ell, E : (Eff. m)$ 2510 2511 $\Gamma \vdash \sigma \preceq_R A$ 2512 $\frac{\Gamma \vdash B : (K, R) \qquad \Gamma \vdash \sigma[B/\alpha] \leq_R A}{\Gamma \vdash \forall \alpha^K . \sigma \leq_R A}$ 2513 $\overline{\Gamma \vdash A \preceq_R A}$ 2514 $\Gamma \vdash \sigma \preceq_{\mathsf{gen}} \sigma'$ 2515 2516 2517 $\frac{\Gamma \vdash \sigma \equiv \sigma'}{\Gamma \vdash \sigma \leq_{\text{gen}} \sigma'} \qquad \frac{\Gamma \vdash B : (K, \mathsf{m}) \quad \Gamma \vdash \sigma[B/\alpha] \leq_{\text{gen}} \sigma'}{\Gamma \vdash \forall \alpha^{K} . \sigma \leq_{\text{gen}} \sigma'} \qquad \frac{\Gamma, \alpha : K \vdash \sigma \leq_{\text{gen}} \sigma'}{\Gamma \vdash \sigma \leq_{\text{gen}} \forall \alpha^{K} . \sigma'}$ 2518 2519 2520 $\Gamma \vdash M \text{ ok}$ 2521 $\Gamma \vdash M \text{ ok}$ $\Gamma \vdash N \text{ ok}$ $\Gamma \vdash \forall \Delta.A : (Any, m) \qquad \Gamma, \Delta \vdash M \text{ ok} \qquad \Gamma \vdash N \text{ ok}$ 2522 $\Gamma \vdash \mathbf{let} \ x^{\forall \Delta . A} = M \ \mathbf{in} \ N \ \mathbf{ok}$ $\Gamma \vdash \mathbf{let}_{\nu} \phi \ \overline{x = M \text{ in } N \text{ ok}}$ 2523 2524 2525 $\Gamma \vdash A : (Any, m) \qquad \Gamma \vdash M \text{ ok}$ $\Gamma \vdash M \text{ ok}$ $\Gamma \vdash \lambda x^A . M$ ok 2526 $\Gamma \vdash x \text{ ok}$ $\Gamma \vdash [x]$ ok $\Gamma \vdash \lambda x.M$ ok 2527 2528 $\Gamma \vdash M \text{ ok}$ $\Gamma \vdash M \text{ ok} \qquad \Gamma \vdash N \text{ ok}$ Γ ⊢ *M* ok 2529 $\Gamma \vdash \mathbf{do} \ \ell M \mathbf{ok}$ $\Gamma \vdash \mathsf{mask}_L M \mathsf{ok}$ $\Gamma \vdash MN$ ok 2530 2531 $H = \{ \mathbf{return} \ x \mapsto N \} \uplus \{ \ell_i \ p_i \ r_i \mapsto N_i \}_i \qquad D = \overline{\ell_i}$ 2532 $\Gamma \vdash M$ ok $\Gamma \vdash N$ ok $[\Gamma \vdash N_i$ ok]_i 2533 2534 $\Gamma \vdash$ handle *M* with *H* ok 2535 $\Gamma \vdash A \equiv B$ 2536 2537 $\Gamma \ni \alpha : K$ $\Gamma \vdash \mu \equiv \nu \qquad \Gamma \vdash A \equiv B \qquad \Gamma \vdash A \equiv A' \qquad \Gamma \vdash B \equiv B'$ $\Gamma \vdash E \equiv F$ 2538 $\overline{\Gamma \vdash A \to B \equiv A' \to B'} \qquad \overline{\Gamma \vdash [E] \equiv [F]}$ $\Gamma \vdash \mu A \equiv \nu B$ 2539 $\Gamma \vdash \alpha \equiv \alpha$ 2540 2541 $L \equiv L' \qquad D \equiv D'$ $\frac{E \equiv F \qquad \Gamma \vdash E}{\Gamma \vdash E \equiv F}$ 2542 $\overline{\Gamma \vdash \langle L | D \rangle} \equiv \langle L' | D' \rangle$ 2543 2544 Fig. 13. Statements in context for METEL. 2545 2546 2547 2548

2549	$\boxed{\Gamma \vdash (\mu, \sigma) \Rightarrow \nu @ E} \boxed{\Gamma \vdash (M; \Delta; A) \stackrel{\uparrow}{\downarrow}^{\dagger} \sigma} \boxed{\Gamma \vdash (M; \nu; \phi; \Delta; A) \stackrel{\uparrow}{\downarrow} (\xi, \sigma)} \boxed{\Gamma \vdash (M; \Delta; A) \Downarrow B}$
2550	$\Gamma \vdash \sigma : Abs \qquad \qquad$
2551	$\frac{1+0.765}{1+0.765} \qquad \frac{\mu_F \rightarrow v_F}{V_F + L} \qquad \frac{1+0.76}{100} \qquad \frac{1+0.76}$
2553	$1 \vdash (\mu, \sigma) \Rightarrow v @ E \qquad \qquad 1 \vdash (\mu, \sigma) \Rightarrow v @ E \qquad \qquad 1 \vdash (M; \Delta; A) \Downarrow^{\dagger} \forall \Delta. A$
2554	$M \notin V_2$ $\Lambda = .$ principal $(\Gamma, M, \Lambda, \Lambda)$ $\Gamma \vdash \forall \Lambda \Lambda \neq P$
2555	$\frac{M}{\not\in} \sqrt{a_1} \qquad \qquad$
2556	$\Gamma \vdash (M; \Delta; A) \Downarrow A \qquad \Gamma \vdash (M; \Delta; A) \Downarrow B$
2557	(
2558 2559	$M \in \text{Val} \text{principal}(\Gamma, \mathbf{a}_{\nu}; M; \Delta; \phi A) \qquad \xi = \begin{cases} \nu \circ \mu, \phi = \mu \\ \nu, \qquad \phi = \cdot \end{cases} \qquad \phi \neq \cdot \text{ or } \nu = \mathbb{1}$
2560	$\Gamma \vdash (M; \nu; \phi; \Delta; A) \ (\xi, \forall \Delta. A)$
2561	
2562 2563 2564	$M \notin \operatorname{Val} \qquad \nu = \mathbb{1} \qquad \Gamma \vdash (M; \Delta; A) \Downarrow B \qquad \xi = \begin{cases} \mu, & \phi = \mu \\ \mathbb{1}, & \phi = \cdot \end{cases}$
2565	$\Gamma \vdash (M \cdot \nu \cdot d \cdot \Lambda \cdot A) \Uparrow (\xi B)$
2566	$1 + (m, v, \psi, \Delta, D) \downarrow (\zeta, D)$
2567	principal($\Gamma: M: \Lambda: A$) = $\Gamma \land \vdash_{e} M: A \oslash E$ for some E such that
2568	for any Δ', A', E' with $\Gamma, \Delta' \vdash_s M : A' @ E'$,
2569	we have $\Gamma, \Delta' \vdash \forall \Delta.A \leq_{m} A'$ and $E \leqslant E'$
2570	$ (let (v, B) = split(\Delta; A') in (\mu \circ v, B), $
2571	split($\Delta; A$) = if $A = \mu A'$ and ftv(μ) \cap dom(Δ) = \emptyset
2572	$(\mathbb{1}, A)$, otherwise
2574	((-,-,-,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
2575	Fig. 14. Auxiliary judgements and meta-functions for METEL.
2576	0 / 0
2577	
2578	
2579	
2580	
2582	
2583	
2584	
2585	
2586	
2587	
2588	
2589	
2590 2591	
2592	
2593	
2594	
2595	
2596	
2597	

$2598 \qquad \Gamma \vdash_{s} M : A @ E$			
2599			
2600 2601 T-FREEZE 2602 $\xi = alocks(\Gamma')$ $\Gamma \Gamma' \vdash 0$	$(\mu \forall \Lambda A) \Longrightarrow \xi \oslash F$	T-VAR $\xi = \text{alocks}(\Gamma')$ $\Gamma \Gamma' \vdash (\mu)$	$(v, A') = \operatorname{split}(\Delta; A)$
2603 $\Gamma, \Gamma' \vdash \forall \Delta.A$	$\leq_{m} B$	Γ,Γ'	$\vdash \forall \Delta . A' \leq_{m} B$
$\Gamma, x :_{\mu} \forall \Delta.A, \Gamma' \vdash_{s} [$	[x]: B @ E	$\Gamma, x :_{\mu} \forall \ell$	$\Delta .A, \Gamma' \vdash_{s} x : B @ E$
$ \begin{array}{c} \text{2606} \\ \text{2607} \\ \text{2608} \end{array} \xrightarrow{\text{T-MoD}} F_{\bullet} \stackrel{\text{WoD}}{\longrightarrow} V : A @ E \qquad \mu_F : E \\ \hline F \vdash \text{mod} V : \mu A @ E \end{array} $	$\frac{\Gamma \to F}{\Gamma \to 1r^A M} = \frac{\Gamma - AbsAnno}{\Gamma \to 1r^A M}$	$\frac{M:B@E}{A \longrightarrow B@E}$	$\frac{T\text{-}ABS}{\Gamma, x: S \vdash_{S} M: B @ E}$
$1 \vdash_{s} mod_{\mu} \lor : \mu A \textcircled{\omega} \varGamma$	$1 \vdash_S \Lambda X . M$	$A \rightarrow B (\underline{\omega} \underline{E})$	$1 \vdash_S \lambda x.M : S \to B \ (U \vdash E)$
$\begin{array}{ccc} 2610 \\ 2611 \\ 2612 \\ 2612 \\ 2613 \\ \end{array} \begin{array}{c} T-APP \\ \Gamma \vdash_s M : A \to B @ E \\ \Gamma \vdash_s N : A @ E \\ \end{array}$	$ \frac{\text{T-Letmod}}{\Gamma \vdash (M; \nu; \Delta; \phi; A)} \\ \nu_F : E \rightarrow $	$ \begin{array}{c} (\xi,\sigma) & \Gamma, \\ F & \Gamma, x :_{\xi} \sigma + \end{array} $	
$\Gamma \vdash_{s} M N : B @ E$	$\Gamma \vdash_s \mathbf{le}$	$\operatorname{et}_v \phi x = M \text{ in } N$	V: B @ F
2616 2617 T-MASK 2618 $\Gamma, \bigoplus_{\langle L \rangle} \vdash_{S} M : A @$ 2619 $\Gamma \vdash_{S} mask_{L} M : \langle L \rangle$ 2620 2621	$\frac{F - L}{A @ F} \qquad \frac{\Gamma + (M)}{\Gamma + (M)}$	$\sum_{\substack{(\lambda, A) \\ \Gamma, x : \sigma \vdash_{S} N}}^{\text{NNO}} \sigma$	$\Gamma, \Delta \vdash_{s} M : A @ E$: B @ E in N : B @ E
2622	T-HANDLER $D = \int \ell$	$\{P, \cdot, A\}$	$B_{1} \subset \Sigma$
²⁶²³ T-Do	$\Gamma \vdash (M; \Lambda; A_0) \parallel$	$A \qquad \Gamma. \square (D). \Lambda$	$M : A_0 \oslash D + F$
$\begin{array}{ccc} 2624 \\ \Sigma \ni \ell : A \twoheadrightarrow B \\ E = \ell, F \end{array}$	$\Gamma \vdash (N; \Delta'; B_0) \Downarrow$	$B \qquad \Gamma, x : \langle D \rangle$	$A, \Delta' \vdash_s N : B_0 @ F$
$\Gamma \vdash_{s} M : A @ E$	$[\Gamma, p_i : A]$	$r_i, r_i: B_i \to B \vdash_s B$	$N_i: B @ F]_i$
$\Gamma \vdash_{s} \mathbf{do} \ \ell \ M : B @ E$	$\Gamma \vdash_{s} handle M with \{ \mu \}$	return $x \mapsto N$ }	
2628			
2629 Fig	g. 15. Syntax-directed typir	ng rules for METEL	
2630			
2631			
2632			
2634			
2635			
2636			
2637			

Algorithmic Contexts and Metasubstitutions B.3

We distinguish between *rigid* type variables (which come from the object language and can only be unified with intuitionistic types) and *flexible* type variables (which come from algorithms and can be unified with both intuitionistic and modal types). We introduce flexible type variables $\hat{\alpha}$ and extend the syntax of types and contexts as follows.

Types	$A,B::=\cdots \mid \hat{\alpha}$
Algorithmic contexts	$\Theta ::= \cdot \mid \Theta, \alpha : K \mid \Theta, x : \sigma \mid \Theta, \widehat{\mathbf{a}}_{\mu} \mid \Theta, \hat{\alpha} : (K, R) \mid \Theta, \hat{\alpha} = A \mid \Theta;$
Suffixes	$\Xi ::= \cdot \mid \Xi, \hat{\alpha} : (K, R) \mid \Xi, \hat{\alpha} = A$

Flexible type variables in algorithmic contexts are either declarations $\hat{\alpha}$: (*K*, *R*) with kinds and restrictions, or definitions $\hat{\alpha} = A$ which indicate that these flexible variables have been solved.

We do not allow type annotations in terms to use flexible type variables. The syntax for type schemes is still $\forall \Delta.A$.

We define metasubstitutions $\theta \ \ \Theta \sqsubseteq \Theta'$ from the algorithmic context Θ to Θ' and the equivalence relation between metasubstitutions in Figure 16. They are the same as the definitions in Gundry [20] except for adding more trivial cases for elements including bindings of rigid type variables and locks. Metasubstitutions reflect information increase between contexts.

 $\begin{array}{c} \Theta, \Theta' \vdash A \equiv B \\ \hline \Theta, \hat{\alpha} = A, \Theta' \vdash \hat{\alpha} \equiv B \end{array} \qquad \begin{array}{c} \Theta, \Theta' \vdash A \equiv B \\ \hline \Theta, \hat{\alpha} = A, \Theta' \vdash B \equiv \hat{\alpha} \end{array}$ $\Theta, \hat{\alpha} : (K, R), \Theta' \vdash \hat{\alpha} \equiv \hat{\alpha}$ **T-Freeze** $\xi = \operatorname{alocks}(\Theta') \quad \forall \Delta . A = \operatorname{subst}(\Theta; \sigma)$ $\Theta, \Theta' \vdash (\mu, \forall \Delta.A) \Longrightarrow \xi @ E \qquad \Theta, \Theta' \vdash \forall \Delta.A \leq_{\mathsf{m}} B$ $\Theta, x :_{\mu} \sigma, \Theta' \vdash_{s} [x] : B @ E$ T-VAR

 $\overline{\Theta, \hat{\alpha}: (K, R), \Theta' \vdash \hat{\alpha}: (K, R)} \qquad \qquad \overline{\Theta \vdash A: (K, R)} \\ \overline{\Theta, \hat{\alpha} = A, \Theta' \vdash \hat{\alpha}: (K, R)}$

$$\frac{\xi = \operatorname{alocks}(\Theta') \quad \forall \Delta.A = \operatorname{subst}(\Theta; \sigma)}{\Theta, \Theta' \vdash (\mu \circ \nu, \forall \Delta.A') \Longrightarrow \xi @ E \qquad \Theta, \Theta' \vdash \forall \Delta.A' \leq_{\mathrm{m}} B}{\Theta, x :_{\mu} \sigma, \Theta' \vdash_{s} x : B @ E}$$

Fig. 17. Extended rules for statements in algorithmic contexts.

We define gen(Ξ ; *A*) as substituting solved flexible variables and generalising remaining flexible variables in Ξ . We define subst(Θ ; *A*) as substituting solved flexible variables in Θ .

 $gen(\cdot; A) = A$ $gen(\hat{\alpha}: (K, R), \Xi; A) = \forall \alpha: K.gen(\Xi; A[\alpha/\hat{\alpha}])$ $gen(\hat{\alpha} = B, \Xi; A) = gen(\Xi[B/\hat{\alpha}]; A[B/\hat{\alpha}])$ $subst(\cdot; A) = A$ $\operatorname{subst}(\hat{\alpha} = B, \Theta; A) = \operatorname{subst}(\Theta[B/\hat{\alpha}]; A[B/\hat{\alpha}])$ $subst(, \Theta; A) = subst(\Xi; A)$

Although the judgements for statements in context are all defined on declarative context Γ , it is easy to extend them to algorithmic contexts Θ . For any $\Gamma \vdash J$, we get $\Theta \vdash J$ almost freely by just replacing letters from Γ to Θ . The only non-trivial modifications are to extend kinding $\Theta \vdash A : (K, R)$, type equivalence $\Theta \vdash A \equiv B$, and typing $\Gamma \vdash M : A \oslash E$ to cover flexible variables. The extended rules are shown in Figure 17.

The essence of type inference for METEL is that we never guesses flexible modal and effect variables in contexts. This property allows us to avoid collecting and solving non-trivial global constraints on modalities in type inference. We define $\vdash \Theta$ ng if all locks and variable bindings in Θ do not contain unsolved flexible modal or effect variables.

The following lemma shows that metasubstitutions preserve this relation.

LEMMA B.1 (NO GUESS OF MODALITIES AND EFFECTS IN CONTEXTS). $If \vdash \Theta_0$ ng and $\theta \$ $\Theta_0 \sqsubseteq \Theta_1$, then $\vdash \Theta_1$ ng.

²⁷⁴⁹ B.4 Algorithmic Moving between Contexts

Now we give algorithms to solve statements in contexts except for type inference, which is given individually in the next section. All algorithms have form $\Theta_0 \vdash J \dashv \Theta_1$, which starts from the algorithmic context Θ_0 , solves the question of *J* and ends up with the algorithmic context Θ_1 .

We first define the notion of questions, solutions, and minimal solutions for statements that we need algorithms. Same as in the declarative version, we always require the algorithmic contexts Θ for questions and solutions to satisfy $\vdash \Theta$ **pos**.

Statements like kinding σ : (*K*, *R*), type equivalence $A \equiv B$, and term well-formedness *M* ok only have inputs; solving them only needs to make sure that the judgements are satisfied. We define solutions and minimal solutions for them.

Definition B.2 (Questions without outputs and their solutions). A question for a statement J which does not have outputs is a tuple (Θ_0 ; J) where J is well-scoped in Θ_0 . A solution to it is a metasubstitution $\theta \otimes \Theta_0 \subseteq \Theta_1$ where $\Theta_1 \vdash \theta J$. The solution is minimal if for any other solution $\theta' \otimes \Theta_0 \subseteq \Theta'$, there exists a metasubstitution $\zeta \otimes \Theta_1 \subseteq \Theta'$ such that $\theta' \equiv \zeta \theta \otimes \Theta_0 \subseteq \Theta'$ (say θ' factors through θ with cofactor ζ). When J is an equivalence statement $A \equiv B$, we additionally require $\vdash A$ pos and $\vdash B$ pos.

Other statements separate between inputs and outputs; solving them also requires giving outputs. We define questions, solutions, and minimal solutions for those we need.

Definition B.3 (Questions with outputs and their solutions).

- An instantiation question is a tuple $(\Theta_0; \sigma \leq_R \bigcirc)$ where σ is well-scoped in Θ_0 . A solution to it is a tuple $(\theta \circ \Theta_0 \sqsubseteq \Theta_1; A)$ such that $\Theta_1 \vdash \theta \sigma \leq_R A$. The solution is minimal if for any other solution $(\theta' \circ \Theta_0 \sqsubseteq \Theta'; A')$, there exists a metasubstitution $\xi \circ \Theta_1 \sqsubseteq \Theta'$ such that $\theta' \equiv \xi \theta \circ \Theta_0 \sqsubseteq \Theta'$ and $\Theta' \vdash \xi A \equiv A'$.
 - A transformation question is a tuple $(\Theta_0; (\mu, \sigma) \Rightarrow \nu @ \bigcirc)$ where σ is well-scoped in Θ_0 . A solution to it is a tuple $(\theta \circ \Theta_0 \sqsubseteq \Theta_1; E)$ such that $\Theta_1 \vdash (\mu, \theta\sigma) \Rightarrow \nu @ E$. The solution is minimal if for any other solution $(\theta' \circ \Theta_0 \sqsubseteq \Theta'; E')$, there exists a metasubstitution $\xi \circ \Theta_1 \sqsubseteq \Theta'$ such that $\theta' \equiv \xi \theta \circ \Theta_0 \sqsubseteq \Theta'$ and $E \leq E'$.
- A type inference question is a tuple $(\Theta_0; M : \bigcirc @ \bigcirc)$ where $\vdash \Theta_0$ ng, $\Theta_0 \vdash M$ ok, and $\vdash M$ pos. A solution to it is a tuple $(\theta \otimes \Theta_0 \sqsubseteq \Theta_1; A; E)$ such that $\Theta_1 \vdash M : A @ E$. The solution is minimal if for any other solution $(\theta' \otimes \Theta_0 \sqsubseteq \Theta'; A'; E')$, there exists a metasubstitution $\xi \otimes \Theta_1 \sqsubseteq \Theta'$ such that $\theta' \equiv \xi \theta \otimes \Theta_0 \sqsubseteq \Theta'$ and $\Theta' \vdash \xi A \equiv A'$ and $E \leq E'$.

We define the algorithm for solving the questions we need in Figure 18. Note that for some judgements, we only need their declarative forms.

The algorithms for kinding uses the following auxiliary definitions.

res(Abs) = ires(Any) = ires(Eff) = m

$$K \sqcap K' = \begin{cases} \text{fail,} & \text{if } K = \text{Eff or } K' = \text{Eff} \\ \text{Abs,} & \text{if } K = \text{Abs or } K' = \text{Abs} \\ \text{Any,} & \text{otherwise} \\ \text{fail,} & \text{if } K = \text{Eff or } K' = \text{Eff} \\ \text{Abs,} & \text{if } K = \text{Abs or } K' = \text{Abs} \\ \text{Any,} & \text{otherwise} \end{cases}$$

We define the algorithm for unification in Figures 19 and 20. Note that unification $\Theta \vdash A \equiv B \dashv \Theta'$ is only defined for statements $A \equiv B$ satisfying $\vdash A$ **pos** and $\vdash B$ **pos**. We will show later that during type inference no negative effects would appear in types, as long as the input context and terms also satisfy the restriction of no negative effects.

We list some important lemmas here which show the soundness, generality, and completeness of kinding and unification.

LEMMA B.4 (SOUNDNESS AND GENERALITY OF KIND RESTRICTION). If $\Theta_0 \vdash A : (K, R) \dashv \Theta_1$, then $\Theta_0 \sqsubseteq \Theta_1$ is a minimal solution of $(\Theta_0; A : (K, R))$

LEMMA B.5 (COMPLETENESS OF KIND RESTRICTION). If $\theta \circ \Theta_0 \sqsubseteq \Theta$ is a solution to the kinding question $(\Theta_0; A : (K, R))$, then there exists Θ_1 such that $\Theta_0 \vdash A : (K, R) \dashv \Theta_1$.

LEMMA B.6 (SOUNDNESS AND GENERALITY OF UNIFICATION).

- 1. If $\Theta_0 \vdash A \equiv B \dashv \Theta_1$, then $\Theta_0 \sqsubseteq \Theta_1$ is a minimal solution of $(\Theta_0; A \equiv B)$.
- 2. If $\Theta_0 \mid \Xi \vdash \hat{\alpha} \equiv A \dashv \Theta_1$, A is not a flexible variable, and Ξ only contains declaration of flexible variables appearing in A, then $\Theta_0, \Xi \sqsubseteq \Theta_1$ is a minimal solution of $(\Theta_0; \alpha \equiv A)$.

LEMMA B.7 (COMPLETENESS OF UNIFICATION).

- 1. If $\theta \circ \Theta_0 \sqsubseteq \Theta$ is a solution to the unification question $(\Theta_0; A \equiv B)$, then there exists Θ_1 such that $\Theta_0 \vdash A \equiv B \dashv \Theta_1$.
- If θ : Θ₀, Ξ ⊑ Θ is a solution to the unification question (Θ₀, Ξ; α̂ ≡ A), then there exists Θ₁ such that Θ₀ | Ξ ⊢ α̂ ≡ A + Θ₁.

B.5 Type Inference

Figure 22 gives type inference algorithm for METEL. It is also in the form of algorithmic moving between contexts $\Theta_0 \vdash M : A @ E \dashv \Theta_1$.

We define solve($\mu : E \to F$) and solve($\mu \Rightarrow \nu$) in Figure 21 which find the minimal index for certain modality and transformation to hold.

The following lemmas show their soundness, generality, and completeness.

Lemma B.8 (Soundness and generality of modality solving).

- (1) If solve $(\mu : E \to F) = F_1$, then $\mu_{F_1} : E_1 \to F_1$ with $E \leq E_1$ and $F \leq F_1$. Moreover, for any other $\mu_{F_2} : E_2 \to F_2$ with $F_2 \leq F_1$ and $F_2 \not\equiv F_1$, either $E \leq E_2$ or $F \leq F_2$ does not hold.
- (2) If solve $(\mu \Rightarrow \nu) = F$, then $\mu_F \Rightarrow \nu_F$. Moreover, for any other $F' \leq F$ with $F' \not\equiv F$, the relation $\mu_{F'} \Rightarrow \nu_{F'}$ does not hold.

$$\begin{array}{c} \Theta + \forall \Delta.A \leq_R B + \Theta' \\ \hline \Theta + A \leq_R A + \Theta \\ \hline \Theta + A \leq_R A + \Theta \\ \hline \Theta + \sigma : (K, R) + \Theta' \\ \hline \Theta + \sigma : (K, R) + \Theta' \\ \hline \Theta + \sigma : (K, R) + \Theta' \\ \hline \Theta + \sigma : (K, R) + \Theta' \\ \hline \Theta + \sigma : (K, R) + \Theta' \\ \hline \Theta + \sigma : (K, R) + \Theta' \\ \hline \Theta + \sigma : (K, R) + \Theta' \\ \hline \Theta + \sigma : (K, R) + \Theta' \\ \hline \Theta + \sigma : (K, R) + \Theta' \\ \hline \Theta + \sigma : (K, R) + \Theta' \\ \hline \Theta + \sigma : (K, R) + \Theta' \\ \hline \Theta + \sigma : (K, R) + \Theta' \\ \hline \Theta + \sigma : (K, R) + \Theta' \\ \hline \Theta + \sigma : (K, R) + \Theta' \\ \hline \Theta + \sigma : (K, R) + \Theta' \\ \hline \Theta + \sigma : (K, R) + \Theta' \\ \hline \Theta + \sigma : (K, R) + \Theta \\ \hline \Theta + \sigma : (K, R) + \Theta' \\ \hline \Theta + f : (Eff, m) + \Theta' \\ \hline \Theta + f : (Eff, m) + \Theta \\ \hline \Theta + f : (Eff, m) + \Theta \\ \hline \Theta + f : (Eff, m) + \Theta \\ \hline \Theta + f : (Eff, m) + \Theta \\ \hline \Theta + f : (Eff, m) + \Theta \\ \hline \Theta + f : (Eff, m) + \Theta \\ \hline \Theta + f : (Eff, m) + \Theta' \\ \hline \Theta + (\mu, \sigma) \Rightarrow \nu \oplus f + \Theta' \\ \hline \Theta + (\mu, \sigma) \Rightarrow \nu \oplus f + \Theta' \\ \hline \Theta + (M; \nu; \phi; \Sigma, A) \ (\xi, \sigma) + \Theta' \\ \hline \Theta + (M; \nu; \phi; \Sigma, A) \ (\xi, gen(\Xi; A)) + \Theta \\ \hline M \notin Val \\ \hline \Theta + (M; \nu; \phi; \Sigma, A) \ (\xi, B) + \Theta' \\ \hline \Theta + (M; \Sigma; A) \ (\xi + \Theta) \\ \hline \Theta + (M; \Sigma; A) \ (\xi + \Theta) \\ \hline \Theta + (M;$$

$\Theta \vdash A \equiv B \dashv \Theta'$			
U-RIGID-RIGID $\Theta \ni \alpha : K$	U-Flex-Flex-Id $\Theta \ni \hat{\alpha} : (K, R)$	$\begin{array}{c} \text{U-Flex-Fl}\\ \hat{\alpha} \neq \hat{\beta} \end{array}$	$ \begin{array}{c} \text{ex-L} \\ \Theta \vdash \hat{\beta} : (K, R) \dashv \Theta' \end{array} \end{array} $
$\overline{\Theta \vdash \alpha \equiv \alpha \dashv \Theta}$	$\overline{\Theta \vdash \hat{\alpha} \equiv \hat{\alpha} \dashv \Theta}$	$\Theta, \hat{\alpha}: (K)$	$(R) \vdash \hat{\alpha} \equiv \hat{\beta} \dashv \Theta', \hat{\alpha} = \hat{\beta}$
U-Flex-Flex-R $\hat{\alpha} \neq \hat{\beta} \Theta$	$\vdash \hat{\alpha} : (K,R) \dashv \Theta'$	$ \begin{array}{l} \text{U-Flex-Fle}\\ \Theta \vdash \hat{\alpha}[A] \end{array} $	EX-SUBST $[\hat{\gamma}] \equiv \hat{\beta}[A/\hat{\gamma}] \dashv \Theta'$
$\overline{\Theta, \hat{\beta}: (K, R)} \vdash$	$\hat{\alpha} \equiv \hat{\beta} + \Theta', \hat{\beta} = \hat{\alpha}$	$\overline{\Theta, \hat{\gamma} = A}$	$\hat{\alpha} \equiv \hat{\beta} \dashv \Theta', \hat{\gamma} = A$
U-Flex-Flex-Ski $\hat{\gamma} \neq \hat{\alpha} \qquad \hat{\gamma} \neq \beta$	$\hat{\beta} \qquad \Theta \vdash \hat{\alpha} \equiv \hat{\beta} \dashv \Theta'$	U-Flex-	Flex-SkipRigid $\Theta \vdash \hat{\alpha} \equiv \hat{\beta} \dashv \Theta'$
$\Theta, \hat{\gamma}: (K, R) \vdash \phi$	$\hat{\hat{\alpha}} \equiv \hat{\beta} \dashv \Theta', \hat{\gamma} : (K, R)$	$\overline{\Theta, \gamma: k}$	$\vec{X} \vdash \hat{\alpha} \equiv \hat{\beta} \dashv \Theta', \gamma : K$
U-Flex-Flex-SkipTerm $\Theta \vdash \hat{\alpha} \equiv \hat{\beta} \dashv \Theta'$	U-Flex-Flex $\Theta \vdash \hat{\alpha}$:	х-SkipLock ≡ $\hat{\beta}$ ⊣ Θ'	U-Flex-Flex-SkipMark $\Theta \vdash \hat{\alpha} \equiv \hat{\beta} \dashv \Theta'$
$\Theta, x: \sigma \vdash \hat{\alpha} \equiv \hat{\beta} \dashv \Theta',$	$x:\sigma$ $\Theta, \Theta_{\mu} \vdash \hat{\alpha}$	$\equiv \hat{\beta} \dashv \Theta', \mathbf{A}_{\mu}$	$\overline{\Theta_{\mathfrak{S}}^{\circ} \vdash \hat{\alpha} \equiv \hat{\beta} \dashv \Theta_{\mathfrak{S}}^{\prime}}$
U-Flex-Rigid-L A non-flex-var	$\Theta \mid \cdot \vdash \hat{\alpha} := A \dashv \Theta'$	U-Flex-Rigid- A non-flex-v	$\begin{array}{ll} \mathbf{R} \\ \mathbf{ar} & \Theta \mid \cdot \vdash \hat{\alpha} := A \dashv \Theta' \end{array}$
$\Theta \vdash \hat{\alpha} \equiv A$	A ⊣ Θ′	e	$\Theta \vdash A \equiv \hat{\alpha} \dashv \Theta'$
$\bigcup_{\Theta \vdash A} \equiv A' \dashv \Theta'$	$\Theta' \vdash \mu \equiv \mu' \dashv \Theta''$	$ \begin{array}{c} \text{U-Arrow} \\ \Theta \vdash A \equiv A' \dashv \end{array} $	$\Theta' \qquad \Theta' \vdash B \equiv B' \dashv \Theta''$
$\Theta \vdash \mu A \equiv \mu$	$A' \dashv \Theta'$	$\Theta \vdash A$ –	$\rightarrow B \equiv A' \rightarrow B' \dashv \Theta''$
$\begin{array}{c} \text{U-Relative} \\ L \equiv L' \qquad D \equiv \end{array}$	U-Abso ≡ D' Θ ⊢ J	$E \equiv F \dashv \Theta'$	$U\text{-Effect-Closed} \\ L \equiv L'$
$\Theta \vdash \langle L D \rangle \equiv \langle L' I$	$\overline{O'} + \Theta$ $\overline{\Theta} + [E]$	$] \equiv [F] \dashv \Theta'$	$\overline{\Theta \vdash L \equiv L' \dashv \Theta}$
$U\text{-}EFFECT\text{-}L L' = labels(E) \qquad \Theta L \subseteq L' \qquad \Theta' \mid \cdot \vdash$	$\vdash E : (Eff, m) \dashv \Theta$ $\hat{\varepsilon} := E - L \dashv \Theta'$	$U-EFFECT-R$ $L' = labels(E)$ $L \subseteq L'$	$ \begin{array}{l} \Theta \vdash E : (\text{Eff, m}) \dashv \Theta \\ \Theta \mid \cdot \vdash \hat{\varepsilon} := E - L \dashv \Theta' \end{array} $
$\Theta \vdash L; \hat{\varepsilon} \equiv$	$E \dashv \Theta'$	Θ	$\vdash E \equiv L; \hat{\varepsilon} \dashv \Theta'$
$\begin{array}{l} \text{U-Effect-LR} \\ L_1 \nsubseteq L_2 \qquad L_2 \nsubseteq . \end{array}$	$L_1 \qquad \Theta, \hat{\varepsilon} \vdash \hat{\varepsilon}_1 := L_2 - I$	$L_1, \hat{\varepsilon} \dashv \Theta_1 \qquad \Theta$	$_1 \vdash \hat{\varepsilon}_2 := L_1 - L_2, \hat{\varepsilon} \dashv \Theta_2$
	$\Theta \vdash L_1, \hat{\varepsilon}_1 \equiv L$	$\hat{\mathcal{L}}_2, \hat{\mathcal{E}}_2 \dashv \Theta_2$	
	Fig. 19. Unifica	tion (Part I).	

PROOF. 1. When μ is absolute, trivial. When μ is relative, the delta between the source and target is fixed and we only need to case analysis whether *E* or *F* gives the lower bound.

2. When μ is absolute, the minimal index for the transformation is completely determined by ν . Otherwise, relative μ can only be transformed to relative ν . The delta between L_1 and D_1 must be the same as the delta between L_2 and D_2 in order to make the transformation hold. The index is determined by the larger one among L_1 and L_2 .

$\Theta \mid \Xi \vdash \hat{\alpha} \equiv A$	$A \dashv \Theta'$		
U-Fle	EX-RIGID-SOLVE		U-Flex-Rigid-Subst
	$\Theta, \Xi \vdash A : (K, R)$) ⊣ Θ′	$\Theta, \Xi \vdash \hat{\alpha}[B/\beta] \equiv A[B/\beta] \dashv \Theta'$
$\overline{\Theta, \hat{\alpha}}$	$: (K, R) \mid \Xi \vdash \hat{\alpha} \equiv .$	$A + \Theta', \hat{\alpha} = A$	$\Theta, \hat{\beta} = B \mid \Xi \vdash \hat{\alpha} \equiv A \dashv \Theta', \hat{\beta} = B$
U-Fle	x-Rigid-Depend		U-Flex-Rigid-SkipFlex
á	$\dot{\alpha} \neq \beta \qquad \beta \in \mathrm{ftv}(A)$	A)	$\hat{\alpha} \neq \hat{\beta} \qquad \hat{\beta} \notin \operatorname{ftv}(A)$
$\Theta \mid \beta$	$\mathcal{B}: (K, R), \Xi \vdash \hat{\alpha} \equiv A$	$A \dashv \Theta'$	$\Theta \mid \Xi \vdash \hat{\alpha} \equiv A \dashv \Theta'$
$\overline{\Theta,\hat{eta}}$:	$(K,R) \mid \Xi \vdash \hat{\alpha} \equiv A$	$A \dashv \Theta'$	$\overline{\Theta, \hat{\beta}: (K, R) \mid \Xi \vdash \hat{\alpha} \equiv A \dashv \Theta', \hat{\beta}: (K, R)}$
U-F	lex-Rigid-SkipRigii)	U-Flex-Rigid-SkipTerm
β∉	ftv(A) $\Theta \mid \Xi$	$\vdash \hat{\alpha} \equiv A \dashv \Theta'$	$\Theta \mid \Xi \vdash \hat{\alpha} \equiv A \dashv \Theta'$
Θ	$\beta, \beta: K \mid \Xi \vdash \hat{\alpha} \equiv A$	$\dashv \Theta', \beta : K$	$\overline{\Theta, x: \sigma \mid \Xi \vdash \hat{\alpha} \equiv A \dashv \Theta', x: \sigma}$
	U-FIEV-RICID-SU	UDI OCK	II-FLEX-RICID-SVIRMARK
	$\Theta \mid \Xi \vdash \hat{\alpha} \equiv$	$A \dashv \Theta'$	$\Theta \mid \Xi \vdash \hat{\alpha} \equiv A \dashv \Theta'$
	$\overline{\mathbf{\Theta} \mathbf{\Phi}}$ $ \Xi \hat{\alpha} =$		$\frac{1}{\Theta^{\circ} \mid \Sigma \mid \hat{x} = A \mid \Theta'^{\circ}}$
	Θ, ≞ μ ≞ F α =	∴A⊣O, ≞ μ	$\Theta_{9} \mid \Xi \vdash u = A \dashv \Theta_{9}$
		Fig. 20. U	nification (Part II).
		,	
colvo([E'	$1 \cdot E \rightarrow E$	$\int F$,	$E \leqslant E'$
Solve	$]: E \rightarrow F)$	=) fail,	otherwise
		(F,	$E \leq D + (F - L)$
$solve(\langle L $	$D\rangle: E \to F)$	$= \begin{cases} -7 \\ 1 + (1) \end{cases}$	F = D otherwise
solve([F]	$\rightarrow \nu$	= solve(u)	$(F \rightarrow .)$
solve $([L]$	$\rightarrow v$ $D \rightarrow [F]$	= solve(v	
50176((12)	$D \rightarrow [D]$	_ fail	$(I, D) \neq (I', D')$
			$(L,D) \neq (L,D)$
solve($\langle L_1$	$ D_1\rangle \Rightarrow \langle L_2 D_2 \rangle)$	= {	where $(L, D) = L_1 \bowtie D_1$ and $(L^r, D^r) = L_2 \bowtie D_1$
	,,	L_2 ,	$L_1 \leqslant L_2$
		$(L_1,$	otherwise
		Fig. 21. So	lvers for modalities.
Lemma B.9	(Completeness o	f solving).	
• If $\mu_{F'}$:	$E' \rightarrow F'$ with $E \leq$	$\leq E'$ and $F \leq $	F' , then solve $(\mu : E \to F) = F''$ for some F'' .
• If $\mu_F =$	$\Rightarrow v_F$, then solve(μ	$\Rightarrow v) = F' f c$	or some F'.
5,1		, ,	

PROOF. By definition.

We prove that type inference does not generate negative effects.

LEMMA B.10 (NO NEGATIVE EFFECTS). For the type inference question $(\Theta_0; M : \bigcirc @ \bigcirc)$ with the implicit condition $\vdash \Theta_0$ pos and $\vdash M$ pos, if $\Theta_0 \vdash M : A @ E \dashv \Theta_1$, then $\vdash \Theta_1$ pos and $\vdash A$ pos.

This lemma guarantees that though the unification algorithm is not defined for negative effects, it would not fail because of negative effects during type inference.

We prove the soundness, generality, and completeness for type inference.

THEOREM B.11 (SOUNDNESS AND GENERALITY OF TYPE INFERENCE). For the type inference question $(\Theta_0; M : \bigcirc @ \bigcirc)$, if $\Theta_0 \vdash M : A @ E \dashv \Theta_1$, then $(\Theta_0 \sqsubseteq \Theta_1, A, E)$ is a minimal solution.

THEOREM B.12 (COMPLETENESS OF TYPE INFERENCE). *If* $\vdash \Theta_0$ ng, $\Theta_0 \vdash M$ ok, $\theta \circ \Theta_0 \sqsubseteq \Theta$, and $\Theta \vdash_s M : A \oslash F$, then $\Theta_0 \vdash M : B \oslash E \dashv \Theta_1$ for some Θ_1 , *B*, and *E*.

All proofs can be found in Appendix C.

$ \begin{array}{l} eq:sphere:spher$		
$\begin{split} \xi &= \operatorname{alocks}(\Theta_0) \forall \Delta A &= \operatorname{subst}(\Theta; \sigma) \\ \Theta, \Theta_0 &\vdash (\mu, \forall \Delta A) &\Rightarrow \xi @ E + \Theta_1 \\ \Theta, \forall \psi, \Delta A &\leq m B + \Theta_2 \\ \hline \Theta, \forall \psi, \sigma, \Theta_0 &\vdash [x] : B @ E + \Theta_2 \\ \hline \Theta, x :_{\mu} \sigma, \Theta_0 &\vdash [x] : B @ E + \Theta_2 \\ \hline \Theta, x :_{\mu} \sigma, \Theta_0 &\vdash [x] : B @ E + \Theta_2 \\ \hline \Theta, x :_{\mu} \sigma, \Theta_0 &\vdash [x] : B @ E + \Theta_1 \\ \hline \Theta_0, \Theta_{\mu} &\vdash V : A @ E + \Theta_1, \Theta_{\mu}, \Sigma_1 \\ \hline F &= \operatorname{solve}(\mu : E \to \cdot) \\ \hline \Theta_0 &\vdash mod_{\mu} V : \mu A @ F + \Theta_1, \Sigma_1 \\ \hline \Theta_0 &\vdash M X : A @ E + \Theta_1 \\ \hline \Theta_0 &\vdash M X : A @ E + \Theta_1, X : A, \Sigma_1 \\ \hline \Theta_0 &\vdash Ax^A, X : A \to B @ E + \Theta_1, \Sigma_1 \\ \hline \Theta_0 &\vdash Ax^A, X : A \to B @ E + \Theta_1, \Sigma_1 \\ \hline I-\operatorname{LerANNO} \\ \Theta_0 &\vdash Ax^A, X : A \to B @ E + \Theta_1, \Sigma_1 \\ \hline I-\operatorname{LerANNO} \\ \Theta_0 &\vdash Ax^A, X : A \to B @ E + \Theta_1, \Sigma_1 \\ \hline I-\operatorname{LerANNO} \\ \Theta_0 &\vdash Ax^A, X : A \to B @ E + \Theta_1, \Sigma_1 \\ \hline I-\operatorname{LerANNO} \\ \Theta_0 &\vdash Ax^A, X : A \to B @ E + \Theta_1, \Sigma_1 \\ \hline I-\operatorname{LerANNO} \\ \Theta_0 &\vdash Ax^A, X : A \to B @ E + \Theta_1, \Sigma_1 \\ \hline I-\operatorname{LerANNO} \\ \Theta_0 &\vdash Ax^A, X : A \to B @ E + \Theta_1, \Sigma_1 \\ \hline \Theta_0 &\vdash Ax : A &\oplus B @ E + \Theta_1, \Sigma_1 \\ \hline \Theta_0 &\vdash Ax^A, X : A \to B @ E + \Theta_1, \Sigma_1 \\ \hline \Theta_0 &\vdash Ax^A, X : A \to B @ E + \Theta_1, \Sigma_1 \\ \hline \Theta_0 &\vdash Ax^A, X : A \to B @ E + \Theta_1, \Sigma_1 \\ \hline \Theta_0 &\vdash Ax^A, X : A \to B @ E + \Theta_1 &\oplus Ax : A &\oplus B @ E + \Theta_1, \Sigma_1 \\ \hline \Theta_0 &\vdash Ax^A, X : A \to B @ F + \Theta_4 \\ \hline \Theta_0 &\triangleq (A, X : A \oplus B) &\oplus E + \Theta_1 &\oplus Ax : A &\oplus B &\oplus E + \Theta_1, \Sigma_1 \\ \hline \Theta_1 &\ddagger \Sigma_1, \hat{a} : (\operatorname{Any}, m) &\vdash A &\equiv \Phi &\oplus A \\ \hline \Theta_0 &\triangleq (X : A \to B \\ \hline \Theta_0 &\triangleq (X : A \to B \\ \hline \Theta_0 &\vdash Ax : A &\oplus B &\oplus Ax : B &\oplus F + \Theta_4 \\ \hline \Phi_1 &\equiv \Sigma &\downarrow X &\oplus X &\oplus B &\oplus Ax &\oplus B &\oplus B \\ \hline \Theta_0 &\triangleq (A \cap A : B &\oplus B &\oplus Ax &\oplus Ax &\oplus Ax &\oplus B &\oplus B \\ \hline \Theta_0 &\triangleq (A \cap A : B &\oplus B) &\oplus Ax &\oplus Ax &\oplus B &\oplus B &\oplus B \\ \hline \Theta_0 &\oplus (A \cap A : B &\oplus B) &\oplus B &\oplus B &\oplus B &\oplus B \\ \hline \Theta_0 &\oplus (A \cap A \cap A &\oplus B &\oplus B) &\oplus B &\oplus B &\oplus B &\oplus B \\ \hline \Theta_0 &\oplus (A \cap A \cap A &\oplus B &\oplus B) &\oplus B &\oplus B &\oplus B &\oplus B &\oplus B \\ \hline \Theta_1 &\oplus A \to B &\to B &\to B &\oplus B &\oplus B &\oplus B &\oplus B &\oplus B $	I-Freeze	I-VAR $\xi = \text{alocks}(\Theta_0) \forall \Delta.A = \text{subst}(\Theta; \sigma)$
$ \begin{array}{c} \hline \Theta, x :_{\mu} \sigma, \Theta_{0} \in [x] : B @ E + \Theta_{2} \\ \hline \Theta, x :_{\mu} \sigma, \Theta_{0} + x : B @ E + \Theta_{2} \\ \hline \Theta, x :_{\mu} \sigma, \Theta_{0} + x : B @ E + \Theta_{2} \\ \hline \Theta, x :_{\mu} \sigma, \Theta_{0} + x : B @ E + \Theta_{2} \\ \hline \Theta, x :_{\mu} \sigma, \Theta_{0} + x : B @ E + \Theta_{2} \\ \hline \Theta_{0} - M : A @ E + \Theta_{1} = \Theta_{1} + N : B @ F + \Theta_{2} \\ \hline \Theta_{0} + M : A @ E + \Theta_{1} = \Theta_{1} + N : B @ F + \Theta_{2} \\ \hline \Theta_{0} + M : A @ B = \Theta_{1} + \Theta_{1} + \Sigma_{1} \\ \hline \Theta_{0} + \lambda x^{A} . M : A \rightarrow B @ E + \Theta_{1} , \Sigma_{1} \\ \hline \Theta_{0} + \lambda x^{A} . M : A \rightarrow B @ E + \Theta_{1} , \Sigma_{1} \\ \hline \Theta_{0} + M : A @ B = \Theta_{0} + \Theta_{1} , \Sigma_{1} \\ \hline \Theta_{0} + (M; \Delta; A) \oplus^{\dagger} \sigma + \Theta_{1} \\ \hline \Theta_{0} + Et x^{VA.A} = M \text{ in } N : B @ F + \Theta_{2} \oplus^{\circ} \Delta, \Sigma_{2} \\ \hline \Theta_{2} \oplus^{\circ} \Delta, \Sigma_{2} + A' = A + \Theta_{3} \oplus^{\circ} \Delta, \Sigma_{3} \\ \hline \Theta_{0} + Et x^{VA.A} = M \text{ in } N : B @ E \cup F + \Theta_{4} , \Sigma_{4} \\ \hline \Theta_{0} + Et x^{VA.A} = M \text{ in } N : B @ E \cup F + \Theta_{4} , \Sigma_{4} \\ \hline \Theta_{0} + Et x^{VA.A} = M \text{ in } N : B @ F' + \Theta_{3} \\ \hline D_{0} + Et x^{VA.A} = M \text{ in } N : B @ F' + \Theta_{3} \\ \hline D_{0} + Et x^{\phi} A = M \text{ in } N : B @ F' + \Theta_{3} \\ \hline D_{0} + Et x^{\phi} A = M \text{ in } N : B @ F' + \Theta_{3} \\ \hline D_{0} + Et x^{\phi} A = M \text{ in } N : B @ F' + \Theta_{3} \\ \hline D_{0} + Et x^{\phi} A = M \text{ in } N : B @ F' + \Theta_{3} \\ \hline D_{0} + Et x^{\phi} A = M \text{ in } N : B @ F' + \Theta_{3} \\ \hline D_{0} + Et x^{\phi} A = M \text{ in } N : B @ F' + \Theta_{3} \\ \hline D_{0} + Et x^{\phi} A = M \text{ in } N : B @ F' + \Theta_{3} \\ \hline D_{0} + Et x^{\phi} A = M \text{ in } N : B @ F' + \Theta_{3} \\ \hline D_{0} + Et x^{\phi} A = M \text{ in } N : B @ F' + \Theta_{3} \\ \hline D_{0} + Et x^{\phi} A = M \text{ in } N : B @ F' + \Theta_{3} \\ \hline D_{0} + Et x^{\phi} A = M \text{ in } N : B @ F' + \Theta_{3} \\ \hline D_{0} + Et x^{\phi} A = M \text{ in } N : B @ F' + \Theta_{3} \\ \hline D_{0} + Et x^{\phi} A = M \text{ in } N : B @ F' + \Theta_{3} \\ \hline D_{0} + Et x^{\phi} A = M \text{ in } N : B @ F' + \Theta_{3} \\ \hline D_{0} + Et x^{\phi} A = M \text{ in } N : B @ F' + \Theta_{3} \\ \hline D_{0} + Et x^{\phi} A = M \text{ in } N : B @ F' + \Theta_{3} \\ \hline D_{0} + Et x^{\phi} A = M \text{ in } N : B @ F' + \Theta_{3} \\ \hline D_{0} + Et x^{\phi} A = M \text{ in } N : B @ F' + \Theta_{3} \\ \hline D_{0} + Et x^{\phi} A = M \text{ in } N : B @ F' + \Theta_{3} \\ \hline D_{0} + Et x^{\phi} A = M \text{ in } N : B @ F' + \Theta_{1} \\ \hline D_{0} + Et x^{\phi}$	$\xi = \operatorname{alocks}(\Theta_0) \forall \Delta . A = \operatorname{subst}(\Theta; \sigma) \\ \Theta, \Theta_0 \vdash (\mu, \forall \Delta . A) \Longrightarrow \xi @ E \dashv \Theta_1 \\ \Theta_1 \vdash \forall \Delta . A \leq_{m} B \dashv \Theta_2$) $(v, A') = \operatorname{split}(\Delta, A)$ $\Theta, \Theta_0 \vdash (\mu \circ v, \forall \Delta. A') \Longrightarrow \xi @ E \dashv \Theta_1$ $\Theta_1 \vdash \forall \Delta. A \leq_{m} B \dashv \Theta_2$
$ \begin{array}{l} \label{eq:product} I-MOD\\ \Theta_0, \widehat{\bullet}_{\mu} \vdash V: A @ E + \Theta_1, \widehat{\bullet}_{\mu}, \Xi_1\\ F = \operatorname{solve}(\mu : E \to \cdot)\\ \hline \Theta_0 \vdash \operatorname{mod}_{\mu} V: \mu A @ F + \Theta_1, \Xi_1\\ \hline \Theta_0 \vdash \mathcal{A}x^A.M: A \to B @ E + \Theta_1, \Xi_1\\ \hline \Theta_0 \vdash \lambda x^A.M: A \to B @ E + \Theta_1, \Xi_1\\ \hline \Pi-LETANNO\\ \Theta_0 \vdash \lambda x^A.M: A \to B @ E + \Theta_1, \Xi_1\\ \hline I-LETANNO\\ \Theta_0 \vdash (M; \Delta; A) \label{eq:product}^{\dagger} \sigma + \Theta_1\\ \Theta_0 \vdash B x \cdot M : B @ E + \Theta_1, \Xi_1\\ \hline I-LETANNO\\ \Theta_0 \vdash (M; \Delta; A) \label{eq:product}^{\dagger} \sigma + \Theta_1\\ \Theta_0 \vdash B x \cdot M : B @ E + \Theta_1, \Xi_1\\ \hline I-LETANNO\\ \Theta_0 \vdash (M; \Delta; A) \label{eq:product}^{\dagger} \sigma + \Theta_1\\ \Theta_0 \vdash B x \cdot M : A @ E + \Theta_1, \Delta x \cdot M : B @ E + \Theta_1, X : \hat{a}, \\ \hline \Theta_0 \vdash B x \cdot M : A @ E + \Theta_1, \Delta x \cdot M : B @ E + \Theta_1, \Sigma_1\\ \hline HETMOD\\ \Theta_0 \vdash B x \forall \Delta A = M in N : B @ E \cup F + \Theta_4, \Xi_4\\ \hline I-LETMOD\\ \Theta_0 \vdash B x \forall \Delta A = \phi \hat{a} + \Theta_2 \label{eq:product}^{\bullet} \Theta_1 \label{eq:product}^{\bullet} $	$\Theta, x :_{\mu} \sigma, \Theta_0 \vdash \lceil x \rceil : B @ E \dashv \Theta_2$	$\Theta, x:_{\mu} \sigma, \Theta_0 \vdash x: B @ E \dashv \Theta_2$
$ \begin{array}{c} \Theta_{0}, \Theta_{p} \models V : A @ E + \Theta_{1}, \Theta_{p}, E_{1} \\ \hline F = \operatorname{solve}(\mu : E \to \cdot) \\ \hline \Theta_{0} \models \operatorname{mod}_{\mu} V : \mu A @ F + \Theta_{1}, E_{1} \\ \hline \Theta_{0} \models M : A @ E + \Theta_{1} & H : B @ E + \Theta_{1}, E_{1} \\ \hline \Theta_{0} \models M : A @ E + \Theta_{1}, X : A, E_{1} \\ \hline \Theta_{0} \models \lambda x^{A} . A : A \to B @ E + \Theta_{1}, E_{1} \\ \hline \Theta_{0} \models \lambda x^{A} . A : A \to B @ E + \Theta_{1}, E_{1} \\ \hline H \text{LETANNO} \\ \hline \Theta_{0} \models (M; \Delta; A) \ \uparrow^{\dagger} \sigma + \Theta_{1} \\ \hline \Theta_{0} \models (M; \Delta; A) \ \uparrow^{\dagger} \sigma + \Theta_{1} \\ \hline \Theta_{0} \models (M; \Delta; A) \ \uparrow^{\dagger} \sigma + \Theta_{1} \\ \hline \Theta_{0} \models (M; \Delta; A) \ \uparrow^{\dagger} \sigma + \Theta_{1} \\ \hline \Theta_{0} \models (M; \Delta; A) \ \uparrow^{\dagger} \sigma + \Theta_{1} \\ \hline \Theta_{0} \models (M; \Delta; A) \ \uparrow^{\dagger} \sigma + \Theta_{1} \\ \hline \Theta_{0} \models (M; \Delta; A) \ \uparrow^{\dagger} \sigma + \Theta_{1} \\ \hline \Theta_{0} \models (M; \Delta; A) \ \uparrow^{\dagger} \sigma + \Theta_{1} \\ \hline \Theta_{0} \models (M; \Delta; A) \ \uparrow^{\dagger} \sigma + \Theta_{1} \\ \hline \Theta_{0} \models (M; \Delta; A) \ \uparrow^{\dagger} \sigma + \Theta_{1} \\ \hline \Theta_{0} \models (M; \Delta; A) \ \uparrow^{\dagger} \sigma + \Theta_{1} \\ \hline \Theta_{0} \models (M; \Delta; A) \ \uparrow^{\dagger} \sigma + \Theta_{1} \\ \hline \Theta_{0} \models (M; \Delta; A) \ \uparrow^{\dagger} \sigma + \Theta_{1} \\ \hline \Theta_{0} \models (M; \Delta; A) \ \uparrow^{\dagger} \sigma + \Theta_{1} \\ \hline \Theta_{0} \models (M; \Delta; A) \ \uparrow^{\dagger} \sigma + \Theta_{1} \\ \hline \Theta_{0} \models (M; \Delta; A) \ \uparrow^{\dagger} \sigma + \Theta_{1} \\ \hline \Theta_{0} \models (M; \Delta; A) \ \uparrow^{\dagger} \sigma + \Theta_{1} \\ \hline \Theta_{0} \models (M; \Delta; A) \ \uparrow^{\dagger} \sigma + \Theta_{1} \\ \hline \Theta_{0} \models (M; \Delta; A) \ \downarrow^{\dagger} \sigma + \Theta_{1} \\ \hline \Theta_{0} \models (M; \Delta; A) \ \downarrow^{\dagger} \sigma + \Theta_{1} \\ \hline \Theta_{0} \models (M; \Delta; A) \ \downarrow^{\dagger} \sigma + \Theta_{1} \\ \hline \Theta_{0} \models (M; \Delta; A) \ \downarrow^{\dagger} \sigma + \Theta_{1} \\ \hline \Theta_{0} \models (M; \Delta; A) \ \oplus^{\dagger} \sigma + \Theta_{2} \\ \hline \Theta_{0} \models (M; \Delta; A) \ \oplus^{\dagger} \sigma + \Theta_{2} \\ \hline \Theta_{0} \models (M; \Delta; A) \ \oplus^{\dagger} \sigma + \Theta_{2} \\ \hline \Theta_{0} \models (M; \Delta; A) \ \oplus^{\dagger} \sigma + \Theta_{2} \\ \hline \Theta_{0} \models (M; \Delta; A) \ \oplus^{\dagger} \sigma + \Theta_{2} \\ \hline \Theta_{0} \models (M; \Delta; A) \ \oplus^{\dagger} \sigma + \Theta_{2} \\ \hline \Theta_{0} \models (M; \Delta; A) \ \oplus^{\dagger} \sigma + \Theta_{2} \\ \hline \Theta_{0} \models (M; \Delta; A) \ \oplus^{\dagger} \sigma + \Theta_{2} \\ \hline \Theta_{0} \models (M; \Delta; A) \ \oplus^{\dagger} \sigma + \Theta_{2} \\ \hline \Theta_{0} \models (M; \Delta; A) \ \oplus^{\dagger} \sigma + \Theta_{2} \\ \hline \Theta_{0} \models (M; \Delta; A) \ \oplus^{\dagger} \sigma + \Theta_{2} \\ \hline \Theta_{0} \models (M; \Delta; A) \ \oplus^{\dagger} \sigma + \Theta_{2} \\ \hline \Theta_{0} \models (M; \Delta; A) \ \oplus^{\dagger} \sigma + \Theta_{2} \\ \hline \Theta_{0} \models (M; \Delta; A) \ \oplus^{\dagger} \sigma + \Theta_{2} \\ \hline \Theta_{0} \land (M; \Delta; A) \ \oplus^{\dagger} \sigma + \Theta_{2} \\ \hline \Theta_{0} \models (M; \Delta; A) \ \oplus^{\bullet} \sigma + \Theta_{2} \\ \hline \Theta_{0} \models (M; \Delta; A) \ \oplus^{\bullet} \sigma + \Theta_{2} \\ \hline \Theta_{0} \land (M; \Delta; A) \ \oplus^{\bullet} \sigma + \Theta_{2} \\ \hline \Theta_{0} \land (M; \Delta; A) \ \oplus^{\bullet} \sigma + \Theta_{2} \\ \hline \Theta_{0} \land (M; \Delta; A) \ \oplus^{\bullet} \sigma + \Theta_{2} \\ \hline \Theta_{0} \land ($		
$ \begin{array}{c} \hline \Theta_{0} \vdash \mathbf{mod}_{\mu} V : \mu A @ F + \Theta_{1}, \Xi_{1} & \Theta_{0} \vdash M N : \hat{a} @ E \cup F + \Theta_{3} \\ \hline \Theta_{0} + X A^{A}. N : A \to B @ E + \Theta_{1}, \Xi_{1} & \Theta_{0} \cap M N : \hat{a} @ E \cup F + \Theta_{3} \\ \hline \Theta_{0} + \lambda x^{A}. M : A \to B @ E + \Theta_{1}, \Xi_{1} & \Theta_{0} \cap \hat{a} : (Any, i), x : \hat{a} \vdash M : B @ E + \Theta_{1}, x : \hat{a}, \\ \hline \Theta_{0} + \lambda x^{A}. M : A \to B @ E + \Theta_{1}, \Xi_{1} & \Theta_{0} \cap \hat{a} : (Any, i), x : \hat{a} \vdash M : B @ E + \Theta_{1}, \Sigma_{1} \\ \hline I \text{LETANNO} & \Theta_{0} \vdash (M; \Delta; A) \ddagger^{\dagger} \sigma + \Theta_{1} & \Theta_{1} \And \Delta \vdash M : A' @ E + \Theta_{2} \And \Delta, \Xi_{2} \\ \hline \Theta_{2} \And \Delta, \Xi_{2} \vdash A' \equiv A + \Theta_{3} \And \Delta, \Xi_{3} & \Theta_{3}, x : \sigma \vdash N : B @ F + \Theta_{4}, x : \sigma, \Xi_{4} \\ \hline \Theta_{0} \vdash \mathbf{bt} x^{\forall \Delta. A} = M \text{ in } N : B @ E \cup F + \Theta_{4}, \Xi_{4} \\ \hline I \text{LETMOD} & \Theta_{0} \vdash \mathbf{bt} x^{\forall \Delta. A} = M \text{ in } N : B @ E \cup F + \Theta_{4}, \Xi_{4} \\ \hline \Theta_{1} \And \Xi_{1}, \hat{a} : (Any, m) \vdash A \equiv \phi \hat{a} + \Theta_{2} \And \Xi_{2} & \Theta_{2} \vdash (M; v; \phi; \Xi_{2}; \hat{a}) \ddagger (\xi, \sigma) + \Theta_{3} \\ \hline \Theta_{3}, x : \xi \sigma \vdash N : B @ F + \Theta_{4} & F' = \text{solve}(v : E \to F) \\ \hline \Theta_{0} \vdash \mathbf{bt}_{v} \phi x = M \text{ in } N : B @ F' + \Theta_{3} \\ \hline I \text{-Do} & \Sigma \ni \ell : A \to B \\ \hline \Theta_{0} \vdash M : A_{1} @ E + \Theta_{1} & \Theta_{1} \vdash A_{1} \equiv A + \Theta_{2} \\ \hline \Theta_{0} \vdash M : A_{1} @ E + \Theta_{1} & \Theta_{1} \vdash A_{1} \equiv A + \Theta_{2} \\ \hline \Theta_{0} \vdash M : A_{0} @ E' + \Theta'_{1} & \Theta_{1}(D), \Xi' & \Theta' + (M; \Xi'; A_{0}) \Downarrow A + \Theta_{1} \\ \hline \Theta_{0}, x : (D)A \vdash N : B_{0} @ E_{r} + \Theta'_{0}, x : \Box S' & \Theta'_{1} \leftarrow (M; \Xi'; A_{0}) \Downarrow A + \Theta_{0} \\ \Theta_{0}, x : (D)A \vdash N : B_{0} @ E_{r} + \Theta'_{r}, x : \Box S' & \Theta'_{1} \leftarrow (N; \Xi', B_{0}) \Downarrow B + \Theta_{1} \\ \hline \Theta_{1}, p_{1} : A_{1}, r_{1} : B_{1} \to B + N_{1} : B_{1} @ E_{1} = \Theta'_{1}, p_{1} : \Box r_{1} : \Box \Theta'_{r} + \Theta_{1} = B + \Theta_{1+1} \right]_{r=}^{r} \\ E = \text{solve}(\langle D \rangle : E' \to \cdot) & F = \bigcup U_{r} \cup (\bigcup_{r}) \\ \hline \Theta \vdash \text{handle } M \text{ with } \{\text{return } x \mapsto N\} \ \ \{\ell_{1} \ p_{1} r_{1} \mapsto N_{1}\}_{r=1}^{r} : B @ F + \Theta_{n+1} \\ \hline \text{Fig. 22. Type inference for METEL.} \\ \end{array}$	$\Theta_0, \blacksquare_{\mu} \vdash V : A (@E \dashv \Theta_1, \blacksquare_{\mu}, \Xi_1)$ $F = \text{solve}(\mu : E \to \cdot)$	$\Theta_0 \vdash M : A @ F \dashv \Theta_1 \qquad \Theta_1 \vdash N : B @ F \dashv \Theta_2$ $\Theta_2, \hat{\alpha} : (Any, m) \vdash A \equiv B \rightarrow \hat{\alpha} \dashv \Theta_3$
$ \begin{array}{l} \label{eq:powerserv} \begin{array}{l} \mbox{I-Abs} \\ \hline \Theta_0, x: A + M: B @ E + \Theta_1, x: A, \Xi_1 \\ \hline \Theta_0, a: (Any, i), x: a + M: B @ E + \Theta_1, x: a, \\ \hline \Theta_0, a: (Any, i), x: a + M: B @ E + \Theta_1, x: a, \\ \hline \Theta_0, a + \lambda x M: a \to B @ E + \Theta_1, \Xi_1 \\ \hline \end{array} \\ \begin{array}{l} \mbox{I-LertAnno} \\ \hline \Theta_0 + (M; \Delta; A) \end{tabular}^\dagger \sigma + \Theta_1 \\ \hline \Theta_0 + M: \Delta; A \oplus g \end{tabular}^\dagger \sigma + \Theta_1 \\ \hline \Theta_0 + M: \Delta; A \oplus g \end{tabular}^\dagger \sigma + \Theta_1 \\ \hline \Theta_0 + M: A^{\prime} @ E + \Theta_2 \end{tabular}^\dagger \Delta, \Xi_2 \\ \hline \Theta_2 \end{tabular}^\dagger \Delta + A \oplus_3 \end{tabular}^\dagger \Delta + M: A^{\prime} @ E + \Theta_2 \end{tabular}^\dagger \Delta, \Xi_2 \\ \hline \Theta_2 \end{tabular}^\dagger \Delta + A \oplus g \end{tabular}^\dagger \Delta + M: A^{\prime} @ E + \Theta_1, \Delta, \vdots \sigma + N: B \end{tabular}^\dagger \Theta + \Theta_4, x: \sigma, \Xi_4 \\ \hline \hline \end{array} \\ \begin{array}{l} \mbox{I-LertMoD} \\ \hline \Theta_0, \end{tabular}^\bullet V = M: A \end{tabular}^\bullet D = V + \Theta_4, \Xi_4 \\ \hline \end{array} \\ \begin{array}{l} \mbox{I-LertMoD} \\ \hline \Theta_1 \end{tabular}^\bullet \Sigma = \ell: A \to B \\ \hline \Theta_0 + M: A_1 \end{tabular}^\bullet D = V \oplus A \\ \hline \Theta_0 + M: A_1 \end{tabular}^\bullet D = \{h_1 + A_1 \equiv A + \Theta_2 \\ \hline \Theta_0 + M: A_1 \end{tabular}^\bullet D = \{h_1 \end{tabular}^\bullet (E_1 : A_1 \to B_1) \\ \hline \end{array} \\ \begin{array}{l} \mbox{I-Mask} \\ \hline \Theta_0, \end{tabular}^\bullet V = M: A_0 \end{tabular}^\bullet D = \{h_1 \end{tabular}^\bullet E + \Theta_1, \end{tabular}^\bullet U = \{h_1 \end{tabular}^\bullet U = \{h_1, h_1, h_2, h_3, h_4 \end{tabular}^\bullet U = \{h_1, h_1, h_2, h_3, h_4 \end{tabular}^\bullet U = \{h_1, h_1, h_2, h_3, h_4 \end{tabular}^\bullet U = \{h_1, h_2, h_3,$	$\Theta_0 \vdash \mathbf{mod}_{\mu} V : \mu A @ F \dashv \Theta_1, \Xi_1$	$\Theta_0 \vdash M N : \hat{\alpha} @ E \cup F \dashv \Theta_3$
$ \begin{array}{c} \hline \Theta_{0} \vdash \lambda x^{A}.M: A \rightarrow B @ E \dashv \Theta_{1}, \Xi_{1} \\ \hline \Theta_{0} \vdash \lambda x.M: \hat{a} \rightarrow B @ E \dashv \Theta_{1}, \Xi_{1} \\ \hline \Pi_{\text{LETANNO}} \\ \hline \Theta_{0} \vdash (M; \Delta; A) \ 1 \uparrow^{\dagger} \sigma \dashv \Theta_{1} & \Theta_{1} & \Delta \vdash M: A' @ E \dashv \Theta_{2} & \Delta, \Xi_{2} \\ \hline \Theta_{0} \vdash (M; \Delta; A) \ 1 \uparrow^{\dagger} \sigma \dashv \Theta_{1} & \Theta_{1} & \Delta \vdash M: A' @ E \dashv \Theta_{2} & \Delta, \Xi_{2} \\ \hline \Theta_{2} & & \lambda, \Xi_{2} \vdash A' \equiv A \dashv \Theta_{3} & & \lambda \vdash M: B @ F \dashv \Theta_{4}, x: \sigma, \Xi_{4} \\ \hline \Theta_{0} \vdash \text{let } x^{\forall \Delta A} = M \text{ in } N: B @ E \cup F \dashv \Theta_{4}, \Xi_{4} \\ \hline \Pi_{1} & & \Xi_{1}, \hat{a}: (\text{Any}, m) \vdash A \equiv \phi \hat{a} \dashv \Theta_{2} & \oplus_{2} = \Theta_{2} \vdash (M; v; \phi; \Xi_{2}; \hat{a}) & (\xi, \sigma) \dashv \Theta_{3} \\ \hline \Theta_{1} & & \oplus_{1} \hat{a}: (Any, m) \vdash A \equiv \phi \hat{a} + \Theta_{2} & \oplus_{2} = \Theta_{2} \vdash (M; v; \phi; \Xi_{2}; \hat{a}) & (\xi, \sigma) \dashv \Theta_{3} \\ \hline \Theta_{1} & & \oplus_{1} \hat{a}: f \oplus 0 + H = \psi \phi \hat{a} + \Theta_{2} & f' = \text{solve}(v : E \to F) \\ \hline \Theta_{0} \vdash \text{let}_{v} \phi x = M \text{ in } N: B @ F' \dashv \Theta_{3} \\ \hline \text{I-Do} & & & & & \\ \frac{1 - \text{Do}}{\Theta_{0} \vdash M: A_{1} @ E \dashv \Theta_{1} = A_{1} \equiv A \dashv \Theta_{2}} & & & & \\ \hline \Theta_{0} \vdash M: A_{1} @ E \dashv \Theta_{1} = A_{1} \equiv A \dashv \Theta_{2} \\ \hline \Theta_{0} \vdash M = M & & & & & & \\ \Theta_{0} \vdash M : A_{0} @ E' \dashv \Theta_{1} & & & & \\ \Theta_{0} \vdash M : A_{0} @ E' \dashv \Theta_{1} & & & & & \\ \frac{1 - \text{MASK}}{\Theta_{0} \vdash M : A_{0} @ E' \dashv \Theta_{1} & & & & \\ \Theta_{0} \vdash M : A_{0} @ E' \dashv \Theta_{1} & & & \\ D = \{\ell_{i}\}_{i} & \{\ell_{i}: A_{i} \twoheadrightarrow B_{i}\} \subseteq \Sigma \\ \Theta_{i} \oplus_{i} \oplus_{i} \square_{i} \square H & & & \\ D = \{\ell_{i}\}_{i} & \{\ell_{i}: A_{i} \twoheadrightarrow B_{i}\} \subseteq \Sigma \\ \Theta_{0} \vdash M : A_{0} @ E' \dashv \Theta_{1} & & \\ \Theta_{0} \Rightarrow H = A_{0} \square H & \\ \Theta_{0} \Rightarrow H = A_{0} \square H & \\ F = \text{solve}(\langle D) : E' \to O) & F = E \cup E_{r} \cup (\cup_{i}E_{i}) \\ \hline \Theta_{i} = \text{handle } M \text{ with } \{\text{return } x \mapsto N\} \ \\ \{\ell_{i} p_{i} r_{i} \mapsto N_{i}\}_{i=1}^{*} : B @ F \dashv \Theta_{n+1} \\ \hline Fig. 22. Type inference for METEL. \\ \hline \end{array}$	I-AbsAnno $\Theta_0, x : A \vdash M : B @ E \dashv \Theta_1, x : A, \Xi_1$	I-Авs $\Theta_0, \hat{\alpha} : (Any, i), x : \hat{\alpha} \vdash M : B @ E \dashv \Theta_1, x : \hat{\alpha}, \hat{\lambda}$
$\begin{aligned} \begin{array}{l} \text{I-LetAnno} \\ & \Theta_{0} \vdash (M; \Delta; A) \bigoplus^{\dagger} \sigma + \Theta_{1} \\ & \Theta_{1} \And \Delta \vdash M : A' @ E + \Theta_{2} \And \Delta, \Xi_{2} \\ & \Theta_{2} \And \Delta, \Xi_{2} \vdash A' \equiv A + \Theta_{3} \And \Delta, \Xi_{3} \\ & \Theta_{3}, x : \sigma \vdash N : B @ F + \Theta_{4}, x : \sigma, \Xi_{4} \\ \hline \Theta_{0} \vdash \text{let } x^{\forall \Delta A} = M \text{ in } N : B @ E \cup F + \Theta_{4}, \Xi_{4} \\ \end{aligned} \\ \begin{array}{l} \text{I-Letmod} \\ & \Theta_{0}, \bigoplus_{\nu} \vdash M : A @ E + \Theta_{1}, \bigoplus_{\nu, \Xi_{1}} \\ & \Theta_{1} \And \Xi_{1}, \hat{a} : (\text{Any}, m) \vdash A \equiv \phi \hat{a} + \Theta_{2} \And \Xi_{2} \\ & \Theta_{1} \And \Xi_{1}, \hat{a} : (\text{Any}, m) \vdash A \equiv \phi \hat{a} + \Theta_{2} \And \Xi_{2} \\ & \Theta_{3}, x :_{\mathcal{E}} \sigma \vdash N : B @ F + \Theta_{4} \\ & F' = \text{solve}(v : E \to F) \\ \hline \Theta_{0} \vdash \text{let}_{\nu} \phi x = M \text{ in } N : B @ F' + \Theta_{3} \\ \end{aligned} \\ \begin{array}{l} \text{I-Do} \\ & \Sigma \ni \ell : A \to B \\ & \Theta_{0} \vdash \text{let}_{\nu} \phi x = M \text{ in } N : B @ F' + \Theta_{3} \\ \hline \Theta_{0}, \bigoplus_{\ell \downarrow \downarrow} \vdash M : A @ E + \Theta_{1} \\ & F = \text{solve}(\langle L \rangle) : E \to \cdot) \\ \hline \Theta_{0} \vdash \text{let}_{\nu} \phi x = M \text{ in } N : B @ F' + \Theta_{3} \\ \hline \end{array} \\ \begin{array}{l} \text{I-Mask} \\ & \Theta_{0}, \bigoplus_{\ell \downarrow \downarrow} \vdash M : A @ E + \Theta_{1} \\ & F = \text{solve}(\langle L \rangle) : E \to \cdot) \\ \hline \Theta_{0} \vdash \text{mask}_{L} M : \langle L \rangle A @ F + \Theta_{2} \\ \hline \end{array} \\ \hline \end{array} \\ \begin{array}{l} \text{I-Mask} \\ & \Theta_{0}, \varphi_{1} \mapsto N : B_{0} @ E' + \Theta'_{0}, \varphi_{1} \mapsto \varphi_{1} \oplus E_{1} \\ & \Theta_{0}, \varphi_{1} \mapsto N : B_{0} @ E' + \Theta'_{0}, \varphi_{1} \mapsto \varphi_{1} \oplus E_{1} \\ \hline \Theta_{0} \vdash \text{mask}_{L} M : \langle L \rangle A @ F + \Theta_{2} \\ \hline \end{array} \\ \hline \end{array} \\ \hline \end{array} \\ \begin{array}{l} \text{I-Mask} \\ & \Theta_{0}, \varphi_{1} \mapsto N : B_{0} @ E' + \Theta'_{0}, \varphi_{1} \mapsto \varphi_{1} \oplus E_{1} \\ & \Theta_{0} \vdash N : A_{0} @ E' + \Theta'_{0}, \varphi_{1} \mapsto \varphi_{1} \oplus E_{1} \\ \hline \Theta_{0} \vdash \text{mask}_{L} M : \langle L \rangle A @ F + \Theta_{2} \\ \hline \end{array} \\ \begin{array}{l} \text{I-Maxk} \\ & \Theta_{0} \vdash \Phi_{1} \land \Theta_{0} & \Theta_{1} \vdash \Theta'_{0} \oplus \Theta_{1} \\ \hline \end{array} \\ \hline $ \\ \hline \end{array} \\ \hline \end{array} \\ \hline \end{array} \\ \hline \\ \hline \end{array} \\ \\ \hline \end{array} \\ \hline \end{array} \\ \\ \hline \\ \hline \\ \hline \end{array} \\ \\ \\	$\Theta_0 \vdash \lambda x^A.M: A \to B @ E \dashv \Theta_1, \Xi_1$	$\Theta_0 \vdash \lambda x.M : \hat{\alpha} \to B @ E \dashv \Theta_1, \Xi_1$
$\frac{\Theta_{2} \vee \Omega, \Theta_{2} + M + (M + \Theta_{3}) \vee \Omega, \Theta_{4} + \Theta_{4}, \Theta_{4} + \Theta_{4}, \Theta_{4}}{\Theta_{0} + \text{let } x^{\forall \Delta, A} = M \text{ in } N : B @ E \cup F + \Theta_{4}, \Theta_{4}}$ $\frac{\Theta_{0} + \text{let } x^{\forall \Delta, A} = M \text{ in } N : B @ E \cup F + \Theta_{4}, \Theta_{4} + \Theta_{$	I-LETANNO $\Theta_0 \vdash (M; \Delta; A) \ rightharpoonup \sigma \dashv \Theta_1$ $\Theta_0 \mathrel{\stackrel{\circ}{\leftarrow}} \Lambda = A \dashv \Theta_2 \mathrel{\stackrel{\circ}{\leftarrow}} \Lambda = A$	$\Theta_1 \mathrel{\stackrel{\circ}{\scriptscriptstyle 2}} \Delta \vdash M : A' \oslash E \dashv \Theta_2 \mathrel{\stackrel{\circ}{\scriptscriptstyle 2}} \Delta, \Xi_2$ $\Theta_2 \mathrel{x} : \sigma \vdash N : B \oslash F \dashv \Theta_4 \mathrel{x} : \sigma \equiv 4$
I-LETMOD $\Theta_{0}, \Phi_{\nu} \vdash M : A @ E \vdash \Theta_{1}, \Phi_{\nu}, \Xi_{1}$ $\Theta_{1} \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \$	$\frac{\Theta_{2} \neq \Delta, \Delta_{2} \neq \Lambda = \Lambda + \Theta_{3} \neq \Delta, \Delta_{3}}{\Theta_{0} \vdash \text{let } x^{\forall \Delta.A} = \Lambda}$	$\frac{1}{1} \text{ In } N : B @ E \cup F + \Theta_4, \Xi_4$
$\begin{split} & \Theta_{0}, \bigoplus_{\nu} \in M : A @ E + \Theta_{1}, \bigoplus_{\nu}, \Xi_{1} \\ & \Theta_{1} \degree \Xi_{1}, \hat{a} : (Any, m) \vdash A \equiv \phi \hat{a} + \Theta_{2} \degree \Xi_{2} \qquad \Theta_{2} \vdash (M; \nu; \phi; \Xi_{2}; \hat{a}) \Uparrow (\xi, \sigma) + \Theta_{3} \\ & \Theta_{3}, x :_{\xi} \sigma \vdash N : B @ F + \Theta_{4} \qquad F' = \text{solve}(\nu : E \to F) \\ \hline \Theta_{0} \vdash \text{let}_{\nu} \phi x = M \text{ in } N : B @ F' + \Theta_{3} \\ \\ & I-\text{Do} \\ & \Sigma \ni \ell : A \to B \\ & \Theta_{0} \vdash M : A_{1} @ E + \Theta_{1} \qquad \Theta_{1} \vdash A_{1} \equiv A + \Theta_{2} \\ & \Theta_{0} \bigoplus_{\nu} \det \ell M : B @ \{\ell\} \cup E + \Theta_{2} \\ \hline & HANDLER \\ & D = \{\ell_{i}\}_{i} \qquad \{\ell_{i} : A_{i} \to B_{i}\} \subseteq \Sigma \\ & \Theta_{i} \bigoplus_{\nu} (D) \vdash M : A_{0} @ E' + \Theta', \bigoplus_{\nu} (D), \Xi' \qquad \Theta' \vdash (M; \Xi'; A_{0}) \Downarrow A + \Theta_{0} \\ & \Theta_{0}, x : \langle D \rangle A \vdash N : B_{0} @ E_{i} + \Theta'_{0}, x : \Box \Xi' \qquad \Theta'_{i} \vdash (M; \Xi'; A_{0}) \Downarrow B + \Theta_{1} \\ & [\Theta_{i}, p_{i} : A_{i}, r_{i} : B_{i} \to B \vdash N_{i} : B_{i} @ E_{i} + \Theta'_{i}, p_{i} : \Box r_{i} : \Box \Xi'_{i} \qquad \Theta'_{i} \in \Xi = B + \Theta_{i+1}]_{i=1}^{n} \\ & \Theta \vdash \text{handle } M \text{ with } \{\text{return } x \mapsto N\} \ \ \{\ell_{i} \ p_{i} \ r_{i} \mapsto N_{i}\}_{i=1}^{n} : B @ F + \Theta_{n+1} \\ & \text{Fig. 22. Type inference for METEL.} \\ \end{split}$	I-Letmod	
$\Theta_{0} \vdash \operatorname{let}_{v} \phi \ x = M \text{ in } N : B \ @ F' + \Theta_{3}$ I-Do $\Sigma \ni \ell : A \twoheadrightarrow B$ $\frac{\Theta_{0} \vdash M : A_{1} \ @ E + \Theta_{1} \qquad \Theta_{1} \vdash A_{1} \equiv A + \Theta_{2}}{\Theta_{0} \vdash \operatorname{do} \ell M : B \ @ \{\ell\} \cup E + \Theta_{2}}$ I-HANDLER $D = \{\ell_{i}\}_{i} \qquad \{\ell_{i} : A_{i} \twoheadrightarrow B_{i}\} \subseteq \Sigma$ $\Theta, \bigoplus_{(D)} \vdash M : A_{0} \ @ E' + \Theta', \bigoplus_{(D)}, \Xi' \qquad \Theta' \vdash (M; \Xi'; A_{0}) \Downarrow A + \Theta_{0}$ $\Theta_{0}, x : \langle D \rangle A \vdash N : B_{0} \ @ E_{r} + \Theta'_{0}, x : \Box, \Xi' \qquad \Theta'_{0} \vdash (N; \Xi'; A_{0}) \Downarrow B + \Theta_{1}$ $[\Theta_{i}, p_{i} : A_{i}, r_{i} : B_{i} \rightarrow B \vdash N_{i} : B_{i} \ @ E_{i} + \Theta'_{i}, p_{i} : \Box, r_{i} : \Box, \Xi' \qquad \Theta'_{i}, \Xi'_{i} \vdash B_{i} \equiv B + \Theta_{i+1}]_{i=1}^{n}$ $E = \operatorname{solve}(\langle D \rangle : E' \rightarrow \cdot) \qquad F = E \cup E_{r} \cup (\cup_{i}E_{i})$ $\Theta \vdash \operatorname{handle} M \text{ with } \{\operatorname{return} x \mapsto N\} \ \ \ \{\ell_{i} \ p_{i} \ r_{i} \mapsto N_{i}\}_{i=1}^{n} : B \ \ \ \ \ \Theta \ F + \Theta_{n+1}$ Fig. 22. Type inference for METEL.	$\Theta_{0}, \blacksquare_{V} \vdash M$ $\Theta_{1} \stackrel{\circ}{,} \Xi_{1}, \hat{\alpha} : (Any, m) \vdash A \equiv \phi \hat{\alpha} + \Theta$ $\Theta_{3}, x :_{\xi} \sigma \vdash N : B @ F$	$ \begin{array}{ccc} : A & (@ E \dashv \Theta_1, \blacksquare_{\nu}, \Xi_1 \\ D_2 \stackrel{\circ}{}_{2} \Xi_2 & \Theta_2 \vdash (M; \nu; \phi; \Xi_2; \hat{\alpha}) \updownarrow (\xi, \sigma) \dashv \Theta_3 \\ \dashv \Theta_4 & F' = \text{solve}(\nu : E \to F) \end{array} $
I-Do $\Sigma \ni \ell : A \to B$ $\frac{\Theta_0 \vdash M : A_1 @ E \dashv \Theta_1 \qquad \Theta_1 \vdash A_1 \equiv A \dashv \Theta_2}{\Theta_0 \vdash \text{do } \ell M : B @ \{\ell\} \cup E \dashv \Theta_2}$ I-HANDLER $D = \{\ell_i\}_i \qquad \{\ell_i : A_i \to B_i\} \subseteq \Sigma$ $\Theta, \Theta, \Theta, \Theta, \Theta = H \land H$	$\Theta_0 \vdash \mathbf{let}_{\nu} \phi x =$	$= M \text{ in } N : B @ F' \dashv \Theta_3$
$ \begin{array}{c} \hline \Theta_{0} \vdash \operatorname{do} \ell \ M : B \ @ \ \{\ell\} \cup E \dashv \Theta_{2} \\ \hline \Theta_{0} \vdash \operatorname{mask}_{L} \ M : \langle L \rangle A \ @ \ F \dashv \Theta_{2} \\ \hline \Theta_{0} \vdash \operatorname{mask}_{L} \ M : \langle L \rangle A \ @ \ F \dashv \Theta_{2} \\ \hline \Theta_{0} \vdash \operatorname{mask}_{L} \ M : \langle L \rangle A \ @ \ F \dashv \Theta_{2} \\ \hline \Theta_{0} \vdash \operatorname{mask}_{L} \ M : \langle L \rangle A \ @ \ F \dashv \Theta_{2} \\ \hline \Theta_{0} \vdash \operatorname{mask}_{L} \ M : \langle L \rangle A \ @ \ F \dashv \Theta_{2} \\ \hline \Theta_{0} \vdash \langle L \rangle A \ @ \ F \dashv \Theta_{2} \\ \hline \Theta_{0} \vdash \langle L \rangle A \ (M : \Xi'; A_{0}) \ U A \dashv \Theta_{0} \\ \hline \Theta_{0} \land X : \langle D \rangle A \vdash N : B_{0} \ @ \ E_{r} \dashv \Theta'_{0}, X : \Box_{2} \Box'_{0} \\ \hline \Theta_{0} \vdash \langle D \rangle A \vdash N : B_{0} \ @ \ E_{r} \dashv \Theta'_{0}, X : \Box_{2} \Box'_{0} \\ \hline \Theta_{0} \vdash \langle D \rangle A \vdash N : B_{0} \ @ \ E_{r} \dashv \Theta'_{0}, X : \Box_{r} \Box'_{0} \\ \hline \Theta_{0} \vdash \langle D \rangle A \vdash N : B_{0} \ @ \ E_{r} \dashv \Theta'_{0}, X : \Box_{r} \Box'_{0} \\ \hline \Theta_{0} \vdash \langle D \rangle A \vdash N : B_{0} \ @ \ E_{r} \dashv \Theta'_{1}, p_{1} : \Box_{r} \Box'_{1} \\ \hline E = \operatorname{solve}(\langle D \rangle : E' \rightarrow \cdot) \\ F = E \cup E_{r} \cup (\cup_{i} E_{i}) \\ \hline \Theta \vdash \operatorname{handle} M \ \text{with} \ \{\operatorname{return} x \mapsto N\} \ \ \forall \ \{\ell_{i} \ p_{i} \ r_{i} \mapsto N_{i}\}_{i=1}^{n} : B \ @ \ F \dashv \Theta_{n+1} \\ \hline Fig. 22. \ \text{Type inference for Metell.} \end{array}$	I-Do $\Sigma \ni \ell : A \twoheadrightarrow B$	I-Mask $\Theta = \Theta$
I-HANDLER $D = \{\ell_i\}_i \qquad \{\ell_i : A_i \twoheadrightarrow B_i\} \subseteq \Sigma$ $\Theta, \bigoplus_{(D)} \vdash M : A_0 @ E' + \Theta', \bigoplus_{(D)}, \Xi' \qquad \Theta' \vdash (M; \Xi'; A_0) \Downarrow A + \Theta_0$ $\Theta_0, x : \langle D \rangle A \vdash N : B_0 @ E_r + \Theta'_0, x : _, \Xi'_0 \qquad \Theta'_0 \vdash (N; \Xi'_0; B_0) \Downarrow B + \Theta_1$ $[\Theta_i, p_i : A_i, r_i : B_i \rightarrow B \vdash N_i : B_i @ E_i + \Theta'_i, p_i : _, r_i : _, \Xi'_i \qquad \Theta'_i, \Xi'_i \vdash B_i \equiv B + \Theta_{i+1}]_{i=1}^n$ $E = \text{solve}(\langle D \rangle : E' \rightarrow \cdot) \qquad F = E \cup E_r \cup (\cup_i E_i)$ $\Theta \vdash \text{handle } M \text{ with } \{\text{return } x \mapsto N\} \uplus \{\ell_i \ p_i \ r_i \mapsto N_i\}_{i=1}^n : B @ F + \Theta_{n+1}$ Fig. 22. Type inference for METEL.	$\Theta_0 \vdash M : A_1 @ E \dashv \Theta_1 \qquad \Theta_1 \vdash A_1 \equiv A$	$A + \Theta_2 \qquad F = \text{solve}(\langle L \rangle : E \to \cdot)$
$\Theta \vdash$ handle M with {return $x \mapsto N$ } \uplus { $\ell_i \ p_i \ r_i \mapsto N_i$ } $_{i=1}^n : B @ F \dashv \Theta_{n+1}$ Fig. 22. Type inference for METEL.	$\frac{\Theta_0 \vdash M : A_1 @ \pounds \dashv \Theta_1 \qquad \Theta_1 \vdash A_1 \equiv I}{\Theta_0 \vdash \mathbf{do} \ \ell \ M : B @ \{\ell\} \cup E \dashv \Theta_2}$	$\frac{A + \Theta_2}{\Theta_0} \qquad \frac{\Theta_0, \Theta_L \rightarrow \Theta_1}{\Theta_0 \vdash mask_L M : \langle L \rangle A @ F + \Theta_2}$
Fig. 22. Type inference for METEL.	$ \frac{\Theta_{0} \vdash M : A_{1} @ E \dashv \Theta_{1} \qquad \Theta_{1} \vdash A_{1} \equiv 2}{\Theta_{0} \vdash \mathbf{do} \ \ell \ M : B @ \{\ell\} \cup E \dashv \Theta_{2}} $ I-HANDLER $ D = \{\ell_{i}\}_{i} $ $ \Theta_{0} \bigoplus_{\langle D \rangle} \vdash M : A_{0} @ E' \dashv \Theta', \bigoplus_{\langle D \rangle} \Theta_{0}, x : \langle D \rangle A \vdash N : B_{0} @ E_{r} \dashv \Theta', \bigoplus_{\langle D \rangle} \Theta_{r} : A_{i}, r_{i} : B_{i} \rightarrow B \vdash N_{i} : B_{i} @ E_{i} \dashv E = \operatorname{solve}(\langle D \rangle : E' \dashv E') $	$ \frac{A + \Theta_2}{A + \Theta_2} \qquad \qquad$
	$ \frac{\Theta_{0} \vdash M : A_{1} @ E \dashv \Theta_{1} \qquad \Theta_{1} \vdash A_{1} \equiv 2}{\Theta_{0} \vdash \text{do} \ \ell \ M : B @ \{\ell\} \cup E \dashv \Theta_{2}} $ I-HANDLER $D = \{\ell_{i}\}_{i}$ $\Theta, \bigoplus_{(D)} \vdash M : A_{0} @ E' \dashv \Theta', \bigoplus_{(D)} \vdash M : B_{0} @ E_{r} \dashv \Theta', \bigoplus_{(D)} \vdash M : B_{0} @ E_{r} \dashv \Theta', \bigoplus_{(D)} \vdash M : B_{i} @ E_{i} \dashv \Theta_{i}, p_{i} : A_{i}, r_{i} : B_{i} \rightarrow B \vdash N_{i} : B_{i} @ E_{i} \dashv E = \text{solve}(\langle D \rangle : E' \dashv \Theta \dashv \Theta \vdash \text{handle} M \text{ with } \{\text{return } x \vdash \Theta \mid A_{i} \in A_{i}\} $	$ \frac{A + \Theta_2}{A + \Theta_2} \qquad \qquad$
		$ \frac{A + \Theta_2}{A + \Theta_2} = \frac{\{0, -(L) \vdash M + A \oplus L + \Theta_1 \\ F = \operatorname{solve}(\langle L \rangle : E \to \cdot) \\ \overline{\Theta_0 \vdash \operatorname{mask}_L M} : \langle L \rangle A @ F + \Theta_2 $ $ \{\ell_i : A_i \to B_i\} \subseteq \Sigma $ $ \frac{\{0, -(L) \vdash M + A \oplus L + \Theta_1 \\ \overline{\Theta_0} \vdash B_i \\ \overline{\Theta_1} = \overline{\Theta_1} \\ \overline{\Theta_1} $
	$ \frac{\Theta_{0} \vdash M : A_{1} @E \dashv \Theta_{1} \qquad \Theta_{1} \vdash A_{1} \equiv 2}{\Theta_{0} \vdash \text{do} \ \ell \ M : B @ \{\ell\} \cup E \dashv \Theta_{2}} $ I-HANDLER $D = \{\ell_{i}\}_{i}$ $\Theta, \bigoplus_{(D)} \vdash M : A_{0} @ E' \dashv \Theta', \bigoplus_{(\Theta_{0}, x) \in (D)} \vdash M : B_{0} @ E_{r} \dashv \Theta', \bigoplus_{(\Theta_{0}, x) \in (D)} \vdash H : B_{i} @ E_{i} \dashv \Theta', \bigoplus_{(\Theta_{0}, x) \in (O)} \vdash B \vdash N_{i} : B_{i} @ E_{i} \dashv E = \text{solve}(\langle D \rangle : E' \dashv \Theta' \vdash A_{i}, r_{i} : B_{i} \to B \vdash N_{i} : B_{i} @ E_{i} \dashv E = \text{solve}(\langle D \rangle : E' \dashv \Theta' \vdash A_{i}, Fig. 22. \text{Typ} $	$ \frac{A + \Theta_2}{A + \Theta_2} \qquad \qquad$

3100 3101

3102

3103

3104

3105

3106

3107 3108

3109

3088 B.6 Elaboration to the Core Calculus

 $\frac{\mu_F \Rightarrow \nu_F \text{ or } \Gamma \vdash \sigma : \text{Abs}}{\Gamma \vdash (\mu_F, \sigma) \Rightarrow \nu_F @ E}$

 $\overline{\Gamma \vdash A \leq_R A \dashrightarrow}$

³⁰⁸⁹ The semantics of METEL is given by its elaboration to METE.

3090 We first fill the gap between METEL and METE that contexts of METEL do not keep indexes 3091 of modalities appearing in locks and variable bindings. Observe that for any typing judgement 3092 of closed terms $\vdash_s M : A \oslash E$, the indexes of modalities for locks and bindings in contexts are 3093 completely determined by the derivation tree. We derive a new presentation of the declarative 3094 type system for METEL by keeping indexes of locks and bindings in context, and modify auxiliary 3095 relations involving modalities to consider indexes as well. The interesting typing rules for the 3096 new typing judgement $\Gamma \vdash_{si} M : A @ E$ and auxiliary relations are defined in the non-highlighted 3097 parts of Figures 23 to 25. We inline the relation $(M; v; \phi; \Delta; A)$ and split T-UNMOD into four rules for 3098 clarity of elaboration. The following lemma shows the equivalence between the two type systems. 3099

LEMMA B.13 (INDEXES IN CONTEXTS CAN BE IGNORED). $\vdash_{si} M : A @ E$ if and only if $\vdash_s M : A @ E$.

The proof follows from straightforward induction on the typing derivations. The only non-trivial case is to show the equivalence of typing rules for variables, since they use the modality transformation relation in different ways. The following lemma shows that the modality transformation relation holds regardless of the targets of modalities.

LEMMA B.14 (SOURCE DETERMINES TRANSFORMATION). If $v_F : E \to F$ and $\mu_F \Rightarrow v_F$, then for any F' such that $v_{F'} : E \to F'$, we have $\mu_{F'} \Rightarrow v_{F'}$.

PROOF. If v = [E], we have $\mu = [E']$ where $E' \leq E$. Otherwise, we can show F = F'.

As a corollary, for $\Gamma \vdash (\mu, \sigma) \Rightarrow \nu @ E$, we know that either $\Gamma \vdash \sigma$: Abs or $\mu_F \rightarrow \nu_F$ for any *F* with $\nu_F : E \rightarrow F$. The reverse direction also holds. This gives the equivalence of the variable rules. Since the new type system is equivalent to the old one, and it is obvious to derive a derivation tree of the new typing judgement from the old one for closed terms, we restrict elaboration to closed terms and directly define the elaboration on the derivation tree of the new judgement

closed terms and directly define the elaboration on the derivation tree of the new judgement $\Gamma \vdash_{si} M : A @ E$. The elaboration is given as the highlighted parts of Figures 23 to 25. There is nothing really surprising in the elaboration. For all terms that introduce variable bindings x, we immediately unbox it and bind the unboxed result to \hat{x} . For variable rules, we use the original xfor froze variables, and unboxed \hat{x} for usual variables which are automatically unboxed. Also, in variable, let-binding rules and handler rules, we deal with generalisation and instantiation. The following theorem showing the type preservation. Its proof follows from straightforward induction.

THEOREM B.15 (TYPE PRESERVATION). If
$$\Gamma \vdash_{si} M : A \oslash E \dashrightarrow M'$$
, then $\Gamma \vdash M : A \oslash E$

3122 3123

3121

- 3124
- 3125 3126
- 3127

3128

3129 3130

3131

Fig. 23. Auxiliary definitions for METEL with indexed contexts and its elaboration.

unmod $(x; \Delta; A; M)$ = let mod_v $\Lambda \Delta . \hat{x} = x \Delta$ in M where (v,) = split(A)

 $\frac{\text{principal}(\Gamma; M; \Delta; A) \qquad \Gamma \vdash \forall \Delta.A \leq_{i} B \dashrightarrow \overline{A'}}{\Gamma \vdash (M; \Delta; A) \Downarrow B \dashrightarrow \overline{A'}}$

 $\frac{\Gamma \vdash B : (K, R) \qquad \Gamma \vdash \sigma[B/\alpha] \leq_R A \dashrightarrow \overline{A'}}{\Gamma \vdash \forall \alpha^K . \sigma \leq_R A \dashrightarrow B, \overline{A'}}$

- 3134 3135
- 3136

$\Gamma' \vdash (\mu_F, \forall \Delta.A) \Longrightarrow \xi_F \oslash E \qquad \Gamma, \Gamma' \vdash \forall \Delta.A \leq_{m} B \dashrightarrow \overline{A'}$
$:_{\mu_{F}} \forall \Delta.A, \Gamma' \vdash_{si} [x] \dashrightarrow x \overline{A'} : B @ E$
$\xi_F = \operatorname{alocks}(\Gamma') \qquad \mu_F : F' \to F$
$' \vdash (\mu_F \circ \nu_{F'}, \forall \Delta.A') \Longrightarrow \xi_F @ E \qquad \Gamma, \Gamma' \vdash \forall \Delta.A' \leq_{m} B \xrightarrow{\cdots} \overline{A'}$
$x:_{\mu_F} \forall \Delta.A, \Gamma' \vdash_{si} x \dashrightarrow \hat{x} \overline{A'} : B @ E$
T-Abs
$\Gamma \vdash_{si} \lambda x.M$
$: A \to B @ E \qquad \dashrightarrow \lambda x^{S}.unmod(x; \cdot; S; M') : S \to B @ E$
T-LetmodNonval
$ M \notin Val \qquad (M; \Delta; A) \Downarrow A' \dashrightarrow \overline{A_1} $
$N'' = unmod(x; \cdot; A'; N')$
$\Gamma \vdash_{si} \mathbf{let}_{1} \ \mu \ x = M \ \mathbf{in} \ N$
$V'': B @ F \longrightarrow \operatorname{let}_1 \operatorname{mod}_\mu x = M'[\overline{A_1}/\Delta] \text{ in } N'': B @ F$
I-LETNONVAL
$M \notin \operatorname{Val} \qquad (M; \Delta; A) \Downarrow A' \dashrightarrow A_1$
$\Gamma, \blacksquare_{\mathbb{1}_F}, \Delta \vdash_{si} M : A (@E \dashrightarrow M)$
$ P \xrightarrow{F} \cdots \xrightarrow{N'} \qquad \qquad$
$N'' = unmod(x; \cdot; A'; N')$
n N $\Gamma \vdash_{si} let_1 \ x = M \text{ in } N$
$": B @ F \qquad \dots \text{ let } x = M'[\overline{A_1}/\Delta] \text{ in } N'' : B @ F$
$\Delta; A) \ line \ ^{\dagger} \ \sigma \qquad \Gamma, \Delta \vdash_{si} M : A @ E \dashrightarrow M'$
$\Gamma, x: \sigma \vdash_{si} N: B @ E \dashrightarrow N'$
$A = M$ in $N \longrightarrow $ let $x = \Lambda \Delta . M'$ in $N' : B @ E$
$D = \{\ell_i\}, \qquad \{\ell_i \cdot A_i \longrightarrow B_i\} \subset \Sigma$
$\sum \frac{1}{2} \sum $
$ \begin{array}{c} I \longrightarrow A_1 \\ \hline I \hline$
$B \xrightarrow{\longrightarrow} B_1 \qquad 1, x : \langle D \rangle A, \Delta \vdash_{si} N : B_0 @ F \xrightarrow{\longrightarrow} N$
$[A_i, r_i : B_i \to B \vdash_{si} N_i : B @ P \longrightarrow N_i]_i$
$M \text{ with } \{ \text{return } x \mapsto N \} \uplus \{ \ell_i \ p_i \ r_i \mapsto N_i \}_i$
$\textit{vith } \{ \texttt{return } x \mapsto N'[\overline{B_1}/\Delta'] \} \uplus \{ \ell_i \ p_i \ r_i \mapsto N'_i \}_i : B @ F$

Т-Арр $\Gamma \vdash_{si} M : A \to B @ E \dashrightarrow M'$ T-Mod $\frac{\Gamma, \bigoplus_{\mu} \vdash_{si} V : A @ E \dashrightarrow V' \qquad \mu_F : E \longrightarrow F}{\Gamma \vdash_{si} \operatorname{mod}_{\mu} V \dashrightarrow \operatorname{mod}_{\mu} V' : \mu A @ F}$ $\Gamma \vdash_{si} N : A @ E \dashrightarrow N'$ $\Gamma \vdash_{si} M N \dashrightarrow M' N' : B @ E$ T-Do $\Sigma \ni \ell : A \twoheadrightarrow B \quad E = \ell, F$ T-Mask $\frac{\Gamma, \mathbf{A}_{\langle L \rangle} \vdash_{si} M : A @ F - L \dashrightarrow M'}{\Gamma \vdash_{si} \mathsf{mask}_L M \dashrightarrow \mathsf{mask}_L M' : \langle L \rangle A @ F}$ $\frac{\Gamma \vdash_{si} M : A @ E \dashrightarrow M'}{\Gamma \vdash_{si} \mathbf{do} \ell M \dashrightarrow \mathbf{do} \ell M' : B @ E}$ Fig. 25. Elaboration from METEL with indexed contexts to METE (part II).

3235 C Proofs for METEL

In this section, we prove the soundness and completeness of the type inference of METEL.

3238 C.1 Definitions and Lemmas

Following Gundry [20], we define the notion of stable statements.

Definition C.1 (Stability). A statement J is stable if it is preserved by metasubstitution. Formally, if $\Theta_0 \vdash J$ and $\theta \otimes \Theta_0 \sqsubseteq \Theta_1$, then $\Theta_1 \vdash \theta J$.

All our statements are stable under metasubstitution. Stability allows us to solve sub-questions step-by-step and compose them to the solution of the whole question.

We have the following lemma showing we can compose minimal solutions of sub-questions to obtain the minimal solution of the whole question.

LEMMA C.2 (THE OPTIMIST'S LEMMA). If $\theta_0 \otimes \Theta_0 \subseteq \Theta_1$ is a minimal solution of J and $\theta_1 \otimes \Theta_1 \subseteq \Theta_2$ is a minimal solution of J', then $\theta_1 \theta_0 \otimes \Theta_0 \subseteq \Theta_2$ is a minimal solution of $J \wedge J'$.

PROOF. Same as Gundry [20]. Any solution *theta* $\circ \Theta_0 \sqsubseteq \Theta$ to the question $(\Theta_0, J \land J')$ should solve (Θ_0, J) , thus factor through θ_0 with cofactor $\zeta_0 \circ \Theta_1 \sqsubseteq \Theta'$. Then ζ_0 should solve $(\Theta_1, \theta_0 J')$, thus factor through θ_1 with cofactor ζ_1 . Our goal follow from θ factors through $\theta_1 \theta_0$ with cofactor $\zeta_1 \circ \Theta_2 \sqsubseteq \Theta$ such that $\theta \equiv \zeta_1 \theta_1 \theta_0 \circ \Theta_0 \sqsubseteq \Theta$.

Although this lemma only applies to questions without outputs defined in Definition B.2, we can use similar ideas in proofs for questions with outputs defined in Definition B.3.

C.2 Unification

LEMMA B.4 (SOUNDNESS AND GENERALITY OF KIND RESTRICTION). If $\Theta_0 \vdash A : (K, R) \dashv \Theta_1$, then $\Theta_0 \sqsubseteq \Theta_1$ is a minimal solution of $(\Theta_0; A : (K, R))$

PROOF. We want to show that $\Theta_0 \sqsubseteq \Theta_1$, $\Theta_1 \vdash A : (K, R)$, and for any other solution $\theta \colon \Theta_0 \sqsubseteq \Theta'$, we have $\theta \colon \Theta_1 \sqsubseteq \Theta'$. By straightforward induction on the judgement $\Theta \vdash A : (K, R) \dashv \Theta'$. The most non-trivial case is when A is a flexible variable.

 $\overline{\Theta, \hat{\alpha}: (K', R'), \Theta' \vdash \hat{\alpha}: (K, R) \dashv \Theta, \hat{\alpha}: (K' \sqcap K, R' \sqcap R), \Theta'}$

Soundness follows from $K' \sqcap K \leq K$ and $R' \sqcap R \leq R$. Generality follows from that $\hat{\alpha} : (K', R')$ and $\hat{\alpha} : (K, R)$ must both hold for any solution, and the meet operation \sqcap gives the greatest lower bounds. Other cases follow from IHs and Lemma C.2.

LEMMA B.5 (COMPLETENESS OF KIND RESTRICTION). If $\theta \circ \Theta_0 \sqsubseteq \Theta$ is a solution to the kinding question $(\Theta_0; A : (K, R))$, then there exists Θ_1 such that $\Theta_0 \vdash A : (K, R) \dashv \Theta_1$.

PROOF. Straightforward induction on the declarative kinding judgements.

LEMMA B.6 (SOUNDNESS AND GENERALITY OF UNIFICATION).

1. If $\Theta_0 \vdash A \equiv B \dashv \Theta_1$, then $\Theta_0 \sqsubseteq \Theta_1$ is a minimal solution of $(\Theta_0; A \equiv B)$.

2. If $\Theta_0 \mid \Xi \vdash \hat{\alpha} \equiv A \dashv \Theta_1$, A is not a flexible variable, and Ξ only contains declaration of flexible variables appearing in A, then $\Theta_0, \Xi \sqsubseteq \Theta_1$ is a minimal solution of $(\Theta_0; \alpha \equiv A)$.

PROOF. For 1, we want to show that $\Theta_1 \vdash A \equiv B$, and for any other $\theta \circ \Theta_0 \subseteq \Theta'$ with $\Theta' \vdash \theta A \equiv \theta B$, there exists $\zeta \circ \Theta_1 \subseteq \Theta'$ such that $\theta \equiv \zeta \circ \Theta_0 \subseteq \Theta'$. For 2, we want to show that $\Theta_1 \vdash A \equiv B$, and for any other $\theta \circ \Theta_0, \Xi \subseteq \Theta'$ with $\Theta' \vdash \theta \hat{\alpha} \equiv \theta B$, there exists $\zeta \circ \Theta_1 \subseteq \Theta'$ such that $\theta \equiv \zeta \circ \Theta_0 \subseteq \Theta'$. We prove 1 and 2 simultaneously by mutual induction on the unification

3284	judgement $\Theta_0 \vdash A \equiv B \dashv \Theta_1$ and $\Theta_0 \mid \Xi \vdash \hat{\alpha} \equiv A \dashv \Theta_1$. Similar to the proof of unification in
3285	Gundry [20], the key observation is that most unification rules does not introduce new flexible
3286	variables, and for all definitions $\beta = B$ in Θ_1 , we must have $\Theta' \vdash \theta \beta \equiv \theta B$ for the problem to be
3287	solved. Most cases follow from similar and routine usages of IHs. We only elaborate interesting
3288	and representative cases.
3289	Case U-RIGID-RIGID and U-FLEX-FLEX-ID. Trivial.
3290	Case U-Flex-Flex-SkipMark.
3291	$\Theta_0 \vdash \hat{\alpha} \equiv \hat{\beta} \dashv \Theta_1(1)$
3292	
3293	$\Theta_{0\overset{\circ}{9}} \vdash \alpha \equiv \beta \dashv \Theta_{1\overset{\circ}{9}}$
3294	For any other solution $\theta \ \ \Theta_{0}\ \ \subseteq \Theta'\ \ \Xi$, we have $\theta \ \ \Theta_{0} \ \subseteq \Theta'$. IH on (1) gives a cofactor ζ
3295	such that $\theta \equiv \zeta \otimes \Theta_0 \sqsubseteq \Theta'$, which further gives $\theta \equiv \zeta \otimes \Theta_{0,2} \sqsubseteq \Theta' \otimes \Xi$.
3296	Case U-FLEX-FLEX-L and U-FLEX-FLEX-R. Follow from IH.
3297	Case U-FLEX-FLEX-SUBST. Follow from IH.
3298	Case U-FLEX-FLEX-SKIPFLEX. Follow from IH.
3299	Case U-FLEX-FLEX-SKIPRIGID. Follow from IH.
3300	Case U-FLEX-FLEX-SKIPTERM. Follow from IH.
3301	Case U-FLEX-FLEX-SKIPLOCK, Follow from IH.
3302	Case U-FLEX-RIGID-L and U-FLEX-RIGID-R. Follow from IH.
3303	Case U-MOD and U-ARROW. Follow from IH and Lemma C.2.
3304	Case U-RELATIVE and U-EFFECT-CLOSED. Trivial.
3305	Case U-ABSOLUTE Follow from IH.
3306	Case U-EFFECT-L and U-EFFECT-R. Follow from IH.
3307	Case U-Effect-LR.
3308	
	$I_{\perp} \neq I_{\perp} = I_{\perp} \neq I_{\perp}$
3309 3310	$L_1 \nsubseteq L_2 \qquad L_2 \nsubseteq L_1 \\ \Theta_0, \hat{\varepsilon} \vdash \hat{\varepsilon}_1 := L_2 - L_1, \hat{\varepsilon} \dashv \Theta_1 (1) \qquad \Theta_1 \vdash \hat{\varepsilon}_2 := L_1 - L_2, \hat{\varepsilon} \dashv \Theta_2 (2)$
3309 3310 3311	$\frac{L_1 \not\subseteq L_2 \qquad L_2 \not\subseteq L_1}{\Theta_0, \hat{\varepsilon} \vdash \hat{\varepsilon}_1 := L_2 - L_1, \hat{\varepsilon} \dashv \Theta_1 (1) \qquad \Theta_1 \vdash \hat{\varepsilon}_2 := L_1 - L_2, \hat{\varepsilon} \dashv \Theta_2 (2)}{\Theta_0 \vdash L_1, \hat{\varepsilon}_1 \equiv L_2, \hat{\varepsilon}_2 \dashv \Theta_2}$
3309 3310 3311 3312	$L_{1} \nsubseteq L_{2} \qquad L_{2} \nsubseteq L_{1}$ $\underbrace{\Theta_{0}, \hat{\varepsilon} \vdash \hat{\varepsilon}_{1} := L_{2} - L_{1}, \hat{\varepsilon} \dashv \Theta_{1}(1) \qquad \Theta_{1} \vdash \hat{\varepsilon}_{2} := L_{1} - L_{2}, \hat{\varepsilon} \dashv \Theta_{2}(2)}_{\Theta_{0} \vdash L_{1}, \hat{\varepsilon}_{1} \equiv L_{2}, \hat{\varepsilon}_{2} \dashv \Theta_{2}}$ For any other solution $\theta \wr \Theta \sqsubseteq \Theta'$ suppose $\theta \hat{v} = E$ and $\theta \hat{v} = E$. Since $L \models E \models L \models E$
 3309 3310 3311 3312 3313 2314 	$\begin{array}{ccc} L_1 \nsubseteq L_2 & L_2 \nsubseteq L_1 \\ \hline \Theta_0, \hat{\varepsilon} \vdash \hat{\varepsilon}_1 := L_2 - L_1, \hat{\varepsilon} \dashv \Theta_1 (1) & \Theta_1 \vdash \hat{\varepsilon}_2 := L_1 - L_2, \hat{\varepsilon} \dashv \Theta_2 (2) \\ \hline \Theta_0 \vdash L_1, \hat{\varepsilon}_1 \equiv L_2, \hat{\varepsilon}_2 \dashv \Theta_2 \end{array}$ For any other solution $\theta \And \Theta_0 \sqsubseteq \Theta'$, suppose $\theta \hat{\varepsilon}_1 = E_1$ and $\theta \hat{\varepsilon}_2 = E_2$. Since $L_1, E_1 = L_2, E_2$, there exists E such that $E_1 = L_2 - L_1, E$ and $E_2 = L_1 - L_2, E$. Then by IHs on (1) and (2), and
 3309 3310 3311 3312 3313 3314 2215 	$\begin{array}{ccc} L_1 \nsubseteq L_2 & L_2 \nsubseteq L_1 \\ \underline{\Theta_0, \hat{\epsilon} \vdash \hat{\epsilon}_1 := L_2 - L_1, \hat{\epsilon} \dashv \Theta_1 (1)} & \Theta_1 \vdash \hat{\epsilon}_2 := L_1 - L_2, \hat{\epsilon} \dashv \Theta_2 (2) \\ \hline \Theta_0 \vdash L_1, \hat{\epsilon}_1 \equiv L_2, \hat{\epsilon}_2 \dashv \Theta_2 \end{array}$ For any other solution $\theta \mathrel{\scalebox{\circ}} \Theta_0 \sqsubseteq \Theta'$, suppose $\theta \hat{\epsilon}_1 = E_1$ and $\theta \hat{\epsilon}_2 = E_2$. Since $L_1, E_1 = L_2, E_2$, there exists E such that $E_1 = L_2 - L_1, E$ and $E_2 = L_1 - L_2, E$. Then by IHs on (1) and (2), and Lemma C.2, we can show that $\zeta = \theta, E/\hat{\epsilon}$ is the required cofactor.
3309 3310 3311 3312 3313 3314 3315	$\begin{array}{ccc} L_1 \nsubseteq L_2 & L_2 \nsubseteq L_1 \\ \underline{\Theta_0, \hat{\epsilon} \vdash \hat{\epsilon}_1 := L_2 - L_1, \hat{\epsilon} \dashv \Theta_1 (1)} & \Theta_1 \vdash \hat{\epsilon}_2 := L_1 - L_2, \hat{\epsilon} \dashv \Theta_2 (2) \\ \hline \Theta_0 \vdash L_1, \hat{\epsilon}_1 \equiv L_2, \hat{\epsilon}_2 \dashv \Theta_2 \end{array}$ For any other solution $\theta \mathrel{\smallel{eq:thermalised} \otimes \Theta_0 \sqsubseteq \Theta'}$, suppose $\theta \hat{\epsilon}_1 = E_1$ and $\theta \hat{\epsilon}_2 = E_2$. Since $L_1, E_1 = L_2, E_2$, there exists E such that $E_1 = L_2 - L_1$, E and $E_2 = L_1 - L_2$, E . Then by IHs on (1) and (2), and Lemma C.2, we can show that $\zeta = \theta, E/\hat{\epsilon}$ is the required cofactor. Case U-FLex-RIGID-Solve. Any other solutions must solve $A : (K, R)$ and $\alpha \equiv A$. Follow from IH.
 3309 3310 3311 3312 3313 3314 3315 3316 2217 	$\begin{array}{ccc} L_1 \nsubseteq L_2 & L_2 \nsubseteq L_1 \\ \underline{\Theta_0, \hat{\varepsilon} \vdash \hat{\varepsilon}_1 := L_2 - L_1, \hat{\varepsilon} \dashv \Theta_1 (1)} & \Theta_1 \vdash \hat{\varepsilon}_2 := L_1 - L_2, \hat{\varepsilon} \dashv \Theta_2 (2) \\ \hline \Theta_0 \vdash L_1, \hat{\varepsilon}_1 \equiv L_2, \hat{\varepsilon}_2 \dashv \Theta_2 \end{array}$ For any other solution $\theta \And \Theta_0 \sqsubseteq \Theta'$, suppose $\theta \hat{\varepsilon}_1 = E_1$ and $\theta \hat{\varepsilon}_2 = E_2$. Since $L_1, E_1 = L_2, E_2$, there exists E such that $E_1 = L_2 - L_1, E$ and $E_2 = L_1 - L_2, E$. Then by IHs on (1) and (2), and Lemma C.2, we can show that $\zeta = \theta, E/\hat{\varepsilon}$ is the required cofactor. Case U-FLEX-RIGID-SOLVE. Any other solutions must solve $A : (K, R)$ and $\alpha \equiv A$. Follow from IH. Case U-FLEX-RIGID-SUBST and U-FLEX-RIGID-DEPEND. Follow from IH.
 3309 3310 3311 3312 3313 3314 3315 3316 3317 	$\begin{array}{ccc} L_1 \nsubseteq L_2 & L_2 \nsubseteq L_1 \\ \underline{\Theta_0, \hat{\varepsilon} \vdash \hat{\varepsilon}_1 := L_2 - L_1, \hat{\varepsilon} \dashv \Theta_1 (1)} & \Theta_1 \vdash \hat{\varepsilon}_2 := L_1 - L_2, \hat{\varepsilon} \dashv \Theta_2 (2) \\ \hline \Theta_0 \vdash L_1, \hat{\varepsilon}_1 \equiv L_2, \hat{\varepsilon}_2 \dashv \Theta_2 \end{array}$ For any other solution $\theta \And \Theta_0 \sqsubseteq \Theta'$, suppose $\theta \hat{\varepsilon}_1 = E_1$ and $\theta \hat{\varepsilon}_2 = E_2$. Since $L_1, E_1 = L_2, E_2$, there exists E such that $E_1 = L_2 - L_1, E$ and $E_2 = L_1 - L_2, E$. Then by IHs on (1) and (2), and Lemma C.2, we can show that $\zeta = \theta, E/\hat{\varepsilon}$ is the required cofactor. Case U-FLEX-RIGID-SOLVE. Any other solutions must solve $A : (K, R)$ and $\alpha \equiv A$. Follow from IH. Case U-FLEX-RIGID-SKIPFLEX, U-FLEX-RIGID-DEPEND. Follow from IH. Case U-FLEX-RIGID-SKIPFLEX, U-FLEX-RIGID-SKIPRIGID, U-FLEX-RIGID-SKIPTERM,
3309 3310 3311 3312 3313 3314 3315 3316 3317 3318	$\begin{array}{ccc} L_1 \nsubseteq L_2 & L_2 \nsubseteq L_1 \\ \underline{\Theta_0, \hat{\varepsilon} \vdash \hat{\varepsilon}_1 := L_2 - L_1, \hat{\varepsilon} \dashv \Theta_1 (1)} & \Theta_1 \vdash \hat{\varepsilon}_2 := L_1 - L_2, \hat{\varepsilon} \dashv \Theta_2 (2) \\ \hline \Theta_0 \vdash L_1, \hat{\varepsilon}_1 \equiv L_2, \hat{\varepsilon}_2 \dashv \Theta_2 \end{array}$ For any other solution $\theta \And \Theta_0 \sqsubseteq \Theta'$, suppose $\theta \hat{\varepsilon}_1 = E_1$ and $\theta \hat{\varepsilon}_2 = E_2$. Since $L_1, E_1 = L_2, E_2$, there exists E such that $E_1 = L_2 - L_1, E$ and $E_2 = L_1 - L_2, E$. Then by IHs on (1) and (2), and Lemma C.2, we can show that $\zeta = \theta, E/\hat{\varepsilon}$ is the required cofactor. Case U-FLEX-RIGID-SOLVE. Any other solutions must solve $A : (K, R)$ and $\alpha \equiv A$. Follow from IH. Case U-FLEX-RIGID-SKIPFLEX, U-FLEX-RIGID-SKIPRIGID, U-FLEX-RIGID-SKIPTERM, U-FLEX-RIGID-SKIPLOCK, and U-FLEX-RIGID-SKIPMARK. Follow from IH.
 3309 3310 3311 3312 3313 3314 3315 3316 3317 3318 3319 2000 	$L_1 \nsubseteq L_2 \qquad L_2 \nsubseteq L_1$ $\underbrace{\Theta_0, \hat{\varepsilon} \vdash \hat{\varepsilon}_1 := L_2 - L_1, \hat{\varepsilon} \dashv \Theta_1 (1) \qquad \Theta_1 \vdash \hat{\varepsilon}_2 := L_1 - L_2, \hat{\varepsilon} \dashv \Theta_2 (2)}_{\Theta_0 \vdash L_1, \hat{\varepsilon}_1 \equiv L_2, \hat{\varepsilon}_2 \dashv \Theta_2}$ For any other solution $\theta \And \Theta_0 \sqsubseteq \Theta'$, suppose $\theta\hat{\varepsilon}_1 = E_1$ and $\theta\hat{\varepsilon}_2 = E_2$. Since $L_1, E_1 = L_2, E_2$, there exists E such that $E_1 = L_2 - L_1$, E and $E_2 = L_1 - L_2$, E . Then by IHs on (1) and (2), and Lemma C.2, we can show that $\zeta = \theta, E/\hat{\varepsilon}$ is the required cofactor. Case U-FLEX-RIGID-SOLVE. Any other solutions must solve $A : (K, R)$ and $\alpha \equiv A$. Follow from IH. Case U-FLEX-RIGID-SKIPFLEX, U-FLEX-RIGID-DEPEND. Follow from IH. Case U-FLEX-RIGID-SKIPFLEX, U-FLEX-RIGID-SKIPRIGID, U-FLEX-RIGID-SKIPTERM, U-FLEX-RIGID-SKIPLOCK, and U-FLEX-RIGID-SKIPMARK. Follow from IH.
3309 3310 3311 3312 3313 3314 3315 3316 3317 3318 3319 3320	$L_{1} \nsubseteq L_{2} \qquad L_{2} \nsubseteq L_{1}$ $\underbrace{\Theta_{0}, \hat{\varepsilon} \vdash \hat{\varepsilon}_{1} := L_{2} - L_{1}, \hat{\varepsilon} \dashv \Theta_{1}(1) \qquad \Theta_{1} \vdash \hat{\varepsilon}_{2} := L_{1} - L_{2}, \hat{\varepsilon} \dashv \Theta_{2}(2)$ $\Theta_{0} \vdash L_{1}, \hat{\varepsilon}_{1} \equiv L_{2}, \hat{\varepsilon}_{2} \dashv \Theta_{2}$ For any other solution $\theta \mathrel{\circ} \Theta_{0} \sqsubseteq \Theta'$, suppose $\theta\hat{\varepsilon}_{1} = E_{1}$ and $\theta\hat{\varepsilon}_{2} = E_{2}$. Since $L_{1}, E_{1} = L_{2}, E_{2}$, there exists E such that $E_{1} = L_{2} - L_{1}, E$ and $E_{2} = L_{1} - L_{2}, E$. Then by IHs on (1) and (2), and Lemma C.2, we can show that $\zeta = \theta, E/\hat{\varepsilon}$ is the required cofactor. Case U-FLex-RIGID-SOLVE. Any other solutions must solve $A : (K, R)$ and $\alpha \equiv A$. Follow from IH. Case U-FLex-RIGID-SUBST and U-FLEX-RIGID-DEPEND. Follow from IH. Case U-FLEX-RIGID-SKIPFLEX, U-FLEX-RIGID-SKIPRIGID, U-FLEX-RIGID-SKIPTERM, U-FLEX-RIGID-SKIPLOCK, and U-FLEX-RIGID-SKIPMARK. Follow from IH.
3309 3310 3311 3312 3313 3314 3315 3316 3317 3318 3319 3320 3321	$L_{1} \nsubseteq L_{2} \qquad L_{2} \nsubseteq L_{1}$ $\underbrace{\Theta_{0}, \hat{\varepsilon} \vdash \hat{\varepsilon}_{1} := L_{2} - L_{1}, \hat{\varepsilon} \dashv \Theta_{1}(1) \qquad \Theta_{1} \vdash \hat{\varepsilon}_{2} := L_{1} - L_{2}, \hat{\varepsilon} \dashv \Theta_{2}(2)}{\Theta_{0} \vdash L_{1}, \hat{\varepsilon}_{1} \equiv L_{2}, \hat{\varepsilon}_{2} \dashv \Theta_{2}}$ For any other solution $\theta \And \Theta_{0} \sqsubseteq \Theta'$, suppose $\theta\hat{\varepsilon}_{1} = E_{1}$ and $\theta\hat{\varepsilon}_{2} = E_{2}$. Since $L_{1}, E_{1} = L_{2}, E_{2}$, there exists E such that $E_{1} = L_{2} - L_{1}, E$ and $E_{2} = L_{1} - L_{2}, E$. Then by IHs on (1) and (2), and Lemma C.2, we can show that $\zeta = \theta, E/\hat{\varepsilon}$ is the required cofactor. Case U-FLex-RIGID-Solve. Any other solutions must solve $A : (K, R)$ and $\alpha \equiv A$. Follow from IH. Case U-FLex-RIGID-Subst and U-FLEX-RIGID-DEPEND. Follow from IH. Case U-FLEX-RIGID-SKIPFLEX, U-FLEX-RIGID-SKIPRIGID, U-FLEX-RIGID-SKIPTERM, U-FLEX-RIGID-SKIPLOCK, and U-FLEX-RIGID-SKIPMARK. Follow from IH.
3309 3310 3311 3312 3313 3314 3315 3316 3317 3318 3319 3320 3321 3322	$L_{1} \nsubseteq L_{2} \qquad L_{2} \nsubseteq L_{1}$ $\underbrace{\Theta_{0}, \hat{\varepsilon} \vdash \hat{\varepsilon}_{1} := L_{2} - L_{1}, \hat{\varepsilon} \dashv \Theta_{1}(1) \qquad \Theta_{1} \vdash \hat{\varepsilon}_{2} := L_{1} - L_{2}, \hat{\varepsilon} \dashv \Theta_{2}(2)}{\Theta_{0} \vdash L_{1}, \hat{\varepsilon}_{1} \equiv L_{2}, \hat{\varepsilon}_{2} \dashv \Theta_{2}}$ For any other solution $\theta \And \Theta_{0} \sqsubseteq \Theta'$, suppose $\theta\hat{\varepsilon}_{1} = E_{1}$ and $\theta\hat{\varepsilon}_{2} = E_{2}$. Since $L_{1}, E_{1} = L_{2}, E_{2}$, there exists E such that $E_{1} = L_{2} - L_{1}, E$ and $E_{2} = L_{1} - L_{2}, E$. Then by IHs on (1) and (2), and Lemma C.2, we can show that $\zeta = \theta, E/\hat{\varepsilon}$ is the required cofactor. Case U-FLex-RIGID-Solve. Any other solutions must solve $A : (K, R)$ and $\alpha \equiv A$. Follow from IH. Case U-FLex-RIGID-Subst and U-FLex-RIGID-DEPEND. Follow from IH. Case U-FLex-RIGID-SKIPFLEX, U-FLEX-RIGID-SKIPRIGID, U-FLEX-RIGID-SKIPTERM, U-FLEX-RIGID-SKIPLOCK, and U-FLEX-RIGID-SKIPMARK. Follow from IH.
3309 3310 3311 3312 3313 3314 3315 3316 3317 3318 3319 3320 3321 3322 3323	$L_{1} \nsubseteq L_{2} \qquad L_{2} \nsubseteq L_{1}$ $\underbrace{\Theta_{0}, \hat{\epsilon} \vdash \hat{\epsilon}_{1} := L_{2} - L_{1}, \hat{\epsilon} \dashv \Theta_{1}(1) \qquad \Theta_{1} \vdash \hat{\epsilon}_{2} := L_{1} - L_{2}, \hat{\epsilon} \dashv \Theta_{2}(2)$ $\Theta_{0} \vdash L_{1}, \hat{\epsilon}_{1} \equiv L_{2}, \hat{\epsilon}_{2} \dashv \Theta_{2}$ For any other solution $\theta \And \Theta_{0} \sqsubseteq \Theta'$, suppose $\theta \hat{\epsilon}_{1} = E_{1}$ and $\theta \hat{\epsilon}_{2} = E_{2}$. Since $L_{1}, E_{1} = L_{2}, E_{2}$, there exists E such that $E_{1} = L_{2} - L_{1}$, E and $E_{2} = L_{1} - L_{2}$, E . Then by IHs on (1) and (2), and Lemma C.2, we can show that $\zeta = \theta, E/\hat{\epsilon}$ is the required cofactor. Case U-FLEX-RIGID-SOLVE. Any other solutions must solve $A : (K, R)$ and $\alpha \equiv A$. Follow from IH. Case U-FLEX-RIGID-SUBST and U-FLEX-RIGID-DEPEND. Follow from IH. Case U-FLEX-RIGID-SKIPFLEX, U-FLEX-RIGID-SKIPRIGID, U-FLEX-RIGID-SKIPTERM, U-FLEX-RIGID-SKIPLOCK, and U-FLEX-RIGID-SKIPMARK. Follow from IH. Case U-FLEX-RIGID-SKIPLOCK, and U-FLEX-RIGID-SKIPMARK. Follow from IH. LEMMA B.7 (COMPLETENESS OF UNIFICATION). 1. If $\theta \And \Theta_{0} \sqsubseteq \Theta$ is a solution to the unification question (Θ_{0} ; $A \equiv B$), then there exists Θ_{1} such that $\Theta_{0} \vdash A \equiv B \dashv \Theta_{1}$.
3309 3310 3311 3312 3313 3314 3315 3316 3317 3318 3319 320 3321 3322 3323 3324 3225	$L_1 \nsubseteq L_2 \qquad L_2 \nsubseteq L_1$ $\underline{\Theta_0, \hat{\epsilon} \vdash \hat{\epsilon}_1 := L_2 - L_1, \hat{\epsilon} \dashv \Theta_1 (1) \qquad \Theta_1 \vdash \hat{\epsilon}_2 := L_1 - L_2, \hat{\epsilon} \dashv \Theta_2 (2)$ $\Theta_0 \vdash L_1, \hat{\epsilon}_1 \equiv L_2, \hat{\epsilon}_2 \dashv \Theta_2$ For any other solution $\theta \And \Theta_0 \sqsubseteq \Theta'$, suppose $\theta\hat{\epsilon}_1 = E_1$ and $\theta\hat{\epsilon}_2 = E_2$. Since $L_1, E_1 = L_2, E_2$, there exists E such that $E_1 = L_2 - L_1$, E and $E_2 = L_1 - L_2$, E . Then by IHs on (1) and (2), and Lemma C.2, we can show that $\zeta = \theta, E/\hat{\epsilon}$ is the required cofactor. Case U-FLEX-RIGID-SOLVE. Any other solutions must solve $A : (K, R)$ and $\alpha \equiv A$. Follow from IH. Case U-FLEX-RIGID-SUBST and U-FLEX-RIGID-DEPEND. Follow from IH. Case U-FLEX-RIGID-SKIPFLEX, U-FLEX-RIGID-SKIPRIGID, U-FLEX-RIGID-SKIPTERM, U-FLEX-RIGID-SKIPLOCK, and U-FLEX-RIGID-SKIPMARK. Follow from IH.
3309 3310 3311 3312 3313 3314 3315 3316 3317 3318 3319 3320 3321 3322 3323 3324 3325 3225	$L_1 \nsubseteq L_2 \qquad L_2 \nsubseteq L_1$ $\underbrace{\Theta_0, \hat{\ell} \vdash \hat{\ell}_1 := L_2 - L_1, \hat{\ell} + \Theta_1(1) \qquad \Theta_1 \vdash \hat{\ell}_2 := L_1 - L_2, \hat{\ell} + \Theta_2(2)}{\Theta_0 \vdash L_1, \hat{\ell}_1 \equiv L_2, \hat{\ell}_2 + \Theta_2}$ For any other solution $\theta \And \Theta_0 \sqsubseteq \Theta'$, suppose $\theta \hat{\ell}_1 = E_1$ and $\theta \hat{\ell}_2 = E_2$. Since $L_1, E_1 = L_2, E_2$, there exists E such that $E_1 = L_2 - L_1, E$ and $E_2 = L_1 - L_2, E$. Then by IHs on (1) and (2), and Lemma C.2, we can show that $\zeta = \theta, E/\hat{\epsilon}$ is the required cofactor. Case U-FLEX-RIGID-SOLVE. Any other solutions must solve $A : (K, R)$ and $\alpha \equiv A$. Follow from IH. Case U-FLEX-RIGID-SUBST and U-FLEX-RIGID-DEPEND. Follow from IH. Case U-FLEX-RIGID-SKIPFLEX, U-FLEX-RIGID-SKIPRIGID, U-FLEX-RIGID-SKIPTERM, U-FLEX-RIGID-SKIPLOCK, and U-FLEX-RIGID-SKIPMARK. Follow from IH. LEMMA B.7 (COMPLETENESS OF UNIFICATION). 1. If $\theta \And \Theta_0 \sqsubseteq \Theta$ is a solution to the unification question ($\Theta_0, \Xi; \hat{\alpha} \equiv A$), then there exists Θ_1 such that $\Theta_0 \mid \Xi \vdash \hat{\alpha} \equiv A + \Theta_1$.
3309 3310 3311 3312 3313 3314 3315 3316 3317 3318 3319 3320 3321 3322 3323 324 3325 3326 3327	$L_1 \nsubseteq L_2 \qquad L_2 \nsubseteq L_1$ $\underbrace{\Theta_0, \hat{\varepsilon} \vdash \hat{\varepsilon}_1 := L_2 - L_1, \hat{\varepsilon} \dashv \Theta_1 (1) \qquad \Theta_1 \vdash \hat{\varepsilon}_2 := L_1 - L_2, \hat{\varepsilon} \dashv \Theta_2 (2)}{\Theta_0 \vdash L_1, \hat{\varepsilon}_1 \equiv L_2, \hat{\varepsilon}_2 \dashv \Theta_2}$ For any other solution $\theta \circ \circ \Theta_0 \sqsubseteq \Theta'$, suppose $\theta \hat{\varepsilon}_1 = E_1$ and $\theta \hat{\varepsilon}_2 = E_2$. Since $L_1, E_1 = L_2, E_2$, there exists E such that $E_1 = L_2 - L_1$, E and $E_2 = L_1 - L_2$, E . Then by IHs on (1) and (2), and Lemma C.2, we can show that $\zeta = \theta, E/\hat{\varepsilon}$ is the required cofactor. Case U-FLEX-RIGID-SOLVE. Any other solutions must solve $A : (K, R)$ and $\alpha \equiv A$. Follow from IH. Case U-FLEX-RIGID-SUBST and U-FLEX-RIGID-DEPEND. Follow from IH. Case U-FLEX-RIGID-SKIPFLEX, U-FLEX-RIGID-SKIPRIGID, U-FLEX-RIGID-SKIPTERM, U-FLEX-RIGID-SKIPLOCK, and U-FLEX-RIGID-SKIPMARK. Follow from IH. Case U-FLEX-RIGID-SKIPLOCK, and U-FLEX-RIGID-SKIPMARK. Follow from IH. 2 LEMMA B.7 (COMPLETENESS OF UNIFICATION). 1. If $\theta \circ \Theta_0 \subseteq \Theta$ is a solution to the unification question ($\Theta_0, \Xi : \hat{\alpha} = A$), then there exists Θ_1 such that $\Theta_0 \vdash A \equiv B \dashv \Theta_1$. 2. If $\theta \circ \Theta_0, \Xi \subseteq \Theta$ is a solution to the unification question ($\Theta_0, \Xi : \hat{\alpha} \equiv A$), then there exists Θ_1 such that $\Theta_0 \mid \Xi \vdash \hat{\alpha} \equiv A \dashv \Theta_1$. PROOF. We prove 1 and 2 simultaneously. By a straightforward induction on the declarative
3309 3310 3311 3312 3313 3314 3315 3316 3317 3318 3319 3320 3321 3322 3323 3324 3325 3326 3327 3328	$L_1 \nsubseteq L_2 \qquad L_2 \nsubseteq L_1$ $\Theta_0, \hat{\epsilon} \vdash \hat{\epsilon}_1 := L_2 - L_1, \hat{\epsilon} + \Theta_1 (1) \qquad \Theta_1 \vdash \hat{\epsilon}_2 := L_1 - L_2, \hat{\epsilon} + \Theta_2 (2)$ $\Theta_0 \vdash L_1, \hat{\epsilon}_1 \equiv L_2, \hat{\epsilon}_2 + \Theta_2$ For any other solution $\theta \And \Theta_0 \sqsubseteq \Theta'$, suppose $\theta \hat{\epsilon}_1 = E_1$ and $\theta \hat{\epsilon}_2 = E_2$. Since $L_1, E_1 = L_2, E_2$, there exists E such that $E_1 = L_2 - L_1$, E and $E_2 = L_1 - L_2$, E . Then by IHs on (1) and (2), and Lemma C.2, we can show that $\zeta = \theta, E/\hat{\epsilon}$ is the required cofactor. Case U-FLEX-RIGID-SOLVE. Any other solutions must solve $A : (K, R)$ and $\alpha \equiv A$. Follow from IH. Case U-FLEX-RIGID-SUBST and U-FLEX-RIGID-DEPEND. Follow from IH. Case U-FLEX-RIGID-SKIPFLEX, U-FLEX-RIGID-SKIPRIGID, U-FLEX-RIGID-SKIPTERM, U-FLEX-RIGID-SKIPLEX, U-FLEX-RIGID-SKIPTERM, U-FLEX-RIGID-SKIPLEX, and U-FLEX-RIGID-SKIPMARK. Follow from IH. Case U-FLEX-RIGID-SKIPLOCK, and U-FLEX-RIGID-SKIPLOCK, and I-FLEX-RIGID-SKIPLOCK, and I-
3309 3310 3311 3312 3313 3314 3315 3314 3315 3314 3315 3314 3315 3316 3317 3318 3319 3320 3321 3322 3323 3324 3325 3326 3327 3328 3329	$L_1 \nsubseteq L_2 \qquad L_2 \nsubseteq L_1$ $\Theta_0, \hat{\varepsilon} \vdash \hat{\varepsilon}_1 := L_2 - L_1, \hat{\varepsilon} + \Theta_1 (1) \qquad \Theta_1 \vdash \hat{\varepsilon}_2 := L_1 - L_2, \hat{\varepsilon} + \Theta_2 (2)$ $\Theta_0 \vdash L_1, \hat{\varepsilon}_1 \equiv L_2, \hat{\varepsilon}_2 + \Theta_2$ For any other solution $\theta \And \Theta_0 \sqsubseteq \Theta'$, suppose $\hat{\theta}\hat{\varepsilon}_1 = E_1$ and $\hat{\theta}\hat{\varepsilon}_2 = E_2$. Since $L_1, E_1 = L_2, E_2$, there exists E such that $E_1 = L_2 - L_1$, E and $E_2 = L_1 - L_2, E$. Then by IHs on (1) and (2), and Lemma C.2, we can show that $\zeta = \theta, E/\hat{\varepsilon}$ is the required cofactor. Case U-FLEX-RIGID-SOLVE. Any other solutions must solve $A : (K, R)$ and $\alpha \equiv A$. Follow from IH. Case U-FLEX-RIGID-SUBST and U-FLEX-RIGID-DEPEND. Follow from IH. Case U-FLEX-RIGID-SKIPFLEX, U-FLEX-RIGID-SKIPRIGID, U-FLEX-RIGID-SKIPTERM, U-FLEX-RIGID-SKIPLOCK, and U-FLEX-RIGID-SKIPTERM, E-FOLOW from IH. Case U-FLEX-RIGID-SKIPLEX, U-FLEX-RIGID-SKIPMARK. Follow from IH. Case U-FLEX-RIGID-SKIPLOCK, and U-FLEX-RIGID-SKIPLOCK, and U-F
3309 3310 3311 3312 3313 3314 3315 3314 3315 3314 3315 3314 3315 3317 3318 3319 3320 3321 3322 3323 3324 3325 3326 3327 3328 3329 3330	$L_{1} \nsubseteq L_{2} \qquad L_{2} \nsubseteq L_{1}$ $\Theta_{0}, \hat{\ell} \vdash \hat{\ell}_{1} := L_{2} - L_{1}, \hat{\ell} \dashv \Theta_{1} (1) \qquad \Theta_{1} \vdash \hat{\ell}_{2} := L_{1} - L_{2}, \hat{\ell} \dashv \Theta_{2} (2)$ $\Theta_{0} \vdash L_{1}, \hat{\ell}_{1} \equiv L_{2}, \hat{\ell}_{2} \dashv \Theta_{2}$ For any other solution $\theta \And \Theta_{0} \sqsubseteq \Theta'$, suppose $\theta\hat{\ell}_{1} = E_{1}$ and $\theta\hat{\ell}_{2} = E_{2}$. Since $L_{1}, E_{1} = L_{2}, E_{2}$, there exists E such that $E_{1} = L_{2} - L_{1}, E$ and $E_{2} = L_{1} - L_{2}, E$. Then by IHs on (1) and (2), and Lemma C.2, we can show that $\zeta = \theta, E/\hat{\epsilon}$ is the required cofactor. Case U-FLEX-RIGID-SOLVE. Any other solutions must solve $A : (K, R)$ and $\alpha \equiv A$. Follow from IH. Case U-FLEX-RIGID-SUBST and U-FLEX-RIGID-DEPEND. Follow from IH. Case U-FLEX-RIGID-SKIPFLEX, U-FLEX-RIGID-SKIPRIGID, U-FLEX-RIGID-SKIPTERM, U-FLEX-RIGID-SKIPLOCK, and U-FLEX-RIGID-SKIPMARK. Follow from IH. Case U-FLEX-RIGID-SKIPLOCK, and U-FLEX-RIGID-SKIPLOCK, and Compared the that $\Theta_{0} + A \equiv B \dashv \Theta_{1}$. PROOF. We prove 1 and 2 simultaneousl

conditions to succeed is U-FLEX-RIGID-SOLVE where in the premise the kinding of *A* cannot depend on the flexible variable $\hat{\alpha}$. For $\hat{\alpha} \equiv A$ where *A* is not a flexible variable and $\hat{\alpha}$ is not assigned to a type in Θ_0 , we can show that $\Theta \vdash \theta \hat{\alpha} \equiv \theta A$ does not hold for any solutions if *A* contains $\hat{\alpha}$ by induction on the declarative rules of type equivalence.

C.3 Type Inference

LEMMA C.3 (SOUNDNESS AND GENERALITY OF TRANSFORMATION). For the question $(\Theta_0, (\mu, \sigma) \Rightarrow v @ \bigcirc)$, if $\Theta_0 \vdash (\mu, \sigma) \Rightarrow v @ E \dashv \Theta_1$, then $(\Theta_0 \sqsubseteq \Theta_1, E)$ is a minimal solution.

PROOF. Follow from Lemma B.4 and Lemma B.8.

LEMMA C.4 (SOUNDNESS AND GENERALITY OF INSTANTIATION). For the question $(\Theta_0, \sigma \leq_R \bigcirc)$, if $\Theta_0 \vdash \sigma \leq_R A \dashv \Theta_1$, then $(\Theta_0 \sqsubseteq \Theta_1, A)$ is a minimal solution.

PROOF. By definition, $\Theta_1 = \Theta_0, \Xi$ where Ξ contains exactly all flexible type variables introduced by this instantiation. It is obvious that all other solutions can factor through $\Theta_0 \sqsubseteq \Theta_0, \Xi$ by substituting flexible variables in Ξ with proper types. \Box

LEMMA C.5 (POLYMORPHIC WEAKENING). If $\Gamma, x :_{\mu} \sigma, \Gamma' \vdash_{s} M : A @ E and \sigma \leq_{gen} \sigma'$, then $\Gamma, x :_{\mu} \sigma', \Gamma' \vdash_{s} M : A @ E$.

LEMMA B.10 (NO NEGATIVE EFFECTS). For the type inference question $(\Theta_0; M : \bigcirc @ \bigcirc)$ with the implicit condition $\vdash \Theta_0$ pos and $\vdash M$ pos, if $\Theta_0 \vdash M : A @ E \dashv \Theta_1$, then $\vdash \Theta_1$ pos and $\vdash A$ pos.

PROOF. By straightforward induction on the typing judgement of type inference.

THEOREM B.11 (SOUNDNESS AND GENERALITY OF TYPE INFERENCE). For the type inference question $(\Theta_0; M : \bigcirc @ \bigcirc)$, if $\Theta_0 \vdash M : A @ E \dashv \Theta_1$, then $(\Theta_0 \sqsubseteq \Theta_1, A, E)$ is a minimal solution.

By induction on the derivation of $\Theta_0 \vdash M : A \oslash E \dashv \Theta_1$. Soundness follows from routine usages of IHs straightforwardly. The only non-trivial cases is for T-LETMOD and T-HANDLER where we probably need to show the principal condition for some terms. They follow from the generality of corresponding sub-judgements, and generality follows from IHs on these sub-judgements.

 $\xi = \operatorname{alocks}(\Theta_0) \qquad \forall \Delta.A = \operatorname{subst}(\Theta; \sigma)$

 $\Theta, \Theta_{0} \vdash (\mu, \forall \Delta.A) \Longrightarrow \xi @ E \dashv \Theta_{1} (1) \qquad \Theta_{1} \vdash \forall \Delta.A \leq_{\mathsf{m}} B \dashv \Theta_{2} (2)$

 $\Theta, x :_{\mu} \sigma, \Theta_0 \vdash [x] : B @ E \dashv \Theta_2$

We focus on proving generality.

I-Freeze

Case

For any other solution ($\theta' \\ \\circle \\oldsymbol{\Theta}, x :_{\mu} \\circle \\circle$

Case

 $\frac{I \cdot V_{AR}}{\xi = \text{alocks}(\Theta_0)} \quad \forall \Delta . A = \text{subst}(\Theta; \sigma) \qquad (\nu, A') = \text{split}(\Delta, A)$ $\frac{\Theta, \Theta_0 \vdash (\mu \circ \nu, \forall \Delta . A') \Rightarrow \xi @ E \dashv \Theta_1 (1) \qquad \Theta_1 \vdash \forall \Delta . A \leq_{\mathrm{m}} B \dashv \Theta_2 (2)}{\Theta, x :_{\mu} \sigma, \Theta_0 \vdash x : B @ E \dashv \Theta_2}$

For any other solution ($\theta' \ \ \Theta, x :_{\mu} \sigma, \Theta_0 \sqsubseteq \Theta'; B'; E'$), by $\vdash \Theta, x :_{\mu} \sigma, \Theta_0$ ng, Lemma B.1, and the definition of split(–), we have μ, ν , and ξ unchanged after metasubstitution of θ' . The remaining part is almost the same as the proof for I-FREEZE.

Case I-Letmod

> $\Theta_{0}, \widehat{\Theta}_{\nu} \vdash M : A @ E \vdash \Theta_{1}, \widehat{\Theta}_{\nu}, \Xi_{1} (1)$ $\Theta_{1} ; \Xi_{1}, \hat{\alpha} : (Any, m) \vdash A \equiv \phi \hat{\alpha} \dashv \Theta_{2} ; \Xi_{2} (2) \qquad \Theta_{2} \vdash (M; \nu; \phi; \Xi_{2}; \hat{\alpha}) \updownarrow (\xi, \sigma) \dashv \Theta_{3} (3)$ $\Theta_{3}, x :_{\xi} \sigma \vdash N : B @ F \dashv \Theta_{4} (4) \qquad F' = \text{solve}(\nu : E \to F) (5)$ $\Theta_{0} \vdash \text{let}_{\nu} \phi x = M \text{ in } N : B @ F' \dashv \Theta_{3}$

For any other solution $(\theta' \circ \Theta_0 \sqsubseteq \Theta'; B'; F'_1)$, we have $\Theta' \vdash \mathbf{let}_v \phi x = M$ in $N : B' @ F'_1$. Inversion gives

$$\Theta' \vdash (M; v; \Delta; \phi; A') \ (\xi', \sigma')$$

$$\Theta', \bigoplus_{v} \Delta \vdash_{s} M : \phi A' @ E'$$

$$\Theta', x :_{\xi'} \sigma' \vdash_{s} M : B' @ F'_{1}$$

$$v_{F'_{1}} : E' \to F'_{1}$$

By definition, we have $\xi' = \xi$. Since *v* does not contain flexible variables, by

 $\Theta', \mathbf{a}_{v}, \Delta \vdash_{s} M : \phi A' \oslash E'$

we have $(\theta' \otimes \Theta_0, \mathbf{a}_{\nu} \sqsubseteq \Theta', \mathbf{a}_{\nu}, \Delta; A'; E')$ solves the question of (1). By IH on (1), we have θ' factors through the metasubstitution of (1) with cofactor $\zeta_1 \otimes \Theta_1, \mathbf{a}_{\nu}, \Xi_1 \sqsubseteq \Theta', \mathbf{a}_{\nu}, \Delta$ such that $E \leq E'$ and $\Theta' \vdash \zeta_1 A \equiv \phi A'$.

Then $\zeta'_1 = \zeta_1, A'/\hat{\alpha}$ must solve the statement of (2). By Lemma B.6 on (2), we have ζ'_1 factors through the metasubstitution of (2) with cofactor $\zeta_2 \approx \Theta_2 \ ; \Xi_2 \sqsubseteq \Theta' \ ; \Delta$. Case analysis on whether value restriction is satisfied.

Case $M \in \text{Val.}$ We have $\sigma = \text{gen}(\Xi_2; \hat{\alpha})$ and $\sigma' = \forall \Delta.A'$. By $\zeta_2 \otimes \Theta_2 \otimes \Xi_2 \sqsubseteq \Theta' \otimes \Delta$ and $\zeta_2 \hat{\alpha} \equiv A'$, we have $\Theta' \vdash \sigma \leq_{\text{gen}} \sigma'$. Then by Lemma C.5 on $\Theta', x :_{\xi'} \sigma' \vdash_s M : B' @ F'$ and $\xi = \xi'$, we have

$$\Theta', x : \sigma \vdash_s M : B' \oslash F$$

Thus, $(\zeta_2 \otimes \Theta_3, x :_{\xi} \sigma \sqsubseteq \Theta', x :_{\xi} \sigma; B'; F'_1)$ solves the question of (4). Observe that by (1) and (2), σ cannot contain flexible modal or effect variables; otherwise it would violate $\vdash \Theta_0$ **ng** since the only way for the type of *M* to rely on flexible modal or effect variables in Θ_0 is via usage of term variables in Θ_0 . Thus we have $\vdash \Theta_3, x :_{\xi} \sigma$ **ng**. Then by IH on (4), we have ζ_2 factors through the metasubstitution of (4) with cofactor ζ_3 such that $F \leq F'_1$ and $\Theta \vdash \zeta_3 B \equiv B'$ (6). By Lemma B.8 on (5) and $v_{F'_1} : E' \to F'_1$, we have $F' \leq F'_1$ (7). Our goal follows from cofactor ζ_3 , (6), and (7).

Case $M \notin$ Val. We have

$$\Theta_2 \vdash \operatorname{gen}(\Xi_2; \hat{\alpha}) \leq_{\mathsf{i}} \sigma \dashv \Theta_3$$
$$\Theta' \vdash \forall \Delta. A' \leq_{\mathsf{i}} \sigma'$$

Same as the above sub-case, we have $\Theta' \vdash \text{gen}(\Xi_2; \hat{\alpha}) \leq_{\text{gen}} \forall \Delta.A'$. By definition of algorithmic \leq_i , we have $\Theta_3 = \Theta_2, \Xi_3$ where Ξ_3 contains the flexible intuitionistic

variables appearing in σ . Thus, by $\zeta_2 \$ $\Theta_2 \subseteq \Theta'$, there exists a metasubstitution ζ'_2 & $\Theta_2, \Xi_3 \sqsubseteq \Theta_2$ which substitutes flexible variables in Ξ_3 such that $\Theta' \vdash \zeta_2 \zeta'_2 \sigma \equiv \sigma'$. Then we have $\zeta_2 \zeta'_2 \otimes \Theta_3, x :_{\xi} \sigma \sqsubseteq \Theta', x :_{\xi} \sigma'$, which gives that $(\zeta_2 \zeta'_2; B'; F'_1)$ solves (4). Similar to the above sub-case, σ does not contain flexible modal or effect variables since we use \leq_i and have $\vdash \Theta_0$ ng. Then by IH on (4), we have $\zeta_2 \zeta_2'$ factors through the metasubstitution of (4) with cofactor ζ_3 such that $F \leq F'_1$ and $\Theta \vdash \zeta_3 B \equiv B'$ (6). By Lemma B.8 on (5) and $v_{F'_1}: E' \to F'_1$, we have $F' \leq F'_1$ (7). Our goal follows from cofactor ζ_3 , (6), and (7).

3439 Case

Case

Case

 $\frac{\Theta_{0}, \hat{\alpha}: (\operatorname{Any}, i), x: \hat{\alpha} \vdash M: B @ E \dashv \Theta_{1}, x: \hat{\alpha}, \Xi_{1} (1)}{\Theta_{0} \vdash \lambda x.M: \hat{\alpha} \rightarrow B @ E \dashv \Theta_{1}, \Xi_{1}}$

For any other solution $(\theta' \circ \Theta_0 \sqsubseteq \Theta'; A' \rightarrow B'; E')$, we have $\Theta' \vdash_s \lambda x.M : A' \rightarrow B' @ E'$. Inversion gives

$$\Theta', x : A' \vdash_s M : B' @ E'$$

Letting $\theta_1 = \theta', A'/\hat{\alpha}$, we have that (θ_1, B', E') solves the question of (1). By $\vdash \Theta_0$ ng we have $\vdash \Theta_0, \hat{\alpha} : (Any, i), x : \hat{\alpha}$ ng. Then by IH on (1), we have θ_1 factors through the metasubstitution of (1) with cofactor $\zeta \otimes \Theta_1, x : \hat{\alpha}, \Xi_1 \sqsubseteq \Theta', x : \hat{\alpha}, x : A'$ such that $E \leq E'$ (2) and $\Theta' \vdash \zeta B \equiv B'$ (3). Observe that $\theta' \equiv \theta_1 \equiv \zeta \otimes \Theta_0 \sqsubseteq \Theta'$. Our goal follows from cofactor ζ , (2), and (3).

 $\frac{\Theta_{0}, x : A \vdash M : B @ E \dashv \Theta_{1}, x : A, \Xi_{1} (1)}{\Theta_{0} \vdash \lambda x^{A}.M : A \rightarrow B @ E \dashv \Theta_{1}, \Xi_{1}}$

Our goal follows from IH on (1).

I-ABS

I-Арр

$$\Theta_{0} \vdash M : A @ E \dashv \Theta_{1} (1)$$

$$\Theta_{1} \vdash N : B @ F \dashv \Theta_{2} (2) \qquad \Theta_{2}, \hat{\alpha} : (Any, m) \vdash A \equiv B \rightarrow \hat{\alpha} \dashv \Theta_{3} (3)$$

$$\Theta_{0} \vdash M N : \hat{\alpha} @ E \cup F \dashv \Theta_{3}$$

For any other solution ($\theta' \otimes \Theta_0 \subseteq \Theta'; A_1; E_1$), we have $\Theta' \vdash M N : A_1 \oslash E_1$. Inversion gives

$$\Theta' \vdash_{s} M : A' \to A_1 @ E_1$$
$$\Theta' \vdash_{s} N : B' @ E_1$$

Then $(\theta'; A' \to A_1; E_1)$ must solve the question of (1). By IH on (1), we have θ' factors through the metasubstitution of (1) with cofactor $\zeta_1 \ \ \Theta_1 \sqsubseteq \Theta'$ such that $E \leq E_1$ and $\Theta' \vdash \zeta_1 A \equiv A' \to A_1$.

3480	Case	
3481		I-LetAnno
3482		$\Theta_{0} \vdash (M; \Delta; A) \textcircled{\dagger}^{\dagger} \sigma \dashv \Theta_{1} (1) \qquad \Theta_{1} \overset{\circ}{,} \Delta \vdash M : A' \textcircled{O}{E} \dashv \Theta_{2} \overset{\circ}{,} \Delta, \Xi_{2} (2)$
3483		$\Theta_{2} \circ \Delta, \Xi_{2} \vdash A' \equiv A \vdash \Theta_{3} \circ \Delta, \Xi_{3} (3) \qquad \Theta_{3}, x : \sigma \vdash N : B @ F \dashv \Theta_{4}, x : \sigma, \Xi_{4} (4)$
3484 3485		$\Theta_0 \vdash \mathbf{let} \ x^{\forall \Delta.A} = M \ \mathbf{in} \ N : B \ @ E \cup F \dashv \Theta_4, \Xi_4$
3486		By definition of \mathfrak{J}^{\dagger} and (1), $\Theta_0 = \Theta_1$. For any other solution ($\theta' \circ \Theta_0 \sqsubseteq \Theta', B', E_1$), we have
3487 3488		$\Theta' \vdash_s let x^{\forall \Delta.A} = M in N : B' @ E_1.$
3489		Inversion gives
3490		$\Theta' \vdash (M, \Delta, A) \ lt^{\dagger} \sigma$
3491		$\Theta', \Delta \vdash_{s} M : A @ E_1$
3492		$\Theta', x: \sigma \vdash_s N: B' @ E_1$
3493		We have $\theta' \circ \Theta_0 \circ \Lambda \sqsubset \Theta' \circ \Lambda$ and $\Theta' \circ \Lambda \vdash_0 M : A \oslash E_1$, which gives that (θ', A, E_1) solves
3494		the question of (2). By IH on (2), we have θ' factors through the metasubstitution of (2) with
3495		cofactor $\zeta_1 \otimes \Theta_2 \otimes \Delta, \Xi_2 \sqsubseteq \Theta' \otimes \Delta$ such that $\Theta' \otimes \Delta \vdash \zeta_1 A' \equiv A$ and $E \leq E_1$.
3496		Then ζ_1 solves the statement of (3). By Lemma B.6 on (3), ζ_1 factors through the metasubsti-
3497		tution of (3) with cofactor $\zeta_2 \$ $\Theta_3 \$ $\overset{\circ}{}\Delta, \Xi_3 \sqsubseteq \Theta' \$ $\overset{\circ}{}\Delta$.
3498		Since σ does not contain any flexible variable, we have $\zeta_2 \ \ \Theta_3, x : \sigma \sqsubseteq \Theta', x : \sigma$. Thus,
3499		we have (ζ_2, B', E_1) solves the question of (4). By IH on (4), we have ζ_2 factors through the
3500		metasubstitution of (4) with cofactor $\zeta_3 \otimes \Theta_4, x : \sigma, \Xi_4 \sqsubseteq \Theta', x : \sigma$ such that $\Theta' \vdash \zeta_3 B \equiv B'$ (5)
3502		and $F \leq E_1$. By $E \leq E_1$ and $F \leq E_1$ we have $E \cup F \leq E_1$ (6). Our goal follows from cofactor
3503	0	ζ_3 , (5), and (6).
3504	Case	
3505		$\Sigma \ni \ell : A \twoheadrightarrow B \qquad \Theta_0 \vdash M : A_1 @ E \dashv \Theta_1 (1) \qquad \Theta_1 \vdash A_1 \equiv A \dashv \Theta_2 (2)$
3506		$\Theta_0 \vdash \mathbf{do} \ \ell \ M : B \ @ \{\ell\} \cup E \dashv \Theta_2$
3508		Our goal follows from IH on (1) and Lemma B.6 on (2).
3509	Case	
3510		I-Mask
3511		$\Theta_{0}, \Theta_{\langle L \rangle} \vdash M : A @ E \dashv \Theta_{1} (1) \qquad F = \text{solve}(\langle L \rangle : E \to \cdot) (2)$
3512		$\Theta_0 \vdash \mathbf{mask}_I M : \langle L \rangle A \oslash F \dashv \Theta_2$
3513		
3514	Casa	Our goal follows from IA on (1) and Lemma B.8 on (2).
3515	Case	I HANDARD
3516		$D = \{f_i\}; \qquad \{f_i : A_i \to B_i\} \subset \Sigma$
3517		$\Theta, \bigoplus_{(D)} \vdash M : A_0 \ (\Theta E' + \Theta_{-1}, \bigoplus_{(D)} \Xi' (1) \qquad \Theta_{-1} \vdash (M; \Xi'; A_0) \parallel A + \Theta_0 (2)$
3518		$\Theta_0, x : \langle D \rangle A \vdash N : B_0 \ (@E_r \dashv \Theta'_0, x : , \Xi'_0(3)) \qquad \Theta'_0 \vdash (N; \Xi'_0; B_0) \Downarrow B \dashv \Theta_1(4)$
3520		$[\Theta_i, p_i : A_i, r_i : B_i \rightarrow B + N_i : B_i \oplus E_i + \Theta'_i, p_i : _, r_i : _, \Xi'_i (5)$
3521		$\Theta_{i}^{\prime}, \Xi_{i}^{\prime} \vdash B_{i} \equiv B \dashv \Theta_{i+1} (6)]_{i=1}^{n}$
3522		$E = \text{solve}(\langle D \rangle : E' \to \cdot) \qquad F = E \cup E_r \cup (\cup_i E_i)$
3523		$\Theta \vdash$ handle M with {return $x \mapsto N$ } \uplus { $\ell_i \ p_i \ r_i \mapsto N_i$ } $_{i=1}^n : B \oslash F \dashv \Theta_{n+1}$
3524		Though this rule looks scary, there is nothing special we need for proving it compared to
3525 3526		the cases we have shown. For any other solution $(\theta' \circ \Theta \sqsubseteq \Theta'; B'; F')$, we have
3527		$\Theta' \vdash_{s} handle M$ with $H : B' @ F'$.
3528		
3529 Inversion gives

3530	$\Theta' \vdash_s (M; \Delta; A'_0) \Downarrow A'$
3531	$\Theta' \vdash_s (N; \Delta'; B'_0) \Downarrow B'$
3532	$\Theta', \mathbf{A}_{(D)}, \Delta \vdash_{\mathcal{S}} M: \langle D \rangle A'_0 @ D + F'$
3533	$\Theta', x: \langle D \rangle A', \Delta' \vdash_s N: B'_0 @ F'$
3534	$[\Theta', p_i : A_i, r_i : B_i \to B' \vdash_s N_i : B' \oslash F']_i$
3535	Our goal follow from IHs on (1), (3), (5), and Lemma B.6 on (6
3536	

Our goal follow from IHs on (1), (3), (5), and Lemma B.6 on (6). To use IH on (3), we need to show that $\vdash \Theta_0, x : \langle D \rangle A$ ng is satisfied and $\langle D \rangle A$ can be transformed to $\langle D \rangle A'$ via a proper metasubstitution. We can show both using (2) similarly to the proof for T-LETMOD when value restriction is not satisfied. Similarly, to use IHs on (4), we can again show that $\vdash \Theta_i, p_i : A_i, r_i : B_i \to B$ ng is satisfied and $B_i \to B$ can be transformed to $B_i \to B'$ via a proper metasubstitution using (5).

THEOREM B.12 (COMPLETENESS OF TYPE INFERENCE). If $\vdash \Theta_0$ ng, $\Theta_0 \vdash M$ ok, $\theta \ \ \Theta_0 \sqsubseteq \Theta$, and $\Theta \vdash_s M : A @ F$, then $\Theta_0 \vdash M : B @ E \dashv \Theta_1$ for some Θ_1 , B, and E.

³⁵⁴⁶ PROOF. By induction on the typing derivation $\Theta \vdash_s M : A @ F$. ³⁵⁴⁷ Case

T-FREEZE

$$\xi = \operatorname{alocks}(\Theta') \quad \forall \Delta.A = \operatorname{subst}(\Theta; \sigma)$$

$$\Theta, \Theta' \vdash (\mu, \forall \Delta.A) \Longrightarrow \xi @ E(1) \qquad \Theta, \Theta' \vdash \forall \Delta.A \leq_{\mathsf{m}} B$$

$$\Theta, x :_{\mu} \sigma, \Theta' \vdash_{\mathsf{s}} [x] : B @ E$$

Suppose $\Theta_0 = \Theta_{-1}, x :_{\mu'} \sigma', \Theta'_0$. By Lemma B.1 and $\vdash \Theta_0$ ng, we have $\vdash \Theta, x :_{\mu} \sigma, \Theta'$ ng, $\mu' = \mu$, and $\operatorname{alocks}(\Theta'_0) = \xi$. Case analysis on (1).

Case There exists *F* such that $\mu_F \Rightarrow \xi_F$. Then $\Theta_{-1}, \Theta'_0 \vdash (\mu, \sigma') \Rightarrow \xi @ E' \vdash \Theta_1$ also succeeds. Our goal follows from I-FREEZE.

Case Otherwise. We have $\Theta, \Theta' \vdash \forall \Delta.A$: Abs and $\text{solve}(\mu \Rightarrow \xi)$ fails. Let $\forall \Delta.A' = \text{subst}(\Theta_{-1}; \sigma')$. By $\Theta, \Theta' \vdash \forall \Delta.A$: Abs and $\Theta, \Theta' \vdash \sigma = \theta \sigma'$, we have $\Theta, \Theta' \vdash \forall \Delta.A = \theta(\forall \Delta.A')$. Then by $\theta \otimes \Theta_{-1}, \Theta_0 \sqsubseteq \Theta, \Theta'$, we have $\Theta_{-1}, \Theta'_0 \vdash \forall \Delta.A'$: (Abs, m) $\dashv \Theta_1$ succeeds for some Θ_1 . Our goal follows from I-FREEZE.

Case

Case

$$\frac{\text{T-Var}}{(\nu, A_1) = \text{split}(\Delta, A)} \underbrace{\begin{array}{c} \xi = \text{alocks}(\Theta') \quad \forall \Delta.A = \text{subst}(\Theta; \sigma) \\ \Theta, \Theta' \vdash (\mu \circ \nu, \forall \Delta.A_1) \Rightarrow \xi @ E \quad \Theta, \Theta' \vdash \forall \Delta.A_1 \leq_{\mathrm{m}} B \\ \Theta, x :_{\mu} \sigma, \Theta' \vdash_{\mathrm{s}} x : B @ E \end{array}}$$

Suppose $\Theta_0 = \Theta_{-1}, x :_{\mu'} \sigma', \Theta'_0$ and $\forall \Delta. A' = \text{subst}(\Theta_{-1}; \sigma')$. Let $(\nu', A'_1) = \text{split}(\Delta, A')$. By Lemma B.1 and $\vdash \Theta_0$ ng, we have $\vdash \Theta, x :_{\mu} \sigma, \Theta'$ ng. Thus, σ and σ' do not contain flexible modal and effect variables, which implies that $\nu = \nu'$. The remaining part is similar to the case of T-FREEZE.

 $\frac{\Theta, \Theta_{\mu} \vdash_{s} V : A @ E (1)}{\Theta \vdash_{s} \mathsf{mod}_{\mu} V : \mu A @ F}$

IH on (1) gives

 $\Theta_0, \mathbf{\Delta}_{\mu} \vdash V : A' @ E' \dashv \Theta_1, \mathbf{\Delta}_{\mu}, \Xi_1$

for some A', E', Θ_1 and Ξ_1 . By (2) and Lemma B.9, we have $F' = \text{solve}(\mu : E' \to \cdot)$. Our goal

follows from I-Mod. 3579 Case 3580 3581 T-ABSANNO $\frac{\Theta, x : A \vdash_{s} M : B @ E (1)}{\Theta \vdash_{s} \lambda x^{A} . M : A \to B @ E}$ 3582 3583 3584 Our goal follows from IH on (1) and I-ABSANNO. 3585 Case 3586 T-ABS 3587 $\frac{\Theta, x: S \vdash_{S} M: B @ E (1)}{\Theta \vdash_{\gamma} \lambda x.M: S \to B @ E}$ 3588 3589 3590 Let $\theta' = \theta, S/\hat{\alpha}$. We have $\theta' \otimes \Theta_0, \hat{\alpha} : (Any, i), x : \hat{\alpha} \sqsubseteq \Theta, x : S$. Our goal follows from IH on 3591 (1) and θ' , and I-ABS. 3592 Case 3593 Т-Арр 3594 $\frac{\Theta \vdash_{s} M : A \to B @ E (1) \qquad \Theta \vdash_{s} N : A @ E (2)}{\Theta \vdash_{s} M N : B @ E}$ 3595 3596 IH on (1) gives 3597 $\Theta_0 \vdash M : A' \oslash E' \dashv \Theta_1(3)$ 3598 3599 for some A', E', and Θ_1 . By Theorem B.11 we have θ factors through the metasubstitution 3600 of (3) with cofactor $\zeta_1 \otimes \Theta_1 \sqsubseteq \Theta$ such that $\Theta \vdash \zeta_1 A' \equiv A \rightarrow B$. Then IH on (2) gives 3601 $\Theta_1 \vdash N : B' \oslash F' \dashv \Theta_2(4)$ 3602 3603 for some B', F', and Θ_2 . Again by Theorem B.11 we have ζ_1 factors through the metasub-3604 stitution of (4) with cofactor $\zeta_2 \approx \Theta_2 \subseteq \Theta$ such that $\Theta \vdash \zeta_2 B' \equiv A$. Then by Lemma B.6, 3605 $\zeta_3 = \zeta_2, B/\hat{\alpha}$ factors through 3606 $\Theta_2, \hat{\alpha} : (Anv, m) \vdash A' \equiv B' \rightarrow \hat{\alpha} \dashv \Theta_3 (5)$ 3607 3608 with some cofactor. Our goal follows from I-APP, (3), (4), and (5). 3609 Case 3610 T-Letmod $\Theta \vdash (M; \nu; \Delta; \phi; A) \updownarrow (\xi, \sigma) \qquad \Theta, \bigoplus_{\nu} \Delta \vdash_{s} M : \phi A @ E (1)$ 3611 $\nu_F : E \to F \qquad \Theta, x :_{\xi} \sigma \vdash_{s} N : B @ F (2)$ $\Theta \vdash_{s} \mathbf{let}_{v} \phi x = M \text{ in } N : B @ F$ 3612 3613 3614 IH on (1) gives 3615 $\Theta_0, \mathbf{\Delta}_{\nu}, \Delta \vdash M : A_1 \oslash E' \dashv \Theta_1, \mathbf{\Delta}_{\nu}, \Delta, \Xi_1 (3)$ 3616 3617 for some A_1, E', Θ_1 , and Ξ_1 . By Theorem B.11, θ factors through the metasubstitution of 3618 3619 since M does not mention Δ in type annotations, A_1 cannot contain any rigid variables in 3620 Δ , which gives 3621 $\Theta_0, \mathbf{a}_{\nu} \vdash M : A_1 \oslash E' \dashv \Theta_1, \mathbf{a}_{\nu}, \Xi_1 (4)$ 3622 $\zeta_1 \otimes \Theta_1, \mathbf{a}_{\nu}, \Xi_1 \sqsubseteq \Theta, \mathbf{a}_{\nu}, \Delta$ 3623 Letting $\zeta'_1 = \zeta_1, A/\hat{\alpha}$, by Lemma B.7, we have 3624 $\Theta_1 \ \ \Xi_1, \ \ \hat{\alpha} \ \ (Anv, m) \vdash A_1 \equiv \phi \ \ \hat{\alpha} \dashv \Theta_2 \ \ \Xi_2 \ (5)$ 3625 3626

74

have

T-LetAnno

3627

3628

3629 3630

3631 3632

3633

3634 3635

3636

3637 3638

3639

3640

3641

3642 3643

3644

3645

3646 3647

3648

3649

3650

3651

3652

3653

3654 3655

3660

3661

3662 3663

3668

3669

3670

3671

3672 3673 Case

Case

Case

By Lemma B.6, ζ_1 factors through the metasubstitution of (5) with cofactor $\zeta_2 \otimes \Theta_2$, Θ_2 , $\Xi_2 \subseteq$ $\Theta, \mathbf{\Delta}_{\nu}, \Delta$. Case analysis on whether value restriction is satisfied. Case $M \in \text{Val}$. We have $\sigma = \forall \Delta . A, \sigma' = \text{gen}(\Xi_2; \hat{\alpha})$, and $\Theta_2 \vdash (M; \nu; \phi; \Xi_2; \hat{\alpha}) \Uparrow (\xi, \sigma') \dashv \Theta_2 (6).$ By $\zeta_2 \ \ \Theta_2, \ \Theta_2, \ \Theta_\nu, \Xi_2 \sqsubseteq \Theta, \ \Theta_\nu, \Delta$, we have $\Theta \vdash \zeta_2 \sigma' \leq_{gen} \sigma$. Then by Lemma C.5 on (2) we $\Theta, x := \zeta_2 \sigma' \vdash_{\mathfrak{S}} N : B \oslash F(7).$ By principal($\Theta, \Theta_{\nu}; M; \Delta; \phi A$) and $\vdash \Theta$ ng, σ does not contain flexible modal or effect variables. Otherwise, σ would not be the principal type since these flexible variables could be further generalised. Thus, $\zeta_2 \sigma'$ does neither contain flexible modal or effect variables, which gives $\vdash \Theta$, $x : \zeta_1 \sigma'$ ng. Our goal follows from IH on (7), I-LET, (4), (5), (6), and Lemma B.9. Case $M \notin$ Val. We have $\Theta \vdash \forall \Delta . A \leq_i \sigma$ $\Theta_2 \vdash \operatorname{gen}(\Xi_2; \hat{\alpha}) \leq_{\mathsf{i}} \sigma' \dashv \Theta_3$ $\Theta_2 \vdash (M; \nu; \phi; \Xi_2; \hat{\alpha}) \Uparrow (\xi, \sigma') \dashv \Theta_3 (8)$ By definition of \leq_i , we have $\Theta_3 = \Theta_2, \Xi_3$ where Ξ_3 only contains flexible variables in σ' . By $\zeta_2 \ \ \Theta_2, \ \Theta_2, \ \Theta_2, \ \Theta_2, \ \Xi_2 \ \sqsubseteq \ \Theta_2, \ \Xi_3 \ \sqsubseteq \ \Theta_2$ such that $\Theta \vdash \zeta_2 \zeta_2' \sigma' \equiv \sigma$. Then we have $\zeta_2 \zeta'_2 \$ $\Theta_2, \Xi_3, x : \sigma' \sqsubseteq \Theta, x : \sigma$. By principal (Θ, M, Δ, A) and $\vdash \Theta$ ng, σ_0 does not contain flexible modal or effect variables, which further gives that σ does not contain flexible modal or effect variables. Thus we have $\vdash \Theta, x : \sigma$ ng. Our goal follows from IH on (2), I-LET, (4), (5), and (8). $\frac{\Theta \vdash (M; \Delta; A) \, \uparrow^{\dagger} \sigma \qquad \Theta, \Delta \vdash_{s} M : A @ E(1) \qquad \Theta, x : \sigma \vdash_{s} N : B @ E(2)}{\Theta \vdash_{s} \mathsf{let} x^{\forall \Delta A} = M \mathsf{in} N : B @ E}$

By definition, we have $\Theta_0 \vdash (M; \Delta; A) \uparrow^{\dagger} \sigma \dashv \Theta_1$ where $\Theta_0 = \Theta_1$. Our goal follows from IH on (1), Theorem B.11, Lemma B.6, and IH on (2).

> T-Do $\frac{\Sigma \ni \ell : A \twoheadrightarrow B}{\Theta \vdash_{s} \mathbf{do} \ \ell \ M : B \ @ E} E = \ell, F$

Our goal follows from IH on (1) and Theorem B.11.

T-MASK $\Theta, \square_{\langle L \rangle} \vdash_{s} M : A @ F - L (1)$ $\Theta \vdash_{s} \mathbf{mask}_{L} M : \langle L \rangle A \oslash F$

Our goal follows from IH on (1) and Lemma B.9.

3676	Case	
3677		T-Handler
3678		$D = \{\ell_i\}_i \qquad \{\ell_i : A_i \twoheadrightarrow B_i\} \subseteq \Sigma$
3679		$\Gamma \vdash (M; \Delta; A_0) \Downarrow A(1) \qquad \Gamma, \bigoplus_{\langle D \rangle}, \Delta \vdash_s M : A_0 @D + F(2)$
3680		$\Gamma \vdash (N; \Delta'; B_0) \Downarrow B(3) \qquad \Gamma, x : \langle D \rangle A, \Delta' \vdash_s N : B_0 @ F(4)$
3681		$[\Gamma, p_i : A_i, r_i : B_i \to B \vdash_s N_i : B @ F (5)]_i$
3682		$\Gamma \vdash_s$ handle M with {return $x \mapsto N$ } $\uplus \{\ell_i \ p_i \ r_i \mapsto N_i\}_i : B @ F$
3683		Though this rule looks scary, there is nothing special we need for proving it compared to
3684		the cases we have shown. Our goal follows from IHs on (2), (4), and (5), using Theorem B.11
3685		and Lemma B.9. To use IHs on (4) and (5), we need to connect the declarative intuitionistic
3686		instantiations of (1) and (3) with their corresponding algorithmic intuitionistic instantiations,
3687		as well as main the \vdash – ng invariant using the principal condition of (1) and (3), similarly
3680		to the proof for T-LETMOD when value restriction is not satisfied.
3600		
3691		
3692		
3693		
3694		
3695		
3696		
3697		
3698		
3699		
3700		
3701		
3702		
3703		
3704		
3705		
3705		
3707		
3709		
3710		
3711		
3712		
3713		
3714		
3715		
3716		
3717		
3718		
3719		
3720		
3721		
3722		
3723		