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We propose a novel type system for effects and handlers using modal types. Conventional effect systems attach
effects to function types, which can lead to verbose effect-polymorphic types, especially for higher-order
functions. Our modal effect system provides succinct types for higher-order first-class functions without
losing modularity and reusability. The core idea is to decouple effects from function types and instead to
track effects through relative and absolute modalities, which represent transformations on the ambient effects
provided by the context.

We formalise the idea of modal effect types in a multimodal System F-style core calculus Met with effects
and handlers. Met supports modular effectful programming via modalities without relying on effect variables.
We encode a practical fragment of a conventional row-based effect system with effect polymorphism, which
captures most common use-cases, into Met in order to formally demonstrate the expressive power of modal
effect types. To recover the full power of conventional effect systems beyond this fragment, we seamlessly
extend Met to Mete with effect variables. We propose a surface language Metel for Mete with a sound and
complete type inference algorithm inspired by FreezeML.

1 Introduction

Effect systems allow a typed programming language to express information about what a function
does when running, instead of merely providing information about what sort of results it might
produce when finished.

Consider the standard map function:

map : ∀𝛼 𝛽. (List 𝛼, 𝛼 → 𝛽) → List 𝛽

In a typical functional programming language, this type is a statement about the values that map
accepts and returns (that it takes a list of 𝛼 and a function from 𝛼 to 𝛽 , and returns a list of 𝛽), but
is silent about which effects may occur during its evaluation.

The effect systems of, say, Koka [31] or Links [21] give the following more precise type to map:

map : ∀𝛼 𝛽 𝜀. (List 𝛼, 𝛼 𝜀−→ 𝛽) 𝜀−→ List 𝛽

This type uses effect polymorphism, quantifying over an effect variable 𝜀, in order to express that
the effects that may be performed by map (xs, f) are precisely those that may be performed by
calls to f. That is, map performs no effects of its own, beyond those of the callback f.

While this type precisely expresses what we want to say about map, the annotation burden of this
style of effect system is larger than it might first appear. While only a small amount of text needs
to be added to turn the first type into the second, the problem lies in the quantity and location of
places where it is needed. Functions like map that use no effectful features themselves still need to
be annotated, as does essentially every higher-order function.
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This is a mild burden to the authors of new code, but a significant obstacle to extending an
existing language with effectful features: signatures of much existing library code must be rewritten
to support effect polymorphism, even in old libraries that do not use the new features at all. The
need to update such libraries makes it difficult to add an effect system to a language in a backwards-
compatible way. Instead, our goal is to support precise tracking of effects, without polluting the
type of non-effectful functions like map.

1.1 Annotating Effect Transitions

Important steps towards this goal were taken by the languages Frank [12, 33] and Effekt [7, 8],
both of which use the original type for map, allowing use of effectful callbacks without requiring
effect polymorphism annotations in the type of map.

The key idea enabling use of these simpler types in both languages is the ambient effect context.
All functions are typed assuming a certain set of possible effects, and annotations are required at
transitions between different effect contexts. Since the argument to map uses the same effects as
map itself, there is no transition and hence no annotation is required.
Both Frank and Effekt achieve this by special typing support for computations that appear

in argument position. In Frank, an adjustment is attached to each argument, specifying how the
ambient effects of the called function relate to the effects provided to its argument. In Effekt,
arrow types appearing in argument position are parsed as blocks, second-class function types that
inherit ambient effects. While different, both of these mechanisms give elegant typings of handlers,
but become more complicated with more advanced uses of arrow types, such as when closures are
captured and/or inserted into data structures. The essential reason is that both argument types
decorated with adjustments in Frank and block types in Effekt are second-class, and they use
different methods to bypass this restriction. In Frank, first-class higher-order functions rely on
some syntactic sugar to insert effect variables. In Effekt, first-class use of closures was initially
disallowed entirely, and now supported with extra annotations on captured capabilities.

We build on this insight that types should mark transitions between effect contexts, rather than
repeating the full effect context. We extend the idea by decoupling it from function arguments, and
making effect transitions available as a true type constructor, usable in any context.
We work in the framework of modal types, following multimodal type theory (MTT) [17, 18],

where each possible effect context is a mode, and each possible transition between effect contexts is
a modality. We support both relative modalities, which describe a local change to an effect context
such as entering a new handler (similar to Frank’s adjustments), and absolute modalities, which
describe the full effect context (similar to Frank’s abilities).
Unlike Frank and Effekt, our modalities are not tied to function arrows, and can be applied

anywhere, even nested inside complex data structures. Our modal effect system also works smoothly
with pure first-class higher-order functions; they all type check without requiring hidden effect
variables or extra annotations, and can be applied to effectful arguments.

1.2 Contributions

The main contributions of this paper are:

• We give high-level overview of the main ideas through a series of examples that illustrate
the verbosity of conventional effect systems, how they can be simplified by the absolute
and relative modalities, and how modal effect types enable us to write expressive effectful
programs in a sound and succinct way (Section 2).

• We introduce Met, a multimode and multimodal core calculus with effect handlers and
modal effect types (Section 3). We prove its type soundness and effect safety.
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Modal Effect Types 3

• We extend Met with data types and richer kinds of handlers. We further extend it to Mete
with effect variables to recover the full power of traditional effect systems (Section 4).

• To illustrate the expressiveness of modal effect types, we formally prove that a practical
fragment of traditional row-based effect systems is encodable in Met. (Section 5).

• To demonstrate the feasibility of programming with modal effect types, we introduce Metel,
a surface language based on Mete with a sound and complete type inference algorithm
which can automatically unbox modalities for variables (Section 6).

• We discuss the relationships of modal effect types with the Frank language, capability-based
effect systems, and multimodal type theory. (Section 7).

Section 7 also discusses other related work and Section 8 concludes.

2 Programming with Modal Effect Types

In this section we give a series of examples to illustrate the main ideas of modal effect types.
We demonstrate how modal effect types allow composition of higher-order functions and effect
handlers in a modular manner with succinct types. The key enablers for this programming style are
the relative and absolute modalities, which provide the programmer with a novel typing mechanism
to manage effect contexts. The examples are written in Metel, whose core calculus we introduce
in Sections 3 and 4, and whose design we discuss further in Section 6. Metel is a typed functional
language equipped with a modal effect type system for programming with effects and handlers.

2.1 Seamless First-Class Higher-Order Functions

First-class higher-order functions are a staple ingredient of functional programming. As we ex-
plained in the introduction, extending an existing language with traditional row-based effect typing
requires adding effect variables to the type signatures of pure higher-order functions. Modal effect
types offer a backwards-compatible alternative, requiring no extra effect variables for types of
higher-order functions that do not themselves use effects. For instance, in Metel we write the
standard type for the curried implementation of map.
map : ∀ a b . (a → b) → List a → List b

map f nil = nil

map f (cons x xs) = cons (f x) xs

This is a genuine first-class higher-order function which can be partially applied, passed around,
stored in data types, and so forth. Metel, unlike Frank, does not implicitly insert any effect
variables in the type signature of map. We may still apply map to any function that performs any
effects from the effect context in which map is invoked.

The effect context for global definitions is empty (though in a practical programming language it
could include some built-in effects). Metel captures this fact by implicitly boxing the type signature
of each global definition in the empty absolute modality []. The elaborated type signature for map is:

map : ∀ a b . []((a → b) → List a → List b)

Since map itself is pure, the default empty effect context suffices. As we shall see shortly, map can be
invoked under any effect context by way of unboxing and sub-effecting.

In general an absolute modality has the form [E], which specifies that the effect context is E. In
Section 2.2 we further consider absolute modalities. In Section 2.3 we also discuss relative modalities.

Metel automatically unboxes variables like map when they are used, meaning that programmers
may omit empty absolute modalities from the signatures of pure functions. Consequently, modal
effect types can be retrofitted onto an existing programming language, while preserving the
signatures of pure functions.
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2.2 Absolute Modalities Define Full Effect Contexts

In Metel, modalities are used to change the effect context. An absolute modality is absolute in
the sense that it specifies an entire new effect context to replace the current one with. As an
example consider an implementation of a yield-style generator [24] using an effectful operation
yield : Int ⇒ 1 which takes an integer and returns a unit.
gen : [yield](List Int → 1)

gen xs = map (fun x → do yield x) xs; ()

The gen function implements an integer generator which reflects a given list as a computation by
yielding each element of the list. In the function body we apply map to an effectful function that
invokes the operation gen via the keyword do. The absolute modality [yield] specifies the effect
context required to run gen (it must be able to perform yield). The type signature tells Metel to
implicitly box gen with the modality [yield].

The use of map is implicitly unboxed enabling implicit sub-effecting to coerce the empty effects of
its definition to the yield effect of its invocation site. In general unboxing and sub-effecting allow
functions to be used in a larger effect context than the one in which it was defined, for instance:
gen' : [yield, foo, bar, baz](List Int → 1)

gen' xs = gen xs

In a traditional row-based effect system, the effect context is changed by way of effect polymor-
phism, and we would give the following type signature to gen.

gen : ∀ e . List Int
yield, e
−−−−−−−−→ 1

2.3 Relative Modalities Define Effect Transformations

Henceforth, we will frequently refer to the effect context in which a given term or variable is
used as the ambient effect context. Pure higher-order functions like map are local in the sense that
they do not change the ambient effect context. Modal effect types come into their own when the
programming language has facilities that act on effect contexts, such as handlers and masks [4].

For example, we can implement an effect handler for yield that reifies a given computation into
a list by interpreting each yield as consing the element onto the list.

asList m = handle m () with

return () ⇒ nil

yield x r ⇒ cons x (r ())

The body of asList applies the function m inside a handler. In the handler we have to consider
two things: 1) what happens when m returns; and 2) what happens when m performs yield. In the
first case, we map the unit value () to the empty list nil. In the second case, we cons the yielded
element x onto the list returned by the application of r. Here r is bound to the continuation of
performing yield inside m. Its argument type is given by the return type of the operation being
handled (unit in the case of yield) and its return type is given by the return type of the handler,
i.e. r : 1 → List Int. The continuation r reinstalls the handler such that residual invocations of
yield are handled in the same manner. This style is known as deep handlers in the literature [26].

We can annotate this function with an absolute modality.
asList : [yield](1 → 1) → List Int

Often this type is not the one we want as it means that the function parameter is only allowed to
use the yield operation. The absolute modality fixes the effect context, preventing the function
argument from using other effects. Sometimes it may be desirable to do so, however, more often
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Modal Effect Types 5

we want to be able to handle the specific yield operation of an arbitrary effectful function that
performs multiple different operations. To this end, we can instead use relative modalities, which
enable us to describe the relative change that the handler makes to the ambient effect context, e.g.

asList : <yield>(1 → 1) → List Int

The relative modality <yield> is part of the parameter type and indicates that the effect context
for the term inside is derived by extending the ambient effect context with yield. Thus, when m

is automatically unboxed and used in asList, the effect context required by m matches the effect
context in the scope of the yield handler. The relative modality here captures the fact that asList
handles the yield effect when invoking m, but also allows m to perform other effects (which will
be forwarded to an outer handler). In a traditional row-based effect system, we would give the
following type signature to asList.

asList : ∀ e . (1
yield, e
−−−−−−−−→ 1)

e−→ List Int

To run asList, we must box its argument with <yield>.
> asList <yield>(fun () → gen [3,1,4,1,5,9])

# [3,1,4,1,5,9] : List Int

The syntax <yield>(...) boxes the term inside with the relative modality <yield>. It extends the
ambient effect context with yield for the program inside, allowing the effectful function gen to be
used. Note that both asList and gen are automatically unboxed as usual.

In general, relative modalities have the form <L|D>, where L is a row of operations that is masked
from the ambient effect context, and D is a row of operations that extends the ambient effect context.
We write <D> as shorthand for <|D>. We expand more on masking in Section 2.8.

2.4 Effect Safety and No Accidental Handling

In asList, the parameter m is used under the same effect context in which it is introduced. In general,
Metel restricts the use of any variable whose value depends on the effect context at the time of its
binding occurrence (e.g., a function not boxed by an absolute modality). Such a variable may only
be used under an effect context compatible with one at the binding occurrence.
This property is important for guaranteeing effect safety, i.e., that all effects are handled. For

instance, the following program is ill-typed
asListWrong : <yield>(1 → 1) → List Int # ill-typed

asListWrong m = m (); [37,42]

because m requires an effect context that permits the yield effect and yet the effect context of the
definition of asListWrong is empty.
This property also forces effect types to reflect where effects are handled, thus preventing the

accidental handling problem [54]. For instance, we cannot give the following type to asList.
asList : (1 → 1) → List Int # ill-typed

asList m = handle m () with ... # same as in Section 2.3

The problem is that the handler extends the effect context with yield, and yet m is introduced before
this extension. As a result, the value bound to m might use a yield operation from its effect context
provided by a different handler instead of asList (we follow Leijen [30] to allow duplicated labels).
If this type was allowed, asList would handle this yield unexpectedly
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2.5 Composing Handlers

We can compose handlers modularly in Metel. For example, consider two integer state operations
get : 1 ⇒ Int and put : Int ⇒ 1. We can implement a standard state handler by interpreting a
computation over state operations as a state-passing function.
state : ∀ [a] . <get, put>(1 → a) → Int → (a, Int)

state m = handle m () with

return x ⇒ fun s → (x, s)

get () r ⇒ fun s → r s s

put s' r ⇒ fun s → r () s'

The attentive reader may have observed that the type variable a is declared inside a box. We shall
discuss the reason for this syntax in Section 2.7.

With state operations, we can write a generator which yields the prefix sum of a list.
prefixSum : [yield, get, put](List Int → 1)

prefixSum xs = map (fun x → do put (do get + x); do yield (do get)) xs; ()

The absolute modality [yield, get, put] aggregates all effects performed in the definition.
We can now handle prefixSum by composing two handlers in sequence.

> asList <yield>(fun () →
state <get,put>(fun () → prefixSum [3,1,4,1,5,9]) 0; ())

# [3,4,8,9,14,23] : List Int

Following the pattern we saw previously for handlers, we explicitly box the arguments with relative
modalities in order to extend the effect context with the handled effects. Observe how we use state
modularly: its type signature mentions only get and put even though it is applied to a computation
which invokes prefixSum, which also uses yield.

2.6 Effect Transformations

We give an example similar to the one from Section 2.2 of Brachthäuser et al. [7], in which an effect
handler is used to transform a computation by reperforming the handled effect. The following
handler transforms all generated integers with a function and then re-generates them.
regen : [yield]((Int → Int) → <yield>(1 → 1) → 1)

regen f m = handle m () with

return () ⇒ ()

yield s r ⇒ do yield (f s); r ()

The intuition behind the type signature for regen is as follows: we handle the yield operation
for the second argument (as indicated by <yield>), and the whole function also uses yield (as
indicated by [yield]). This type is similar to those given by Effekt and Frank modulo syntactic
differences. In contrast, Koka infers the following more verbose type.
∀<e>. (f : (int) → <yield|e> int) → ((g : () → <yield,yield|e> ()) → <yield|e> ())

2.7 Escaping Handlers and Absolute Kinds

One of the fundamental ideas of modal effect types is to track transformations on effect contexts,
rather than just full effect contexts. As a consequence, when a value leaves the scope of a handler,
its ambient effect context changes, and we must keep track of this change. For instance, the most
general type for the state handler define in Section 2.5 is as follows.
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state : ∀ a . <get, put>(1 → a) → Int → (<get, put>a, Int)

The return value has type <get, put>a instead of just a because it comes from an effect context
which extends the ambient one with get and put. However, this handler does not handle operations
in return values. We must guarantee that the effect context in which the return value is used
provides operations get and put.
As a special case, values boxed with absolute modalities do not depend on the current effect

context, and thus can flexibly leave the scope of handlers. We can also give the following specialised
type for the state handler where a is always boxed with the empty absolute modality [].
state : ∀ a . <get, put>(1 → []a) → Int → (a, Int)

Because of automatic unboxing, this is a valid type for state without changing its definition.
In practice, it is useful to allow a value of base type or an algebraic data type that contains

only base types or a type boxed with absolute modalities to appear anywhere, including escaping
escaping the scope of a handler. Such values can never depend on the effect context in which they
are used. We introduce a kind system to Metel in which the Abs kind classifies only such absolute
data types, whereas the Any kind classifies all data types. Subkinding allows any Abs type to be
treated as an Any type. By default all type variables have kind Any. Recall the type for the state
handler in Section 2.5.
state : ∀ [a] . <get, put>(1 → a) → Int → (a, Int)

The syntax ∀ [a] ascribes kind Abs to a, and thus allows values of type a to leave the scope of the
handler. In practice it is usually desirable for return types of computations inside handler scopes
to have absolute kind, so that they can escape, but if a handler is used locally then this need not
always be the case.

2.8 Masking

Handlers extend the ambient effect context with those effects that they handle. Dually, masks
remove the effects they mask from the ambient effect context [4]. Masking is a useful device to
conceal private implementation details [35].

We give an example of implementing find with yield to show how masks work in Metel.
findWrong : (Int → Bool) → List Int → Maybe Int # ill-typed

findWrong p xs = handle (map (fun x → if p x then do yield x else ()) xs) with

return _ ⇒ nothing

yield x _ ⇒ just x

This program is ill-typed as the predicate p is bound under the ambient effect context but used in
the scope of a handler.

To fix it, we can mask yield and rewrite the handled expression as follows.
(map (fun x → if maska<yield>(p x) then do yield x else ()) xs)

The maska<yield>(...) form masks the operation yield from the ambient effect context. Now the
effect context for p is equivalent to the ambient one, since the transformations of extending with
yield followed by masking with yield cancel each other.
We use the keyword maska rather than simply mask because leaving the scope of masks also

changes the effect context. The situation is similar to the one we encountered in Section 2.7 where
we were concerned with allowing some values to escape the scope of a handler. The term mask

<yield>(p x) yields a value of type <yield|>Bool instead of Bool, where <yield|> is a relative
modality masking yield from the ambient effect context. Even though p x returns a boolean value
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here, Metel cannot automatically unbox the value in order to ensure completeness of type inference.
The maska form enables the special case of yielding values of absolute kind such as booleans.

2.9 Cooperative Concurrency

We now consider an example of a richer effect handler which implements cooperative concurrency
with a UNIX-style fork operation [23, 44]. We simplify the signature of fork ever-so-slightly such
that it returns a boolean to indicate whether the parent or child process should be evaluated,
i.e. ufork : 1 ⇒ Bool. In addition, we require an operation suspend : 1 ⇒ 1 that suspends the
current process such that another process can run.
We model a process as a data type that embeds a continuation function which takes the list of

suspended processes as input and returns unit. In addition, we define auxiliary functions push for
appending a process onto a queue and next which pops and runs the next process.

data Proc = proc (List Proc → ())

push : ∀ a . a → List a → List a

push x xs = xs ++ cons x nil

next : List Proc → ()

next q = case q of

nil → ()

cons (proc p) ps → p ps

The following handler implements a scheduler by using the state-passing technique to thread
the process queue through the handler activations.
schedule : <ufork, suspend>(1 → 1) → List Proc → 1

schedule m = handle m () with

return () ⇒ fun q → next q

suspend () r ⇒ fun q → next (push (proc (r ())) q)

ufork () r ⇒ fun q → r true (push (proc (r false)) q)

The return-case is triggered when a process finishes, thus we run the next available process. In the
suspend-case we enqueue the continuation, before we run the next available process. Finally, in the
ufork-case we implement the process duplication behaviour of UNIX fork by first enqueuing one
application of the continuation, and then immediately applying the continuation to resume one
of the process copies. Note that in the above code we seamlessly store effectful functions in data
types, similar to how one would do it in a functional language without an effect type system.

2.10 Modal Types with Effect Variables

There is no free lunch; modal effect types cannot offer everything that row-based effect types provide
without some cost. An important use case that requires explicit effect variables is implementing
higher-order operations [49, 50, 52].
In Metel, we restrict argument and result types of operations to be absolute for effect safety.

This is because effect handlers provide non-trivial manipulation of control-flow, which allows
operation arguments and results to seamlessly move between different effect contexts. For example,
suppose we were to allow an operation leak : (1 → Int) ⇒ 1, we could write the following
unsafe program.
handle (handle (do leak (fun _ → do yield 42)) { yield → ... }) { leak p → p }

The yield operation is used under an effect context containing yield, which is added by the yield
handler. However, the handler of leak binds the closure (fun _ → do yield 42) to p and leaks
it. Requiring leak to have the signature [yield](1 → Int) ⇒ 1 fixes the leakage problem as it
specifies the full effect context for the argument of leak.
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Using such an absolute modality in this fashion impedesmodularity. As another example, consider
a higher-order fork operation which takes a thunk as an argument. We may specify the full effect
context for the child process, such as the following signature.
effect fork : [fork, suspend](1 → 1) ⇒ 1

However, if we want to support processes that use other effects as well then either we have to
change the signature or we need to extend our modal type system with effect variables. With an
effect variable e, we can define the following parameterised signature.
effect fork e : [fork e, suspend, e](1 → 1) ⇒ 1

Fortunately, as we demonstrate in Section 4.5, modal effect types are compatible with explicit
effect variables, and indeed Metel supports them.

2.11 Modalities Anywhere

Unlike adjustments in Frank and block annotations in Effekt mentioned in Section 1.1, modal
types are first-class types just like data types and can appear anywhere. For instance, we can put
two functions with modal types in a pair and handle them separately.
handleTwo : (<yield>(1 → 1), <yield>(1 → 1)) → (List Int, List Int)

handleTwo (x, y) = (asList ~x, asList ~y)

The syntax ~x freezes the variable x, and prevents it from being automatically unboxed, following
FreezeML [15]. Thus we can directly apply asList to it without re-boxing.

The type inference algorithm of Metel also supports instantiation of type variables with modal
types, by analogy to impredicativity of first-class polymorphism. As a consequence, Metel enjoys
various stability properties. For instance, given the standard identity function id and application
function app, type inference of Metel is stable under replacing any term t with id t and any
application t1 t2 with app t1 t2.

3 A Multimodal Core Calculus with Effect Handlers

In this section, we introduce Met, a System F-style call-by-value core calculus with effect handlers
and modal effect types. We present its static and dynamic semantics as well as its meta theory. We
defer extensions including data types, alternative forms of handlers, and explicit effect variables to
Section 4. Met is closely related to multimodal type theory (MTT) [17, 18], especially its simply-
typed fragment [29]. We present Met without assuming any background on MTT, and discuss the
relationships in Section 7.3.

3.1 Syntax

The syntax of Met is as follows.

Types 𝐴, 𝐵 ::= 𝛼 | ∀𝛼𝐾 .𝐴
| 𝐴 → 𝐵 | 𝜇𝐴

Masks 𝐿 ::= · | ℓ, 𝐿
Extensions 𝐷 ::= · | ℓ : 𝑃, 𝐷
Effect Contexts 𝐸, 𝐹 ::= · | ℓ : 𝑃, 𝐸
Signatures 𝑃 ::= 𝐴 ↠ 𝐵 | −
Modalities 𝜇 ::= [𝐸] | ⟨𝐿 |𝐷⟩
Kinds 𝐾 ::= Abs | Any

Contexts Γ ::= · | Γ, 𝛼 : 𝐾 | Γ, 𝑥 :𝜇𝐹 𝐴 | Γ,µ𝜇𝐹
Terms 𝑀, 𝑁 ::= 𝑥 | 𝜆𝑥𝐴 .𝑀 | 𝑀 𝑁 | Λ𝛼𝐾 .𝑉 | 𝑀𝐴

| mod𝜇 𝑉 | let𝜈 mod𝜇 𝑥 = 𝑉 in 𝑀

| do ℓ 𝑀 | mask𝐿𝑀

| handle𝑀 with 𝐻

Values 𝑉 ,𝑊 ::= 𝑥 | 𝜆𝑥𝐴 .𝑀 | Λ𝛼𝐾 .𝑉 | 𝑉 𝐴 | mod𝜇 𝑉

Handlers 𝐻 ::= {return 𝑥 ↦→ 𝑀} | {ℓ 𝑝 𝑟 ↦→ 𝑀} ⊎ 𝐻
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𝐷 + 𝐸 𝐸 − 𝐿 𝐿 ⊲⊳ 𝐷

𝐷 + 𝐸 = 𝐷, 𝐸

· − 𝐿 = ·

(ℓ : 𝑃, 𝐸) − 𝐿 =

{
𝐸 − 𝐿′ if 𝐿 ≡ ℓ, 𝐿′

ℓ : 𝑃, (𝐸 − 𝐿) otherwise

· ⊲⊳ 𝐷 = (·, 𝐷)

(ℓ, 𝐿) ⊲⊳ 𝐷 =

{
(𝐿′, 𝐷 ′′) if 𝐷 ′ ≡ ℓ : 𝑃, 𝐷 ′′

((ℓ, 𝐿′), 𝐷 ′) otherwise
where (𝐿′, 𝐷 ′) = 𝐿 ⊲⊳ 𝐷

Fig. 1. Operations on Effect Contexts for Met.

Met extends a System F-style calculus with standard constructs for effects and handlers as well as
the main novelty of this work: modal effect types. We highlight the novel features in grey.

3.2 Effect Contexts as Modes

The modes of Met are effect contexts 𝐸, which are scoped rows of effect labels [30]. Each label
denotes an effectful operation. An effect may contain the same label multiple times. Each label has
a signature. A signature can be an arrow of the form 𝐴 ↠ 𝐵, which takes an argument of type 𝐴
and returns a value of type 𝐵, or absent − (similar to presence types [43]), which indicates that the
operation of this label cannot be invoked.

Following Rémy [43] and Leijen [30], we identify effects up to reordering of distinct labels, and
allow absent labels to be freely added to or removed from the right of effect contexts. For instance,
ℓ : 𝑃, ℓ ′ : − is equivalent to ℓ : 𝑃 . We can think of an effect context as denoting a map from labels to
infinite sequences of signatures where a cofinite tail of each sequence contains only −.
Extensions 𝐷 and masks 𝐿 are used respectively to extend effect contexts with more labels or

removes some labels from them. Extensions are like effect contexts except that we do not ignore
labels with absent signatures in their equivalence relation, so ℓ : 𝑃, ℓ ′ : − and ℓ : 𝑃 are distinct.
We define a sub-effecting relation on effect contexts: 𝐸 ⩽ 𝐸′ if we can replace the absent

signatures in 𝐸 with proper signatures to obtain 𝐸′. We also have a subtyping relation on extensions
𝐷 ⩽ 𝐷 ′. Different from sub-effecting, it requires 𝐷 and 𝐷 ′ to contain the same row of labels, but
allows absent signatures in 𝐷 to be replaced by other signatures in 𝐷 ′. We give the full rules for
type equivalence and sub-effecting in Appendix A.1.

Masks 𝐿 are simply multi-sets of labels without signatures, as we do not require signatures when
masking labels from effect contexts. The actions of extending 𝐷 + 𝐸 and masking 𝐸 − 𝐿 are defined
in Figure 1. We write 𝐿 ⊲⊳ 𝐷 = (𝐿′, 𝐷 ′) for the difference between 𝐿 and 𝐷 . The 𝐿′ are those labels
in 𝐿 not appearing in the domain of 𝐷 , and the 𝐷 ′ are those labels in 𝐷 not appearing in 𝐿.

3.3 Modalities Manipulating Effect Contexts

In conventional row-based effect systems, such as Koka or Links, an effect annotation on a function
type specifies all of the effects that the function may perform when it is invoked. In Met, effect
annotations only specify effects relative to the ambient effect context, as functions may also use
any operations from the ambient effect context. Effect annotations are given via modalities, which
construct a new effect context relative to an ambient effect context as follows.

[𝐸] (𝐹 ) = 𝐸 ⟨𝐿 |𝐷⟩(𝐹 ) = 𝐷 + (𝐹 − 𝐿)

The absolute modality [𝐸] replaces the ambient effect context 𝐹 with 𝐸. This is similar to how
effect annotations on functions in row-based effect systems work. Intuitively, we may think of the
type [𝐸] (𝐴 → 𝐵) as corresponding roughly to the type 𝐴 →𝐸 𝐵 in traditional effect type systems.
The relative modality ⟨𝐿 |𝐷⟩ is the key feature that makes effectful programming without effect
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variables viable in Met. It specifies the a transformation on the ambient effect context. It masks the
labels 𝐿 in 𝐹 before extending the resulting context with 𝐷 . We call ⟨|𝐷⟩ an extension modality,
⟨𝐿 |⟩ a mask modality, and ⟨|⟩ the identity modality. We write 1 for the identity modality.
Modalities are monotone total functions on effect contexts. If 𝐸 ⩽ 𝐹 , we have 𝜇 (𝐸) ⩽ 𝜇 (𝐹 ).
We write 𝜇𝐹 for the pair of 𝜇 and 𝐹 where 𝐹 is the effect context that 𝜇 acts on. We refer to such a

pair as an indexed modality. We write 𝜇𝐹 : 𝐸 → 𝐹 if 𝜇 (𝐹 ) = 𝐸. (The arrow goes from 𝐸 to 𝐹 instead
of the other direction to keep closer to MTT [17, 18]. For readers familiar with MTT, indexed
modalities 𝜇𝐹 correspond to the notion of modalities in MTT as they are concrete morphisms
between modes and our modalities 𝜇 actually correspond to indexed families of modalities in MTT.)

Modality Composition. We can compose the actions of modalities in the intuitive way.

𝜇 ◦ [𝐸] = [𝐸]
[𝐸] ◦ ⟨𝐿 |𝐷⟩ = [𝐷 + (𝐸 − 𝐿)]

⟨𝐿1 |𝐷1⟩ ◦ ⟨𝐿2 |𝐷2⟩ = ⟨𝐿1 + 𝐿 |𝐷2 + 𝐷⟩ where (𝐿, 𝐷) = 𝐿2 ⊲⊳ 𝐷1

To keep close toMTT, our composition reads from left to right. First, an absolutemodality completely
specifies the new effect context, thus shadowing any other modality 𝜇. Second, replacing the effect
context with 𝐸 and then masking 𝐿 and extending with 𝐷 is equivalent to just replacing with
𝐷 + (𝐸 − 𝐿). Third, sequential masking and extending can be combined into one by using 𝐿2 ⊲⊳ 𝐷1
to cancel the overlapping part of 𝐿2 and 𝐷1. For instance, we have ⟨|ℓ : 𝑃⟩ ◦ ⟨ℓ |⟩ = ⟨|⟩.

Composition is well-defined since composing followed by applying is equivalent to sequentially
applying (𝜇 ◦ 𝜈) (𝐸) = 𝜈 (𝜇 (𝐸)). We also have associativity (𝜇 ◦ 𝜈) ◦ 𝜉 = 𝜇 ◦ (𝜈 ◦ 𝜉) and identity 1.
The definition of composition naturally generalises to indexed modalities 𝜇𝐹 . We can compose

𝜇𝐹 : 𝐸 → 𝐹 and 𝜈𝐸 : 𝐸′ → 𝐸 to get 𝜇𝐹 ◦ 𝜈𝐸 : 𝐸′ → 𝐹 which is defined as (𝜇 ◦ 𝜈)𝐹 .

Modality Transformations. Just as modalities allow us to manipulate effect contexts, we need
transformations that allow us to change modalities1.

We write 𝜇𝐹 ⇒ 𝜈𝐹 for a transformation between indexed modalities 𝜇𝐹 : 𝐸 → 𝐹 and 𝜈𝐹 : 𝐸′ → 𝐹 .
Intuitively, such a transformation describes how under ambient effect context 𝐹 , the action of 𝜇
can be replaced by the action of 𝜈 . In particular, if we have a variable boxed by 𝜇 under the effect
context 𝐹 , we can use it under a new effect context derived by applying 𝜈 to 𝐹 .

What properties do we expect from 𝜇𝐹 ⇒ 𝜈𝐹 ? To guarantee effect safety, the new effect context 𝐸
given by applying 𝜈 should be larger than the 𝐸′ given by applying 𝜇. To avoid accidental handling,
when 𝜇 is relative (which means the variable depends on the ambient effect context), the new effect
context 𝐸′ should not accidentally capture more effects than those specified by 𝜇 and the ambient
effect context. Moreover, we want the transformation to be stable under sub-effecting. We formally
define 𝜇𝐹 ⇒ 𝜈𝐹 by the transitive closure of the following three rules.

MT-Abs
𝜇𝐹 : 𝐸′ → 𝐹 𝐸 ⩽ 𝐸′

[𝐸]𝐹 ⇒ 𝜇𝐹

MT-Upcast
𝐷 ⩽ 𝐷 ′

⟨𝐿 |𝐷⟩𝐹 ⇒ ⟨𝐿 |𝐷 ′⟩𝐹

MT-Expand
(𝐹 − 𝐿) ≡ ℓ : 𝑃, 𝐸

⟨ℓ, 𝐿 |𝐷, ℓ : 𝑃⟩𝐹 ⇔ ⟨𝐿 |𝐷⟩𝐹
MT-Abs allows us to transform an absolute modality to any other modality as long as no effect

leaks. MT-Upcast allow us to upcast a label with an absent signature in 𝐷 to an arbitrary signature,
since the corresponding operation is unused. Recall that the subtyping relation between extensions
only upcasts signatures. MT-Expand is bidirectional. It allows us to simultaneously mask and
extend some operations given that these operations exist in the ambient effect context 𝐹 .

1The interested reader may wonder if we would need yet another notion of transforming a modality transformation, but
thankfully this is not necessary: there is only one modality transformation between any two modalities
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Let us give some examples here. First, []𝐸 ⇒ 𝜇𝐸 always holds, consistent with the intuition
that pure values can be used anywhere. Second, ⟨|ℓ : −⟩𝐸 ⇒ ⟨|ℓ : 𝑃⟩𝐸 always holds. Third, we have
⟨ℓ |ℓ : 𝑃⟩ℓ :𝑃,𝐸 ⇔ ⟨|⟩ℓ :𝑃,𝐸 in both directions. Last, ⟨|ℓ : 𝑃⟩𝐸 ⇒ ⟨|ℓ : 𝑃, ℓ ′ : 𝑃 ′⟩𝐸 does not hold for any
𝐸, avoiding accidental handling.

The following lemma shows that the syntactic definition of transformation matches the semantics
of our intuition. The proof is in Appendix A.4.

Lemma 3.1 (Semantics of modality transformation). We have 𝜇𝐹 ⇒ 𝜈𝐹 if and only if

𝜇 (𝐹 ′) ⩽ 𝜈 (𝐹 ′) for all 𝐹 ′ with 𝐹 ⩽ 𝐹 ′.

Attentive readers may have observed that this lemma characterises the essence of effect safety,
but does not mention accidental handling explicitly. Actually, since Met allows same labels to
have different signatures, effect safety implies that there is no accidental handling. For instance,
⟨|⟩𝐹 ⇒ ⟨|ℓ : 𝑃⟩𝐹 violates Lemma 3.1 since 𝐹, ℓ : 𝑃 ′ ̸⩽ ℓ : 𝑃, 𝐹, ℓ : 𝑃 ′ when 𝑃 ̸⩽ 𝑃 ′.

3.4 Kinds and Contexts

Γ ⊢ 𝐴 : 𝐾 Γ ⊢ 𝑃 Γ ⊢ (𝜇,𝐴) ⇒ 𝜈 @ 𝐹

Γ ∋ 𝛼 : 𝐾
Γ ⊢ 𝛼 : 𝐾

Γ ⊢ 𝐴 : Abs
Γ ⊢ 𝐴 : Any

Γ ⊢ [𝐸] Γ ⊢ 𝐴 : Any
Γ ⊢ [𝐸]𝐴 : Abs

Γ ⊢ ⟨𝐿 |𝐷⟩ Γ ⊢ 𝐴 : 𝐾
Γ ⊢ ⟨𝐿 |𝐷⟩𝐴 : 𝐾

Γ ⊢ 𝐴 : Any
Γ ⊢ 𝐵 : Any

Γ ⊢ 𝐴 → 𝐵 : Any

Γ ⊢ 𝐴 : Abs
Γ ⊢ 𝐵 : Abs
Γ ⊢ 𝐴 ↠ 𝐵

Γ ⊢ 𝐴 : Abs
Γ ⊢ (𝜇,𝐴) ⇒ 𝜈 @ 𝐹

𝜇𝐹 ⇒ 𝜈𝐹

Γ ⊢ (𝜇,𝐴) ⇒ 𝜈 @ 𝐹

Γ @𝐸

· @𝐸

Γ @ 𝐹 𝜇𝐹 : 𝐸 → 𝐹 Γ ⊢ 𝐴 : 𝐾
Γ, 𝑥 :𝜇𝐹 𝐴 @ 𝐹

Γ @𝐸

Γ, 𝛼 : 𝐾 @𝐸

Γ @ 𝐹 𝜇𝐹 : 𝐸 → 𝐹

Γ,µ𝜇𝐹 @𝐸

Fig. 2. Selected kinding, well-formedness, and auxiliary rules for Met.

As illustrated in Section 2.7, we have two kinds Abs and Any. The Abs kind is a sub-kind of the
kind of all types Any, and denotes types of values that are guaranteed not to use operations from
the ambient effect context.

We show the kinding and well-formedness rules for types and signatures in Figure 2, relying on
the well-formedness of modalities and effect contexts, which is standard and defined in Appendix
A.1. Function arrows have kind Any due to the possibility of using operations from the ambient
effect context. Boxing a type by the absolute modality yields an absolute type as it cannot depend
on the ambient effect context.
A type at kind Abs may still contain an effectful computation, as long as it is contained within

an absolute modality. We restrict the kind of the argument and return value of effects to be Abs in
order to prevent effect leakage as discussed in Section 2.10.

Contexts are ordered. We define the relation Γ @𝐸 that context Γ is well-formed at effect context
𝐸 in Figure 2. Each term variable binding 𝑥 :𝜇𝐹 𝐴 in contexts is tagged with an indexed modality 𝜇𝐹
which arises from unboxing. Intuitively, this annotation means that the term bound to 𝑥 is defined
inside modality 𝜇 under the effect context 𝐹 .
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Contexts contain locks carrying indexed modalities which track effect transformations for
variable bindings. For instance, the following context is well-formed at effect context 𝐸. Reading
from left to right, the lock µ[𝐸 ]𝐹 switches the effect context from 𝐹 to 𝐸.

𝑥 :𝜇𝐹 𝐴1, 𝑦 :𝜈𝐹 𝐴2,µ[𝐸 ]𝐹 , 𝑧 :𝜉𝐸 𝐴3 @𝐸

Following MTT, we define locks(−) to compose all the modalities on the locks in a context.
locks(·) = 1

locks(Γ,µ𝜇𝐹 ) = locks(Γ) ◦ 𝜇𝐹
locks(Γ, 𝑥 :𝜇𝐹 𝐴) = locks(Γ)
locks(Γ, 𝛼 : 𝐾) = locks(Γ)

Following MTT, we identify contexts up to the following two equations.
Γ,µ1𝐸 @𝐸 = Γ @𝐸 Γ,µ𝜇𝐹 ,µ𝜈𝐹 ′ @𝐸 = Γ,µ𝜇𝐹 ◦𝜈𝐹 ′ @𝐸

3.5 Typing

The typing rules of Met are shown in Figure 3. The typing judgement Γ ⊢ 𝑀 : 𝐴 @𝐸 means that
the term 𝑀 has type 𝐴 under context Γ and effect context 𝐸. As usual, we require Γ @𝐸, Γ ⊢ 𝐸,
Γ ⊢ 𝐴 : 𝐾 for some 𝐾 , and well-formedness for type annotations as well-formedness conditions.
We explain the interesting rules, which are highlighted in grey; the other rules are standard.

Γ ⊢ 𝑀 : 𝐴 @𝐸

T-Var
𝜈𝐹 = locks(Γ′) : 𝐸 → 𝐹

Γ ⊢ (𝜇,𝐴) ⇒ 𝜈 @ 𝐹

Γ, 𝑥 :𝜇𝐹 𝐴, Γ
′ ⊢ 𝑥 : 𝐴 @𝐸

T-Mod
𝜇𝐹 : 𝐸 → 𝐹

Γ,µ𝜇𝐹 ⊢ 𝑉 : 𝐴 @𝐸

Γ ⊢ mod𝜇 𝑉 : 𝜇𝐴 @ 𝐹

T-Letmod
𝜈𝐹 : 𝐸 → 𝐹 Γ,µ𝜈𝐹 ⊢ 𝑉 : 𝜇𝐴 @𝐸

Γ, 𝑥 :𝜈𝐹 ◦𝜇𝐸 𝐴 ⊢ 𝑀 : 𝐵 @ 𝐹

Γ ⊢ let𝜈 mod𝜇 𝑥 = 𝑉 in 𝑀 : 𝐵 @ 𝐹

T-TAbs
Γ, 𝛼 : 𝐾 ⊢ 𝑉 : 𝐴 @𝐸

Γ ⊢ Λ𝛼𝐾 .𝑉 : ∀𝛼𝐾 .𝐴 @𝐸

T-Abs
Γ, 𝑥 : 𝐴 ⊢ 𝑀 : 𝐵 @𝐸

Γ ⊢ 𝜆𝑥𝐴 .𝑀 : 𝐴 → 𝐵 @𝐸

T-TApp
Γ ⊢ 𝑀 : ∀𝛼𝐾 .𝐵 @𝐸 Γ ⊢ 𝐴 : 𝐾

Γ ⊢ 𝑀𝐴 : 𝐵 [𝐴/𝛼] @𝐸

T-App
Γ ⊢ 𝑀 : 𝐴 → 𝐵 @𝐸 Γ ⊢ 𝑁 : 𝐴 @𝐸

Γ ⊢ 𝑀 𝑁 : 𝐵 @𝐸

T-Do
𝐸 = ℓ : 𝐴 ↠ 𝐵, 𝐹 Γ ⊢ 𝑁 : 𝐴 @𝐸

Γ ⊢ do ℓ 𝑁 : 𝐵 @𝐸

T-Mask
Γ,µ⟨𝐿 |⟩𝐹 ⊢ 𝑀 : 𝐴 @ 𝐹 − 𝐿
Γ ⊢ mask𝐿 𝑀 : ⟨𝐿 |⟩𝐴 @ 𝐹

T-Handler
𝐻 = {return 𝑥 ↦→ 𝑁 } ⊎ {ℓ𝑖 𝑝𝑖 𝑟𝑖 ↦→ 𝑁𝑖 }𝑖

Γ,µ⟨|𝐷 ⟩𝐹 ⊢ 𝑀 : 𝐴 @𝐷 + 𝐹 Γ, 𝑥 : ⟨|𝐷⟩𝐴 ⊢ 𝑁 : 𝐵 @ 𝐹

𝐷 = {ℓ𝑖 : 𝐴𝑖 ↠ 𝐵𝑖 }𝑖 [Γ, 𝑝𝑖 : 𝐴𝑖 , 𝑟𝑖 : 𝐵𝑖 → 𝐵 ⊢ 𝑁𝑖 : 𝐵 @ 𝐹 ]𝑖
Γ ⊢ handle 𝑀 with 𝐻 : 𝐵 @ 𝐹

Fig. 3. Typing rules for core Met.

Modality Introduction and Elimination. Modalities are introduced by T-Mod and eliminated by
T-Letmod. The termmod𝜇 𝑉 introduces modality 𝜇 to the type of the conclusion and lock µ𝜇𝐹 into
the context of the premise, and requires the value𝑉 to be well-typed under the new effect context 𝐸
manipulated by 𝜇. The lock µ𝜇𝐹 tracks the change to the effect context. We restrict mod to values
as it manipulates effect contexts [2, 34]. Otherwise, a term such as mod⟨| ℓ ⟩ (do ℓ 𝑉 ) would type
check under the empty effect context but get stuck.
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Following MTT, we use let-style modality elimination which takes another modality 𝜈 in addition
to the modality 𝜇 that is eliminated from 𝑉 . This is crucial for sequential unboxing. For instance, 𝑦
and 𝑧 in the following term are bound as 𝑦 :𝜈 𝜇𝐴 and 𝑧 :𝜈◦𝜇 𝐴, respectively.

𝜆𝑥𝜈𝜇𝐴 .let mod𝜈 𝑦 = 𝑥 in let𝜈 mod𝜇 𝑧 = 𝑦 in 𝑀

As with boxing, unboxing is restricted to values. We treat a type application of a value as itself a
value as type application does not perform any effects. Consequently, we gain the flexibility to use
type applications in boxing and unboxing.

Masking and Handling. Masking and handling provide specialised means to introduce values
with relative modalities. A mask mask𝐿𝑀 introduces the mask modality ⟨𝐿 |⟩, and a handler
handle 𝑀 with 𝐻 binds a value boxed with the extension modality ⟨|𝐷⟩ in its return clause. Unlike
mod, these constructs apply to computations as they perform masking and handling semantically.
As shown in Section 2.7, entering the scope of a handler for operations 𝐷 means that 𝐷 is

extended with the ambient effect context. Values escaping a handler must be boxed with ⟨|𝐷⟩ since
they may use these previously extended operations. Similarly, going into the scope ofmask𝐿 means
that effect labels 𝐿 are removed from the ambient effects 𝐹 . For those values leaving masks, they
need to be boxed with ⟨𝐿 |⟩ since they cannot use these previously masked operations.

Accessing Variables. The T-Var rule uses the auxiliary judgement Γ ⊢ (𝜇,𝐴) ⇒ 𝜈 @ 𝐹 defined
in Figure 2. Variables of absolute types can always be used as they do not depend on the ambient
effect context. For a non-absolute term variable binding 𝑥 :𝜇𝐹 𝐴 from context Γ, 𝑥 :𝜇𝐹 𝐴, Γ′, we
must guarantee that it is safe to use 𝑥 in the current effect context. The effect context where 𝑥 is
introduced is 𝐹 . As we track all transformations on effect contexts up to the binding of 𝑥 as locks
in Γ′, the current effect context 𝐸 is obtained by applying all modalities on locks in Γ′ to 𝐹 . Thus,
the condition 𝜇𝐹 ⇒ locks(Γ′)𝐹 defined in Section 3.3 is needed for effect safety.

Let us look at some examples. Consider the following judgement.
µ⟨| ℓ2 ⟩, 𝑦 :⟨| ℓ1 ⟩ℓ2 1 → Int ⊢ handle 𝑦 () with {ℓ1} : _ @ ℓ2

The handler introduces a lock µ⟨| ℓ1 ⟩ℓ2 . This judgement is valid because we have ⟨|ℓ1⟩ℓ2 ⇒ ⟨|ℓ1⟩ℓ2 . It
would be invalid if we were to extend the handler to handle ℓ2, as ⟨|ℓ1⟩ℓ2 ⇒ ⟨|ℓ1, ℓ2⟩ℓ2 does not hold.
Otherwise, the function 𝑦 might use ℓ2 which is accidentally handled here.

µ⟨| ℓ2 ⟩, 𝑦 :⟨| ℓ1 ⟩ℓ2 1 → Int ⊢wrong handle 𝑦 () with {ℓ1, ℓ2} : _ @ ℓ2

We can fix this judgement by masking ℓ2. The transformation ⟨|ℓ1⟩ℓ2 ⇒ (⟨|ℓ1, ℓ2⟩ℓ2 ◦ ⟨ℓ2 |⟩ℓ1,ℓ2,ℓ2 ) is
well-defined since ⟨|ℓ1, ℓ2⟩ℓ2 ◦ ⟨ℓ2 |⟩ℓ1,ℓ2,ℓ2 = ⟨|ℓ1⟩ℓ2 .

µ⟨| ℓ2 ⟩, 𝑦 :⟨| ℓ1 ⟩ℓ2 1 → Int ⊢ handle maskℓ2 (𝑦 ()) with {ℓ1, ℓ2} : _ @ ℓ2

Subeffecting. Subeffecting is incorporated into the T-Var rule within the transformation relation
𝜇𝐹 ⇒ 𝜈𝐹 . We have seen how subeffecting works in Section 2.2. We give another example here
upcasting [] to [𝐸].

𝜆𝑥 [ ] (Int→Int) .let mod[ ] 𝑦 = 𝑥 in mod[𝐸 ] 𝑦 : [] (Int → Int) → [𝐸] (Int → Int)
Due to subeffecting, given a variable binding 𝑥 : 1 → 1 under ambient effect context 𝐸, we

cannot assume 𝐸 is exactly the effect context required to invoke a function bound to 𝑥 . For instance,
consider the following program.

let 𝑓 = mod[ ] (𝜆𝑥1→1.𝑥 ()) in let mod[ ] 𝑔 = 𝑓 in 𝑔 (𝜆_.do ℓ 𝑉 ; ())
Though the function 𝜆𝑥1→1.𝑥 is typed checked with the empty ambient effect context, the term
bound to 𝑥 in the application of 𝑔 actually invokes ℓ .



687

688

689

690

691

692

693

694

695

696

697

698

699

700

701

702

703

704

705

706

707

708

709

710

711

712

713

714

715

716

717

718

719

720

721

722

723

724

725

726

727

728

729

730

731

732

733

734

735

Modal Effect Types 15

3.6 Masking and Handling with Absolute Kinds

Masking attaches a mask modality to the return value of the term being masked, and handling
attaches an extension modality to the return value of the term being handled. In practice, these
return values often have absolute kind, which means these modalities can be omitted. We provide
the following syntactic sugar to treats absolute return values specially for masking and handling.
We also introduce syntactic sugar for specialised unboxing.

mask
Abs

𝐿 𝑀 � let mod⟨𝐿 |⟩ 𝑥 = mask𝐿 𝑀 in 𝑥

handle
Abs𝑀 with 𝐻 � handle 𝑀 with 𝐻 ′

where 𝐻 = {return 𝑥 ↦→ 𝑁 } ⊎ {ℓ𝑖 𝑝𝑖 𝑟𝑖 ↦→ 𝑁𝑖 }𝑖
𝐻 ′ = {return 𝑥 ↦→ let mod⟨|𝐷 ⟩ 𝑥 = 𝑥 in 𝑁 } ⊎ {ℓ𝑖 𝑝𝑖 𝑟𝑖 ↦→ 𝑁𝑖 }𝑖

let mod𝜇 = 𝑀 in 𝑁 � (𝜆𝑥.let mod𝜇 𝑥 = 𝑥 in 𝑁 ) 𝑀
let mod𝜇;𝜈 𝑥 = 𝑉 in 𝑀 � let mod𝜇 𝑥 = 𝑉 in let𝜇 mod𝜈 𝑥 = 𝑥 in 𝑀

The following typing rules are derivable for absolute 𝐴, which allow us to elide modalities:

T-MaskAbs
Γ ⊢ 𝐴 : Abs

Γ,µ⟨𝐿 |⟩𝐹 ⊢ 𝑀 : 𝐴 @ 𝐹 − 𝐿
Γ ⊢ mask

Abs

𝐿 𝑀 : 𝐴 @ 𝐹

T-HandleAbs
Γ ⊢ 𝐴 : Abs 𝐻 = {return 𝑥 ↦→ 𝑁 } ⊎ {ℓ𝑖 𝑝𝑖 𝑟𝑖 ↦→ 𝑁𝑖 }𝑖

Γ,µ⟨|𝐷 ⟩𝐹 ⊢ 𝑀 : 𝐴 @𝐷 + 𝐹 Γ, 𝑥 : 𝐴 ⊢ 𝑁 : 𝐵 @ 𝐹

𝐷 = {ℓ𝑖 : 𝐴𝑖 ↠ 𝐵𝑖 }𝑖 [Γ, 𝑝𝑖 : 𝐴𝑖 , 𝑟𝑖 : 𝐵𝑖 → 𝐵 ⊢ 𝑁𝑖 : 𝐵 @ 𝐹 ]𝑖
Γ ⊢ handleAbs𝑀 with 𝐻 : 𝐵 @ 𝐹

3.7 Operational Semantics

The operational semantics for Met is quite standard. As type application values can reduce, we
first define value normal forms𝑈 that cannot reduce, and evaluation contexts E:

Value normal forms 𝑈 ::= 𝑥 | 𝜆𝑥𝐴 .𝑀 | Λ𝛼𝐾 .𝑉 | mod𝜇 𝑈

Evaluation contexts E ::= [ ] | E 𝐴 | E 𝑁 | 𝑈 E | mod𝜇 E | let𝜈 mod𝜇 𝑥 = E in 𝑀

| do ℓ E | mask𝐿 E | handle E with 𝐻

The reduction rules are as follows.

E-App (𝜆𝑥𝐴 .𝑀)𝑈 { 𝑀 [𝑈 /𝑥]
E-TApp (Λ𝛼.𝑉 )𝐴{ 𝑉 [𝐴/𝛼]
E-Letmod let𝜈 mod𝜇 𝑥 = mod𝜇 𝑈 in 𝑀 { 𝑀 [𝑈 /𝑥]
E-Mask mask𝐿𝑈 { mod⟨𝐿 |⟩ 𝑈
E-Ret handle 𝑈 with 𝐻 { 𝑁 [(mod⟨|𝐷 ⟩ 𝑈 )/𝑥],where (return 𝑥 ↦→ 𝑁 ) ∈ 𝐻
E-Op handle E[do ℓ 𝑈 ] with 𝐻 { 𝑁 [𝑈 /𝑝, (𝜆𝑦.handle E[𝑦] with 𝐻 )/𝑟 ],

where 0−free(ℓ, E) and (ℓ 𝑝 𝑟 ↦→ 𝑁 ) ∈ 𝐻
E-Lift E[𝑀] { E[𝑁 ], if𝑀 { 𝑁

The only slightly non-standard aspect of the rules is the boxing of values escaping masks and
handlers. In E-Ret, we assume handlers are decorated with the operations 𝐷 that they handle.
Following Biernacki et al. [4], the predicate 𝑛−free(ℓ, E) is defined inductively on evaluation

contexts as follows. The meta function count(ℓ ;𝐿) yields the number of ℓ labels in 𝐿. We omit the
inductive cases that do not change 𝑛. Notice that the cases for introduction and elimination of
modalities fall into this category as they require values which cannot be of the form do ℓ 𝑉 .
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0−free(ℓ, [ ])
𝑛−free(ℓ, E)

(𝑛)−free(ℓ,do ℓ ′ E)
𝑛−free(ℓ, E) count(𝑙 ;𝐿) =𝑚

(𝑛 +𝑚)−free(ℓ,mask𝐿 E)

(𝑛 + 1)−free(ℓ, E) ℓ ∈ dom(𝐻 )
𝑛−free(ℓ,handle E with 𝐻 )

𝑛−free(ℓ, E) ℓ ∉ dom(𝐻 )
𝑛−free(ℓ,handle E with 𝐻 )

3.8 Type Soundness and Effect Safety

We prove type soundness and effect safety for Met. Our proofs cover the extensions in Section 4.
Met enjoys relatively standard substitution properties along the lines of Kavvos and Gratzer

[29]. For example, we have the following rule for substituting values with modalities into terms.

Γ,µ𝜇𝐹 ⊢ 𝑉 : 𝐴 @ 𝐹 ′ Γ, 𝑥 :𝜇𝐹 𝐴, Γ
′ ⊢ 𝑀 : 𝐵 @𝐸

Γ, Γ′ ⊢ 𝑀 [𝑉 /𝑥] : 𝐵 @𝐸

We state and prove the relevant properties in Appendix A.5.
To state syntactic type soundness, we first define normal forms.

Definition 3.2 (Normal Forms). We say a term𝑀 is in a normal form with respect to effect type 𝐸,
if it is either in value normal form𝑀 = 𝑈 or of form𝑀 = E[do ℓ 𝑈 ] for ℓ ∈ 𝐸 and 𝑛−free(ℓ, E).

We have the following theorems which in together give type soundness and effect safety, proved
in Appendices A.6 and A.7.

Theorem 3.3 (Progress). If ⊢ 𝑀 : 𝐴 @𝐸, then either there exists 𝑁 such that𝑀 { 𝑁 or𝑀 is in

a normal form with respect to 𝐸.

Theorem 3.4 (Subject Reduction). If Γ ⊢ 𝑀 : 𝐴 @𝐸 and𝑀 { 𝑁 , then Γ ⊢ 𝑁 : 𝐴 @𝐸.

4 Extensions to the Core Calculus

In this section we demonstrate that Met scales to support data types, richer handlers, and other
useful primitives that provide extra expressiveness. We also introduce Mete, an extension of Met
with effect variables, recovering the full expressive power of row-based effect systems. We prove
type soundness and effect safety for all extensions.

4.1 Data Types and Crisp Induction

We demonstrate the extensibility of Met with data types by extending it with pair and sum types.
Figure 4 shows the syntax and typing rules. The T-Pair, T-Inl, and T-Inr are standard introduction
rules. The elimination rules T-CrispPair and T-CrispSum are more interesting. In addition to
normal pattern matching, they interpret the value𝑉 under the effect context transformed by certain
modalities 𝜈 , which can then be tagged to the variable bindings in case clauses. They follow the
crisp induction principles of multimodal type theory [18, 45]. These crisp elimination rules provide
extra expressiveness. For example, we can write the following function which transforms a sum
of type 𝜇 (𝐴 + 𝐵) to another sum of type (𝜇𝐴 + 𝜇𝐵). This function is not expressible without crisp
elimination rules.

𝜆𝑥𝜇 (𝐴+𝐵) .let mod𝜇 𝑦 = 𝑥 in case𝜇 𝑦 of {inl 𝑥1 ↦→ inl (mod𝜇 𝑥1), inr 𝑥2 ↦→ inr (mod𝜇 𝑥2)}

The semantics of this extension is standard and shown in Appendix A.2.
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T-Pair
Γ ⊢ 𝑀 : 𝐴 @𝐸 Γ ⊢ 𝑁 : 𝐵 @𝐸

Γ ⊢ (𝑀, 𝑁 ) : (𝐴, 𝐵) @𝐸

T-Inl
Γ ⊢ 𝑀 : 𝐴 @𝐸

Γ ⊢ inl 𝑀 : 𝐴 + 𝐵 @𝐸

T-Inr
Γ ⊢ 𝑀 : 𝐵 @𝐸

Γ ⊢ inr 𝑀 : 𝐴 + 𝐵 @𝐸

T-CrispPair
𝜈𝐹 : 𝐸 → 𝐹 Γ,µ𝜈𝐹 ⊢ 𝑉 : (𝐴, 𝐵) @𝐸

Γ, 𝑥 :𝜈𝐹 𝐴,𝑦 :𝜈𝐹 𝐵 ⊢ 𝑀 : 𝐴′ @ 𝐹

Γ ⊢ case𝜈 𝑉 of (𝑥,𝑦) ↦→ 𝑀 : 𝐴′ @ 𝐹

T-CrispSum
𝜈𝐹 : 𝐸 → 𝐹 Γ,µ𝜈𝐹 ⊢ 𝑉 : 𝐴 + 𝐵 @𝐸

Γ, 𝑥 :𝜈𝐹 𝐴 ⊢ 𝑀1 : 𝐴′ @ 𝐹 Γ, 𝑦 :𝜈𝐹 𝐵 ⊢ 𝑀2 : 𝐴′ @ 𝐹

Γ ⊢ case𝜈 𝑉 of {inl 𝑥 ↦→ 𝑀1, inr 𝑦 ↦→ 𝑀2} : 𝐴′ @ 𝐹

Fig. 4. Typing rules for data types in Met.

4.2 Commuting Modalities and Type Abstraction

Crisp elimination rules in Section 4.1 allow us to commute modalities and data types. Similarly, it is
also sound and useful to commute type abstractions and modalities. However, the current modality
elimination rule cannot do so, for a similar reason to why it is not possible to transform ∀𝛼.𝐴 + 𝐵
to (∀𝛼.𝐴) + (∀𝛼.𝐵) in System F. We extend modality elimination to the form let𝜈 mod𝜇 Λ𝛼𝐾𝑥 =

𝑉 in 𝑀 which allows 𝑉 to use additional type variables in 𝛼𝐾 which are abstracted when bound to
𝑥 . The extended typing and reduction rules are as follows.

T-Letmod’
𝜈𝐹 : 𝐸 → 𝐹 Γ,µ𝜈𝐹 , 𝛼 : 𝐾 ⊢ 𝑉 : 𝜇𝐴 @𝐸 Γ, 𝑥 :𝜈𝐹 ◦𝜇𝐸 ∀𝛼𝐾 .𝐴 ⊢ 𝑀 : 𝐵 @ 𝐹

Γ ⊢ let𝜈 mod𝜇 Λ𝛼𝐾 .𝑥 = 𝑉 in 𝑀 : 𝐵 @ 𝐹

E-Letmod’ let𝜈 mod𝜇 Λ𝛼𝐾 .𝑥 = mod𝜇 𝑈 in 𝑀 { 𝑀 [(Λ𝛼𝐾 .𝑈 )/𝑥]
For instance, we can now write a function of type ∀𝛼𝐾 .𝜇𝐴 → 𝜇 (∀𝛼.𝐴) where 𝛼 ∉ ftv(𝜇) as follows.

𝜆𝑥∀𝛼
𝐾 .𝜇𝐴 .let mod𝜇 Λ𝛼

𝐾 .𝑦 = 𝑥 𝛼 in mod𝜇 𝑦

4.3 Boxing Computations under Empty Effect Contexts

We have restricted boxes to values in order to guarantee effect safety. This restriction is not essential
for []. For example, suppose we have 𝑓 :[ ] (𝐴 → 𝐵) and 𝑥 :[ ] 𝐴, it is sound to treat mod[ ] (𝑓 𝑥)
as a computation which returns a value of type []𝐵. As 𝑓 𝑥 is evaluated under the empty effect
context, we can guarantee that it cannot get stuck on unhandled operations.

We extend the introduction rule for the empty absolute modality to allow non-value terms with
the following typing rule.

T-BoxAbs
Γ,µ[ ]𝐹 ⊢ 𝑀 : 𝐴 @ ·

Γ ⊢ mod[ ] 𝑀 : []𝐴 @ 𝐹

The same generalisation applies to T-Mask and T-Handler. As an example, we can write the
following app function.

app : ∀𝛼.∀𝛽.[] (𝛼 → 𝛽) → []𝛼 → []𝛽
app = Λ𝛼.Λ𝛽.𝜆𝑓 .𝜆𝑥 .let mod[ ] 𝑓 = 𝑓 in let mod[ ] 𝑥 = 𝑥 in mod[ ] (𝑓 𝑥)

The formula corresponding to the type of this function is commonly referred to as Axiom K in
modal logic and is also satisfied by other similar modalities such as the safe modality of Choudhury
and Krishnaswami [10].
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4.4 Absolute and Shallow Handlers

Up to now we have considered only deep handlers of the form handle 𝑀 with 𝐻 where𝑀 depends
on the ambient effect contexts. Deep handlers automatically wrap the handler around the body of
the continuation 𝑟 captured in a handler clause, and thus 𝑟 depends on the ambient effect context.
Though this usually suffices in practice, in some cases we may want the computation 𝑀 or the
continuation to be absolute, i.e., independent from the ambient effect context. This situation is
more prevalent in Mete with effect variables.

We extend the handler syntax to handle
A𝑀 with 𝐻 with the following typing rule.

T-HandlerA
𝐷 = {ℓ𝑖 : 𝐴𝑖 ↠ 𝐵𝑖 }𝑖 Γ,µ[𝐷+𝐸 ]𝐹 ⊢ 𝑀 : 𝐴 @𝐷 + 𝐸

Γ, 𝑥 : [𝐷 + 𝐸]𝐴 ⊢ 𝑁 : 𝐵 @ 𝐹 [Γ, 𝑝𝑖 : 𝐴𝑖 , 𝑟𝑖 : [𝐹 ] (𝐵𝑖 → 𝐵) ⊢ 𝑁𝑖 : 𝐵 @ 𝐹 ]𝑖
Γ ⊢ handleA 𝑀 with {return 𝑥 ↦→ 𝑁 } ⊎ {ℓ𝑖 𝑝𝑖 𝑟𝑖 ↦→ 𝑁𝑖 }𝑖 : 𝐵 @ 𝐹

The T-HandlerA rule extends the context with an absolute lock µ[𝐷+𝐸 ]𝐹 specifying the effect
context for 𝑀 , and boxes the continuation 𝑟 with the absolute modality [𝐹 ], where 𝐹 exactly
gives the effect context after handling. We also extend the handler syntax with shallow handlers
handle

†𝑀 with 𝐻 , in which the handler is not automatically wrapped around the body of
continuations, and absolute shallow handlers handleA†𝑀 with 𝐻 [22, 26]. The full syntax, typing
rules, and semantics for these handlers are shown in Appendix A.2.

4.5 Effect Variables

Though Met suffices for many common use-cases of effects and handlers in practice, there are
situations in which it is useful to refer to one or more effect contexts that differ from the ambient
one (such as the higher-order fork operation in Section 2.10).

Mete, the extension of Met with effect variables, is quite lightweight and straightforward.

Effects 𝐸 ::= · | ℓ : 𝑃, 𝐸 | 𝜀 | 𝐸\𝐿 Kinds 𝐾 ::= · · · | Eff

𝐸 ≡ 𝐹 𝐸 ⩽ 𝐹

𝐸\· ≡ 𝐸 ·\𝐿 ≡ · (ℓ : 𝑃, 𝐸)\(ℓ, 𝐿) ≡ 𝐸\𝐿
ℓ ∉ 𝐿

(ℓ : 𝑃, 𝐸)\𝐿 ≡ ℓ : 𝑃, 𝐸\𝐿

(𝜀\𝐿)\𝐿′ ≡ 𝜀\(𝐿, 𝐿′) 𝜀\𝐿 ≡ 𝜀\𝐿 · ⩽ 𝜀\𝐿 𝜀\𝐿 ⩽ 𝜀\𝐿

𝐸 − 𝐿
𝜀\𝐿 − 𝐿′ = 𝜀\(𝐿, 𝐿′)

We extend the syntax of effect contexts 𝐸 with effect variables 𝜀. As is typical for row polymor-
phism, we restrict each effect type to contain at most one effect variable. We also extend the syntax
with effect masking 𝐸\𝐿, which means the effect types given by masking 𝐿 from 𝐸. The latter is
needed to keep the syntax of effect contexts closed under the masking operation 𝐸 − 𝐿; otherwise
we cannot define 𝜀 − 𝐿. In other words, the syntax of effects is the free algebra generated from
extending 𝐷, 𝐸 and masking 𝐸\𝐿 with base elements · and 𝜀.
The effect equivalence and subeffecting rules are extended in a relatively standard way. We

do not allow non-trivial equivalence or subtyping between different effect variables. We always
identity effects up to the equivalence relation. That is, we can directly treat syntax of effects as
the free algebra quotiented by the equivalence relation 𝐸 ≡ 𝐹 . Observe that using the equivalence
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relation, all open effect types with effect variable 𝜀 can be simplified to an equivalent normal form
𝐷, 𝜀\𝐿. We assume the operation 𝐸 − 𝐿 is defined for effects 𝐸 in normal form and extend it with
one case for effect variables.
As the extension of Mete is local and only influences relevant definitions of effects, the meta

theory and proofs for Met directly apply to Mete without any non-trivial changes.

5 Encoding Row-based Effect Systems into Met

Even without effect variables, Met is expressive enough to encode programs from conventional
row-based effect systems as long as effect variables on function arrows always refer to the lexically
closest one. This is an important special case, since most functions in practice use at most one
effect variable. For example, as of July 2024, the Koka repository contains 520 effectful functions
across 112 files but only 86 functions across 5 files use more than one effect variable, almost all of
them internal primitives for handlers not exposed to programmers. Moreover, almost all programs
in the Frank repository make no mention of effect variables at all, relying on syntactic sugar to
hide the single effect variable.

5.1 Row Effect Types with a Single Effect Variable

We define F1eff , a System F-style core calculus with row-based effect types in the style of Koka [31],
but where each scope can only refer to a single effect variable. The syntax is defined as follows.

Types 𝐴, 𝐵 ::= Int | 𝐴 →{𝐸 |𝜀 } 𝐵 | ∀𝜀.𝐴
Terms 𝑀, 𝑁 ::= 𝑥 | 𝜆{𝐸 |𝜀 }𝑥𝐴 .𝑀 | 𝑀 𝑁 | Λ𝜀.𝑉 | 𝑀 {𝐸 |𝜀}

| mask𝐿 𝑀 | do ℓ 𝑀 | handle 𝑀 with 𝐻

Values 𝑉 ,𝑊 ::= 𝑥 | 𝜆{𝐸 |𝜀 }𝑥𝐴 .𝑀 | Λ𝜀.𝑉
Effects 𝐸, 𝐹, 𝐿, 𝐷 ::= · | ℓ, 𝐸
Contexts Γ ::= · | Γ, 𝑥 :𝜀 𝐴 | Γ, q

𝐸
| Γ, qΛ

𝐸

We include integers, effectful function arrows, and effect abstraction ∀𝜀.𝐴. As we consider only
one effect variable at a time, we need not track effect variables on function types and effect type
abstraction. Nonetheless, we include them in grey font for easier comparison with existing calculi.
In Γ, we track for each variable the effect variable at which effect context it was introduced. Further,
we add markers q

𝐸
and qΛ

𝐸
to the context, which track the change of effect context due to functions,

masks, handlers, and effect abstraction. These markers are not needed by the typing rules but help
with the encoding. As with Met, we require contexts to be ordered. To convey the essential idea of
the encoding, we omit type polymorphism and data types from F1eff ; we discuss these extensions
in Section 5.3. For simplicity we also assume operation signatures come from a global context
Σ = {ℓ : 𝐴 ↠ 𝐵}, thus unifying extensions, masks, and effects (effect contexts) into one syntactic
category. Mirroring our kind restriction for operation signatures in Met, we assume that these 𝐴
and 𝐵 are not function arrows, but they can be effect abstractions (which may themselves contain
function arrows).
Figure 5 gives the typing rules of F1eff . The judgement Γ ⊢ 𝑀 : 𝐴 ! {𝐸 |𝜀} states that in context Γ,

the term𝑀 has type 𝐴 under an effect context consisting of concrete effects 𝐸 extended with effect
variable 𝜀. The typing rules are mostly standard for row-based effect type systems.

In the R-Var rule, we ensure that either the current effect variable matches the effect variable
at which the variable was introduced or that the value is an effect abstraction. These constraints
guarantee programs can only use one effect variable in one scope.

The R-App, R-Do, R-Mask, and R-Handler rules are standard, while the R-Abs rule is standard
except for requiring the effect variable to remain unchanged.
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The R-EAbs rule introduces a new effect variable 𝜀′ and the R-EApp rule instantiates an effect
abstraction. While conventional systems allow instantiating with any effect row, this rule only
allows instantiation with the ambient effects. The instantiation operator [{𝐸 |𝜀}/] implements
standard type substitution for the single effect variable.

Int[{𝐸 |𝜀}/] = Int

(𝐴 →{𝐹 |𝜀′ } 𝐵) [{𝐸 |𝜀}/] = 𝐴[{𝐸 |𝜀}/] →{𝐹,𝐸 |𝜀 } 𝐵 [{𝐸 |𝜀}/]
(∀𝜀′ .𝐴) [{𝐸 |𝜀}/] = ∀𝜀′ .𝐴

Revisiting the example from Section 2.6, we can write the regen function in F1eff as follows:

regen : ∀.(Int →Yield
Int) →Yield ((1 →Yield,Yield 1) →Yield 1)

regen = Λ.𝜆𝑓 .𝜆𝑚.handle𝑚 () with {return 𝑥 ↦→ 𝑥, Yield 𝑠 𝑟 ↦→ do Yield (𝑓 𝑠); 𝑟 ()}

5.2 Encoding

We now give translations for types and contexts of F1eff into Met. We transform F1eff types at effect
context 𝐸 to modal types in Met by the translation J−K𝐸 . For integer types, we insert the identity
modality. For function arrows, the relative modality ⟨𝐸 − 𝐹 |𝐹 − 𝐸⟩ heralds the transition from effect
context 𝐸 to effect context 𝐹 as we enter the function. For effect abstraction, the empty absolute
modality simulates entering a new effect context with different effect variables. We translate
contexts by translating each type and moving top-level modalities to their bindings. For each
marker, we insert a corresponding lock to reflect the changes of effect context.

Γ ⊢ 𝑀 : 𝐴 ! {𝐸 |𝜀}

R-Var
𝜀 = 𝜀′ or 𝐴 = ∀𝜀′′ .𝐴′

Γ1, 𝑥 :𝜀′ 𝐴, Γ2 ⊢ 𝑥 : 𝐴 ! {𝐸 |𝜀}

R-Abs
Γ, q𝐸, 𝑥 :𝜀 𝐴 ⊢ 𝑀 : 𝐵 ! {𝐹 |𝜀}

Γ ⊢ 𝜆{𝐹 |𝜀 }𝑥𝐴 .𝑀 : 𝐴 →{𝐹 |𝜀 } 𝐵 ! {𝐸 |𝜀}

R-App
Γ ⊢ 𝑀 : 𝐴 →{𝐸 |𝜀 } 𝐵 ! {𝐸 |𝜀}

Γ ⊢ 𝑁 : 𝐴 ! {𝐸 |𝜀}
Γ ⊢ 𝑀 𝑁 : 𝐵 ! {𝐸 |𝜀}

R-EAbs
𝜀′ ∉ ftv(Γ)

Γ, qΛ𝐸 ⊢ 𝑉 : 𝐴 ! {· |𝜀′}
Γ ⊢ Λ𝜀′ .𝑉 : ∀𝜀′ .𝐴 ! {𝐸 |𝜀}

R-EApp
Γ ⊢ 𝑀 : ∀𝜀′ .𝐴 ! {𝐸 |𝜀}

Γ ⊢ 𝑀 {𝐸 |𝜀} : 𝐴[{𝐸 |𝜀}/] ! {𝐸 |𝜀}

R-Mask
Γ, q𝐿+𝐸 ⊢ 𝑀 : 𝐴 ! {𝐸 |𝜀}

Γ ⊢ mask𝐿 𝑀 : 𝐴 ! {𝐿 + 𝐸 |𝜀}

R-Do
(ℓ : 𝐴 ↠ 𝐵) ∈ Σ

Γ ⊢ 𝑀 : 𝐴 ! {ℓ, 𝐸 |𝜀}
Γ ⊢ do ℓ 𝑀 : 𝐵 ! {ℓ, 𝐸 |𝜀}

R-Handler
Γ, q𝐸 ⊢ 𝑀 : 𝐴 ! {ℓ𝑖 , 𝐸 |𝜀} Γ, 𝑥 :𝜀 𝐴 ⊢ 𝑁 : 𝐵 ! {𝐸 |𝜀}

{ℓ𝑖 : 𝐴𝑖 ↠ 𝐵𝑖 } ⊆ Σ [Γ, 𝑝𝑖 :𝜀 𝐴𝑖 , 𝑟𝑖 :𝜀 𝐵𝑖 →𝐸 𝐵 ⊢ 𝑁𝑖 : 𝐵 ! {𝐸 |𝜀}]𝑖
𝐻 = {return 𝑥 ↦→ 𝑁 } ⊎ {ℓ𝑖 𝑝𝑖 𝑟𝑖 ↦→ 𝑁𝑖 }𝑖

Γ ⊢ handle 𝑀 with 𝐻 : 𝐵 ! {𝐸 |𝜀}

Fig. 5. Typing rules of F1eff



981

982

983

984

985

986

987

988

989

990

991

992

993

994

995

996

997

998

999

1000

1001

1002

1003

1004

1005

1006

1007

1008

1009

1010

1011

1012

1013

1014

1015

1016

1017

1018

1019

1020

1021

1022

1023

1024

1025

1026

1027

1028

1029

Modal Effect Types 21

JIntK𝐸 = ⟨|⟩Int
J𝐴 →𝐹 𝐵K𝐸 = ⟨𝐸 − 𝐹 |𝐹 − 𝐸⟩(J𝐴K𝐹 → J𝐵K𝐹 )

J∀.𝐴K𝐸 = []J𝐴K·
topmod(𝜇𝐴) = 𝜇

J·K𝐸 = ·
JΓ, 𝑥 : 𝐴K𝐸 = JΓK𝐸, 𝑥 :𝜇𝐸 𝐴′ for 𝜇𝐴′ = J𝐴K𝐸

JΓ, q
𝐹
K𝐸 = JΓK𝐹 ,µ⟨𝐹−𝐸 |𝐸−𝐹 ⟩

JΓ, qΛ
𝐹
K· = JΓK𝐹 ,µ[ ]

Observe that not every valid typing judgement in F1eff can be transformed to valid typing judge-
ment in Met, because the translation depends on markers in contexts, while the typing of F1eff
does not. We define well-scoped typing judgements, which characterise the typing judgements for
which our encoding is well-defined, as follows.

Definition 5.1 (Well-scoped). A typing judgement Γ1, 𝑥 :𝜀 𝐴, Γ2 ⊢ 𝑀 : 𝐵 !𝐸 is well-scoped for 𝑥 if
either 𝑥 ∉ fv(𝑀) or qΛ

𝐹
∉ Γ2 or 𝐴 = ∀.𝐴′. A typing judgement Γ ⊢ 𝑀 : 𝐴 !𝐸 is well-scoped if it is

well-scoped for all 𝑥 ∈ Γ.

In particular, if the judgement at the bottom of a derivation tree is well-scoped, then every
judgement in the derivation tree is well-scoped.

Figure 6 shows the translation from F1eff terms with their types and effect contexts to Met terms.
We have the following type preservation theorem. The proof is given in Appendix A.8.

Lemma 5.2 (Type preservation of encoding). If Γ ⊢ 𝑀 : 𝐴 ! {𝐸 |𝜀} is well-scoped, then 𝑀 :
𝐴 !𝐸 d 𝑀 ′

and JΓK𝐸 ⊢ 𝑀 ′ : J𝐴K𝐸 @𝐸.

In the term translation, all terms are translated to boxed terms with proper modalities consistent
with those given by the type translation, such that used term variables are always accessible after
translation. We greedily unbox top-level modalities of term variables when they are bound, and
lazily box them when they are used. Throughout, we use the syntax defined in Section 3.6.

Greedy unboxing happens for variable bindings such as 𝜆-abstractions and handlers. In the R-Abs
case, we unbox the top-level modality of variable 𝑥 immediately after 𝑥 is bound. Additionally,
we box the whole function with the relative modality ⟨𝐸 − 𝐹 |𝐹 − 𝐸⟩, reflecting the effect context
transition. In the R-Handler case, we similarly unbox the variable bindings for return clauses
and operation clauses immediately after they are bound. In the operation clauses, we need only
unbox the argument to the handler 𝑝𝑖 ; the resume function 𝑟𝑖 is introduced under the current
effect context 𝐸. In the return clause, we unbox 𝑥 with ⟨|ℓ𝑖⟩ ◦ 𝜇 and then transform this modality
to 𝜇′ given by topmod(J𝐴K𝐸) in order to match the current effect context 𝐸. We have proved this
modality transformation and the ones mentioned below in Appendix A.8.
Similar to the R-Abs case, the R-EAbs case boxes the translated value with the empty absolute

modality. Similar to the return clauses of the R-Handler case, the R-Mask case transforms the
modality ⟨𝐿 |⟩ ◦ 𝜇1 to 𝜇2 in order to match the current effect context 𝐿 + 𝐸.
Lazy boxing happens when variables are used in the R-Var rule. Note that variables might be

used at a different effect context than they were introduced, in which case we must establish the
existence of a modality transformation.

As a result of translating all terms to boxed terms, we must insert unboxing for elimination rules
such as R-App and R-EApp. Nothing special happens for the R-Do case.
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𝑀 : 𝐴 !𝐸 d 𝑀 ′

R-Var
𝜇 ≔ topmod(J𝐴K𝐸)
𝑥 : 𝐴 !𝐸 d mod𝜇 𝑥

R-App
𝑀 : 𝐴 →𝐸 𝐵 !𝐸 d 𝑀 ′

𝑁 : 𝐴 !𝐸 d 𝑁 ′ 𝑥 fresh

𝑀 𝑁 : 𝐵 !𝐸 d let mod⟨ | ⟩ 𝑥 = 𝑀 ′
in 𝑥 𝑁 ′

R-Abs
𝑀 : 𝐵 ! 𝐹 d 𝑀 ′ 𝜈 ≔ ⟨𝐸 − 𝐹 |𝐹 − 𝐸⟩ 𝜇 ≔ topmod(J𝐴K𝐹 )
𝜆𝐹𝑥𝐴 .𝑀 : 𝐴 →𝐹 𝐵 !𝐸 d mod𝜈 (𝜆𝑥J𝐴K𝐹 .let mod𝜇 𝑥 = 𝑥 in 𝑀 ′)

R-EAbs
𝑉 : 𝐴 ! · d 𝑉 ′

Λ.𝑉 : ∀.𝐴 !𝐸 d mod[ ] 𝑉
′

R-EApp
𝑀 : ∀.𝐴 !𝐸 d 𝑀 ′ 𝑥 fresh

𝑀@ : 𝐴[𝐸/] !𝐸 d let mod[ ] 𝑥 = 𝑀 ′
in 𝑥

R-Do
𝑀 : 𝐴 ! ℓ, 𝐸 d 𝑀 ′

do ℓ 𝑀 : 𝐵 ! ℓ, 𝐸 d do ℓ 𝑀 ′

R-Mask
𝑀 : 𝐴 !𝐸 d 𝑀 ′ 𝜇1 ≔ topmod(J𝐴K𝐸) 𝜇2 ≔ topmod(J𝐴K𝐿+𝐸)
mask𝐿 𝑀 : 𝐴 !𝐿 + 𝐸 d let mod⟨𝐿 |⟩;𝜇1 𝑥 = mask𝐿 𝑀

′
in mod𝜇2 𝑥

R-Handler
𝑀 : 𝐴 ! ℓ𝑖 , 𝐸 d 𝑀 ′ 𝑁 : 𝐵 !𝐸 d 𝑁 ′ [𝑁𝑖 : 𝐵 !𝐸 d 𝑁 ′

𝑖 ]𝑖
𝜇 ≔ topmod(J𝐴Kℓ𝑖 ,𝐸) 𝜇′ ≔ topmod(J𝐴K𝐸)

𝑁 ′′ ≔ let mod⟨| ℓ𝑖 ⟩;𝜇 𝑥 = 𝑥 in let𝜇′ mod⟨ | ⟩ 𝑥 = mod⟨ | ⟩ 𝑥 in 𝑁 ′

[𝜇𝑖 ≔ topmod(J𝐴𝑖K·) 𝑁 ′′
𝑖 ≔ let mod𝜇𝑖 𝑝𝑖 = 𝑝𝑖 in 𝑁

′
𝑖 ]𝑖

𝐻 = {return 𝑥 ↦→ 𝑁 } ⊎ {ℓ𝑖 𝑝𝑖 𝑟𝑖 ↦→ 𝑁𝑖 }𝑖 𝐻 ′ ≔ {return 𝑥 ↦→ 𝑁 ′′} ⊎ {ℓ𝑖 𝑝𝑖 𝑟𝑖 ↦→ 𝑁 ′
𝑖 }𝑖

handle 𝑀 with 𝐻 : 𝐵 !𝐸 d handle 𝑀 ′
with 𝐻 ′

Fig. 6. Encoding of F1eff in Met.

Revisiting the regen example from Section 2.6, we can directly translate the F1eff version above as
follows into Met, omitting boxing and unboxing of the identity modality ⟨|⟩.

regen : [Yield] ((⟨|⟩(Int → Int) → ⟨|⟩(⟨|Yield⟩(1 → 1) → 1)))
regen = mod[ ] (mod⟨|Yield⟩ (𝜆𝑓 .(𝜆𝑚.let mod⟨|Yield⟩ 𝑚 =𝑚 in handle𝑚 () with {

return 𝑥 ↦→ let mod⟨|Yield⟩ 𝑥 = 𝑥 in 𝑥,

Yield 𝑠 𝑟 ↦→ do Yield (𝑓 𝑠); 𝑟 () })))
This is essentially the same program as in Section 2.6, but with significant noise due to the greedy

unboxing and (omitted) identity boxes. In practice, identity boxes are not necessary — they are
only generated here to keep the encoding uniform. On the other hand, greedy unboxing is useful
in practice. In Section 6, we show how Metel can automatically infer unboxing.

5.3 Extensibility of the Encoding

We have omitted value type polymorphism and data types in our encoding in order to focus on
conveying the core idea. We now discuss how to extend the encoding to support these features.

Recall that the encoding in Section 5.2 translates each F1eff type and term to a boxed Met type and
term consistently such that variable accessibility is preserved. Generalising the encoding to type
polymorphism is relatively easy, as we need only ensure variable accessibility. For a polymorphic
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value with type ∀𝛼.𝐴, the translation on the value of type 𝐴 would give a value of modal type 𝜇𝐴′

in Met. We can use our extension in Section 4.2 to commute the quantifier and modality to obtain
a value of type 𝜇 (∀𝛼.𝐴′).
Generalising the encoding to data types is more involved. For instance, given a pair of type

(𝐴, 𝐵), the translation on its components might give terms of type 𝜇𝐴′ and 𝜈𝐵′ with unrelated
modalities. This makes it impossible to give the pair a modality other than ⟨|⟩, which can not be
used in all contexts where the pair can be used in F1eff . To ensure variable accessibility, we need to
greedily destruct the pair and unbox its components with modalities 𝜇 and 𝜈 respectively. The uses
of this pair variable in the translated function body are replaced by fresh pairs of these unboxed
components. For variable bindings of recursive data types, we need to greedily destruct only to the
extent that the data type is unfolded in the function body (where we may treat recursive invocations
as opaque). While this requires a somewhat global translation, it does not require destructing and
unboxing the recursive data type more than a small number of times.
The essential reason for the translation being global comes from the fact that we use let-style

unboxing following MTT. For modalities with certain structure (right adjoints), it is possible to use
Fitch-style unboxing [11] which allows terms to be directly unboxed without binding [17, 46]. We
are interested in exploring whether we could extend Met to use Fitch-style unboxing and thus
give a compositional local encoding for recursive data types. Fortunately, these issues appear not
to cause problems in practice. Functional programs typically use pattern-matching in a structured
way that plays nicely with automatic unboxing.

6 A Surface Language with Type Inference

In this section we briefly outline the design of Metel, a call-by-value surface language based on
Mete with Hindley-Milner type inference [13] for ML types and modalities without complicated
constraint solving (albeit some annotations are required for modalities).
The problem of inferring modal effect types is closely related to that of inferring first-class

polymorphism. Box introduction is analogous to type abstraction (which type inference algorithms
realise through generalisation). Box elimination is analogous to type application (which type
inference algorithms realise through instantiation). As such, one can adapt any of the myriad
techniques for combining first-class polymorphism with Hindley-Milner type inference. Metel is
inspired by the approach of FreezeML [15], a system that supports full impredicative polymorphism
with a combination of type annotations and frozen term variables which disable instantiation. Metel
is a conservative extension of ML, and thus can fully infer types for any ML programs without
the need for any annotations. Metel uses the machinery of FreezeML to support modal effect
types, but does not support first-class polymorphism (although incorporating it using FreezeML’s
mechanism would be relatively straightforward).

A central feature of Metel that makes it more convenient to program with than Mete is that it
infers unboxing when variables are used. For instance, the following Metel program

𝜆𝑚⟨|Ask⟩ (1→Int) .handle𝑚 () with {Ask _ 𝑟 ↦→ 𝑟 42}
is elaborated to the following Mete program:

𝜆𝑚⟨|Ask⟩ (1→Int) .let mod⟨|Ask⟩ 𝑚̂ =𝑚 in handle 𝑚̂ () with {Ask _ 𝑟 ↦→ 𝑟 42}
We now summarise the key ideas behind the design of Metel.

• The underlying philosophy of Metel is to “never guess modalities”. This is analogous to
the underlying philosophy of FreezeML to “never guess polymorphism”.

• Following FreezeML (and algorithmic presentations of ML) instantiation is performed by
default when a variable is used (𝑥 ).
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• Similarly, Metel also performs unboxing for variables by default via elaboration.
• Metel allows type variables to be instantiated with modal types. This is analogous to allow-
ing type variables to be instantiated with polymorphic types (giving rise to impredicative
polymorphism) in FreezeML.

• Following FreezeML, variables can be frozen in order to suppress such instantiation (⌈𝑥⌉,
written ~x in ASCII text as shown in Section 2.11).

• Boxing is never inferred. Though it would be possible to infer limited use of boxing in
let-bindings (following FreezeML and algorithmic presentations of ML), this would yield
the most general modality which is not typically what we require for handlers.

• Type annotations are required for function argument types that contain modal types.
• Type annotations are only required for those bindings that contain modal types.

We lack space to include full technical details of Metel in the body of the paper, and in any
case most of the subtleties and design choices are in essence the same as those one encounters in
treating type inference with first-class polymorphism. The full specification for Metel is given in
Appendix B. We formalise the type inference algorithm following the approach of type inference in
context [19, 20]. Soundness and completeness of type inference is proved in Appendix C.
We have chosen a design inspired by FreezeML in the full knowledge that other designs may

be better suited to other circumstances. But as a means for enabling us to write the examples in
Section 2 and for demonstrating the feasibility of implementing sound and complete type inference
for modal effect types it has fulfilled its purpose. In the future, we intend to explore and implement
an alternative design as an extension to OCaml, building on and complementing recent work
on modal types for OCaml [34], and making use of existing means for supporting first-class
polymorphism in OCaml.

7 Discussion and Related Work

We first discuss the most relevant systems: Frank [12, 33], Effekt [7, 8], and CC<:□ [6]. Then we
discuss the relationship between Met and MTT [17, 18, 29]. Finally we discuss other related work.

7.1 Do Be Do Be Do

Our absolute and relative modalities are inspired by the abilities and adjustments in Frank [12, 33].
Absolute modalities and abilities both specify the whole effect context required to run some
computation, while relative modalities and adjustments both specify deltas to the ambient effect
context. A key difference is that Frank restricts adjustments to appear only beside function
parameters and essentially treats these parameters as second-class computation variables. To write
higher-order programs, Frank implicitly inserts effect variables to pass ambient effects around. Met
generalises abilities and adjustments to modalities which can appear flexibly in types, eliminating
effect variables altogether. As demonstrated in Section 5, Frank with implicit effect variables and
no closed abilities is expressible in Met. Frank’s adaptors are richer than Met’s masking, although
we expect relative modalities to extend readily to cover this use.

7.2 Capability-based Effect Systems

Capability-based effect systems [6–8] interpret effects as capabilities and offer a form of implicit
effect polymorphism through capability passing.

For example, in Effekt the asList for Yield has the following type:
def asList{ f: 1 ⇒ List[Int] / { Yield } }: List[Int] / {}

Here the block parameter f is allowed to use the capability Yield in addition to those from the
context. The capability annotation {Yield} on its type is similar to our relative modalities.
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A key difference between Effekt and Met is that Effekt requires blocks to be second-class,
while Met supports first-class functions. Brachthäuser et al. [7] recovers first-class functions by
boxing blocks. However, such boxed blocks cannot use capabilities from the context any more,
because the boxes on types fully specifies the required capabilities, similar to our absolute modalities.
For example, we can obtain a curried version of map in Effekt by boxing the result.
map1[A, B]{ f: A ⇒ B }: List[A] ⇒ List[B] at {f} / {}

The return value has type List[A] ⇒ List[B] at {f}. The decoration {f} indicates that the return
function captures the capability f. This sort of annotation is reminiscent of an effect variable. This
is telling for why Met is not expressive enough to encode Effekt. To encode captured capability
variables, as in map1, we need the expressiveness provided by effect variables in Mete.

Another key difference is that Effekt uses named handlers [5, 51, 54] where operations are
dispatched to a specific named handler, whereas Met uses Plotkin and Pretnar [41]-style handlers
where operations dispatched to the first matching handler in the evaluation context. Named handlers
provide a form of effect generativity. In the future it would be interesting to explore variants of
modal effect types with capabilities and generative effects [14].

CC<:□ [6], the basis for capture tracking in Scala 3, also provides succinct types for uncurried
higher-order functions like map. As in Effekt, the curried version requires the result function to be
explicitly annotated with its capture set {f}.

7.3 Relationship between Met and Multimodal Type Theory

The literature on multimodal type theory organises the structure of modes (objects), modalities
(morphisms between objects), and their transformations (2-cells between morphisms) in a 2-

category [17, 18, 29] (or, in the case of a single mode, a semiring [1, 9, 39, 40]). In Met, modes
are effect contexts 𝐸, modalities are 𝜇𝐹 : 𝐸 → 𝐹 , and transformations are 𝜇𝐹 ⇒ 𝜈𝐹 . However, we
have found that 2-categories are not sufficient in a system that also includes submoding. To deal
with this extra structure, we extend the 2-category to a double category with an additional kind of
vertical morphisms between objects (in Met, vertical morphisms are the preorder relation 𝐸 ⩽ 𝐹 ),
as also proposed by Katsumata [28]. As a result, the transformations do not strictly require the
two modalities to have the same sources and targets, enabling us to have []𝐹 ⇒ [𝐸]𝐹 in Met. The
relationship between Met and MTT is explained in detail in Appendix A.3.

7.4 Other Related Work

We discuss other related work on effect systems and modal types.

Row-based Effect Systems. Row polymorphism is one popular approach to implementing effect
systems for effect handlers. Links [21] use Rémy-style row polymorphism with presence types
[43], while Koka [31] and Frank [33] use scoped rows [30] which allow duplicated labels. Morris
and McKinna [36] proposes a general framework for comparing different kinds of row types, and
Yoshioka et al. [53] proposes a similar framework focusing on comparing effect rows. Met adopts
Leijen-style scoped rows meanwhile allows operation signatures to be absent, similar to presence
types. Mete extends Met with effect variables by row polymorphism and extending the algebraic
structure of row types to be closed under extensions and masks.

Subtyping-based Effect Systems. Eff [3, 42] is equipped with an effect system with both effect
variables and sub-effecting, based on the type inference and elaboration described in Karachalias
et al. [27], which supports constraint solving for sub-effecting between effect variables. The effect
system of Helium [5] is based on finite sets, offering a natural sub-effecting relation corresponding
to set-inclusion. As such, their system aligns closely with Lucassen and Gifford [35]-style effect
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systems. Tang et al. [47] proposes an effectful calculus with effect polymorphism and sub-effecting
via qualified types [25] following Rose [36]. We have both effect variables and sub-effecting in
Mete and Metel but do not consider non-trivial constraint solving.

Modal Types and Effects. Nanevski [37] proposes a modal calculus for handling exceptions, using
a necessity modality indexed by the set of names of used effects. Zyuzin and Nanevski [55] extends
contextual modal types [38] to algebraic effects and handlers, using a contextual necessity modality
to track effects and modelling context reachability as effect handling. Both of their necessity
modalities are similar to our absolute modalities. They do not have similar constructs to our relative
modalities. They both give comonadic semantics to the modalities, while Met adopts the standard
CBV semantics and restrict modalities to values. They focus on theoretical work, while we aim
to design a practical effect system with succinct types and backward compatibility. Choudhury
and Krishnaswami [10] proposes to use the necessity modality to recover purity from an effectful
calculus. This is similar to our empty absolute modality, especially when extended as in Section 4.3.

Effects in Call-By-Push-Value. In CBPV [32], effects are usually tracked on typing judgements
for computations and captured into types when switching to values [16, 26, 48]. Met tracks effect
contexts as modes for all terms in typing judgements to have succinct effect types.

8 Conclusion

We have proposed a novel modal effect type system which manages effect contexts by tracking
changes to them via absolute and relative modalities. We formalised modal effect types in a core
calculus following multimodal type theory. We illustrated our design through a collection of
examples in a surface language with sound and complete type inference. We demonstrated the
expressiveness of the calculus by encoding a practical fragment of a traditional effect system.

Future work includes: implementing our system as an extension to OCaml; exploring extensions
of modal effect types with Fitch-style unboxing, named handlers, generative effects, and capabilities;
combining modal effect types with control-flow linearity; and developing a denotational semantics.
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A Full Specification, Meta Theory, and Proofs for Met

We provide the specification, meta theory, and proofs for Met omitted in Section 3. Our proofs for
meta theory of Met consider all extensions in Section 4 including effect variables (Mete).

A.1 Extra Rules

The full kinding and well-formedness rules for Met are shown in Figure 7. We include the kind
Eff and syntax 𝐸\𝐿 to also cover Mete. The type equivalence and sub-effecting rules are shown in
Figure 8. We highlight the special rule that allows us to add or remove absent labels from the right.

Γ ⊢ 𝐴 : 𝐾 Γ ⊢ 𝜇 Γ ⊢ 𝐸 : 𝐾 Γ ⊢ 𝐿 Γ ⊢ 𝐷 Γ ⊢ 𝑃 Γ ⊢ (𝜇,𝐴) ⇒ 𝜈 @ 𝐹

Γ ∋ 𝛼 : 𝐾
Γ ⊢ 𝛼 : 𝐾

Γ ⊢ 𝐴 : Abs
Γ ⊢ 𝐴 : Any

Γ ⊢ [𝐸] Γ ⊢ 𝐴 : Any
Γ ⊢ [𝐸]𝐴 : Abs

Γ ⊢ ⟨𝐿 |𝐷⟩ Γ ⊢ 𝐴 : 𝐾
Γ ⊢ ⟨𝐿 |𝐷⟩𝐴 : 𝐾

Γ ⊢ 𝐴 : Any Γ ⊢ 𝐵 : Any
Γ ⊢ 𝐴 → 𝐵 : Any

Γ, 𝛼 : 𝐾 ⊢ 𝐴 : 𝐾 ′

Γ ⊢ ∀𝛼𝐾 .𝐴 : 𝐾 ′
Γ ⊢ 𝐿 Γ ⊢ 𝐷

Γ ⊢ ⟨𝐿 |𝐷⟩
Γ ⊢ 𝐸 : Eff
Γ ⊢ [𝐸]

Γ ⊢ · : Eff
Γ ⊢ 𝑃 Γ ⊢ 𝐸 : Eff

Γ ⊢ ℓ : 𝑃, 𝐸 : Eff
Γ ⊢ 𝐸 : Eff Γ ⊢ 𝐿

Γ ⊢ 𝐸\𝐿 : Eff

Γ ⊢ −
Γ ⊢ 𝐴 : Abs Γ ⊢ 𝐵 : Abs

Γ ⊢ 𝐴 ↠ 𝐵 Γ ⊢ 𝐿 Γ ⊢ ·
Γ ⊢ 𝑃 Γ ⊢ 𝐷

Γ ⊢ ℓ : 𝑃, 𝐷

Γ ⊢ 𝐴 : Abs
Γ ⊢ (𝜇,𝐴) ⇒ 𝜈 @ 𝐹

𝜇𝐹 ⇒ 𝜈𝐹

Γ ⊢ (𝜇,𝐴) ⇒ 𝜈 @ 𝐹

Fig. 7. Full kinding and well-formedness rules for Met and Mete.

A.2 Full Specification for Extensions to Met

Figure 9 gives the syntax and typing rules for data types, absolute and shallow handlers. Figure 10
gives the extensions to value normal forms, evaluation contexts, and operational semantics for the
extensions with data types, absolute and relative handlers in Section 4.
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𝐿 ≡ 𝐿′ 𝐷 ≡ 𝐷 ′ 𝐸 ≡ 𝐹 𝑃 ≡ 𝑃 ′ 𝜇 ≡ 𝜈 𝐴 ≡ 𝐵

· ≡ ·
𝐿1 ≡ 𝐿2 𝐿2 ≡ 𝐿3

𝐿1 ≡ 𝐿3
𝐿 ≡ 𝐿′

ℓ, 𝐿 ≡ ℓ, 𝐿′
ℓ ≠ ℓ ′ 𝐿 ≡ 𝐿′

ℓ, ℓ ′, 𝐿 ≡ ℓ ′, ℓ, 𝐿

· ≡ ·
𝐷1 ≡ 𝐷2 𝐷2 ≡ 𝐷3

𝐷1 ≡ 𝐷3

𝑃 ≡ 𝑃 ′ 𝐷 ≡ 𝐷 ′

ℓ : 𝑃, 𝐷 ≡ ℓ : 𝑃 ′, 𝐷 ′
ℓ ≠ ℓ ′

ℓ : 𝑃, ℓ ′ : 𝑃 ′, 𝐷 ≡ ℓ ′ : 𝑃 ′, ℓ : 𝑃, 𝐷

· ≡ ·
𝐸1 ≡ 𝐸2 𝐸2 ≡ 𝐸3

𝐸1 ≡ 𝐸3
𝑃 ≡ 𝑃 ′ 𝐸 ≡ 𝐸′

ℓ : 𝑃, 𝐸 ≡ ℓ : 𝑃 ′, 𝐸′
ℓ ≠ ℓ ′

ℓ : 𝑃, ℓ ′ : 𝑃 ′, 𝐸 ≡ ℓ ′ : 𝑃 ′, ℓ : 𝑃, 𝐸

𝐸, ℓ : − ≡ 𝐸
𝐴 ≡ 𝐴′ 𝐵 ≡ 𝐵′

𝐴 ↠ 𝐵 ≡ 𝐴′ ↠ 𝐵′ − ≡ − 𝛼 ≡ 𝛼
𝜇 ≡ 𝜈 𝐴 ≡ 𝐵

𝜇𝐴 ≡ 𝜈𝐵

𝐸 ≡ 𝐹
[𝐸] ≡ [𝐹 ]

𝐿 ≡ 𝐿′ 𝐷 ≡ 𝐷 ′

⟨𝐿 |𝐷⟩ ≡ ⟨𝐿′ |𝐷 ′⟩
𝐴 ≡ 𝐴′ 𝐵 ≡ 𝐵′

𝐴 → 𝐵 ≡ 𝐴′ → 𝐵′
𝐴 ≡ 𝐵

∀𝛼𝐾 .𝐴 ≡ ∀𝛼𝐾 .𝐵

𝑃 ⩽ 𝑃 ′ 𝐸 ⩽ 𝐹 𝐷 ⩽ 𝐷 ′

𝑃 ⩽ 𝑃 − ⩽ 𝑃 · ⩽ ·

𝐸1 ≡ ℓ : 𝑃1, 𝐸′1 𝐸2 ≡ ℓ : 𝑃2, 𝐸′2
𝑃1 ⩽ 𝑃2 𝐸′1 ⩽ 𝐸′2

𝐸1 ⩽ 𝐸2

𝐷1 ≡ ℓ : 𝑃1, 𝐷 ′
1 𝐷2 ≡ ℓ : 𝑃2, 𝐷 ′

2
𝑃1 ⩽ 𝑃2 𝐷 ′

1 ⩽ 𝐷 ′
2

𝐷1 ⩽ 𝐷2

Fig. 8. Type equivalence and sub-effecting for Met.
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Types 𝐴, 𝐵 ::= · · · | (𝐴, 𝐵) | 𝐴 + 𝐵
Terms 𝑀, 𝑁 ::= · · · | (𝑀, 𝑁 ) | inl 𝑀 | inr 𝑀 | case𝜈 𝑉 of {𝑄 ↦→ 𝑀}
Patterns 𝑄 ::= (𝑥,𝑦) | inl 𝑥 | inr 𝑥
Values 𝑉 ,𝑊 ::= · · · | (𝑉 ,𝑊 ) | inl 𝑉 | inr 𝑉

T-Pair
Γ ⊢ 𝑀 : 𝐴 @𝐸 Γ ⊢ 𝑁 : 𝐵 @𝐸

Γ ⊢ (𝑀, 𝑁 ) : (𝐴, 𝐵) @𝐸

T-Inl
Γ ⊢ 𝑀 : 𝐴 @𝐸

Γ ⊢ inl 𝑀 : 𝐴 + 𝐵 @𝐸

T-Inr
Γ ⊢ 𝑀 : 𝐵 @𝐸

Γ ⊢ inr 𝑀 : 𝐴 + 𝐵 @𝐸

T-CrispPair
𝜈𝐹 : 𝐸 → 𝐹 Γ,µ𝜈𝐹 ⊢ 𝑉 : (𝐴, 𝐵) @𝐸

Γ, 𝑥 :𝜈𝐹 𝐴,𝑦 :𝜈𝐹 𝐵 ⊢ 𝑀 : 𝐴′ @ 𝐹

Γ ⊢ case𝜈 𝑉 of (𝑥,𝑦) ↦→ 𝑀 : 𝐴′ @ 𝐹

T-CrispSum
𝜈𝐹 : 𝐸 → 𝐹 Γ,µ𝜈𝐹 ⊢ 𝑉 : 𝐴 + 𝐵 @𝐸

Γ, 𝑥 :𝜈𝐹 𝐴 ⊢ 𝑀1 : 𝐴′ @ 𝐹 Γ, 𝑦 :𝜈𝐹 𝐵 ⊢ 𝑀2 : 𝐴′ @ 𝐹

Γ ⊢ case𝜈 𝑉 of {inl 𝑥 ↦→ 𝑀1, inr 𝑦 ↦→ 𝑀2} : 𝐴′ @ 𝐹

Decorations 𝛿 ::= · | A | † | A†
Terms 𝑀, 𝑁 ::= handle

𝛿 𝑀 with 𝐻

T-HandlerA
𝐷 = {ℓ𝑖 : 𝐴𝑖 ↠ 𝐵𝑖 }𝑖 Γ,µ[𝐷+𝐸 ]𝐹 ⊢ 𝑀 : 𝐴 @𝐷 + 𝐸

Γ, 𝑥 : [𝐷 + 𝐸]𝐴 ⊢ 𝑁 : 𝐵 @ 𝐹 [Γ, 𝑝𝑖 : 𝐴𝑖 , 𝑟𝑖 : [𝐹 ] (𝐵𝑖 → 𝐵) ⊢ 𝑁𝑖 : 𝐵 @ 𝐹 ]𝑖
Γ ⊢ handleA 𝑀 with {return 𝑥 ↦→ 𝑁 } ⊎ {ℓ𝑖 𝑝𝑖 𝑟𝑖 ↦→ 𝑁𝑖 }𝑖 : 𝐵 @ 𝐹

T-ShallowHandler
𝐷 = {ℓ𝑖 : 𝐴𝑖 ↠ 𝐵𝑖 }𝑖 Γ,µ⟨|𝐷 ⟩ ⊢ 𝑀 : 𝐴 @𝐷 + 𝐹

Γ, 𝑥 : ⟨|𝐷⟩𝐴 ⊢ 𝑁 : 𝐵 @ 𝐹 [Γ, 𝑝𝑖 : 𝐴𝑖 , 𝑟𝑖 : ⟨|𝐷⟩(𝐵𝑖 → 𝐴) ⊢ 𝑁𝑖 : 𝐵 @ 𝐹 ]𝑖
Γ ⊢ handle† 𝑀 with {return 𝑥 ↦→ 𝑁 } ⊎ {ℓ𝑖 𝑝𝑖 𝑟𝑖 ↦→ 𝑁𝑖 }𝑖 : 𝐵 @ 𝐹

T-ShallowHandlerA
𝐷 = {ℓ𝑖 : 𝐴𝑖 ↠ 𝐵𝑖 }𝑖 Γ,µ[𝐷+𝐸 ] ⊢ 𝑀 : 𝐴 @𝐷 + 𝐸

Γ, 𝑥 : [𝐷 + 𝐸]𝐴 ⊢ 𝑁 : 𝐵 @ 𝐹 [Γ, 𝑝𝑖 : 𝐴𝑖 , 𝑟𝑖 : [𝐷 + 𝐸] (𝐵𝑖 → 𝐴) ⊢ 𝑁𝑖 : 𝐵 @ 𝐹 ]𝑖
Γ ⊢ handleA† 𝑀 with {return 𝑥 ↦→ 𝑁 } ⊎ {ℓ𝑖 𝑝𝑖 𝑟𝑖 ↦→ 𝑁𝑖 }𝑖 : 𝐵 @ 𝐹

Fig. 9. Syntax and typing rules for data types, absolute and shallow handlers in Met.
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Value normal forms 𝑈 ::= · · · | (𝑈1,𝑈2) | inl 𝑈 | inr 𝑈
Evaluation contexts E ::= · · · | (E, 𝑁 ) | (𝑈 , E) | inl E | inr E | case𝜈 E of {𝑄 ↦→ 𝑀}

| handle
𝛿 E with 𝐻

E-CrispPair case𝜇 (𝑈1,𝑈2) of (𝑥,𝑦) ↦→ 𝑁 { 𝑁 [𝑈1/𝑥,𝑈2/𝑦]
E-CrispInl case𝜇 inl 𝑈 of {inl 𝑥 ↦→ 𝑁1, · · · } { 𝑁1 [𝑈 /𝑥]
E-CrispInr case𝜇 inr 𝑈 of {inr 𝑦 ↦→ 𝑁2, · · · } { 𝑁2 [𝑈 /𝑦]
E-RetA handle 𝑈 with 𝐻 { 𝑁 [(mod[𝐷+𝐸 ] 𝑈 )/𝑥]

where (return 𝑥 ↦→ 𝑁 ) ∈ 𝐻
E-OpA handle

A E[do ℓ 𝑈 ] with 𝐻 {

𝑁 [𝑈 /𝑝, (mod[𝐹 ] (𝜆𝑦.handleA E[𝑦] with 𝐻 ))/𝑟 ]
where 0−free(ℓ, E) and (ℓ 𝑝 𝑟 ↦→ 𝑁 ) ∈ 𝐻

E-Ret† handle
† 𝑈 with 𝐻 { 𝑁 [(mod⟨|𝐷 ⟩ 𝑈 )/𝑥]

where (return 𝑥 ↦→ 𝑁 ) ∈ 𝐻
E-Op† handle

† E[do ℓ 𝑈 ] with 𝐻 { 𝑁 [𝑈 /𝑝, (𝜆𝑦.E[𝑦])/𝑟 ]
where 0−free(ℓ, E) and (ℓ 𝑝 𝑟 ↦→ 𝑁 ) ∈ 𝐻

E-RetA†
handle

A† 𝑈 with 𝐻 { 𝑁 [(mod[𝐷+𝐸 ] 𝑈 )/𝑥]
where (return 𝑥 ↦→ 𝑁 ) ∈ 𝐻

E-OpA†
handle

A† E[do ℓ 𝑈 ] with 𝐻 {
𝑁 [𝑈 /𝑝, (mod[𝐷+𝐸 ] (𝜆𝑦.E[𝑦]))/𝑟 ]
where 0−free(ℓ, E) and (ℓ 𝑝 𝑟 ↦→ 𝑁 ) ∈ 𝐻

Fig. 10. Operational semantics for data types and more handlers in Met.
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A.3 The Double Category of Effects

𝐸 𝐹

𝜇𝐹

𝜈𝐹

𝐸 𝐹

𝐸′ 𝐹 ′

𝜇𝐹

⩽ ⩽

𝜈𝐹 ′

Fig. 11. 2-cells in a 2-category compared to 2-cells in a double category.

A double category extends a 2-category with an additional kind of morphisms. Alongside the
regular morphisms, now called horizontalmorphisms, there are also verticalmorphisms that connect
the objects of the 2-category. This makes it possible to generalise the 2-cells to transform arbitrary
morphisms, whose source and target are connected by vertical morphisms. Figure 11 shows the
differences between 2-cells in a 2-category and those in a double category using syntax of Met.

In Met, objects/modes are given by effect contexts, the horizontal morphisms by modalities, the
vertical morphisms by the sub-effecting relation, and 2-cells by the modality transformations.

Now we show that it indeed has the structure of a double category.
Since the sub-effecting relation is a preorder, effect contexts (objects) 𝐸 and sub-effecting (vertical

morphisms) 𝐸 ⩽ 𝐹 obviously form a category given by the poset.
We repeat the definition of modalities and modality composition from Section 3.3 here for easy

reference. We directly define them directly in terms of morphisms between modes.

[𝐸]𝐹 : 𝐸 → 𝐹

⟨𝐿 |𝐷⟩𝐹 : 𝐷 + (𝐹 − 𝐿) → 𝐹

[𝐸′]𝐹 ◦ [𝐸]𝐸′ = [𝐸]𝐹
⟨𝐿 |𝐷⟩𝐹 ◦ [𝐸]𝐷+(𝐹−𝐿) = [𝐸]𝐹

[𝐸]𝐹 ◦ ⟨𝐿 |𝐷⟩𝐸 = [𝐷 + (𝐸 − 𝐿)]𝐹
⟨𝐿1 |𝐷1⟩𝐹 ◦ ⟨𝐿2 |𝐷2⟩𝐷1+(𝐹−𝐿1 ) = ⟨𝐿1 + 𝐿 |𝐷2 + 𝐷⟩𝐹 where (𝐿, 𝐷) = 𝐿2 ⊲⊳ 𝐷1

The effect contexts (objects) and modalities (horizontal morphisms) also form a category since
modality composition possesses associativity and identity. We have the following lemma.

Lemma A.1 (Modes and modalities form a category). Modes and modalities form a category

with the identity morphism 1𝐸 = ⟨|⟩𝐸 : 𝐸 → 𝐸 and the morphism composition 𝜇𝐹 ◦ 𝜈𝐹 ′ such that

(1) Identity: 1𝐹 ◦ 𝜇𝐹 = 𝜇𝐹 = 𝜇𝐹 ◦ 1𝐸 for 𝜇𝐹 : 𝐸 → 𝐹 .

(2) Associativity: (𝜇𝐸1 ◦ 𝜈𝐸2 ) ◦ 𝜉𝐸3 = 𝜇𝐸1 ◦ (𝜈𝐸2 ◦ 𝜉𝐸3 ) for 𝜇𝐸1 : 𝐸2 → 𝐸1, 𝜈𝐸2 : 𝐸3 → 𝐸2, and

𝜉𝐸3 : 𝐸 → 𝐸3.

Proof. By inlining the definitions of modalities and checking each case. □

In Section 3, we only define the modality transformations of shape 𝜇𝐹 ⇒ 𝜈𝐹 where the targets of
𝜇 and 𝜈 are required to be the same effect context 𝐹 . This is enough for presenting the calculus, but
we can further extend it to allow 𝜇𝐹 ⇒ 𝜈𝐹 ′ where 𝐹 ⩽ 𝐹 ′. This is used in the meta theory for Met
such as the lock weakening lemma (Lemma A.11.3).

The extendedmodality transformation relation is defined by the transitive closure of the following
rules. Compared to the definition in Section 3.3, the only new rule is MT-Mono.
MT-Abs
𝜇𝐹 : 𝐸′ → 𝐹 𝐸 ⩽ 𝐸′

[𝐸]𝐹 ⇒ 𝜇𝐹

MT-Upcast
𝐷 ⩽ 𝐷 ′

⟨𝐿 |𝐷⟩𝐹 ⇒ ⟨𝐿 |𝐷 ′⟩𝐹

MT-Expand
(𝐹 − 𝐿) ≡ ℓ : 𝑃, 𝐸

⟨ℓ, 𝐿 |𝐷, ℓ : 𝑃⟩𝐹 ⇔ ⟨𝐿 |𝐷⟩𝐹

MT-Mono
𝐹 ⩽ 𝐹 ′

𝜇𝐹 ⇒ 𝜇𝐹 ′
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The following lemmas shows that the transformation 𝜇𝐹 ⇒ 𝜈𝐹 ′ satisfies the requirement of being
2-cells in the double category of effects with well-defined vertical and horizontal composition.

Lemma A.2 (Modality transformations are 2-cells). If 𝜇𝐹 ⇒ 𝜈𝐹 ′ , 𝜇𝐹 : 𝐸 → 𝐹 , and 𝜈𝐹 ′ :
𝐸′ → 𝐹 ′, then 𝐸 ⩽ 𝐸′ and 𝐹 ⩽ 𝐹 ′. Moreover, the transformation relation is closed under vertical and

horizontal composition as shown by the following admissible rules.

𝜇𝐹1 ⇒ 𝜈𝐹2 𝜈𝐹2 ⇒ 𝜉𝐹3

𝜇𝐹1 ⇒ 𝜉𝐹3

𝜇𝐹 ⇒ 𝜇′𝐹 ′ 𝜈𝐸 ⇒ 𝜈 ′𝐸′ 𝜇𝐹 : 𝐸 → 𝐹 𝜇′𝐹 ′ : 𝐸
′ → 𝐹 ′

𝜇𝐹 ◦ 𝜈𝐸 ⇒ 𝜇′𝐹 ′ ◦ 𝜈 ′𝐸′

Proof. To make proving easier, we give the resulting rules by taking the transitive closure.

𝜇𝐹 ′ : 𝐸′ → 𝐹 ′ 𝐸 ⩽ 𝐸′ 𝐹 ⩽ 𝐹 ′

[𝐸]𝐹 ⇒ 𝜇𝐹 ′

𝐿 = dom(𝐷) 𝐷1 ⩽ 𝐷 ′
1 (𝐹 ′ − 𝐿1) ≡ 𝐷, 𝐸 𝐹 ⩽ 𝐹 ′

⟨𝐿1 |𝐷1⟩𝐹 ⇒ ⟨𝐿, 𝐿1 |𝐷 ′
1, 𝐷⟩𝐹 ′

𝐿 = dom(𝐷) 𝐷1 ⩽ 𝐷 ′
1 (𝐹 ′ − 𝐿1) ≡ 𝐷, 𝐸 𝐹 ⩽ 𝐹 ′

⟨𝐿, 𝐿1 |𝐷1, 𝐷⟩𝐹 ⇒ ⟨𝐿1 |𝐷 ′
1⟩𝐹 ′

It is easy to see that sources and targets of morphisms increase. Vertical composition follows
directly from the fact that we take the transitive closure. Horizontal compositions follows from
case analysis on shapes of modalities being composed. □

More on Relationships between Met and Multimodal Type Theory. In addition to extending to a
double category, Met also differs from MTT in the usage of morphism families. In types and terms
we use 𝜇, indexed families of morphisms between modes, instead of concrete morphisms 𝜇𝐹 . This
is very useful to allow term variables to be used flexibly in different effect contexts larger than
where they are defined. As a result, every type is always well-defined at any modes, which implies
that we do not need to define the judgement 𝐴 @𝐸 as in MTT. Moreover, one important benefit of
having types well-defined at any modes is that type quantifiers do not need to carry the additional
information about the modes at which the type variables can be used, greatly simplifying the type
system. Otherwise, polymorphic types would have forms ∀𝛼𝐾 @𝐸 .𝐴, where 𝐸 indicates the mode
of the type variable 𝛼 .
In contexts, we still keep concrete morphisms 𝜇𝐹 , which makes the proof trees of terms much

more structured than using morphism families.

A.4 Lemmas for Modes and Modalities

Beyond the structure and properties of double categories shown in Appendix A.3, we have some
extra properties on modes and modalities in Met.

The most important one is that horizontal morphisms (sub-effecting) act functorially on vertical
ones (modalities). In other words, the action of 𝜇 on effect contexts gives a total monotone function.

Lemma A.3 (Monotone modalities). If 𝜇𝐹 : 𝐸 → 𝐹 and 𝐹 ⩽ 𝐹 ′, then 𝜇𝐹 ′ : 𝐸′ → 𝐹 ′ with 𝐸 ⩽ 𝐸′.

Proof. By definition. □

We prove the lemma on the equivalence between syntactic and semantic definition of modality
transformation in Section 3.3. This lemma can be generalised to the general form of 2-cells in a
double category 𝜇𝐹 ⇒ 𝜈𝐹 ′ where 𝐹 ⩽ 𝐹 ′.
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Lemma 3.1 (Semantics of modality transformation). We have 𝜇𝐹 ⇒ 𝜈𝐹 if and only if

𝜇 (𝐹 ′) ⩽ 𝜈 (𝐹 ′) for all 𝐹 ′ with 𝐹 ⩽ 𝐹 ′.

Proof. From left to right, it is obvious that the semantics is preserved after taking the transitive
closure. We only need to show the transformation given by each rule satisfies the semantics.
Case MT-Abs. Follow from Lemma A.3.
Case MT-Upcast. Since 𝐷 ⩽ 𝐷 ′, we have 𝐷 + (𝐹 − 𝐿) ⩽ 𝐷 ′ + (𝐹 − 𝐿) for any 𝐹 .
Case MT-Expand. Since (𝐹 − 𝐿) ≡ ℓ : 𝑃, 𝐸, for any 𝐹 ⩽ 𝐹 ′ we have (𝐹 ′ − 𝐿) ≡ ℓ : 𝑃, 𝐸′ for some 𝐸′.

Both sides act on 𝐹 ′ give 𝐷, ℓ : 𝑃, 𝐸′.
From left to right, we need to show that for all pairs 𝜇𝐹 and 𝜈𝐹 satisfying the semantic definition,

we have 𝜇𝐹 ⇒ 𝜈𝐹 in the transitive closure of the three syntactic rules. This obviously holds for
those transformation starting from absolute modalities. For those transformation starting from
relative modalities, observe that they can only be transformed other relative modalities by the
semantic definition. By taking the transitive closure of the last two rules, we have

𝐿 = dom(𝐷) 𝐷1 ⩽ 𝐷 ′
1 (𝐹 − 𝐿1) ≡ 𝐷, 𝐸

⟨𝐿1 |𝐷1⟩𝐹 ⇒ ⟨𝐿, 𝐿1 |𝐷 ′
1, 𝐷⟩𝐹

𝐿 = dom(𝐷) 𝐷1 ⩽ 𝐷 ′
1 (𝐹 − 𝐿1) ≡ 𝐷, 𝐸

⟨𝐿, 𝐿1 |𝐷1, 𝐷⟩𝐹 ⇒ ⟨𝐿1 |𝐷 ′
1⟩𝐹

Suppose ⟨𝐿1 |𝐷1⟩𝐹 and ⟨𝐿2 |𝐷2⟩𝐹 satisfies that 𝐷1 + (𝐹 ′ − 𝐿1) ⩽ 𝐷2 + (𝐹 ′ − 𝐿2) (1) for all 𝐹 ⩽ 𝐹 ′.
Case analysis on the relationship between 𝐷1 and 𝐷2.
Case 𝐷2 is longer than 𝐷1. By (1) we have 𝐷2 ≡ 𝐷 ′

1, 𝐷 for 𝐷1 ⩽ 𝐷 ′
1. Let 𝐿 = dom(𝐷). Using proof

by contradiction, we can show that 𝐿2 ≡ 𝐿, 𝐿1 and (𝐹 − 𝐿1) ≡ 𝐷, 𝐸 for some 𝐸; otherwise,
we can always properly set 𝐹 ′ to violate (1) meanwhile satisfying 𝐹 ⩽ 𝐹 ′. Thus, this case is
covered by the first rule of the transitive closure.

Case 𝐷1 is longer than 𝐷2. We have 𝐷1 ≡ 𝐷 ′
2, 𝐷 for 𝐷 ′

2 ⩽ 𝐷2. Similar to the above case, using proof
by contradiction we can show that it is covered by the second rule of the transitive closure.

□

Our proofs for type soundness of Met do not use ad-hoc case analysis on shapes of modalities
or reply on any specific properties about the definition of composition and transformation (except
for the parts about effect handlers since they specify the required modalities in the typing rules).
As a result, it should be able to generalise our calculus and proofs to other mode theories satisfying
certain extra properties. We state some properties of the mode theory as the following lemmas for
easier reference in proofs. Most of them directly follow from the definition.

Lemma A.4 (Vertical composition). If 𝜇𝐹1 ⇒ 𝜈𝐹2 and 𝜈𝐹2 ⇒ 𝜉𝐹3 , then 𝜇𝐹1 ⇒ 𝜉𝐹3 .

Proof. Follow from Lemma A.2 □

Lemma A.5 (Horizontal composition). If 𝜇𝐹 : 𝐸 → 𝐹 , 𝜇′
𝐹 ′ : 𝐸

′ → 𝐹 ′, 𝜇𝐹 ⇒ 𝜇′
𝐹 ′ , and 𝜈𝐸 ⇒ 𝜈 ′

𝐸′ ,

then 𝜇𝐹 ◦ 𝜈𝐸 ⇒ 𝜇′
𝐹 ′ ◦ 𝜈 ′𝐸′ .

Proof. Follow from Lemma A.2 □

Lemma A.6 (Monotone modality transformation). If 𝜇𝐹 ⇒ 𝜈𝐹 and 𝐹 ⩽ 𝐹 ′, then 𝜇𝐹 ′ ⇒ 𝜈𝐹 ′ .

Proof. Follow from Lemma 3.1 □
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Lemma A.7 (Asymmetric reflexivity of modality transformation). If 𝐹 ⩽ 𝐹 ′ and 𝜇𝐹 : 𝐸 →
𝐹 , then 𝜇𝐹 ⇒ 𝜇𝐹 ′ .

Proof. By definition. □

A.5 Lemmas for Met

We prove structural and substitution lemmas for Met as well as some other auxiliary lemmas for
proving type soundness.

Lemma A.8 (Canonical forms).
1. If ⊢ 𝑈 : 𝜇𝐴 @𝐸, then𝑈 is of shapemod𝜇 𝑈

′
.

2. If ⊢ 𝑈 : 𝐴 → 𝐵 @𝐸, then𝑈 is of shape 𝜆𝑥𝐴 .𝑀 .

3. If ⊢ 𝑈 : ∀𝛼.𝐴 @𝐸, then𝑈 is of shape Λ𝛼.𝑉 .
4. If ⊢ 𝑈 : (𝐴, 𝐵) @𝐸, then𝑈 is of shape (𝑈1,𝑈2).
5. If ⊢ 𝑈 : 𝐴 + 𝐵 @𝐸, then𝑈 is either of shape inl 𝑈 ′

or of shape inr 𝑈 ′
.

Proof. Directly follows from the typing rules. □

In order to define the lock weakening lemma, we first define a context update operation LΓM𝐹 ′
which gives a new context derived from updating the indexes of all locks and variable bindings in
Γ such that LΓM𝐹 ′ @ 𝐹 ′.

L·M𝐹 = ·
Lµ[𝐸 ]𝐹 ′ , Γ

′M
𝐹

= µ[𝐸 ]𝐹 , Γ
′

Lµ⟨𝐿 |𝐷 ⟩𝐹 ′ , Γ
′M
𝐹

= µ⟨𝐿 |𝐷 ⟩𝐹 , LΓ
′M𝐷+(𝐹−𝐿)

L𝑥 :𝜇𝐹 ′ 𝐴, Γ
′M
𝐹

= 𝑥 :𝜇𝐹 𝐴, LΓ′M𝐹
L𝛼 : 𝐾, Γ′M𝐹 = 𝛼 : 𝐾, LΓ′M𝐹

The have the following lemma showing that the index update operation preserves the locks(−)
operation except for updating the index.

Lemma A.9 (Index update preserves composition). If 𝜇𝐹 = locks(Γ) : 𝐸 → 𝐹 , 𝐹 ⩽ 𝐹 ′, and
locks(LΓM𝐹 ′ ) : 𝐸′ → 𝐹 ′, then locks(LΓM𝐹 ′ ) = 𝜇𝐹 ′ .

Proof. By straightforward induction on the context and using the property that (𝜇◦𝜈)𝐹 = 𝜇𝐹 ◦𝜈𝐸
for 𝜇𝐹 : 𝐸 → 𝐹 . □

Corollary A.10 (Index update preserves transformation). If locks(Γ) : 𝐸 → 𝐹 , 𝐹 ⩽ 𝐹 ′,
and locks(LΓM𝐹 ′ ) : 𝐸′ → 𝐹 ′, then locks(Γ) ⇒ locks(LΓM𝐹 ′ ).

Proof. Immediately follow from Lemma A.9 and Lemma A.7. □

We have the following structural lemmas.

Lemma A.11 (Structural rules). The following structural rules are admissible.

1. Variable weakening.

Γ, Γ′ ⊢ 𝑀 : 𝐵 @𝐸 Γ, 𝑥 :𝜇𝐹 𝐴, Γ
′ @𝐸

Γ, 𝑥 :𝜇𝐹 𝐴, Γ
′ ⊢ 𝑀 : 𝐵 @𝐸

2. Variable swapping.

Γ, 𝑥 :𝜇𝐹 𝐴,𝑦 :𝜈𝐹 𝐵, Γ
′ ⊢ 𝑀 : 𝐴′ @𝐸

Γ, 𝑦 :𝜈𝐹 𝐵, 𝑥 :𝜇𝐹 𝐴, Γ
′ ⊢ 𝑀 : 𝐴′ @𝐸
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3. Lock weakening.

Γ,µ𝜇𝐹 , Γ
′ ⊢ 𝑀 : 𝐴 @𝐸 𝜇𝐹 ⇒ 𝜈𝐹 𝜈𝐹 : 𝐹 ′ → 𝐹 locks(LΓ′M𝐹 ′ ) : 𝐸′ → 𝐹 ′

Γ,µ𝜈𝐹 , LΓ
′M𝐹 ′ ⊢ 𝑀 : 𝐴 @𝐸′

4. Type variable weakening.

Γ, Γ′ ⊢ 𝑀 : 𝐵 @𝐸

Γ, 𝛼 : 𝐾, Γ′ ⊢ 𝑀 : 𝐵 @𝐸

5. Type variable swapping.

Γ1, Γ2, 𝛼 : 𝐾, Γ3 ⊢ 𝑀 : 𝐴 @𝐸

Γ1, 𝛼 : 𝐾, Γ3 ⊢ 𝑀 : 𝐴 @𝐸

𝛼 ∉ ftv(Γ2) Γ1, 𝛼 : 𝐾, Γ3 ⊢ 𝑀 : 𝐴 @𝐸

Γ1, Γ2, 𝛼 : 𝐾, Γ3 ⊢ 𝑀 : 𝐴 @𝐸

Proof. 1, 2, 4, and 5 follow from straightforward induction on the typing derivation. For 3, we
also proceed by induction on the typing derivation. The most interesting case is T-Var. Other cases
mostly follow from IHs.
Case

T-Var
𝜈 ′𝐹1 = locks(Γ2) : 𝐸 → 𝐹1 𝜇′𝐹1 ⇒ 𝜈 ′𝐹1 (1) or Γ ⊢ 𝐴 : Abs

Γ1, 𝑥 :𝜇′
𝐹1
, Γ2 ⊢ 𝑥 : 𝐴 @𝐸

Trivial when 𝐴 is pure. Otherwise, case analysis on where the lock weakening happens.
Case Γ. Supposing Γ1 = Γ,µ𝜇𝐹 , Γ0 and after lock weakening we have Γ,µ𝜈𝐹 , Γ

′
0 , 𝑥 :𝜇′

𝐹 ′1
, Γ′2

where Γ′2 = LΓ2M𝐹 ′1 : 𝐸
′ → 𝐹 ′1 and Γ′0 = LΓ0M𝐹 ′ : 𝐹 ′1 → 𝐹 ′. By Lemma A.9 on Γ0, 𝐹 ⩽ 𝐹 ′,

and Lemma A.3, we have 𝐹1 ⩽ 𝐹 ′1. Then by (1) and Lemma A.6, we have 𝜇′
𝐹 ′1

⇒ 𝜈 ′
𝐹 ′1
.

Then by Lemma A.9 we have 𝜈 ′
𝐹 ′1

= locks(Γ′2 ). Finally by T-Var we have

Γ,µ𝜈𝐹 , Γ
′
0 , 𝑥 :𝜇′

𝐹 ′1
, Γ′2 ⊢ 𝑥 : 𝐴 @𝐸′

Case Γ2. Suppose Γ2 = Γ0,µ𝜇𝐹 , Γ
′. is weakened to Γ′2 = Γ0,µ𝜈𝐹 , LΓ′M𝐹 ′ . By Corollary A.10 we

have locks(Γ′) ⇒ locks(LΓ′M𝐹 ′ ). Then by Lemma A.5 we have we have locks(Γ2) ⇒
locks(Γ′2 ). By Lemma A.4 and (1), we have 𝜇′

𝐹1
⇒ locks(Γ′2 ). Finally by T-Var we have

Γ, 𝑥 :𝜇′
𝐹1
, Γ′2 ⊢ 𝑥 : 𝐴 @𝐸′

Case
T-Mod
𝜇′𝐸 : 𝐹1 → 𝐸 Γ,µ𝜇𝐹 , Γ

′,µ𝜇′
𝐸
⊢ 𝑉 : 𝐴 @ 𝐹1 (1)

Γ,µ𝜇𝐹 , Γ
′ ⊢ mod𝜇′ 𝑉 : 𝜇′𝐴 @𝐸

We have
LΓ′,µ𝜇′

𝐸
M
𝐹 ′

= LΓ′M𝐹 ′ , Lµ𝜇′𝐸 M𝐸′ = LΓ′M𝐹 ′ ,µ𝜇′𝐸′ .

Supposing 𝜇′
𝐸′ : 𝐹

′
1 → 𝐸′, by locks(LΓ′M𝐹 ′ ,µ𝜇′𝐸′ ) : 𝐹

′
1 → 𝐹 ′ and IH on (1), we have

Γ,µ𝜇𝐹 , LΓ
′M𝐹 ′ ,µ𝜇′𝐸′ ⊢ 𝑉 : 𝐴 @ 𝐹 ′1 .

Then by T-Mod we have

Γ,µ𝜇𝐹 , LΓ
′M𝐹 ′ ⊢ mod𝜇′ 𝑉 : 𝜇′𝐴 @𝐸′ .
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Case
T-Letmod

𝜈 ′𝐸 : 𝐹1 → 𝐸

Γ,µ𝜇𝐹 , Γ
′,µ𝜈 ′

𝐸
⊢ 𝑉 : 𝜇′𝐴 @ 𝐹1 (1) Γ,µ𝜇𝐹 , Γ

′, 𝑥 :𝜈 ′
𝐸
◦𝜇′
𝐹1
𝐴 ⊢ 𝑀 : 𝐵 @𝐸 (2)

Γ,µ𝜇𝐹 , Γ
′ ⊢ let𝜈 ′ mod𝜇′ 𝑥 = 𝑉 in 𝑀 : 𝐵 @𝐸

By IH on (1), we have
Γ,µ𝜈𝐹 , LΓ

′M𝐹 ′ ,µ𝜈 ′𝐸′ ⊢ 𝑉 : 𝜇′𝐴 @ 𝐹 ′1

where 𝜈 ′
𝐸′ : 𝐹

′
1 → 𝐸′. By IH on (2), we have

Γ,µ𝜈𝐹 , LΓ
′M𝐹 ′ , 𝑥 :𝜈 ′

𝐸′◦𝜇
′
𝐹 ′1
𝐴 ⊢ 𝑀 : 𝐵 @𝐸′ .

Then by T-Letmod, we have
Γ,µ𝜇𝐹 , LΓ

′M𝐹 ′ ⊢ let𝜈 ′ mod𝜇′ 𝑥 = 𝑉 in 𝑀 : 𝐵 @𝐸′

Case
T-Letmod’

𝜈 ′𝐸 : 𝐹1 → 𝐸

Γ,µ𝜇𝐹 , Γ
′,µ𝜈 ′

𝐸
, 𝛼 : 𝐾 ⊢ 𝑉 : 𝜇′𝐴 @ 𝐹1 (1) Γ,µ𝜇𝐹 , Γ

′, 𝑥 :𝜈 ′
𝐸
◦𝜇′
𝐹1
∀𝛼𝐾 .𝐴 ⊢ 𝑀 : 𝐵 @𝐸 (2)

Γ,µ𝜇𝐹 , Γ
′ ⊢ let𝜈 ′ mod𝜇′ Λ𝛼𝐾 .𝑥 = 𝑉 in 𝑀 : 𝐵 @𝐸

Similar to the case for T-Letmod. BY IH on (1), we have

Γ,µ𝜈𝐹 , LΓ
′M𝐹 ′ ,µ𝜈 ′𝐸′ , 𝛼 : 𝐾 ⊢ 𝑉 : 𝜇′𝐴 @ 𝐹 ′1

where 𝜈 ′
𝐸′ : 𝐹

′
1 → 𝐸′. By IH on (2), we have

Γ,µ𝜈𝐹 , LΓ
′M𝐹 ′ , 𝑥 :𝜈 ′

𝐸′◦𝜇
′
𝐹 ′1
∀𝛼𝐾 .𝐴 ⊢ 𝑀 : 𝐵 @𝐸′ .

Then by T-Letmod’, we have

Γ,µ𝜈𝐹 , LΓ
′M𝐹 ′ ⊢ let𝜈 ′ mod𝜇′ Λ𝛼𝐾 .𝑥 = 𝑉 in 𝑀 : 𝐵 @𝐸′

Case T-TAbs, T-Abs, T-TApp, T-App, T-Do, T-Mask, T-Handler, and extensions. Follow from IH.
Similar to the two cases T-Mod and T-Letmod we have shown.

□

As a corollary of Lemma A.11.3, the following sub-effecting rule is admissible.

Corollary A.12 (Sub-effecting). The following rule is admissible.

Γ ⊢ 𝑀 : 𝐴 @𝐸 locks(Γ) : 𝐸 → 𝐹 𝐹 ⩽ 𝐹 ′ locks(LΓM𝐹 ′ ) : 𝐸′ → 𝐹 ′

LΓM𝐹 ′ ⊢ 𝑀 : 𝐴 @𝐸′

Proof. Follow from Lemma A.11.3 by adding the lock µ[𝐹 ] · to the left of Γ in Γ ⊢ 𝑀 : 𝐴 @𝐸,
and weaken it to µ[𝐹 ′ ] · . Note that typing judgements still hold after adding a lock to or removing a
lock from the left of the context, as long as the new contexts are still well-defined. □

The following lemma reflects the intuition that pure values can be used in any effect context.

Lemma A.13 (Pure Promotion). The following promotion rule is admissible.

Γ1, Γ ⊢ 𝑉 : 𝐴 @𝐸 Γ1 ⊢ 𝐴 : Abs
locks(Γ) : 𝐸 → 𝐹 locks(Γ′) : 𝐸′ → 𝐹 fv(𝑉 ) ∩ dom(Γ′) = ∅

Γ1, Γ
′ ⊢ 𝑉 : 𝐴 @𝐸′
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Proof. By induction on the typing derivation of 𝑉 .
Case T-Var. Trivial.
Case

T-Mod
𝜇𝐸 : 𝐹1 → 𝐸 Γ1, Γ,µ𝜇𝐸 ⊢ 𝑉 : 𝐴 @ 𝐹1 (1)

Γ1, Γ ⊢ mod𝜇 𝑉 : 𝜇𝐴 @𝐸

Case analysis on the shape of 𝜇.
Case 𝜇 is relative. By kinding, 𝐴 is also pure. By IH on (1), we have

Γ1, Γ
′,µ𝜇𝐸′ ⊢ 𝑉 : 𝐴 @ 𝐹 ′1

where 𝜇𝐸′ : 𝐹 ′1 → 𝐸′. Then by T-Mod we have

Γ1, Γ
′ ⊢ mod𝜇 𝑉 : 𝜇𝐴 @𝐸′

Case 𝜇 is absolute. We have 𝜇 = [𝐹1] and locks(Γ′,µ𝜇𝐸′ ) = [𝐹1]𝐹 = locks(Γ,µ𝜇𝐸 ). Thus,
replacing the context (Γ,µ𝜇𝐸 ) with (Γ′,µ𝜇𝐸′ ) in (1) does not influence all usages of
T-Var in the derivation tree of (1). We have

Γ1, Γ
′,µ𝜇𝐸′ ⊢ 𝑉 : 𝐴 @ 𝐹1

Then by T-Mod we have

Γ1, Γ
′ ⊢ mod𝜇 𝑉 : 𝜇𝐴 @𝐸′

Case T-TAbs. Follow from IH and Lemma A.11.5.
Case T-Abs. Impossible since function types are impure.
Case Data Types. Follow from IHs.

□

Lemma A.14 (Substitution). The following substitution rules are admissible.

1. Preservation of kinds under type substitution.

Γ ⊢ 𝐴 : 𝐾 Γ, 𝛼 : 𝐾, Γ′ ⊢ 𝐵 : 𝐾 ′

Γ, Γ′ ⊢ 𝐵 [𝐴/𝛼] : 𝐾 ′

2. Preservation of types under type substitution.

Γ ⊢ 𝐴 : 𝐾 Γ, 𝛼 : 𝐾, Γ′ ⊢ 𝑀 : 𝐵 @𝐸

Γ, Γ′ ⊢ 𝑀 [𝐴/𝛼] : 𝐵 [𝐴/𝛼] @𝐸

3. Preservation of types under value substitution.

Γ,µ𝜇𝐹 ⊢ 𝑉 : 𝐴 @ 𝐹 ′ Γ, 𝑥 :𝜇𝐹 𝐴, Γ
′ ⊢ 𝑀 : 𝐵 @𝐸

Γ, Γ′ ⊢ 𝑀 [𝑉 /𝑥] : 𝐵 @𝐸

Proof.
1. By straightforward induction on the kinding derivation.
2. By straightforward induction on the typing derivation of𝑀 .
3. By induction on the typing derivation of𝑀 . Trivial when variable 𝑥 is not used. In the following
induction we always assume 𝑥 is used.
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Case
T-Var
𝜈𝐹 = locks(Γ′) : 𝐸 → 𝐹 𝜇𝐹 ⇒ 𝜈𝐹 (1) or Γ ⊢ 𝐴 : Abs

Γ, 𝑥 :𝜇𝐹 𝐴, Γ
′ ⊢ 𝑥 : 𝐴 @𝐸

Case analysis on the purity of 𝐴
Case Impure. By Γ,µ𝜇𝐹 ⊢ 𝑉 : 𝐴 @ 𝐹 ′, (1), and Lemma A.11.3, we have

Γ,µ𝜈𝐹 ⊢ 𝑉 : 𝐴 @𝐸.

Then, by context equivalence, Lemma A.11.1, and Lemma A.11.4, we have

Γ, Γ′ ⊢ 𝑉 : 𝐴 @𝐸.

Case Pure. By Γ,µ𝜇𝐹 ⊢ 𝑉 : 𝐴 @ 𝐹 ′ and Lemma A.13, we have

Γ, Γ′ ⊢ 𝑉 : 𝐴 @𝐸.

Case
T-Mod
𝜇′𝐸 : 𝐹1 → 𝐸 Γ, 𝑥 :𝜇𝐹 𝐴, Γ

′,µ𝜇′
𝐸
⊢𝑊 : 𝐵 @ 𝐹1 (1)

Γ, 𝑥 :𝜇𝐹 𝐴, Γ
′ ⊢ mod𝜇′𝑊 : 𝜇′𝐵 @𝐸

By IH on (1) we have
Γ, Γ′,µ𝜇′

𝐸
⊢𝑊 [𝑉 /𝑥] : 𝐵 @ 𝐹1 .

Then by T-Mod we have

Γ, Γ′ ⊢ (mod𝜇′𝑊 ) [𝑉 /𝑥] : 𝜇′𝐵 @𝐸

Case
T-Letmod

𝜈𝐸 : 𝐹1 → 𝐸

Γ, 𝑥 :𝜇𝐹 𝐴, Γ
′,µ𝜈𝐸 ⊢𝑊 : 𝜇′𝐴′ @ 𝐹1 (1) Γ, 𝑥 :𝜇𝐹 𝐴, Γ

′, 𝑦 :𝜈𝐸◦𝜇′𝐹1 𝐴
′ ⊢ 𝑀 : 𝐵 @𝐸 (2)

Γ, 𝑥 :𝜇𝐹 𝐴, Γ
′ ⊢ let𝜈 mod𝜇′ 𝑦 =𝑊 in 𝑀 : 𝐵 @𝐸

By IH on (1), we have

Γ, Γ′,µ𝜈𝐸 ⊢𝑊 [𝑉 /𝑥] : 𝜇′𝐴′ @ 𝐹1.

By IH on (2), we have

Γ, Γ′, 𝑦 :𝜈𝐸◦𝜇′𝐹1 𝐴
′ ⊢ 𝑀 [𝑉 /𝑥] : 𝐵 @𝐸.

Then by T-Letmod, we have

Γ, Γ′ ⊢ (let𝜈 mod𝜇′ 𝑦 =𝑊 in 𝑀) [𝑉 /𝑥] : 𝐵 @𝐸

Case
T-Letmod’
𝜈𝐸 : 𝐹1 → 𝐸 Γ, 𝑥 :𝜇𝐹 𝐴, Γ

′,µ𝜈𝐸 , 𝛼 : 𝐾 ⊢ 𝑉 : 𝜇′𝐴′ @ 𝐹1 (1)
Γ, 𝑥 :𝜇𝐹 𝐴, Γ

′, 𝑦 :𝜈𝐸◦𝜇′𝐹1 ∀𝛼
𝐾 .𝐴′ ⊢ 𝑀 : 𝐵 @𝐸 (2)

Γ, 𝑥 :𝜇𝐹 𝐴, Γ
′ ⊢ let𝜈 mod𝜇′ Λ𝛼𝐾 .𝑦 = 𝑉 in 𝑀 : 𝐵 @𝐸

Similar to the case for T-Letmod. Our goal follows from IH on (1), IH on (2), and T-Letmod’.
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Case
T-Mask
Γ, 𝑥 :𝜇𝐹 𝐴, Γ

′,µ⟨𝐿 |⟩𝐸 ⊢ 𝑀 : 𝐵 @𝐸 − 𝐿 (1)
Γ, 𝑥 :𝜇𝐹 𝐴, Γ

′ ⊢ mask𝐿 𝑀 : ⟨𝐿 |⟩𝐵 @𝐸

By IH on (1) we have

Γ, Γ′,µ⟨𝐿 |⟩𝐸 ⊢ 𝑀 [𝑉 /𝑥] : 𝐵 @𝐸 − 𝐿.

Then by T-Mask we have

Γ, Γ′ ⊢ (mask𝐿 𝑀) [𝑉 /𝑥] : ⟨𝐿 |⟩𝐵 @𝐸

Case
T-Handler

𝐷 = {ℓ𝑖 : 𝐴𝑖 ↠ 𝐵𝑖 }𝑖 Γ, 𝑥 :𝜇𝐹 𝐴, Γ
′,µ⟨|𝐷 ⟩𝐸 ⊢ 𝑀 : 𝐴0 @𝐷 + 𝐸 (1)

Γ, 𝑥 :𝜇𝐹 𝐴, Γ
′, 𝑦 : ⟨|𝐷⟩𝐴0 ⊢ 𝑁 : 𝐵 @𝐸 (2)

[Γ, 𝑥 :𝜇𝐹 𝐴, Γ
′, 𝑝𝑖 : 𝐴𝑖 , 𝑟𝑖 : 𝐵𝑖 → 𝐵 ⊢ 𝑁𝑖 : 𝐵 @𝐸 (3)]𝑖

Γ, 𝑥 :𝜇𝐹 𝐴, Γ
′ ⊢ handle 𝑀 with {return 𝑦 ↦→ 𝑁 } ⊎ {ℓ𝑖 𝑝𝑖 𝑟𝑖 ↦→ 𝑁𝑖 }𝑖 : 𝐵 @𝐸

Follow from IH on (1),(2),(3), and reapplying T-Handler.
Case T-TAbs, T-TApp, T-Abs, T-App, T-Do. Follow from IH.
Case Extensions. Follow from IH.

□

A.6 Progress

Theorem 3.3 (Progress). If ⊢ 𝑀 : 𝐴 @𝐸, then either there exists 𝑁 such that𝑀 { 𝑁 or𝑀 is in

a normal form with respect to 𝐸.

Proof. By induction on the typing derivation ⊢ 𝑀 : 𝐴 @𝐸. The most non-trivial cases are
T-Mask and T-Handler. Other cases follow from IHs and reduction rules, using Lemma A.8.
Case 𝑀 is in a value normal form𝑈 . Trivial. Base case.
Case T-Do. Trivial. Base case.
Case T-Mod. mod𝜇 𝑉 . By IH on 𝑉 .
Case T-Letmod. let𝜈 mod𝜇 𝑥 = 𝑉 in 𝑁 . By IH on 𝑉 , if 𝑉 is reducible then 𝑀 is reducible;

otherwise, 𝑉 is in a value normal form, then by Lemma A.8 we have that𝑀 is reducible by
E-Letmod.

Case T-Letmod’. Similar to the case for T-Letmod.
Case T-TApp.𝑀𝐴. Similarly by IH on𝑀 , Lemma A.8, and E-TApp.
Case T-App.𝑀 𝑁 . Similarly by IH on𝑀 and 𝑁 , Lemma A.8, and E-App.
Case T-Mask. mask

𝐸 𝑀 . By IH on𝑀 .
Case 𝑀 is reducible. Trivial.
Case 𝑀 is in a value normal form. By E-Mask.
Case 𝑀 = E[do ℓ 𝑈 ] with 𝑛−free(ℓ, E). The whole term is in a normal form.

Case Handlers. The general form is handle𝛿 𝑀 with 𝐻 . By IH on𝑀 .
Case 𝑀 is reducible. Trivial.
Case 𝑀 is in a value normal form. By E-Ret.
Case 𝑀 = E[do ℓ 𝑈 ] with 𝑛−free(ℓ, E). If 𝑛 = 0 and ℓ ∈ 𝐻 , then reducible by E-Op.

Otherwise, the whole term is in a normal form.
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Case T-BoxAbs.mod[ ] 𝑀 . If𝑀 { 𝑁 , follow by IH on𝑀 . Otherwise,𝑀 must be in a value normal
form because the T-BoxAbs requires𝑀 to have the empty effect. In this case,mod[ ] 𝑀 is
also in a value normal form.

Case Data Types. Similar to other cases.
□

A.7 Subject Reduction

Theorem 3.4 (Subject Reduction). If Γ ⊢ 𝑀 : 𝐴 @𝐸 and𝑀 { 𝑁 , then Γ ⊢ 𝑁 : 𝐴 @𝐸.

Proof. By induction on the typing derivation Γ ⊢ 𝑀 : 𝐴 @𝐸.
Case T-Var. Impossible as there is no further reduction.
Case

T-Mod
𝜇𝐹 : 𝐸 → 𝐹 Γ,µ𝜇𝐹 ⊢ 𝑉 : 𝐴 @𝐸 (1)

Γ ⊢ mod𝜇 𝑉 : 𝜇𝐴 @ 𝐹

The only way to reduce is by E-Lift and 𝑉 {𝑊 . IH on (1) gives

Γ,µ𝜇𝐹 ⊢𝑊 : 𝐴 @𝐸.

Then by T-Mod we have
Γ ⊢ mod𝜇𝑊 : 𝜇𝐴 @ 𝐹 .

Case
T-Letmod
𝜈𝐹 : 𝐸 → 𝐹 Γ,µ𝜈𝐹 ⊢ 𝑉 : 𝜇𝐴 @𝐸 (1) Γ, 𝑥 :𝜈𝐹 ◦𝜇𝐸 𝐴 ⊢ 𝑀 : 𝐵 @ 𝐹 (2)

Γ ⊢ let𝜈 mod𝜇 𝑥 = 𝑉 in 𝑀 : 𝐵 @ 𝐹

By case analysis on the reduction.
Case E-Lift with 𝑉 {𝑊 . By IH on (1) and reapplying T-Letmod.
Case E-Letmod. We have 𝑉 = mod𝜇 𝑈 and

let𝜈 mod𝜇 𝑥 = mod𝜇 𝑈 in 𝑀 { 𝑀 [𝑈 /𝑥] .

Inversion on (1) gives

Γ,µ𝜈𝐹 ,µ𝜇𝐸 ⊢ 𝑈 : 𝐴 @𝐸′ .

where 𝜇𝐸 : 𝐸′ → 𝐸. By context equivalence, we have

Γ,µ𝜈𝐹 ◦𝜇𝐸 ⊢ 𝑈 : 𝐴 @𝐸′

where 𝜈𝐹 ◦ 𝜇𝐸 : 𝐸′ → 𝐹 . By Lemma A.14.3 and (2), we have

Γ ⊢ 𝑀 [𝑈 /𝑥] : 𝐵 @ 𝐹 .

Case
T-Letmod’
𝜈𝐹 : 𝐸 → 𝐹 Γ,µ𝜈𝐹 , 𝛼 : 𝐾 ⊢ 𝑉 : 𝜇𝐴 @𝐸 (1) Γ, 𝑥 :𝜈𝐹 ◦𝜇𝐸 ∀𝛼𝐾 .𝐴 ⊢ 𝑀 : 𝐵 @ 𝐹 (2)

Γ ⊢ let𝜈 mod𝜇 Λ𝛼𝐾 .𝑥 = 𝑉 in 𝑀 : 𝐵 @ 𝐹

Similar to the case for T-Letmod’. By case analysis on the reduction.
Case E-Lift with 𝑉 {𝑊 . By IH on (1) and reapplying T-Letmod’.
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Case E-Letmod’. We have 𝑉 = mod𝜇 𝑈 and

let𝜈 mod𝜇 Λ𝛼𝐾 .𝑥 = mod𝜇 𝑈 in 𝑀 { 𝑀 [(∀𝛼𝐾 .𝑈 )/𝑥] .
Inversion on (1) gives

Γ,µ𝜈𝐹 , 𝛼 : 𝐾,µ𝜇𝐸 ⊢ 𝑈 : 𝜇𝐴 @𝐸′ .

where 𝜇𝐸 : 𝐸′ → 𝐸. By Lemma A.11.5 we have

Γ,µ𝜈𝐹 ,µ𝜇𝐸 , 𝛼 : 𝐾 ⊢ 𝑈 : 𝐴 @𝐸′ .

By context equivalence, we have

Γ,µ𝜈𝐹 ◦𝜇𝐸 , 𝛼 : 𝐾 ⊢ 𝑈 : 𝐴 @𝐸′ .

where 𝜈𝐹 ◦ 𝜇𝐸 : 𝐸′ → 𝐹 . By T-TAbs we have

Γ,µ𝜈𝐹 ◦𝜇𝐸 ⊢ Λ𝛼𝐾 .𝑈 : ∀𝛼𝐾 .𝐴 @𝐸′ .

By Lemma A.14.3 and (2), we have

Γ ⊢ 𝑀 [𝑈 /𝑥] : 𝐵 @ 𝐹 .

Case T-TAbs,T-Abs. Impossible as there is no further reduction.
Case

T-TApp
Γ ⊢ 𝑀 : ∀𝛼𝐾 .𝐵 @𝐸 (1) Γ ⊢ 𝐴 : 𝐾 (2)

Γ ⊢ 𝑀𝐴 : 𝐵 [𝐴/𝛼] @𝐸

By case analysis on the reduction.
Case E-Lift with𝑀 { 𝑁 . By IH on (1) and reapplying T-TApp.
Case E-TApp. We have𝑀 = Λ𝛼𝐾 .𝑉 and

(Λ𝛼𝐾 .𝑉 )𝐴 { 𝑉 [𝐴/𝛼] .
Inversion on (1) gives

Γ, 𝛼 : 𝐾 ⊢ 𝑉 : 𝐵 @𝐸.

Then by Lemma A.14.2 on (2), we have

Γ ⊢ 𝑉 [𝐴/𝛼] : 𝐵 [𝐴/𝛼] @𝐸.

Case
T-App
Γ ⊢ 𝑀 : 𝐴 → 𝐵 @𝐸 (1) Γ ⊢ 𝑁 : 𝐴 @𝐸 (2)

Γ ⊢ 𝑀 𝑁 : 𝐵 @𝐸

By case analysis on the reduction.
Case E-Lift with𝑀 { 𝑀 ′. By IH on (1) and reapplying T-App.
Case E-Lift with 𝑁 { 𝑁 ′. By IH on (2) and reapplying T-App.
Case E-App. We have𝑀 = 𝜆𝑥𝐴 .𝑀 ′, 𝑁 = 𝑈 , and

𝑀 𝑁 { 𝑀 ′ [𝑈 /𝑥] .
Inversion on (1) gives

Γ, 𝑥 : 𝐴 ⊢ 𝑀 ′ : 𝐵 @𝐸.

Then by Lemma A.14.3 we have

Γ ⊢ 𝑀 ′ [𝑈 /𝑥] : 𝐵 @𝐸.
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Case T-Do. The only way to reduce is by E-Lift. Follow from IH and reapplying T-Do.
Case

T-Mask
Γ,µ⟨𝐿 |⟩𝐹 ⊢ 𝑀 : 𝐴 @ 𝐹 − 𝐿 (1)
Γ ⊢ mask𝐿 𝑀 : ⟨𝐿 |⟩𝐴 @ 𝐹

By case analysis on the reduction.
Case E-Lift with𝑀 { 𝑁 . By IH on (1) and reapplying T-Mask.
Case E-Mask. We have𝑀 = 𝑈 and

mask𝐿𝑈 { mod⟨𝐿 |⟩ 𝑈 .

By ⟨𝐿 |⟩𝐹 : 𝐹 − 𝐿 → 𝐹 and T-Mod, we have

Γ ⊢ mod⟨𝐿 |⟩ 𝑈 : ⟨𝐿 |⟩𝐴 @ 𝐹 .

Case
T-Handler

𝐻 = {return 𝑥 ↦→ 𝑁 } ⊎ {ℓ𝑖 𝑝𝑖 𝑟𝑖 ↦→ 𝑁𝑖 }𝑖
𝐷 = {ℓ𝑖 : 𝐴𝑖 ↠ 𝐵𝑖 }𝑖 Γ,µ⟨|𝐷 ⟩𝐹 ⊢ 𝑀 : 𝐴 @𝐷 + 𝐹 (1)

Γ, 𝑥 : ⟨|𝐷⟩𝐴 ⊢ 𝑁 : 𝐵 @ 𝐹 (2) [Γ, 𝑝𝑖 : 𝐴𝑖 , 𝑟𝑖 : 𝐵𝑖 → 𝐵 ⊢ 𝑁𝑖 : 𝐵 @ 𝐹 (3)]𝑖
Γ ⊢ handle 𝑀 with 𝐻 : 𝐵 @ 𝐹

By case analysis on the reduction.
Case E-Lift with𝑀 { 𝑀 ′. By IHs and reapplying T-Handler.
Case E-Ret. We have𝑀 = 𝑈 and

handle 𝑈 with 𝐻 { 𝑁 [(mod⟨|𝐷 ⟩ 𝑈 )/𝑥] .
By (1), ⟨𝐷 |⟩𝐹 : 𝐹 → 𝐷 + 𝐹 , and T-Mod, we have

Γ ⊢ mod⟨|𝐷 ⟩ 𝑈 : 𝐴 @ 𝐹 .

Then by (2) and Lemma A.14.3 we have

Γ ⊢ 𝑁 [(mod⟨|𝐷 ⟩ 𝑈 )/𝑥] : 𝐵 @ 𝐹 .

Case E-Op. We have𝑀 = E[do ℓ𝑗 𝑈 ], 0−free(ℓ𝑗 , E), ℓ𝑗 𝑝 𝑗 𝑟 𝑗 ↦→ 𝑁 𝑗 , and

handle 𝑀 with 𝐻 { 𝑁 𝑗 [𝑈 /𝑝, (𝜆𝑦.handle E[𝑦] with 𝐻 )/𝑟 ] .
Since 𝐷 is well-kinded, 𝐴 𝑗 and 𝐵 𝑗 are pure. By inversion on do ℓ𝑗 𝑈 we have

Γ,µ⟨|𝐷 ⟩𝐹 ⊢ 𝑈 : 𝐴 𝑗 @𝐷 + 𝐹 .
By 𝐴 𝑗 is pure and Lemma A.13, we have

Γ,µ⟨|𝐷 ⟩𝐹 ,µ⟨𝐿 |⟩𝐷+𝐹 ⊢ 𝑈 : 𝐴 𝑗 @ 𝐹

where 𝐿 = dom(𝐷). By context equivalence, we have

Γ ⊢ 𝑈 : 𝐴 𝑗 @ 𝐹 (4)
Observe that 𝐵 𝑗 being pure allows 𝑦 : 𝐵 𝑗 to be accessed in any context. By (1) and a
straightforward induction on E we have

Γ, 𝑦 : 𝐵 𝑗 ,µ⟨|𝐷 ⟩𝐹 ⊢ E[𝑦] : 𝐴 @𝐷 + 𝐹 .
Then by T-Handler and T-Abs we have

Γ ⊢ 𝜆𝑦.handle E[𝑦] with 𝐻 : 𝐵 𝑗 → 𝐵 @ 𝐹 (5).
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Finally, by (3), (4), (5), and Lemma A.14.3 we have

Γ ⊢ 𝑁 𝑗 [𝑈 /𝑝, (𝜆𝑦.handle E[𝑦] with 𝐻 )/𝑟 ] : 𝐵 @ 𝐹 .

Case
T-HandleA

𝐻 = {return 𝑥 ↦→ 𝑁 } ⊎ {ℓ𝑖 𝑝𝑖 𝑟𝑖 ↦→ 𝑁𝑖 }𝑖
𝐿 = {ℓ𝑖 }𝑖 𝐸 = {ℓ𝑖 : 𝐴𝑖 ↠ 𝐵𝑖 }𝑖 Γ,µ[𝐷+𝐸 ]𝐹 ⊢ 𝑀 : 𝐴 @𝐷 + 𝐸 (1)

Γ, 𝑥 : [𝐷 + 𝐸]𝐴 ⊢ 𝑁 : 𝐵 @ 𝐹 (2) [Γ, 𝑝𝑖 : 𝐴𝑖 , 𝑟𝑖 : [𝐹 ] (𝐵𝑖 → 𝐵) ⊢ 𝑁𝑖 : 𝐵 @ 𝐹 (3)]𝑖
Γ ⊢ handleA 𝑀 with 𝐻 : 𝐵 @ 𝐹

By case analysis on the reduction.
Case E-Lift with𝑀 { 𝑀 ′. By IHs and reapplying T-HandleA.
Case E-RetA. We have𝑀 = 𝑈 and

handle 𝑀 with 𝐻 { 𝑁 [(mod[𝐷+𝐸 ]𝑈 )/𝑥] .
By (1), [𝐷 + 𝐹 ]𝐹 : 𝐷 + 𝐸 → 𝐹 , and T-Mod, we have

Γ ⊢ mod[𝐷+𝐸 ] 𝑈 : [𝐷 + 𝐸]𝐴 @ 𝐹 .

Then by (2) and Lemma A.14.3 we have

Γ ⊢ 𝑁 [(mod[𝐷+𝐸 ] 𝑈 )/𝑥] : 𝐵 @ 𝐹 .

Case E-OpA. We have𝑀 = E[do ℓ𝑗 𝑈 ], 0−free(ℓ𝑗 , E), ℓ𝑗 𝑝 𝑗 𝑟 𝑗 ↦→ 𝑁 𝑗 , and

handle
A 𝑀 with 𝐻 { 𝑁 𝑗 [𝑈 /𝑝, (mod[𝐸 ] (𝜆𝑦.handleA E[𝑦] with 𝐻 ))/𝑟 ] .

Since 𝐷 is well-kinded, 𝐴 𝑗 and 𝐵 𝑗 are pure. By inversion on do ℓ𝑗 𝑈 , we have

Γ,µ[𝐷+𝐸 ]𝐹 ⊢ 𝑈 : 𝐴 𝑗 @𝐷 + 𝐸.
By 𝐴 𝑗 is pure and Lemma A.13, we have

Γ ⊢ 𝑈 : 𝐴 𝑗 @ 𝐹 (4).
Observe that 𝐵 𝑗 being pure allows 𝑦 to be accessed in any context. By (1) and a
straightforward induction on E we have

Γ, 𝑦 : 𝐵 𝑗 ,µ[𝐷+𝐸 ]𝐹 ⊢ E[𝑦] : 𝐴 @𝐷 + 𝐸.
By [𝐹 ]𝐹 ◦ [𝐷 + 𝐸]𝐹 = [𝐷 + 𝐸]𝐹 and context equivalence, we have

Γ, 𝑦 : 𝐵 𝑗 ,µ[𝐹 ]𝐹 ,µ[𝐷+𝐸 ]𝐹 ⊢ E[𝑦] : 𝐴 @𝐷 + 𝐸.
Since 𝐵 𝑗 is pure, we can swap 𝑦 : 𝐵 𝑗 with µ[𝐹 ]𝐹 and derive

Γ,µ[𝐹 ]𝐹 , 𝑦 : 𝐵 𝑗 ,µ[𝐷+𝐸 ]𝐹 ⊢ E[𝑦] : 𝐴 @𝐷 + 𝐸.
By T-HandlerA, we have

Γ,µ[𝐹 ]𝐹 , 𝑦 : 𝐵 𝑗 ⊢ handleA E[𝑦] with 𝐻 : 𝐵 @𝐸.

Then by T-Abs and T-Mod we have

Γ ⊢ mod[𝐹 ] (𝜆𝑦.handleA E[𝑦] with 𝐻 ) : [𝐹 ] (𝐵 𝑗 → 𝐵) @ 𝐹 (5).
Finally, by (3), (4), (5), and Lemma A.14.3 we have

Γ ⊢ 𝑁 𝑗 [𝑈 /𝑝, (mod[𝐹 ] (𝜆𝑦.handle E[𝑦] with 𝐻 ))/𝑟 ] : 𝐵 @ 𝐹 .

Case Shallow handlers. Similar to the cases of deep handlers.
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Case Data Types. Nothing more special than the cases we have already shown. Introduction
rules follows from IHs and reapplying the same typing rules. Elimination rules require to
additionally consider their corresponding reduction rules.

□

A.8 Proof of Encoding

We prove the encoding from F1eff into Met in Section 5.

Definition 5.1 (Well-scoped). A typing judgement Γ1, 𝑥 :𝜀 𝐴, Γ2 ⊢ 𝑀 : 𝐵 !𝐸 is well-scoped for 𝑥 if
either 𝑥 ∉ fv(𝑀) or qΛ

𝐹
∉ Γ2 or 𝐴 = ∀.𝐴′. A typing judgement Γ ⊢ 𝑀 : 𝐴 !𝐸 is well-scoped if it is

well-scoped for all 𝑥 ∈ Γ.

Lemma A.15 (Well-scopedness of Derivation Trees). If the judgement at the bottom of a

derivation tree is well-scoped, then every judgement in the derivation tree is well-scoped.

Proof. Assume the contrary. Let Γ1, 𝑥 :𝜀 𝐴, Γ2 ⊢ 𝑀 : 𝐵 !𝐸 be the top-most judgement in the
derivation tree with 𝑥 ∈ fv(𝑀) and qΛ

𝐹
∈ Γ2 and 𝐴 ≠ ∀.𝐴′. By case analysis on whether qΛ

𝐹
∈ Γ2

was introduced in the derivation tree.
Case not introduced in the derivation tree: Then the judgement at the bottom of the derivation

tree must contain both the marker and 𝑥 and is not well-scoped for 𝑥 . Contradiction.
Case introduced in the derivation tree: since we chose the top-most judgement, the judgement

must have introduced the marker by an application of the R-EAbs rule. Let 𝜀′ be the effect
variable introduced at this judgement. Then 𝜀 ≠ 𝜀′ by the side-condition of the R-EAbs rule.
We have that 𝜀 is the ambient effect at the R-Var rule where 𝑥 is used as a free variable,
since we chose the top-most judgement. By the side-condition of the R-Var rule, then 𝜀 = 𝜀′
or 𝐴 = ∀.𝐴′. Contradiction.

□

In the special case we consider there are no absent signatures. This implies that submoding on
effects can only add labels to the end. Furthermore, all labels are drawn from a global environment
and thus have the same signatures. This allows us to freely permute them in the effect row. In this
case, we can strengthen the statement to the following:

Corollary A.16 (Transformation from Index). If ⟨𝐿1 |𝐷1⟩(𝐹 ) ⩽ ⟨𝐿2 |𝐷2⟩(𝐹 ) and 𝐿1 ⩽ 𝐹 and

𝐿2 ⩽ 𝐹 and 𝐿1 ⊲⊳ 𝐷1 = 𝐿2 ⊲⊳ 𝐷2, then ⟨𝐿1 |𝐷1⟩𝐹 ⇒ ⟨𝐿2 |𝐷2⟩𝐹 .

Proof. We show that for all 𝐹 ′ with 𝐹 ⩽ 𝐹 ′, we have ⟨𝐿1 |𝐷1⟩(𝐹 ′) ⩽ ⟨𝐿2 |𝐷2⟩(𝐹 ′). Since all
signatures are present in 𝐹 , we have that 𝐹 ′ = 𝐹 + 𝑙 for some collection of labels with signatures 𝑙 .
Then we use that 𝐿1 ⩽ 𝐹 :

⟨𝐿1 |𝐷1⟩(𝐹 ′) = ⟨𝐿1 |𝐷1⟩(𝐹 + 𝑙)

= 𝐷1 + ((𝐹 + 𝑙) − 𝐿1)

= 𝐷1 + ((𝐹 − 𝐿1) + 𝑙)

= ⟨𝐿1 |𝐷1⟩(𝐹 ) + 𝑙
and the same for ⟨𝐿2 |𝐷2⟩(𝐹 ′). Since ⟨𝐿1 |𝐷1⟩(𝐹 ) ⩽ ⟨𝐿2 |𝐷2⟩(𝐹 ) and we can freely permute labels,
we have that (⟨𝐿1 |𝐷1⟩(𝐹 ) + 𝑙) ⩽ (⟨𝐿2 |𝐷2⟩(𝐹 ) + 𝑙). □

The condition that 𝐿1 ⊲⊳ 𝐷1 = 𝐿2 ⊲⊳ 𝐷2 can be checked easily, where for the composition of
modalities we use the fact that for ⟨𝐿 |𝐷⟩ = ⟨𝐿1 |𝐷1⟩ ◦ ⟨𝐿2 |𝐷2⟩, we have 𝐿 ⊲⊳ 𝐷 = (𝐿1, 𝐿2) ⊲⊳ (𝐷1, 𝐷2).
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Lemma A.17 (First Modality Transformation). For all 𝐸1, 𝐸2, 𝐸3:
(⟨𝐸1 − 𝐸2 |𝐸2 − 𝐸1⟩ ◦ ⟨𝐸2 − 𝐸3 |𝐸3 − 𝐸2⟩)𝐸1 ⇔ ⟨𝐸1 − 𝐸3 |𝐸3 − 𝐸1⟩𝐸1

Proof. We can use Corollary A.16 since (𝐸1 − 𝐸3) ⩽ 𝐸1 and (𝐸1 − 𝐸2) + 𝐿 ⩽ 𝐸1 where (𝐿, 𝐷) =
(𝐸2 − 𝐸3) ⊲⊳ (𝐸2 − 𝐸1). We have:

⟨𝐸1 − 𝐸3 |𝐸3 − 𝐸1⟩(𝐸1) = (𝐸3 − 𝐸1) + (𝐸1 − (𝐸1 − 𝐸3))
= (𝐸3 − 𝐸1) + (𝐸1 ∩ 𝐸3)
= 𝐸3

and using this calculation:
⟨𝐸1 − 𝐸2 |𝐸2 − 𝐸1⟩ ◦ ⟨𝐸2 − 𝐸3 |𝐸3 − 𝐸2⟩(𝐸1) = ⟨𝐸2 − 𝐸3 |𝐸3 − 𝐸2⟩(⟨𝐸1 − 𝐸2 |𝐸2 − 𝐸1⟩(𝐸1))

= ⟨𝐸2 − 𝐸3 |𝐸3 − 𝐸2⟩(𝐸2)
= 𝐸3

□

Lemma A.18 (Second Modality Transformation). For all 𝐿, 𝐸, 𝐹 :
⟨𝐿 + (𝐸 − 𝐹 ) |𝐹 − 𝐸⟩𝐿+𝐸 ⇒ ⟨(𝐿 + 𝐸) − 𝐹 |𝐹 − (𝐿 + 𝐸)⟩𝐿+𝐸

Proof. We can use Corollary A.16 since (𝐿 + 𝐸) − 𝐹 ⩽ 𝐿 + 𝐸 and 𝐿 + (𝐸 − 𝐹 ) ⩽ 𝐿 + 𝐸. We have:
⟨(𝐿 + 𝐸) − 𝐹 |𝐹 − (𝐿 + 𝐸)⟩(𝐿 + 𝐸) = (𝐹 − (𝐿 + 𝐸)) + ((𝐿 + 𝐸) − (𝐿 + 𝐸 − 𝐹 ))

= (𝐹 − (𝐿 + 𝐸)) + ((𝐿 + 𝐸) ∩ 𝐹 )
= 𝐹

and:
⟨𝐿 + (𝐸 − 𝐹 ) |𝐹 − 𝐸⟩(𝐿 + 𝐸) = (𝐹 − 𝐸) + ((𝐿 + 𝐸) − (𝐿 + (𝐸 − 𝐹 )))

= (𝐹 − 𝐸) + (𝐸 − (𝐸 − 𝐹 ))
= (𝐹 − 𝐸) + (𝐸 ∩ 𝐹 )
= 𝐹

□

Lemma A.19 (Third Modality Transformation). For all ℓ𝑖 , 𝐸, 𝐹 :
(⟨|ℓ𝑖⟩ ◦ ⟨ℓ𝑖 , 𝐸 − 𝐹 |𝐹 − ℓ𝑖 , 𝐸⟩)𝐸 ⇒ ⟨𝐸 − 𝐹 |𝐹 − 𝐸⟩𝐸

Proof. We can use Corollary A.16 since (⟨|ℓ𝑖⟩ ◦ ⟨ℓ𝑖 , 𝐸 − 𝐹 |𝐹 − ℓ𝑖 , 𝐸⟩) = ⟨ℓ𝑖 , 𝐸 − 𝐹 |𝐹 − ℓ𝑖 , 𝐸⟩(ℓ𝑖 , 𝐸)
and ℓ𝑖 , 𝐸 − 𝐹 ⩽ ℓ𝑖 , 𝐸 and 𝐸 − 𝐹 ⩽ 𝐸. We have ⟨𝐸 − 𝐹 |𝐹 − 𝐸⟩(𝐸) = 𝐹 and:

⟨|ℓ𝑖⟩ ◦ ⟨ℓ𝑖 , 𝐸 − 𝐹 |𝐹 − ℓ𝑖 , 𝐸⟩(𝐸) = ⟨ℓ𝑖 , 𝐸 − 𝐹 |𝐹 − ℓ𝑖 , 𝐸⟩(⟨|ℓ𝑖⟩(𝐸))
= ⟨ℓ𝑖 , 𝐸 − 𝐹 |𝐹 − ℓ𝑖 , 𝐸⟩(ℓ𝑖 , 𝐸)
= 𝐹

□

Lemma A.20 (Translating Instantiated Types). For all F1eff types 𝐴: J𝐴K𝐸 = J𝐴[𝐸′/]K𝐸,𝐸′ .

Proof. By induction on the type 𝐴.
Case 𝐴 = Int. Trivial.
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Case 𝐴 = ∀.𝐴′. Trivial.
Case 𝐴 = 𝐴′ →𝐹 𝐵′. Then:

J𝐴K𝐸 = ⟨𝐸 − 𝐹 |𝐹 − 𝐸⟩(J𝐴′K𝐹 → J𝐵′K𝐹 )
J𝐴[𝐸′/]K𝐸,𝐸′ = ⟨𝐸, 𝐸′ − 𝐹, 𝐸′ |𝐹, 𝐸′ − 𝐸, 𝐸′⟩(J𝐴′ [𝐸′/]K𝐹,𝐸′ → J𝐵′ [𝐸′/]K𝐹,𝐸′ )

By the induction hypothesis we have:

J𝐴′K𝐹 = J𝐴′ [𝐸′/]K𝐹,𝐸′
J𝐵′K𝐹 = J𝐵′ [𝐸′/]K𝐹,𝐸′

Since we can freely permute labels:

⟨𝐸, 𝐸′ − 𝐹, 𝐸′ |𝐹, 𝐸′ − 𝐸, 𝐸′⟩ = ⟨𝐸′, 𝐸 − 𝐸′, 𝐹 |𝐸′, 𝐹 − 𝐸′, 𝐸⟩
= ⟨𝐸 − 𝐹 |𝐹 − 𝐸⟩

□

Lemma 5.2 (Type preservation of encoding). If Γ ⊢ 𝑀 : 𝐴 ! {𝐸 |𝜀} is well-scoped, then 𝑀 :
𝐴 !𝐸 d 𝑀 ′

and JΓK𝐸 ⊢ 𝑀 ′ : J𝐴K𝐸 @𝐸.

Proof. By induction on the typing derivation Γ ⊢ 𝑀 : 𝐴 !𝐸. We prove this for each rule of the
translation. As a visual aid, we repeat each rule where we replace the translation premises by the
Met judgement implied by the induction hypothesis and the translation in the conclusion by the
Met judgement we need to prove.

R-Var

JΓ1, 𝑥 : 𝐴, Γ2K𝐸 ⊢ rebox(𝑥 ;𝐴;𝐸) : J𝐴K𝐸 @𝐸

We use the rebox(𝑥 ;𝐴;𝐸) function defined as follows:

rebox(𝑥 ;𝐴;𝐸) =


mod⟨ | ⟩ 𝑥, if 𝐴 = Int

mod⟨𝐸−𝐹 |𝐹−𝐸⟩ 𝑥, if 𝐴 = 𝐴′ →𝐹 𝐵′

mod[ ] 𝑥, if 𝐴 = ∀.𝐴′

This function is exactly equivalent to mod𝜇 𝑥 where 𝜇 = topmod(J𝐴K𝐸) We use the T-Mod rule
to introduce the box. By cases on the type 𝐴:
Case 𝐴 = Int. We can use the T-Var rule since · ⊢ Int : Abs.
Case 𝐴 = ∀.𝐴′. Then J𝐴K𝐹 = []J𝐴′K· for all 𝐹 . By rule MT-Abs, the pure modality transforms into

any other modality and so we can use the T-Var rule.
Case 𝐴 = 𝐴′ →𝐹 𝐵′. Since the F1eff judgement is well-scoped, we have that locks(Γ2) is the

composition of transition modalities. Furthermore, locks(Γ′) ◦ ⟨𝐸 − 𝐹 |𝐹 − 𝐸⟩ : 𝐹 → 𝐹 ′ for
the context 𝐹 ′ where 𝑥 as introduced and 𝑥 is annotated by the modality ⟨𝐹 ′ − 𝐹 |𝐹 − 𝐹 ′⟩𝐹 ′ :
𝐹 → 𝐹 ′. By Lemma A.17, we can use the T-Var rule.

R-App
JΓK𝐸 ⊢ 𝑀 ′ : J𝐴 →𝐸 𝐵K𝐸 @𝐸

JΓK𝐸 ⊢ 𝑁 ′ : J𝐴K𝐸 @𝐸 𝑥 fresh

JΓK𝐸 ⊢ let mod⟨ | ⟩ 𝑥 = 𝑀 ′
in 𝑥 𝑁 ′ : J𝐵K𝐸 @𝐸

We have J𝐴 →𝐸 𝐵K𝐸 = ⟨|⟩(J𝐴K𝐸 → J𝐵K𝐸). The claim follows by the T-Letmod and T-App rules.
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R-Abs
JΓ, q𝐸, 𝑥 : 𝐴K𝐹 ⊢ 𝑀 ′ : J𝐵K𝐹 @ 𝐹 𝜈 ≔ ⟨𝐸 − 𝐹 |𝐹 − 𝐸⟩ 𝜇 ≔ topmod(J𝐴K𝐹 )

JΓK𝐸 ⊢ mod𝜈 (𝜆𝑥J𝐴K𝐹 .let mod𝜇 𝑥 = 𝑥 in 𝑀 ′) : J𝐴 →𝐹 𝐵K𝐸 @𝐸

We have JΓ, q
𝐸
, 𝑥 : 𝐴K𝐹 = JΓK𝐸,µ⟨𝐸−𝐹 |𝐹−𝐸⟩, 𝑥 :𝜇𝐹 𝐴′ where 𝜇𝐴′ = J𝐴K𝐹 . Further J𝐴 →𝐹 𝐵K𝐸 =

⟨𝐸 − 𝐹 |𝐹 − 𝐸⟩(J𝐴K𝐹 → J𝐵K𝐹 ). The claim follows from the T-Letmod, T-Abs and T-Mod rules.

R-EAbs
JΓ, qΛ𝐸 K· ⊢ 𝑉 ′ : J𝐴K· @ ·

JΓK𝐸 ⊢ mod[ ] 𝑉
′ : J∀.𝐴K𝐸 @𝐸

We have JΓ, qΛ
𝐸
K· = JΓK𝐸,µ[ ] . Further, J∀.𝐴K𝐸 = []J𝐴K· . The claim follows from the T-Mod rule.

R-EApp
JΓK𝐸 ⊢ 𝑀 ′ : J∀.𝐴K𝐸 @𝐸 𝑥 fresh

JΓK𝐸 ⊢ let mod[ ] 𝑥 = 𝑀 ′
in 𝑥 : J𝐴[𝐸/]K𝐸 @𝐸

We have J∀.𝐴K𝐸 = []J𝐴K· . By Lemma A.20, J𝐴K· = J𝐴[𝐸/]K𝐸 . The claim follows by the T-Letmod
rule.

R-Do
ℓ : 𝐴 ↠ 𝐵 ∈ Σ

JΓKℓ,𝐸 ⊢ 𝑀 ′ : J𝐴Kℓ,𝐸 @ ℓ, 𝐸

JΓKℓ,𝐸 ⊢ do ℓ 𝑀 ′ : J𝐵Kℓ,𝐸 @ ℓ, 𝐸

Because we only allow pure values in the effect signatures of F1eff , we have that J𝐴Kℓ,𝐸 = J𝐴K·
and J𝐵Kℓ,𝐸 = J𝐵K· , where ℓ : J𝐴K· ↠ J𝐵K· in Met. The claim follows directly by the T-Do rule.

R-Mask
JΓ, q𝐿+𝐸K𝐸 ⊢ 𝑀 ′ : J𝐴K𝐸 @𝐸

𝜇1 ≔ topmod(J𝐴K𝐸) 𝜇2 ≔ topmod(J𝐴K𝐿+𝐸)
JΓK𝐿+𝐸 ⊢ let mod⟨𝐿 |⟩;𝜇1 𝑥 = mask𝐿 𝑀

′
in mod𝜇2 𝑥 : J𝐴K𝐿+𝐸 @𝐿 + 𝐸

We have JΓ, q
𝐿+𝐸K𝐸 = JΓK𝐿+𝐸,µ⟨ (𝐿+𝐸 )−𝐸 |𝐸−(𝐿+𝐸 ) ⟩ . By permuting labels, we have

⟨(𝐿 + 𝐸) − 𝐸 |𝐸 − (𝐿 + 𝐸)⟩ = ⟨𝐿 |⟩. The goal follows by the T-Letmod, T-Mask and T-Mod rules
if we can show that 𝑥 can be used under the box. This is clear for integers, since they are pure
and otherwise we need to show that (⟨𝐿 |⟩ ◦ 𝜇1)𝐿+𝐸 ⇒ (𝜇2)𝐿+𝐸 . For 𝐴 = ∀.𝐴′ this is clear since
𝜇1 = 𝜇2 = [] and ⟨𝐿 |⟩ ◦ [] = []. For functions, this follows from Lemma A.18.

R-Handler
JΓ, q𝐸Kℓ𝑖 ,𝐸 ⊢ 𝑀 ′ : J𝐴Kℓ𝑖 ,𝐸 @ ℓ𝑖 , 𝐸

JΓ, 𝑥 : 𝐴K𝐸 ⊢ 𝑁 ′ : J𝐵K𝐸 @𝐸 [JΓ, 𝑝𝑖 : 𝐴𝑖 , 𝑟𝑖 : 𝐵𝑖 →𝐸 𝐵K𝐸 ⊢ 𝑁 ′
𝑖 : J𝐵K𝐸 @𝐸]𝑖

𝜇 ≔ topmod(J𝐴Kℓ𝑖 ,𝐸) 𝜇′ ≔ topmod(J𝐴K𝐸)
𝑁 ′′ ≔ let mod⟨| ℓ𝑖 ⟩;𝜇 𝑥 = 𝑥 in let𝜇′ mod⟨ | ⟩ 𝑥 = mod⟨ | ⟩ 𝑥 in 𝑁 ′

[𝜇𝑖 ≔ topmod(J𝐴𝑖K·) 𝑁 ′′
𝑖 ≔ let mod𝜇𝑖 𝑝𝑖 = 𝑝𝑖 in 𝑁

′
𝑖 ]𝑖

𝐻 = {return 𝑥 ↦→ 𝑁 } ⊎ {ℓ𝑖 𝑝𝑖 𝑟𝑖 ↦→ 𝑁𝑖 }𝑖 𝐻 ′ ≔ {return 𝑥 ↦→ 𝑁 ′′} ⊎ {ℓ𝑖 𝑝𝑖 𝑟𝑖 ↦→ 𝑁 ′
𝑖 }𝑖

JΓK𝐸 ⊢ handle 𝑀 ′
with 𝐻 ′ : J𝐵K𝐸 @𝐸
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We have JΓ, q
𝐸
Kℓ𝑖 ,𝐸 = JΓK𝐸,µ⟨𝐸−ℓ𝑖 ,𝐸 | ℓ𝑖 ,𝐸−𝐸⟩ . By permuting labels, we have ⟨𝐸 − ℓ𝑖 , 𝐸 |ℓ𝑖 , 𝐸 − 𝐸⟩ =

⟨|ℓ𝑖⟩. In the operation clauses, we have that J𝐵𝑖 →𝐸 𝐵K𝐸 = ⟨|⟩(J𝐵𝑖K𝐸 → J𝐵K𝐸). Because the argument
and return of effects are pure, we have that J𝐵𝑖K𝐸 = J𝐵𝑖K· and J𝐴𝑖K𝐸 = J𝐴K· . We need to unbox the
argument 𝑝𝑖 though. In the return clause, Met gives us 𝑥 : ⟨|ℓ𝑖⟩J𝐴Kℓ𝑖 ,𝐸 , but we need 𝑥 : J𝐴K𝐸 . We
achieve this by unboxing 𝑥 fully and then re-boxing it with the modality 𝜇′. This is possible for
integers because they are pure, for ∀s because of the MT-Abs rule and for functions due to the
modality transformation in Lemma A.19.

□

B Full Specification of Metel

In this section, we give a full specification of Metel including the declarative type system, type
inference algorithm, meta theory of type inference, and elaboration to the core calculus. The proofs
are given in Appendix C.
We focus on formalising the core part of the type inference of Metel. We assume standard

language features like algebraic data types and pattern matching when writing examples; they are
largely orthogonal to our main contribution of type inference.

B.1 Syntax

The syntax of Metel is shown in Figure 12. The new parts compared to Met are highlighted.

Types 𝐴, 𝐵 ::= 𝛼 | 𝐴 → 𝐵 | 𝜇𝐴
Intuitionistic types 𝑆,𝑇 ::= 𝛼 | 𝑆 → 𝑇

Effects 𝐸 ::= · | 𝜀 | 𝐷, 𝐸 | 𝐸\𝐿
Masks and Extensions 𝐿, 𝐷 ::= · | ℓ, 𝐿
Modalities 𝜇 ::= [𝐸] | ⟨𝐿 |𝐷⟩
Type schemes 𝜎 ::= 𝐴 | ∀𝛼𝐾 .𝐴
Kinds 𝐾 ::= Abs | Any | Eff
Restrictions 𝑅 ::= i | m
Contexts Γ ::= · | Γ, 𝛼 : 𝐾 | Γ, 𝑥 :𝜇 𝜎 | Γ,µ𝜇
Type contexts Δ ::= · | Δ, 𝛼 : 𝐾
Label contexts Σ ::= · | Σ, ℓ : 𝐴 ↠ 𝐵

Modality decorations 𝜙 ::= · | 𝜇
Terms 𝑀, 𝑁 ::= 𝑥 | ⌈𝑥⌉ | 𝜆𝑥 .𝑀 | 𝜆𝑥𝐴 .𝑀 | 𝑀 𝑁 | mod𝜇 𝑉

| let𝜈 𝜙 𝑥 = 𝑀 in 𝑁 | let 𝑥𝜎 = 𝑀 in 𝑁

| do ℓ 𝑀 | mask𝐿𝑀 | handle 𝑀 with 𝐻

Values 𝑉 ,𝑊 ::= 𝑥 | ⌈𝑥⌉ | 𝜆𝑥.𝑀 | 𝜆𝑥𝐴 .𝑀 | mod𝜇 𝑉

Handlers 𝐻 ::= {return 𝑥 ↦→ 𝑀} | {ℓ 𝑝 𝑟 ↦→ 𝑀} ⊎ 𝐻

Fig. 12. Syntax of Metel.

Following FreezeML [15], we always fully unbox variables unless they are explicitly frozen by
⌈𝑥⌉. Restrictions distinguish between intuitionistic types i, which cannot contain any modalities,
and modal types, which can contain modalities. Following FreezeML, though rigid type variables
𝛼 could technically be instantiated to modal types, we allow intuitionistic types to contain them
since they are rigid and cannot be unified with other types during type inference. As in ML, we
generalise type variables for let-bindings. We combine normal let-binding and modality elimination
into one syntax let𝜈 𝜙 𝑥 = 𝑀 in 𝑁 . When 𝜙 = ·, it is a normal let-binding.
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Different from the core calculus, we keep modalities 𝜇 in context. We will show in Appendix B.6
that this change does not break soundness and we can always elaborate well-typed closed terms in
Metel to well-typed closed terms in Mete.
We restrict extensions and effects to only contain present labels whose signatures are given by

a global context Σ for simplicity. We do not expect any specific challenges of generalising them
with signatures. Notice that we can still reuse all previous definitions of modes and modalities of
Met. The only differences are that labels with the same name always have the same signature and
absent labels are not allowed to appear explicitly.
For simplicity of type inference, we do not allow negative effects of form 𝐸\𝐿 to appear in the

surface syntax. We write ⊢ 𝑀 pos if all type and modality annotations in 𝑀 do not contain 𝐸\𝐿.
That is, all effect types should have form either 𝐷 or 𝐷, 𝜀. It still allows annotations in𝑀 to contain
rigid type and effect variables. This is an acceptable restriction in practice since we rarely need
to use effect variables and masking at the same time. And even we do need, we can always just
refactor effect types to avoid negative effects to appear in type annotations.

We write ⊢ 𝐴 pos if type 𝐴 does not contain 𝐸\𝐿, and ⊢ Γ pos if all types 𝐴 of variable bindings
satisfy ⊢ 𝐴 pos. Note that ⊢ Γ pos still allows the modalities in 𝑥 :𝜇 _ and µ𝜇 to contain effect types
of any form including 𝐸\𝐿.

B.2 Statements in Context and Syntax-Directed Typing Rules

We formalise the syntax-directed type system and type inference algorithm following the approach
of type inference in context [20]. We first define statements.

Statements 𝐽 ::= 𝐽 ∧ 𝐽 ′ | 𝜎 : (𝐾, 𝑅) | 𝐴 ≡ 𝐵 | 𝜎 ⪯𝑅 𝐴 | 𝑀 ok | 𝜎 ⪯gen 𝜎
′

| (𝜇, 𝜎) ⇒ 𝜈 @𝐸 | (𝑀 ;Δ;𝐴) ⇕† 𝜎 | (𝑀 ;𝜈 ;𝜙 ;Δ;𝐴) ⇕ (𝜉, 𝜎)
| (𝑀 ;Δ;𝐴) ⇓ 𝐵 | 𝑀 : 𝐴 @𝐸

For each statement, we define the judgement Γ ⊢ 𝐽 which means the statement 𝐽 holds in the
context Γ. All these judgements require implicit well-formedness conditions for the statements and
contexts. That is, all free type and term variables in statements should appear in the context Γ, and
all effect labels should appear in the global label context Σ. Contexts are ordered and types can
only refer to variables bound on the left of them in contexts.

The kinding 𝜎 : (𝐾, 𝑅), type equivalence 𝐴 ≡ 𝐵, instantiation 𝜎 ⪯𝑅 𝐴 and term well-formedness
𝑀 ok are defined in Figure 13. The conjunction of statements is standard and defined as follows.

Γ ⊢ 𝐽 Γ ⊢ 𝐽 ′

Γ ⊢ 𝐽 ∧ 𝐽 ′
Γ ⊢ 𝐽 ∧ 𝐽 ′

Γ ⊢ 𝐽
Γ ⊢ 𝐽 ∧ 𝐽 ′

Γ ⊢ 𝐽 ′

Some auxiliary statements and auxiliary functions for typing are defined in Figure 14. The
judgement Γ ⊢ (𝜇, 𝜎) ⇒ 𝜈 @𝐸 checks the accessibility condition for variables. The judgements
Γ ⊢ (𝑀 ;Δ;𝐴) ⇕† 𝜎 deals with value restriction for T-LetAnno. The judgements Γ ⊢ (𝑀 ;𝜈 ;𝜙 ;Δ;𝐴)
deals with value restriction for T-Letmod, as well as case analyses on the shape of 𝜙 .
The syntax-directed typing judgement 𝑀 : 𝐴 @𝐸 is defined in Figure 15. The typing rules

different from Figure 3 are highlighted. The T-Freeze rule is the relatively standard variable rule.
The T-Var additionally eliminates the modality for 𝑥 that is retrieved by split(Δ, 𝐴) defined in
Figure 14. It keeps splitting out the top-level modalities of 𝐴 until reaching a non-modal type or the
modality relies on rigid variables in Δ, which are quantified. The T-Letmod generalise𝑀 when𝑀
is a value; otherwise, it instantiate the principal type of𝑀 with intuitionistic types. The T-Handler
also instantiate the principal types of𝑀 and 𝑁 with intuitionistic types. This avoids solving global
non-trivial constraints on flexible modal or effect variables in type inference.
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Γ ⊢ 𝜎 : (𝐾, 𝑅)

Γ ∋ 𝛼 : 𝐾
Γ ⊢ 𝛼 : (𝐾, res(𝐾))

Γ ⊢ 𝜎 : (𝐾, i)
Γ ⊢ 𝜎 : (𝐾,m)

Γ ⊢ 𝜎 : (Abs, 𝑅)
Γ ⊢ 𝜎 : (Any, 𝑅)

Γ ⊢ 𝐴 : (𝐾,m)
Γ ⊢ ⟨𝐿 |𝐷⟩𝐴 : (𝐾,m)

Γ ⊢ 𝐸 : (Eff,m) Γ ⊢ 𝐴 : (Any,m)
Γ ⊢ [𝐸]𝐴 : (Abs,m)

Γ ⊢ 𝐴 : (Any, 𝑅) Γ ⊢ 𝐵 : (Any, 𝑅)
Γ ⊢ 𝐴 → 𝐵 : (Any, 𝑅)

Γ, 𝛼 : 𝐾 ⊢ 𝜎 : (𝐾 ′, 𝑅)
Γ ⊢ ∀𝛼𝐾 .𝜎 : (𝐾 ′, 𝑅) Γ ⊢ · : (Eff,m)

Γ ⊢ 𝐸 : (Eff,m)
Γ ⊢ ℓ, 𝐸 : (Eff,m)

Γ ⊢ 𝜎 ⪯𝑅 𝐴

Γ ⊢ 𝐴 ⪯𝑅 𝐴
Γ ⊢ 𝐵 : (𝐾, 𝑅) Γ ⊢ 𝜎 [𝐵/𝛼] ⪯𝑅 𝐴

Γ ⊢ ∀𝛼𝐾 .𝜎 ⪯𝑅 𝐴

Γ ⊢ 𝜎 ⪯gen 𝜎
′

Γ ⊢ 𝜎 ≡ 𝜎 ′

Γ ⊢ 𝜎 ⪯gen 𝜎
′

Γ ⊢ 𝐵 : (𝐾,m) Γ ⊢ 𝜎 [𝐵/𝛼] ⪯gen 𝜎
′

Γ ⊢ ∀𝛼𝐾 .𝜎 ⪯gen 𝜎
′

Γ, 𝛼 : 𝐾 ⊢ 𝜎 ⪯gen 𝜎
′

Γ ⊢ 𝜎 ⪯gen ∀𝛼𝐾 .𝜎 ′

Γ ⊢ 𝑀 ok

Γ ⊢ 𝑀 ok Γ ⊢ 𝑁 ok

Γ ⊢ let𝜈 𝜙 𝑥 = 𝑀 in 𝑁 ok

Γ ⊢ ∀Δ.𝐴 : (Any,m) Γ,Δ ⊢ 𝑀 ok Γ ⊢ 𝑁 ok

Γ ⊢ let 𝑥∀Δ.𝐴 = 𝑀 in 𝑁 ok

Γ ⊢ 𝑥 ok Γ ⊢ ⌈𝑥⌉ ok
Γ ⊢ 𝐴 : (Any,m) Γ ⊢ 𝑀 ok

Γ ⊢ 𝜆𝑥𝐴 .𝑀 ok

Γ ⊢ 𝑀 ok

Γ ⊢ 𝜆𝑥.𝑀 ok

Γ ⊢ 𝑀 ok Γ ⊢ 𝑁 ok

Γ ⊢ 𝑀 𝑁 ok

Γ ⊢ 𝑀 ok

Γ ⊢ do ℓ 𝑀 ok

Γ ⊢ 𝑀 ok

Γ ⊢ mask𝐿𝑀 ok

𝐻 = {return 𝑥 ↦→ 𝑁 } ⊎ {ℓ𝑖 𝑝𝑖 𝑟𝑖 ↦→ 𝑁𝑖 }𝑖 𝐷 = ℓ𝑖
Γ ⊢ 𝑀 ok Γ ⊢ 𝑁 ok [Γ ⊢ 𝑁𝑖 ok]𝑖

Γ ⊢ handle 𝑀 with 𝐻 ok

Γ ⊢ 𝐴 ≡ 𝐵

Γ ∋ 𝛼 : 𝐾
Γ ⊢ 𝛼 ≡ 𝛼

Γ ⊢ 𝜇 ≡ 𝜈 Γ ⊢ 𝐴 ≡ 𝐵
Γ ⊢ 𝜇𝐴 ≡ 𝜈𝐵

Γ ⊢ 𝐴 ≡ 𝐴′ Γ ⊢ 𝐵 ≡ 𝐵′

Γ ⊢ 𝐴 → 𝐵 ≡ 𝐴′ → 𝐵′
Γ ⊢ 𝐸 ≡ 𝐹

Γ ⊢ [𝐸] ≡ [𝐹 ]

𝐿 ≡ 𝐿′ 𝐷 ≡ 𝐷 ′

Γ ⊢ ⟨𝐿 |𝐷⟩ ≡ ⟨𝐿′ |𝐷 ′⟩
𝐸 ≡ 𝐹 Γ ⊢ 𝐸

Γ ⊢ 𝐸 ≡ 𝐹

Fig. 13. Statements in context for Metel.
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Γ ⊢ (𝜇, 𝜎) ⇒ 𝜈 @𝐸 Γ ⊢ (𝑀 ;Δ;𝐴) ⇕† 𝜎 Γ ⊢ (𝑀 ;𝜈 ;𝜙 ;Δ;𝐴) ⇕ (𝜉, 𝜎) Γ ⊢ (𝑀 ;Δ;𝐴) ⇓ 𝐵

Γ ⊢ 𝜎 : Abs
Γ ⊢ (𝜇, 𝜎) ⇒ 𝜈 @𝐸

𝜇𝐹 ⇒ 𝜈𝐹 𝜈𝐹 : 𝐸 → 𝐹

Γ ⊢ (𝜇, 𝜎) ⇒ 𝜈 @𝐸

𝑀 ∈ Val

Γ ⊢ (𝑀 ;Δ;𝐴) ⇕† ∀Δ.𝐴

𝑀 ∉ Val Δ = ·
Γ ⊢ (𝑀 ;Δ;𝐴) ⇕† 𝐴

principal(Γ;𝑀 ;Δ;𝐴) Γ ⊢ ∀Δ.𝐴 ⪯i 𝐵

Γ ⊢ (𝑀 ;Δ;𝐴) ⇓ 𝐵

𝑀 ∈ Val principal(Γ,µ𝜈 ;𝑀 ;Δ;𝜙𝐴) 𝜉 =

{
𝜈 ◦ 𝜇, 𝜙 = 𝜇

𝜈, 𝜙 = ·
𝜙 ≠ · or 𝜈 = 1

Γ ⊢ (𝑀 ;𝜈 ;𝜙 ;Δ;𝐴) ⇕ (𝜉,∀Δ.𝐴)

𝑀 ∉ Val 𝜈 = 1 Γ ⊢ (𝑀 ;Δ;𝐴) ⇓ 𝐵 𝜉 =

{
𝜇, 𝜙 = 𝜇

1, 𝜙 = ·
Γ ⊢ (𝑀 ;𝜈 ;𝜙 ;Δ;𝐴) ⇕ (𝜉, 𝐵)

principal(Γ;𝑀 ;Δ;𝐴) = Γ,Δ ⊢𝑠 𝑀 : 𝐴 @𝐸 for some 𝐸 such that
for any Δ′, 𝐴′, 𝐸′ with Γ,Δ′ ⊢𝑠 𝑀 : 𝐴′ @𝐸′,
we have Γ,Δ′ ⊢ ∀Δ.𝐴 ⪯m 𝐴

′ and 𝐸 ⩽ 𝐸′

split(Δ;𝐴) =


let (𝜈, 𝐵) = split(Δ;𝐴′) in (𝜇 ◦ 𝜈, 𝐵),

if 𝐴 = 𝜇𝐴′ and ftv(𝜇) ∩ dom(Δ) = ∅
(1, 𝐴), otherwise

Fig. 14. Auxiliary judgements and meta-functions for Metel.
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Γ ⊢𝑠 𝑀 : 𝐴 @𝐸

T-Freeze
𝜉 = alocks(Γ′) Γ, Γ′ ⊢ (𝜇,∀Δ.𝐴) ⇒ 𝜉 @𝐸

Γ, Γ′ ⊢ ∀Δ.𝐴 ⪯m 𝐵

Γ, 𝑥 :𝜇 ∀Δ.𝐴, Γ′ ⊢𝑠 ⌈𝑥⌉ : 𝐵 @𝐸

T-Var
𝜉 = alocks(Γ′) (𝜈,𝐴′) = split(Δ;𝐴)

Γ, Γ′ ⊢ (𝜇 ◦ 𝜈,∀Δ.𝐴′) ⇒ 𝜉 @𝐸

Γ, Γ′ ⊢ ∀Δ.𝐴′ ⪯m 𝐵

Γ, 𝑥 :𝜇 ∀Δ.𝐴, Γ′ ⊢𝑠 𝑥 : 𝐵 @𝐸

T-Mod
Γ,µ𝜇 ⊢𝑠 𝑉 : 𝐴 @𝐸 𝜇𝐹 : 𝐸 → 𝐹

Γ ⊢𝑠 mod𝜇 𝑉 : 𝜇𝐴 @ 𝐹

T-AbsAnno
Γ, 𝑥 : 𝐴 ⊢𝑠 𝑀 : 𝐵 @𝐸

Γ ⊢𝑠 𝜆𝑥𝐴 .𝑀 : 𝐴 → 𝐵 @𝐸

T-Abs
Γ, 𝑥 : 𝑆 ⊢𝑠 𝑀 : 𝐵 @𝐸

Γ ⊢𝑠 𝜆𝑥 .𝑀 : 𝑆 → 𝐵 @𝐸

T-App
Γ ⊢𝑠 𝑀 : 𝐴 → 𝐵 @𝐸

Γ ⊢𝑠 𝑁 : 𝐴 @𝐸

Γ ⊢𝑠 𝑀 𝑁 : 𝐵 @𝐸

T-Letmod
Γ ⊢ (𝑀 ;𝜈 ;Δ;𝜙 ;𝐴) ⇕ (𝜉, 𝜎) Γ,µ𝜈 ,Δ ⊢𝑠 𝑀 : 𝜙𝐴 @𝐸

𝜈𝐹 : 𝐸 → 𝐹 Γ, 𝑥 :𝜉 𝜎 ⊢𝑠 𝑁 : 𝐵 @ 𝐹

Γ ⊢𝑠 let𝜈 𝜙 𝑥 = 𝑀 in 𝑁 : 𝐵 @ 𝐹

T-Mask
Γ,µ⟨𝐿 |⟩ ⊢𝑠 𝑀 : 𝐴 @ 𝐹 − 𝐿
Γ ⊢𝑠 mask𝐿 𝑀 : ⟨𝐿 |⟩𝐴 @ 𝐹

T-LetAnno
Γ ⊢ (𝑀 ;Δ;𝐴) ⇕† 𝜎 Γ,Δ ⊢𝑠 𝑀 : 𝐴 @𝐸

Γ, 𝑥 : 𝜎 ⊢𝑠 𝑁 : 𝐵 @𝐸

Γ ⊢𝑠 let 𝑥∀Δ.𝐴 = 𝑀 in 𝑁 : 𝐵 @𝐸

T-Do
Σ ∋ ℓ : 𝐴 ↠ 𝐵 𝐸 = ℓ, 𝐹

Γ ⊢𝑠 𝑀 : 𝐴 @𝐸

Γ ⊢𝑠 do ℓ 𝑀 : 𝐵 @𝐸

T-Handler
𝐷 = {ℓ𝑖 }𝑖 {ℓ𝑖 : 𝐴𝑖 ↠ 𝐵𝑖 } ⊆ Σ

Γ ⊢ (𝑀 ;Δ;𝐴0) ⇓ 𝐴 Γ,µ⟨|𝐷 ⟩,Δ ⊢𝑠 𝑀 : 𝐴0 @𝐷 + 𝐹
Γ ⊢ (𝑁 ;Δ′;𝐵0) ⇓ 𝐵 Γ, 𝑥 : ⟨|𝐷⟩𝐴,Δ′ ⊢𝑠 𝑁 : 𝐵0 @ 𝐹

[Γ, 𝑝𝑖 : 𝐴𝑖 , 𝑟𝑖 : 𝐵𝑖 → 𝐵 ⊢𝑠 𝑁𝑖 : 𝐵 @ 𝐹 ]𝑖
Γ ⊢𝑠 handle 𝑀 with {return 𝑥 ↦→ 𝑁 } ⊎ {ℓ𝑖 𝑝𝑖 𝑟𝑖 ↦→ 𝑁𝑖 }𝑖 : 𝐵 @ 𝐹

Fig. 15. Syntax-directed typing rules for Metel.
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B.3 Algorithmic Contexts and Metasubstitutions

We distinguish between rigid type variables (which come from the object language and can only be
unified with intuitionistic types) and flexible type variables (which come from algorithms and can
be unified with both intuitionistic and modal types). We introduce flexible type variables 𝛼 and
extend the syntax of types and contexts as follows.

Types 𝐴, 𝐵 ::= · · · | 𝛼
Algorithmic contexts Θ ::= · | Θ, 𝛼 : 𝐾 | Θ, 𝑥 : 𝜎 | Θ,µ𝜇 | Θ, 𝛼 : (𝐾, 𝑅) | Θ, 𝛼 = 𝐴 | Θ#
Suffixes Ξ ::= · | Ξ, 𝛼 : (𝐾, 𝑅) | Ξ, 𝛼 = 𝐴

Flexible type variables in algorithmic contexts are either declarations 𝛼 : (𝐾, 𝑅) with kinds and
restrictions, or definitions 𝛼 = 𝐴 which indicate that these flexible variables have been solved.
We do not allow type annotations in terms to use flexible type variables. The syntax for type

schemes is still ∀Δ.𝐴.
We definemetasubstitutions 𝜃 ⦂ Θ ⊑ Θ′ from the algorithmic contextΘ toΘ′ and the equivalence

relation between metasubstitutions in Figure 16. They are the same as the definitions in Gundry
[20] except for adding more trivial cases for elements including bindings of rigid type variables
and locks. Metasubstitutions reflect information increase between contexts.

𝜃 ⦂ Θ ⊑ Θ′

𝜄 ⦂ · ⊑ Ξ

𝜃 ⦂ Θ ⊑ Θ′ Θ′ ⊢ 𝐴 : (𝐾, 𝑅)
𝜃,𝐴/𝛼 ⦂ Θ, 𝛼 : (𝐾, 𝑅) ⊑ Θ′

𝜃 ⦂ Θ ⊑ Θ′ Θ′ ⊢ 𝜃𝐴 ≡ 𝐵
𝜃, 𝐵/𝛼 ⦂ Θ, 𝛼 = 𝐴 ⊑ Θ′

𝜃 ⦂ Θ ⊑ Θ′

𝜃 ⦂ Θ, 𝛼 : 𝐾 ⊑ Θ′, 𝛼 : 𝐾,Ξ
𝜃 ⦂ Θ ⊑ Θ′

𝜃 ⦂ Θ, 𝑥 : 𝜎 ⊑ Θ′, 𝑥 : 𝜃𝜎,Ξ

𝜃 ⦂ Θ ⊑ Θ′

𝜃 ⦂ Θ,µ𝜇 ⊑ Θ′,µ𝜇,Ξ

𝜃 ⦂ Θ ⊑ Θ′

𝜃 ⦂ Θ, # ⊑ Θ′, #,Ξ

𝜃 ≡ 𝜃 ′ ⦂ Θ ⊑ Θ′

𝜄 ≡ 𝜄 ⦂ · ⊑ Ξ

𝜃 ≡ 𝜃 ′ ⦂ Θ ⊑ Θ′ Θ′ ⊢ 𝐴 : (𝐾, 𝑅) Θ′ ⊢ 𝐴 ≡ 𝐴′

𝜃,𝐴/𝛼 ≡ 𝜃 ′, 𝐴′/𝛼 ⦂ Θ, 𝛼 : (𝐾, 𝑅) ⊑ Θ′

𝜃 ≡ 𝜃 ′ ⦂ Θ ⊑ Θ′ Θ′ ⊢ 𝜃𝐴 ≡ 𝐵 Θ′ ⊢ 𝐵 ≡ 𝐵′

𝜃, 𝐵/𝛼 ≡ 𝜃 ′, 𝐵′/𝛼 ⦂ Θ, 𝛼 = 𝐴 ⊑ Θ′
𝜃 ≡ 𝜃 ′ ⦂ Θ ⊑ Θ′

𝜃 ≡ 𝜃 ′ ⦂ Θ, 𝛼 : 𝐾 ⊑ Θ′, 𝛼 : 𝐾,Ξ

𝜃 ≡ 𝜃 ′ ⦂ Θ ⊑ Θ′

𝜃 ≡ 𝜃 ′ ⦂ Θ, 𝑥 : 𝜎 ⊑ Θ′, 𝑥 : 𝜃𝜎,Ξ
𝜃 ≡ 𝜃 ′ ⦂ Θ ⊑ Θ′

𝜃 ≡ 𝜃 ′ ⦂ Θ,µ𝜇 ⊑ Θ′,µ𝜇,Ξ

𝜃 ≡ 𝜃 ′ ⦂ Θ ⊑ Θ′

𝜃 ≡ 𝜃 ′ ⦂ Θ, # ⊑ Θ′, #,Ξ

Fig. 16. Metasubstitutions and equivalence of metasubstitutions.
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Θ, 𝛼 : (𝐾, 𝑅),Θ′ ⊢ 𝛼 : (𝐾, 𝑅)
Θ ⊢ 𝐴 : (𝐾, 𝑅)

Θ, 𝛼 = 𝐴,Θ′ ⊢ 𝛼 : (𝐾, 𝑅)

Θ, 𝛼 : (𝐾, 𝑅),Θ′ ⊢ 𝛼 ≡ 𝛼
Θ,Θ′ ⊢ 𝐴 ≡ 𝐵

Θ, 𝛼 = 𝐴,Θ′ ⊢ 𝛼 ≡ 𝐵
Θ,Θ′ ⊢ 𝐴 ≡ 𝐵

Θ, 𝛼 = 𝐴,Θ′ ⊢ 𝐵 ≡ 𝛼

T-Freeze
𝜉 = alocks(Θ′) ∀Δ.𝐴 = subst(Θ;𝜎)

Θ,Θ′ ⊢ (𝜇,∀Δ.𝐴) ⇒ 𝜉 @𝐸 Θ,Θ′ ⊢ ∀Δ.𝐴 ⪯m 𝐵

Θ, 𝑥 :𝜇 𝜎,Θ′ ⊢𝑠 ⌈𝑥⌉ : 𝐵 @𝐸

T-Var
𝜉 = alocks(Θ′) ∀Δ.𝐴 = subst(Θ;𝜎)

(𝜈,𝐴′) = split(Δ, 𝐴) Θ,Θ′ ⊢ (𝜇 ◦ 𝜈,∀Δ.𝐴′) ⇒ 𝜉 @𝐸 Θ,Θ′ ⊢ ∀Δ.𝐴′ ⪯m 𝐵

Θ, 𝑥 :𝜇 𝜎,Θ′ ⊢𝑠 𝑥 : 𝐵 @𝐸

Fig. 17. Extended rules for statements in algorithmic contexts.

We define gen(Ξ;𝐴) as substituting solved flexible variables and generalising remaining flexible
variables in Ξ. We define subst(Θ;𝐴) as substituting solved flexible variables in Θ.

gen(·;𝐴) = 𝐴

gen(𝛼 : (𝐾, 𝑅),Ξ;𝐴) = ∀𝛼 : 𝐾.gen(Ξ;𝐴[𝛼/𝛼])
gen(𝛼 = 𝐵,Ξ;𝐴) = gen(Ξ[𝐵/𝛼];𝐴[𝐵/𝛼])

subst(·;𝐴) = 𝐴

subst(𝛼 = 𝐵,Θ;𝐴) = subst(Θ[𝐵/𝛼];𝐴[𝐵/𝛼])
subst(_,Θ;𝐴) = subst(Ξ;𝐴)

Although the judgements for statements in context are all defined on declarative context Γ,
it is easy to extend them to algorithmic contexts Θ. For any Γ ⊢ 𝐽 , we get Θ ⊢ 𝐽 almost freely
by just replacing letters from Γ to Θ. The only non-trivial modifications are to extend kinding
Θ ⊢ 𝐴 : (𝐾, 𝑅), type equivalence Θ ⊢ 𝐴 ≡ 𝐵, and typing Γ ⊢ 𝑀 : 𝐴 @𝐸 to cover flexible variables.
The extended rules are shown in Figure 17.

The essence of type inference for Metel is that we never guesses flexible modal and effect
variables in contexts. This property allows us to avoid collecting and solving non-trivial global
constraints on modalities in type inference. We define ⊢ Θ ng if all locks and variable bindings in
Θ do not contain unsolved flexible modal or effect variables.

⊢ · ng
⊢ Θ ng Θ ⊢ subst(Θ;𝜎) ng

⊢ Θ, 𝑥 :𝜇 𝜎 ng

⊢ Θ ng

⊢ Θ,µ𝜇 ng
⊢ Θ ng

⊢ Θ # ng

⊢ Θ ng

⊢ Θ, 𝛼 : 𝐾 ng

⊢ Θ ng

⊢ Θ, 𝛼 : (𝐾, 𝑅) ng
⊢ Θ ng

⊢ Θ, 𝛼 = 𝐴 ng

The following lemma shows that metasubstitutions preserve this relation.
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Lemma B.1 (No guess of modalities and effects in contexts). If ⊢ Θ0 ng and 𝜃 ⦂ Θ0 ⊑ Θ1,

then ⊢ Θ1 ng.

B.4 Algorithmic Moving between Contexts

Now we give algorithms to solve statements in contexts except for type inference, which is given
individually in the next section. All algorithms have form Θ0 ⊢ 𝐽 ⊣ Θ1, which starts from the
algorithmic context Θ0, solves the question of 𝐽 and ends up with the algorithmic context Θ1.

We first define the notion of questions, solutions, and minimal solutions for statements that we
need algorithms. Same as in the declarative version, we always require the algorithmic contexts Θ
for questions and solutions to satisfy ⊢ Θ pos.

Statements like kinding 𝜎 : (𝐾, 𝑅), type equivalence𝐴 ≡ 𝐵, and term well-formedness𝑀 ok only
have inputs; solving them only needs to make sure that the judgements are satisfied. We define
solutions and minimal solutions for them.

Definition B.2 (Questions without outputs and their solutions). A question for a statement 𝐽
which does not have outputs is a tuple (Θ0; 𝐽 ) where 𝐽 is well-scoped in Θ0. A solution to it is a
metasubstitution 𝜃 ⦂ Θ0 ⊑ Θ1 where Θ1 ⊢ 𝜃 𝐽 . The solution is minimal if for any other solution
𝜃 ′ ⦂ Θ0 ⊑ Θ′, there exists a metasubstitution 𝜁 ⦂ Θ1 ⊑ Θ′ such that 𝜃 ′ ≡ 𝜁𝜃 ⦂ Θ0 ⊑ Θ′ (say 𝜃 ′
factors through 𝜃 with cofactor 𝜁 ). When 𝐽 is an equivalence statement 𝐴 ≡ 𝐵, we additionally
require ⊢ 𝐴 pos and ⊢ 𝐵 pos.

Other statements separate between inputs and outputs; solving them also requires giving outputs.
We define questions, solutions, and minimal solutions for those we need.

Definition B.3 (Questions with outputs and their solutions).

• An instantiation question is a tuple (Θ0;𝜎 ⪯𝑅 e) where 𝜎 is well-scoped in Θ0. A solution
to it is a tuple (𝜃 ⦂ Θ0 ⊑ Θ1;𝐴) such that Θ1 ⊢ 𝜃𝜎 ⪯𝑅 𝐴. The solution is minimal if for any
other solution (𝜃 ′ ⦂ Θ0 ⊑ Θ′;𝐴′), there exists a metasubstitution 𝜉 ⦂ Θ1 ⊑ Θ′ such that
𝜃 ′ ≡ 𝜉𝜃 ⦂ Θ0 ⊑ Θ′ and Θ′ ⊢ 𝜉𝐴 ≡ 𝐴′.

• A transformation question is a tuple (Θ0; (𝜇, 𝜎) ⇒ 𝜈 @ e) where 𝜎 is well-scoped in Θ0.
A solution to it is a tuple (𝜃 ⦂ Θ0 ⊑ Θ1;𝐸) such that Θ1 ⊢ (𝜇, 𝜃𝜎) ⇒ 𝜈 @𝐸. The solution
is minimal if for any other solution (𝜃 ′ ⦂ Θ0 ⊑ Θ′;𝐸′), there exists a metasubstitution
𝜉 ⦂ Θ1 ⊑ Θ′ such that 𝜃 ′ ≡ 𝜉𝜃 ⦂ Θ0 ⊑ Θ′ and 𝐸 ⩽ 𝐸′.

• A type inference question is a tuple (Θ0;𝑀 : e@ e) where ⊢ Θ0 ng, Θ0 ⊢ 𝑀 ok, and
⊢ 𝑀 pos. A solution to it is a tuple (𝜃 ⦂ Θ0 ⊑ Θ1;𝐴;𝐸) such that Θ1 ⊢ 𝑀 : 𝐴 @𝐸.
The solution is minimal if for any other solution (𝜃 ′ ⦂ Θ0 ⊑ Θ′;𝐴′;𝐸′), there exists a
metasubstitution 𝜉 ⦂ Θ1 ⊑ Θ′ such that 𝜃 ′ ≡ 𝜉𝜃 ⦂ Θ0 ⊑ Θ′ and Θ′ ⊢ 𝜉𝐴 ≡ 𝐴′ and 𝐸 ⩽ 𝐸′.

We define the algorithm for solving the questions we need in Figure 18. Note that for some
judgements, we only need their declarative forms.
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The algorithms for kinding uses the following auxiliary definitions.
res(Abs) = i

res(Any) = i

res(Eff) = m

𝐾 ⊓ 𝐾 ′ =


fail, if 𝐾 = Eff or 𝐾 ′ = Eff

Abs, if 𝐾 = Abs or 𝐾 ′ = Abs

Any, otherwise

𝐾 ⊓ 𝐾 ′ =


fail, if 𝐾 = Eff or 𝐾 ′ = Eff

Abs, if 𝐾 = Abs or 𝐾 ′ = Abs

Any, otherwise

We define the algorithm for unification in Figures 19 and 20. Note that unificationΘ ⊢ 𝐴 ≡ 𝐵 ⊣ Θ′

is only defined for statements𝐴 ≡ 𝐵 satisfying ⊢ 𝐴 pos and ⊢ 𝐵 pos. We will show later that during
type inference no negative effects would appear in types, as long as the input context and terms
also satisfy the restriction of no negative effects.
We list some important lemmas here which show the soundness, generality, and completeness

of kinding and unification.

Lemma B.4 (Soundness and generality of kind restriction). If Θ0 ⊢ 𝐴 : (𝐾, 𝑅) ⊣ Θ1, then

Θ0 ⊑ Θ1 is a minimal solution of (Θ0;𝐴 : (𝐾, 𝑅))

Lemma B.5 (Completeness of kind restriction). If 𝜃 ⦂ Θ0 ⊑ Θ is a solution to the kinding

question (Θ0;𝐴 : (𝐾, 𝑅)), then there exists Θ1 such that Θ0 ⊢ 𝐴 : (𝐾, 𝑅) ⊣ Θ1.

Lemma B.6 (Soundness and generality of unification).
1. If Θ0 ⊢ 𝐴 ≡ 𝐵 ⊣ Θ1, then Θ0 ⊑ Θ1 is a minimal solution of (Θ0;𝐴 ≡ 𝐵).
2. If Θ0 | Ξ ⊢ 𝛼 ≡ 𝐴 ⊣ Θ1, 𝐴 is not a flexible variable, and Ξ only contains declaration of flexible

variables appearing in 𝐴, then Θ0,Ξ ⊑ Θ1 is a minimal solution of (Θ0;𝛼 ≡ 𝐴).

Lemma B.7 (Completeness of unification).
1. If 𝜃 ⦂ Θ0 ⊑ Θ is a solution to the unification question (Θ0;𝐴 ≡ 𝐵), then there exists Θ1 such

that Θ0 ⊢ 𝐴 ≡ 𝐵 ⊣ Θ1.

2. If 𝜃 ⦂ Θ0,Ξ ⊑ Θ is a solution to the unification question (Θ0,Ξ;𝛼 ≡ 𝐴), then there exists Θ1
such that Θ0 | Ξ ⊢ 𝛼 ≡ 𝐴 ⊣ Θ1.

B.5 Type Inference

Figure 22 gives type inference algorithm for Metel. It is also in the form of algorithmic moving
between contexts Θ0 ⊢ 𝑀 : 𝐴 @𝐸 ⊣ Θ1.
We define solve(𝜇 : 𝐸 → 𝐹 ) and solve(𝜇 ⇒ 𝜈) in Figure 21 which find the minimal index for

certain modality and transformation to hold.
The following lemmas show their soundness, generality, and completeness.

Lemma B.8 (Soundness and generality of modality solving).
(1) If solve(𝜇 : 𝐸 → 𝐹 ) = 𝐹1, then 𝜇𝐹1 : 𝐸1 → 𝐹1 with 𝐸 ⩽ 𝐸1 and 𝐹 ⩽ 𝐹1. Moreover, for any

other 𝜇𝐹2 : 𝐸2 → 𝐹2 with 𝐹2 ⩽ 𝐹1 and 𝐹2 . 𝐹1, either 𝐸 ⩽ 𝐸2 or 𝐹 ⩽ 𝐹2 does not hold.

(2) If solve(𝜇 ⇒ 𝜈) = 𝐹 , then 𝜇𝐹 ⇒ 𝜈𝐹 . Moreover, for any other 𝐹 ′ ⩽ 𝐹 with 𝐹 ′ . 𝐹 , the relation
𝜇𝐹 ′ ⇒ 𝜈𝐹 ′ does not hold.
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Θ ⊢ ∀Δ.𝐴 ⪯𝑅 𝐵 ⊣ Θ′

Θ ⊢ 𝐴 ⪯𝑅 𝐴 ⊣ Θ
Θ, 𝛼 : (𝐾, 𝑅) ⊢ 𝜎 [𝛼/𝛼] ⪯𝑅 𝐴 ⊣ Θ′

Θ ⊢ ∀𝛼𝐾 .𝜎 ⪯𝑅 𝐴 ⊣ Θ′

Θ ⊢ 𝜎 : (𝐾, 𝑅) ⊣ Θ′

Θ ∋ 𝛼 : 𝐾 ′ 𝐾 ′ ⩽ 𝐾 res(𝐾) ⩽ 𝑅

Θ ⊢ 𝛼 : (𝐾, 𝑅) ⊣ Θ
Θ ⊢ 𝐴 : (𝐾, 𝑅) ⊣ Θ′′

Θ, 𝛼 = 𝐴,Θ′ ⊢ 𝛼 : (𝐾, 𝑅) ⊣ Θ′′, 𝛼 = 𝐴,Θ′

Θ, 𝛼 : (𝐾 ′, 𝑅′),Θ′ ⊢ 𝛼 : (𝐾, 𝑅) ⊣ Θ, 𝛼 : (𝐾 ′ ⊓ 𝐾, 𝑅′ ⊓ 𝑅),Θ′
Θ ⊢ 𝐴 : (𝐾,m) ⊣ Θ′

Θ ⊢ ⟨𝐿 |𝐷⟩𝐴 : (𝐾,m) ⊣ Θ′

Θ ⊢ 𝐸 : (Eff,m) ⊣ Θ′ Θ′ ⊢ 𝐴 : (Any,m) ⊣ Θ′′

Θ ⊢ [𝐸]𝐴 : (Abs,m) ⊣ Θ′′

Θ ⊢ 𝐴 : (Any, 𝑅) ⊣ Θ1 Θ1 ⊢ 𝐵 : (Any, 𝑅) ⊣ Θ2

Θ ⊢ 𝐴 → 𝐵 : (Any, 𝑅) ⊣ Θ2

Θ, 𝛼 : 𝐾 ′ ⊢ 𝜎 : (𝐾, 𝑅) ⊣ Θ′, 𝛼 : 𝐾 ′,Ξ

Θ ⊢ ∀𝛼𝐾 ′
.𝜎 : (𝐾, 𝑅) ⊣ Θ′,Ξ

Θ ⊢ · : (Eff,m) ⊣ Θ
Θ ⊢ 𝐸 : (Eff,m) ⊣ Θ′

Θ ⊢ 𝑙, 𝐸 : (Eff,m) ⊣ Θ′

Θ ⊢ (𝜇, 𝜎) ⇒ 𝜈 @𝐸 ⊣ Θ′

𝐹 = solve(𝜇 ⇒ 𝜈) 𝜈𝐹 : 𝐸 → 𝐹

Θ ⊢ (𝜇, 𝜎) ⇒ 𝜈 @𝐸 ⊣ Θ
solve(𝜇 ⇒ 𝜈) fails Θ ⊢ 𝜎 : (Abs,m) ⊣ Θ′

Θ ⊢ (𝜇, 𝜎) ⇒ 𝜈 ⊣ Θ′

Θ ⊢ (𝑀 ;𝜈 ;𝜙 ;Δ;𝐴) ⇕ (𝜉, 𝜎) ⊣ Θ′ Θ ⊢ (𝑀 ;Δ;𝐴) ⇕† 𝜎 ⊣ Θ′ Θ ⊢ (𝑀 ;Δ;𝐴) ⇓ 𝜎 ⊣ Θ′

𝑀 ∈ Val 𝜉 =

{
𝜈 ◦ 𝜇, 𝜙 = 𝜇

𝜈, 𝜙 = ·
𝜙 ≠ · or 𝜈 = 1

Θ ⊢ (𝑀 ;𝜈 ;𝜙 ;Ξ;𝐴) ⇕ (𝜉, gen(Ξ;𝐴)) ⊣ Θ

𝑀 ∉ Val 𝜈 = 1 Θ ⊢ (𝑀 ;Ξ;𝐴) ⇓ 𝐵 ⊣ Θ′ 𝜉 =

{
𝜇, 𝜙 = 𝜇

1, 𝜙 = ·
Θ ⊢ (𝑀 ;𝜈 ;𝜙 ;Ξ;𝐴) ⇕ (𝜉, 𝐵) ⊣ Θ′

Θ ⊢ gen(Ξ;𝐴) ⪯i 𝐵 ⊣ Θ′

Θ ⊢ (𝑀 ;Ξ;𝐴) ⇓ 𝐵 ⊣ Θ′
𝑀 ∈ Val

Θ ⊢ (𝑀 ;Δ;𝐴) ⇕† ∀Δ.𝐴 ⊣ Θ
𝑀 ∉ Val Δ = ·

Θ ⊢ (𝑀 ;Δ;𝐴) ⇕† ∀Δ.𝐴 ⊣ Θ

Fig. 18. Algorithmic moving between contexts.
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Θ ⊢ 𝐴 ≡ 𝐵 ⊣ Θ′

U-Rigid-Rigid
Θ ∋ 𝛼 : 𝐾

Θ ⊢ 𝛼 ≡ 𝛼 ⊣ Θ

U-Flex-Flex-Id
Θ ∋ 𝛼 : (𝐾, 𝑅)
Θ ⊢ 𝛼 ≡ 𝛼 ⊣ Θ

U-Flex-Flex-L
𝛼 ≠ 𝛽 Θ ⊢ 𝛽 : (𝐾, 𝑅) ⊣ Θ′

Θ, 𝛼 : (𝐾, 𝑅) ⊢ 𝛼 ≡ 𝛽 ⊣ Θ′, 𝛼 = 𝛽

U-Flex-Flex-R
𝛼 ≠ 𝛽 Θ ⊢ 𝛼 : (𝐾, 𝑅) ⊣ Θ′

Θ, 𝛽 : (𝐾, 𝑅) ⊢ 𝛼 ≡ 𝛽 ⊣ Θ′, 𝛽 = 𝛼

U-Flex-Flex-Subst
Θ ⊢ 𝛼 [𝐴/𝛾] ≡ 𝛽 [𝐴/𝛾] ⊣ Θ′

Θ, 𝛾 = 𝐴 ⊢ 𝛼 ≡ 𝛽 ⊣ Θ′, 𝛾 = 𝐴

U-Flex-Flex-SkipFlex
𝛾 ≠ 𝛼 𝛾 ≠ 𝛽 Θ ⊢ 𝛼 ≡ 𝛽 ⊣ Θ′

Θ, 𝛾 : (𝐾, 𝑅) ⊢ 𝛼 ≡ 𝛽 ⊣ Θ′, 𝛾 : (𝐾, 𝑅)

U-Flex-Flex-SkipRigid
Θ ⊢ 𝛼 ≡ 𝛽 ⊣ Θ′

Θ, 𝛾 : 𝐾 ⊢ 𝛼 ≡ 𝛽 ⊣ Θ′, 𝛾 : 𝐾

U-Flex-Flex-SkipTerm
Θ ⊢ 𝛼 ≡ 𝛽 ⊣ Θ′

Θ, 𝑥 : 𝜎 ⊢ 𝛼 ≡ 𝛽 ⊣ Θ′, 𝑥 : 𝜎

U-Flex-Flex-SkipLock
Θ ⊢ 𝛼 ≡ 𝛽 ⊣ Θ′

Θ,µ𝜇 ⊢ 𝛼 ≡ 𝛽 ⊣ Θ′,µ𝜇

U-Flex-Flex-SkipMark
Θ ⊢ 𝛼 ≡ 𝛽 ⊣ Θ′

Θ# ⊢ 𝛼 ≡ 𝛽 ⊣ Θ′#

U-Flex-Rigid-L
𝐴 non-flex-var Θ | · ⊢ 𝛼 := 𝐴 ⊣ Θ′

Θ ⊢ 𝛼 ≡ 𝐴 ⊣ Θ′

U-Flex-Rigid-R
𝐴 non-flex-var Θ | · ⊢ 𝛼 := 𝐴 ⊣ Θ′

Θ ⊢ 𝐴 ≡ 𝛼 ⊣ Θ′

U-Mod
Θ ⊢ 𝐴 ≡ 𝐴′ ⊣ Θ′ Θ′ ⊢ 𝜇 ≡ 𝜇′ ⊣ Θ′′

Θ ⊢ 𝜇𝐴 ≡ 𝜇′𝐴′ ⊣ Θ′

U-Arrow
Θ ⊢ 𝐴 ≡ 𝐴′ ⊣ Θ′ Θ′ ⊢ 𝐵 ≡ 𝐵′ ⊣ Θ′′

Θ ⊢ 𝐴 → 𝐵 ≡ 𝐴′ → 𝐵′ ⊣ Θ′′

U-Relative
𝐿 ≡ 𝐿′ 𝐷 ≡ 𝐷 ′

Θ ⊢ ⟨𝐿 |𝐷⟩ ≡ ⟨𝐿′ |𝐷 ′⟩ ⊣ Θ

U-Absolute
Θ ⊢ 𝐸 ≡ 𝐹 ⊣ Θ′

Θ ⊢ [𝐸] ≡ [𝐹 ] ⊣ Θ′

U-Effect-Closed
𝐿 ≡ 𝐿′

Θ ⊢ 𝐿 ≡ 𝐿′ ⊣ Θ

U-Effect-L
𝐿′ = labels(𝐸) Θ ⊢ 𝐸 : (Eff,m) ⊣ Θ
𝐿 ⊆ 𝐿′ Θ′ | · ⊢ 𝜀 := 𝐸 − 𝐿 ⊣ Θ′

Θ ⊢ 𝐿; 𝜀 ≡ 𝐸 ⊣ Θ′

U-Effect-R
𝐿′ = labels(𝐸) Θ ⊢ 𝐸 : (Eff,m) ⊣ Θ
𝐿 ⊆ 𝐿′ Θ | · ⊢ 𝜀 := 𝐸 − 𝐿 ⊣ Θ′

Θ ⊢ 𝐸 ≡ 𝐿; 𝜀 ⊣ Θ′

U-Effect-LR
𝐿1 ⊈ 𝐿2 𝐿2 ⊈ 𝐿1 Θ, 𝜀 ⊢ 𝜀1 := 𝐿2 − 𝐿1, 𝜀 ⊣ Θ1 Θ1 ⊢ 𝜀2 := 𝐿1 − 𝐿2, 𝜀 ⊣ Θ2

Θ ⊢ 𝐿1, 𝜀1 ≡ 𝐿2, 𝜀2 ⊣ Θ2

Fig. 19. Unification (Part I).

Proof. 1. When 𝜇 is absolute, trivial. When 𝜇 is relative, the delta between the source and target
is fixed and we only need to case analysis whether 𝐸 or 𝐹 gives the lower bound.

2. When 𝜇 is absolute, the minimal index for the transformation is completely determined by 𝜈 .
Otherwise, relative 𝜇 can only be transformed to relative 𝜈 . The delta between 𝐿1 and 𝐷1 must be
the same as the delta between 𝐿2 and 𝐷2 in order to make the transformation hold. The index is
determined by the larger one among 𝐿1 and 𝐿2. □
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Θ | Ξ ⊢ 𝛼 ≡ 𝐴 ⊣ Θ′

U-Flex-Rigid-Solve
Θ,Ξ ⊢ 𝐴 : (𝐾, 𝑅) ⊣ Θ′

Θ, 𝛼 : (𝐾, 𝑅) | Ξ ⊢ 𝛼 ≡ 𝐴 ⊣ Θ′, 𝛼 = 𝐴

U-Flex-Rigid-Subst
Θ,Ξ ⊢ 𝛼 [𝐵/𝛽] ≡ 𝐴[𝐵/𝛽] ⊣ Θ′

Θ, 𝛽 = 𝐵 | Ξ ⊢ 𝛼 ≡ 𝐴 ⊣ Θ′, 𝛽 = 𝐵

U-Flex-Rigid-Depend
𝛼 ≠ 𝛽 𝛽 ∈ ftv(𝐴)

Θ | 𝛽 : (𝐾, 𝑅),Ξ ⊢ 𝛼 ≡ 𝐴 ⊣ Θ′

Θ, 𝛽 : (𝐾, 𝑅) | Ξ ⊢ 𝛼 ≡ 𝐴 ⊣ Θ′

U-Flex-Rigid-SkipFlex
𝛼 ≠ 𝛽 𝛽 ∉ ftv(𝐴)
Θ | Ξ ⊢ 𝛼 ≡ 𝐴 ⊣ Θ′

Θ, 𝛽 : (𝐾, 𝑅) | Ξ ⊢ 𝛼 ≡ 𝐴 ⊣ Θ′, 𝛽 : (𝐾, 𝑅)

U-Flex-Rigid-SkipRigid
𝛽 ∉ ftv(𝐴) Θ | Ξ ⊢ 𝛼 ≡ 𝐴 ⊣ Θ′

Θ, 𝛽 : 𝐾 | Ξ ⊢ 𝛼 ≡ 𝐴 ⊣ Θ′, 𝛽 : 𝐾

U-Flex-Rigid-SkipTerm
Θ | Ξ ⊢ 𝛼 ≡ 𝐴 ⊣ Θ′

Θ, 𝑥 : 𝜎 | Ξ ⊢ 𝛼 ≡ 𝐴 ⊣ Θ′, 𝑥 : 𝜎

U-Flex-Rigid-SkipLock
Θ | Ξ ⊢ 𝛼 ≡ 𝐴 ⊣ Θ′

Θ,µ𝜇 | Ξ ⊢ 𝛼 ≡ 𝐴 ⊣ Θ′,µ𝜇

U-Flex-Rigid-SkipMark
Θ | Ξ ⊢ 𝛼 ≡ 𝐴 ⊣ Θ′

Θ# | Ξ ⊢ 𝛼 ≡ 𝐴 ⊣ Θ′#

Fig. 20. Unification (Part II).

solve( [𝐸′] : 𝐸 → 𝐹 ) =

{
𝐹, 𝐸 ⩽ 𝐸′

fail, otherwise

solve(⟨𝐿 |𝐷⟩ : 𝐸 → 𝐹 ) =

{
𝐹, 𝐸 ⩽ 𝐷 + (𝐹 − 𝐿)
𝐿 + (𝐸 − 𝐷), otherwise

solve( [𝐸] ⇒ 𝜈) = solve(𝜈 : 𝐸 → ·)
solve(⟨𝐿 |𝐷⟩ ⇒ [𝐸]) = fail

solve(⟨𝐿1 |𝐷1⟩ ⇒ ⟨𝐿2 |𝐷2⟩) =


fail, (𝐿, 𝐷) ≠ (𝐿′, 𝐷 ′)

where (𝐿, 𝐷) = 𝐿1 ⊲⊳ 𝐷1 and (𝐿′, 𝐷 ′) = 𝐿2 ⊲⊳ 𝐷2

𝐿2, 𝐿1 ⩽ 𝐿2

𝐿1, otherwise

Fig. 21. Solvers for modalities.

Lemma B.9 (Completeness of solving).
• If 𝜇𝐹 ′ : 𝐸′ → 𝐹 ′ with 𝐸 ⩽ 𝐸′ and 𝐹 ⩽ 𝐹 ′, then solve(𝜇 : 𝐸 → 𝐹 ) = 𝐹 ′′ for some 𝐹 ′′.
• If 𝜇𝐹 ⇒ 𝜈𝐹 , then solve(𝜇 ⇒ 𝜈) = 𝐹 ′ for some 𝐹 ′.

Proof. By definition. □

We prove that type inference does not generate negative effects.

Lemma B.10 (No negative effects). For the type inference question (Θ0;𝑀 : e@ e) with the

implicit condition ⊢ Θ0 pos and ⊢ 𝑀 pos, if Θ0 ⊢ 𝑀 : 𝐴 @𝐸 ⊣ Θ1, then ⊢ Θ1 pos and ⊢ 𝐴 pos.

This lemma guarantees that though the unification algorithm is not defined for negative effects,
it would not fail because of negative effects during type inference.
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We prove the soundness, generality, and completeness for type inference.

Theorem B.11 (Soundness and generality of type inference). For the type inference question
(Θ0;𝑀 : e@ e), if Θ0 ⊢ 𝑀 : 𝐴 @𝐸 ⊣ Θ1, then (Θ0 ⊑ Θ1, 𝐴, 𝐸) is a minimal solution.

Theorem B.12 (Completeness of Type Inference). If ⊢ Θ0 ng, Θ0 ⊢ 𝑀 ok, 𝜃 ⦂ Θ0 ⊑ Θ, and
Θ ⊢𝑠 𝑀 : 𝐴 @ 𝐹 , then Θ0 ⊢ 𝑀 : 𝐵 @𝐸 ⊣ Θ1 for some Θ1, 𝐵, and 𝐸.

All proofs can be found in Appendix C.
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Θ ⊢ 𝑀 : 𝐴 @𝐸 ⊣ Θ′

I-Freeze
𝜉 = alocks(Θ0) ∀Δ.𝐴 = subst(Θ;𝜎)

Θ,Θ0 ⊢ (𝜇,∀Δ.𝐴) ⇒ 𝜉 @𝐸 ⊣ Θ1
Θ1 ⊢ ∀Δ.𝐴 ⪯m 𝐵 ⊣ Θ2

Θ, 𝑥 :𝜇 𝜎,Θ0 ⊢ ⌈𝑥⌉ : 𝐵 @𝐸 ⊣ Θ2

I-Var
𝜉 = alocks(Θ0) ∀Δ.𝐴 = subst(Θ;𝜎)

(𝜈,𝐴′) = split(Δ, 𝐴)
Θ,Θ0 ⊢ (𝜇 ◦ 𝜈,∀Δ.𝐴′) ⇒ 𝜉 @𝐸 ⊣ Θ1

Θ1 ⊢ ∀Δ.𝐴 ⪯m 𝐵 ⊣ Θ2

Θ, 𝑥 :𝜇 𝜎,Θ0 ⊢ 𝑥 : 𝐵 @𝐸 ⊣ Θ2

I-Mod
Θ0,µ𝜇 ⊢ 𝑉 : 𝐴 @𝐸 ⊣ Θ1,µ𝜇,Ξ1

𝐹 = solve(𝜇 : 𝐸 → ·)
Θ0 ⊢ mod𝜇 𝑉 : 𝜇𝐴 @ 𝐹 ⊣ Θ1,Ξ1

I-App
Θ0 ⊢ 𝑀 : 𝐴 @𝐸 ⊣ Θ1 Θ1 ⊢ 𝑁 : 𝐵 @ 𝐹 ⊣ Θ2

Θ2, 𝛼 : (Any,m) ⊢ 𝐴 ≡ 𝐵 → 𝛼 ⊣ Θ3

Θ0 ⊢ 𝑀 𝑁 : 𝛼 @𝐸 ∪ 𝐹 ⊣ Θ3

I-AbsAnno
Θ0, 𝑥 : 𝐴 ⊢ 𝑀 : 𝐵 @𝐸 ⊣ Θ1, 𝑥 : 𝐴,Ξ1

Θ0 ⊢ 𝜆𝑥𝐴 .𝑀 : 𝐴 → 𝐵 @𝐸 ⊣ Θ1,Ξ1

I-Abs
Θ0, 𝛼 : (Any, i), 𝑥 : 𝛼 ⊢ 𝑀 : 𝐵 @𝐸 ⊣ Θ1, 𝑥 : 𝛼,Ξ1

Θ0 ⊢ 𝜆𝑥 .𝑀 : 𝛼 → 𝐵 @𝐸 ⊣ Θ1,Ξ1

I-LetAnno
Θ0 ⊢ (𝑀 ;Δ;𝐴) ⇕† 𝜎 ⊣ Θ1 Θ1 # Δ ⊢ 𝑀 : 𝐴′ @𝐸 ⊣ Θ2 # Δ,Ξ2

Θ2 # Δ,Ξ2 ⊢ 𝐴′ ≡ 𝐴 ⊣ Θ3 # Δ,Ξ3 Θ3, 𝑥 : 𝜎 ⊢ 𝑁 : 𝐵 @ 𝐹 ⊣ Θ4, 𝑥 : 𝜎,Ξ4

Θ0 ⊢ let 𝑥∀Δ.𝐴 = 𝑀 in 𝑁 : 𝐵 @𝐸 ∪ 𝐹 ⊣ Θ4,Ξ4

I-Letmod
Θ0,µ𝜈 ⊢ 𝑀 : 𝐴 @𝐸 ⊣ Θ1,µ𝜈 ,Ξ1

Θ1 # Ξ1, 𝛼 : (Any,m) ⊢ 𝐴 ≡ 𝜙𝛼 ⊣ Θ2 # Ξ2 Θ2 ⊢ (𝑀 ;𝜈 ;𝜙 ;Ξ2;𝛼) ⇕ (𝜉, 𝜎) ⊣ Θ3
Θ3, 𝑥 :𝜉 𝜎 ⊢ 𝑁 : 𝐵 @ 𝐹 ⊣ Θ4 𝐹 ′ = solve(𝜈 : 𝐸 → 𝐹 )

Θ0 ⊢ let𝜈 𝜙 𝑥 = 𝑀 in 𝑁 : 𝐵 @ 𝐹 ′ ⊣ Θ3

I-Do
Σ ∋ ℓ : 𝐴 ↠ 𝐵

Θ0 ⊢ 𝑀 : 𝐴1 @𝐸 ⊣ Θ1 Θ1 ⊢ 𝐴1 ≡ 𝐴 ⊣ Θ2

Θ0 ⊢ do ℓ 𝑀 : 𝐵 @ {ℓ} ∪ 𝐸 ⊣ Θ2

I-Mask
Θ0,µ⟨𝐿 |⟩ ⊢ 𝑀 : 𝐴 @𝐸 ⊣ Θ1
𝐹 = solve(⟨𝐿 |⟩ : 𝐸 → ·)

Θ0 ⊢ mask𝐿 𝑀 : ⟨𝐿 |⟩𝐴 @ 𝐹 ⊣ Θ2

I-Handler
𝐷 = {ℓ𝑖 }𝑖 {ℓ𝑖 : 𝐴𝑖 ↠ 𝐵𝑖 } ⊆ Σ

Θ,µ⟨|𝐷 ⟩ ⊢ 𝑀 : 𝐴0 @𝐸′ ⊣ Θ′,µ⟨|𝐷 ⟩,Ξ
′ Θ′ ⊢ (𝑀 ;Ξ′;𝐴0) ⇓ 𝐴 ⊣ Θ0

Θ0, 𝑥 : ⟨|𝐷⟩𝐴 ⊢ 𝑁 : 𝐵0 @𝐸𝑟 ⊣ Θ′
0, 𝑥 : _,Ξ′

0 Θ′
0 ⊢ (𝑁 ;Ξ′

0;𝐵0) ⇓ 𝐵 ⊣ Θ1
[Θ𝑖 , 𝑝𝑖 : 𝐴𝑖 , 𝑟𝑖 : 𝐵𝑖 → 𝐵 ⊢ 𝑁𝑖 : 𝐵𝑖 @𝐸𝑖 ⊣ Θ′

𝑖 , 𝑝𝑖 : _, 𝑟𝑖 : _,Ξ
′
𝑖 Θ′

𝑖 ,Ξ
′
𝑖 ⊢ 𝐵𝑖 ≡ 𝐵 ⊣ Θ𝑖+1]𝑛𝑖=1

𝐸 = solve(⟨|𝐷⟩ : 𝐸′ → ·) 𝐹 = 𝐸 ∪ 𝐸𝑟 ∪ (∪𝑖𝐸𝑖 )
Θ ⊢ handle 𝑀 with {return 𝑥 ↦→ 𝑁 } ⊎ {ℓ𝑖 𝑝𝑖 𝑟𝑖 ↦→ 𝑁𝑖 }𝑛𝑖=1 : 𝐵 @ 𝐹 ⊣ Θ𝑛+1

Fig. 22. Type inference for Metel.
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B.6 Elaboration to the Core Calculus

The semantics of Metel is given by its elaboration to Mete.
We first fill the gap between Metel and Mete that contexts of Metel do not keep indexes

of modalities appearing in locks and variable bindings. Observe that for any typing judgement
of closed terms ⊢𝑠 𝑀 : 𝐴 @𝐸, the indexes of modalities for locks and bindings in contexts are
completely determined by the derivation tree. We derive a new presentation of the declarative
type system for Metel by keeping indexes of locks and bindings in context, and modify auxiliary
relations involving modalities to consider indexes as well. The interesting typing rules for the
new typing judgement Γ ⊢𝑠𝑖 𝑀 : 𝐴 @𝐸 and auxiliary relations are defined in the non-highlighted
parts of Figures 23 to 25. We inline the relation (𝑀 ;𝜈 ;𝜙 ;Δ;𝐴) and split T-Unmod into four rules for
clarity of elaboration. The following lemma shows the equivalence between the two type systems.

Lemma B.13 (Indexes in contexts can be ignored). ⊢𝑠𝑖 𝑀 : 𝐴 @𝐸 if and only if ⊢𝑠 𝑀 : 𝐴 @𝐸.

The proof follows from straightforward induction on the typing derivations. The only non-trivial
case is to show the equivalence of typing rules for variables, since they use the modality transfor-
mation relation in different ways. The following lemma shows that the modality transformation
relation holds regardless of the targets of modalities.

Lemma B.14 (Source determines transformation). If 𝜈𝐹 : 𝐸 → 𝐹 and 𝜇𝐹 ⇒ 𝜈𝐹 , then for any

𝐹 ′ such that 𝜈𝐹 ′ : 𝐸 → 𝐹 ′, we have 𝜇𝐹 ′ ⇒ 𝜈𝐹 ′ .

Proof. If 𝜈 = [𝐸], we have 𝜇 = [𝐸′] where 𝐸′ ⩽ 𝐸. Otherwise, we can show 𝐹 = 𝐹 ′. □

As a corollary, for Γ ⊢ (𝜇, 𝜎) ⇒ 𝜈 @𝐸, we know that either Γ ⊢ 𝜎 : Abs or 𝜇𝐹 → 𝜈𝐹 for any 𝐹
with 𝜈𝐹 : 𝐸 → 𝐹 . The reverse direction also holds. This gives the equivalence of the variable rules.

Since the new type system is equivalent to the old one, and it is obvious to derive a derivation
tree of the new typing judgement from the old one for closed terms, we restrict elaboration to
closed terms and directly define the elaboration on the derivation tree of the new judgement
Γ ⊢𝑠𝑖 𝑀 : 𝐴 @𝐸. The elaboration is given as the highlighted parts of Figures 23 to 25. There is
nothing really surprising in the elaboration. For all terms that introduce variable bindings 𝑥 , we
immediately unbox it and bind the unboxed result to 𝑥 . For variable rules, we use the original 𝑥
for froze variables, and unboxed 𝑥 for usual variables which are automatically unboxed. Also, in
variable, let-binding rules and handler rules, we deal with generalisation and instantiation. The
following theorem showing the type preservation. Its proof follows from straightforward induction.

Theorem B.15 (Type preservation). If Γ ⊢𝑠𝑖 𝑀 : 𝐴 @𝐸 d 𝑀 ′
, then Γ ⊢ 𝑀 : 𝐴 @𝐸.

𝜇𝐹 ⇒ 𝜈𝐹 or Γ ⊢ 𝜎 : Abs
Γ ⊢ (𝜇𝐹 , 𝜎) ⇒ 𝜈𝐹 @𝐸

principal(Γ;𝑀 ;Δ;𝐴) Γ ⊢ ∀Δ.𝐴 ⪯i 𝐵 d 𝐴′

Γ ⊢ (𝑀 ;Δ;𝐴) ⇓ 𝐵 d 𝐴′

Γ ⊢ 𝐴 ⪯𝑅 𝐴 d ·

Γ ⊢ 𝐵 : (𝐾, 𝑅) Γ ⊢ 𝜎 [𝐵/𝛼] ⪯𝑅 𝐴 d 𝐴′

Γ ⊢ ∀𝛼𝐾 .𝜎 ⪯𝑅 𝐴 d 𝐵,𝐴′

unmod(𝑥 ;Δ;𝐴;𝑀) = let mod𝜈 ΛΔ.𝑥 = 𝑥 Δ in 𝑀 where (𝜈, _) = split(𝐴)

Fig. 23. Auxiliary definitions for Metel with indexed contexts and its elaboration.
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T-Freeze
𝜉𝐹 = alocks(Γ′) Γ, Γ′ ⊢ (𝜇𝐹 ,∀Δ.𝐴) ⇒ 𝜉𝐹 @𝐸 Γ, Γ′ ⊢ ∀Δ.𝐴 ⪯m 𝐵 d 𝐴′

Γ, 𝑥 :𝜇𝐹 ∀Δ.𝐴, Γ′ ⊢𝑠𝑖 ⌈𝑥⌉ d 𝑥 𝐴′ : 𝐵 @𝐸

T-Var
𝜉𝐹 = alocks(Γ′) 𝜇𝐹 : 𝐹 ′ → 𝐹

(𝜈,𝐴′) = split(Δ;𝐴) Γ, Γ′ ⊢ (𝜇𝐹 ◦ 𝜈𝐹 ′ ,∀Δ.𝐴′) ⇒ 𝜉𝐹 @𝐸 Γ, Γ′ ⊢ ∀Δ.𝐴′ ⪯m 𝐵 d 𝐴′

Γ, 𝑥 :𝜇𝐹 ∀Δ.𝐴, Γ′ ⊢𝑠𝑖 𝑥 d 𝑥 𝐴′ : 𝐵 @𝐸

T-AbsAnno
Γ, 𝑥 : 𝐴 ⊢𝑠𝑖 𝑀 : 𝐵 @𝐸 d 𝑀 ′

Γ ⊢𝑠𝑖 𝜆𝑥𝐴 .𝑀
d 𝜆𝑥𝐴 .unmod(𝑥 ; ·;𝐴;𝑀 ′) : 𝐴 → 𝐵 @𝐸

T-Abs
Γ, 𝑥 : 𝑆 ⊢𝑠𝑖 𝑀 : 𝐵 @𝐸 d 𝑀 ′

Γ ⊢𝑠𝑖 𝜆𝑥.𝑀
d 𝜆𝑥𝑆 .unmod(𝑥 ; ·; 𝑆 ;𝑀 ′) : 𝑆 → 𝐵 @𝐸

T-LetmodVal
𝜈𝐹 : 𝐸 → 𝐹 𝜉𝐹 = 𝜈𝐹 ◦ 𝜇𝐸
Γ,µ𝜈𝐹 ,Δ ⊢𝑠𝑖 𝑉 : 𝜇𝐴 @𝐸 d 𝑉 ′

Γ, 𝑥 :𝜉𝐹 ∀Δ.𝐴 ⊢𝑠𝑖 𝑁 : 𝐵 @ 𝐹 d 𝑁 ′

𝑁 ′′ = unmod(𝑥 ;Δ;𝐴;𝑁 ′)
Γ ⊢𝑠𝑖 let𝜈 𝜇 𝑥 = 𝑉 in 𝑁

d let𝜈 mod𝜇 ΛΔ.𝑥 = 𝑉 ′
in 𝑁 ′′ : 𝐵 @ 𝐹

T-LetmodNonval
𝑀 ∉ Val (𝑀 ;Δ;𝐴) ⇓ 𝐴′ d 𝐴1
Γ,µ1𝐹 ,Δ ⊢𝑠𝑖 𝑀 : 𝜇𝐴 @𝐸 d 𝑀 ′

Γ, 𝑥 :𝜇𝐹 𝐴
′ ⊢𝑠𝑖 𝑁 : 𝐵 @ 𝐹 d 𝑁 ′

𝑁 ′′ = unmod(𝑥 ; ·;𝐴′;𝑁 ′)
Γ ⊢𝑠𝑖 let1 𝜇 𝑥 = 𝑀 in 𝑁

d let1 mod𝜇 𝑥 = 𝑀 ′ [𝐴1/Δ] in 𝑁 ′′ : 𝐵 @ 𝐹

T-LetVal
Γ,µ1𝐹 ,Δ ⊢𝑠𝑖 𝑉 : 𝐴 @𝐸 d 𝑉 ′

Γ, 𝑥 :1𝐹 ∀Δ.𝐴 ⊢𝑠𝑖 𝑁 : 𝐵 @ 𝐹 d 𝑁 ′

𝑁 ′′ = unmod(𝑥 ;Δ;𝐴;𝑁 ′)
Γ ⊢𝑠𝑖 let1 𝑥 = 𝑉 in 𝑁

d let 𝑥 = ΛΔ.𝑉 ′
in 𝑁 ′′ : 𝐵 @ 𝐹

T-LetNonval
𝑀 ∉ Val (𝑀 ;Δ;𝐴) ⇓ 𝐴′ d 𝐴1
Γ,µ1𝐹 ,Δ ⊢𝑠𝑖 𝑀 : 𝐴 @𝐸 d 𝑀 ′

Γ, 𝑥 :1𝐹 𝐴
′ ⊢𝑠𝑖 𝑁 : 𝐵 @ 𝐹 d 𝑁 ′

𝑁 ′′ = unmod(𝑥 ; ·;𝐴′;𝑁 ′)
Γ ⊢𝑠𝑖 let1 𝑥 = 𝑀 in 𝑁

d let 𝑥 = 𝑀 ′ [𝐴1/Δ] in 𝑁 ′′ : 𝐵 @ 𝐹

T-LetAnno
Γ ⊢ (𝑀 ;Δ;𝐴) ⇕† 𝜎 Γ,Δ ⊢𝑠𝑖 𝑀 : 𝐴 @𝐸 d 𝑀 ′

Γ, 𝑥 : 𝜎 ⊢𝑠𝑖 𝑁 : 𝐵 @𝐸 d 𝑁 ′

Γ ⊢𝑠𝑖 let 𝑥∀Δ.𝐴 = 𝑀 in 𝑁 d let 𝑥 = ΛΔ.𝑀 ′
in 𝑁 ′ : 𝐵 @𝐸

T-Handler
𝐷 = {ℓ𝑖 }𝑖 {ℓ𝑖 : 𝐴𝑖 ↠ 𝐵𝑖 } ⊆ Σ

Γ ⊢ (𝑀 ;Δ;𝐴0) ⇓ 𝐴 d 𝐴1 Γ,µ⟨|𝐷 ⟩𝐹 ,Δ ⊢𝑠𝑖 𝑀 : 𝐴0 @𝐷 + 𝐹 d 𝑀 ′

Γ ⊢ (𝑁 ;Δ′;𝐵0) ⇓ 𝐵 d 𝐵1 Γ, 𝑥 : ⟨|𝐷⟩𝐴,Δ′ ⊢𝑠𝑖 𝑁 : 𝐵0 @ 𝐹 d 𝑁 ′

[Γ, 𝑝𝑖 : 𝐴𝑖 , 𝑟𝑖 : 𝐵𝑖 → 𝐵 ⊢𝑠𝑖 𝑁𝑖 : 𝐵 @ 𝐹 d 𝑁 ′
𝑖 ]𝑖

Γ ⊢𝑠𝑖 handle 𝑀 with {return 𝑥 ↦→ 𝑁 } ⊎ {ℓ𝑖 𝑝𝑖 𝑟𝑖 ↦→ 𝑁𝑖 }𝑖
d handle 𝑀 ′ [𝐴1/Δ] with {return 𝑥 ↦→ 𝑁 ′ [𝐵1/Δ′]} ⊎ {ℓ𝑖 𝑝𝑖 𝑟𝑖 ↦→ 𝑁 ′

𝑖 }𝑖 : 𝐵 @ 𝐹

Fig. 24. Elaboration from Metel with indexed contexts to Mete (part I).
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T-Mod
Γ,µ𝜇 ⊢𝑠𝑖 𝑉 : 𝐴 @𝐸 d 𝑉 ′ 𝜇𝐹 : 𝐸 → 𝐹

Γ ⊢𝑠𝑖 mod𝜇 𝑉 d mod𝜇 𝑉
′ : 𝜇𝐴 @ 𝐹

T-App
Γ ⊢𝑠𝑖 𝑀 : 𝐴 → 𝐵 @𝐸 d 𝑀 ′

Γ ⊢𝑠𝑖 𝑁 : 𝐴 @𝐸 d 𝑁 ′

Γ ⊢𝑠𝑖 𝑀 𝑁 d 𝑀 ′ 𝑁 ′ : 𝐵 @𝐸

T-Mask
Γ,µ⟨𝐿 |⟩ ⊢𝑠𝑖 𝑀 : 𝐴 @ 𝐹 − 𝐿 d 𝑀 ′

Γ ⊢𝑠𝑖 mask𝐿 𝑀 d mask𝐿 𝑀
′ : ⟨𝐿 |⟩𝐴 @ 𝐹

T-Do
Σ ∋ ℓ : 𝐴 ↠ 𝐵 𝐸 = ℓ, 𝐹

Γ ⊢𝑠𝑖 𝑀 : 𝐴 @𝐸 d 𝑀 ′

Γ ⊢𝑠𝑖 do ℓ 𝑀 d do ℓ 𝑀 ′ : 𝐵 @𝐸

Fig. 25. Elaboration from Metel with indexed contexts to Mete (part II).
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C Proofs for Metel

In this section, we prove the soundness and completeness of the type inference of Metel.

C.1 Definitions and Lemmas

Following Gundry [20], we define the notion of stable statements.

Definition C.1 (Stability). A statement 𝐽 is stable if it is preserved by metasubstitution. Formally,
if Θ0 ⊢ 𝐽 and 𝜃 ⦂ Θ0 ⊑ Θ1, then Θ1 ⊢ 𝜃 𝐽 .

All our statements are stable under metasubstitution. Stability allows us to solve sub-questions
step-by-step and compose them to the solution of the whole question.
We have the following lemma showing we can compose minimal solutions of sub-questions to

obtain the minimal solution of the whole question.

Lemma C.2 (The Optimist’s lemma). If 𝜃0 ⦂ Θ0 ⊑ Θ1 is a minimal solution of 𝐽 and 𝜃1 ⦂ Θ1 ⊑ Θ2
is a minimal solution of 𝐽 ′, then 𝜃1𝜃0 ⦂ Θ0 ⊑ Θ2 is a minimal solution of 𝐽 ∧ 𝐽 ′.

Proof. Same as Gundry [20]. Any solution 𝑡ℎ𝑒𝑡𝑎 ⦂ Θ0 ⊑ Θ to the question (Θ0, 𝐽 ∧ 𝐽 ′) should
solve (Θ0, 𝐽 ), thus factor through 𝜃0 with cofactor 𝜁0 ⦂ Θ1 ⊑ Θ′. Then 𝜁0 should solve (Θ1, 𝜃0 𝐽

′),
thus factor through 𝜃1 with cofactor 𝜁1. Our goal follow from 𝜃 factors through 𝜃1𝜃0 with cofactor
𝜁1 ⦂ Θ2 ⊑ Θ such that 𝜃 ≡ 𝜁1𝜃1𝜃0 ⦂ Θ0 ⊑ Θ. □

Although this lemma only applies to questions without outputs defined in Definition B.2, we can
use similar ideas in proofs for questions with outputs defined in Definition B.3 .

C.2 Unification

Lemma B.4 (Soundness and generality of kind restriction). If Θ0 ⊢ 𝐴 : (𝐾, 𝑅) ⊣ Θ1, then

Θ0 ⊑ Θ1 is a minimal solution of (Θ0;𝐴 : (𝐾, 𝑅))

Proof. We want to show that Θ0 ⊑ Θ1, Θ1 ⊢ 𝐴 : (𝐾, 𝑅), and for any other solution 𝜃 ⦂ Θ0 ⊑ Θ′,
we have 𝜃 ⦂ Θ1 ⊑ Θ′. By straightforward induction on the judgement Θ ⊢ 𝐴 : (𝐾, 𝑅) ⊣ Θ′. The
most non-trivial case is when 𝐴 is a flexible variable.

Θ, 𝛼 : (𝐾 ′, 𝑅′),Θ′ ⊢ 𝛼 : (𝐾, 𝑅) ⊣ Θ, 𝛼 : (𝐾 ′ ⊓ 𝐾, 𝑅′ ⊓ 𝑅),Θ′

Soundness follows from 𝐾 ′ ⊓ 𝐾 ⩽ 𝐾 and 𝑅′ ⊓ 𝑅 ⩽ 𝑅. Generality follows from that 𝛼 : (𝐾 ′, 𝑅′)
and 𝛼 : (𝐾, 𝑅) must both hold for any solution, and the meet operation ⊓ gives the greatest lower
bounds. Other cases follow from IHs and Lemma C.2. □

Lemma B.5 (Completeness of kind restriction). If 𝜃 ⦂ Θ0 ⊑ Θ is a solution to the kinding

question (Θ0;𝐴 : (𝐾, 𝑅)), then there exists Θ1 such that Θ0 ⊢ 𝐴 : (𝐾, 𝑅) ⊣ Θ1.

Proof. Straightforward induction on the declarative kinding judgements. □

Lemma B.6 (Soundness and generality of unification).
1. If Θ0 ⊢ 𝐴 ≡ 𝐵 ⊣ Θ1, then Θ0 ⊑ Θ1 is a minimal solution of (Θ0;𝐴 ≡ 𝐵).
2. If Θ0 | Ξ ⊢ 𝛼 ≡ 𝐴 ⊣ Θ1, 𝐴 is not a flexible variable, and Ξ only contains declaration of flexible

variables appearing in 𝐴, then Θ0,Ξ ⊑ Θ1 is a minimal solution of (Θ0;𝛼 ≡ 𝐴).

Proof. For 1, we want to show that Θ1 ⊢ 𝐴 ≡ 𝐵, and for any other 𝜃 ⦂ Θ0 ⊑ Θ′ with
Θ′ ⊢ 𝜃𝐴 ≡ 𝜃𝐵, there exists 𝜁 ⦂ Θ1 ⊑ Θ′ such that 𝜃 ≡ 𝜁 ⦂ Θ0 ⊑ Θ′. For 2, we want to show that
Θ1 ⊢ 𝐴 ≡ 𝐵, and for any other 𝜃 ⦂ Θ0,Ξ ⊑ Θ′ with Θ′ ⊢ 𝜃𝛼 ≡ 𝜃𝐵, there exists 𝜁 ⦂ Θ1 ⊑ Θ′ such
that 𝜃 ≡ 𝜁 ⦂ Θ0 ⊑ Θ′. We prove 1 and 2 simultaneously by mutual induction on the unification
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judgement Θ0 ⊢ 𝐴 ≡ 𝐵 ⊣ Θ1 and Θ0 | Ξ ⊢ 𝛼 ≡ 𝐴 ⊣ Θ1. Similar to the proof of unification in
Gundry [20], the key observation is that most unification rules does not introduce new flexible
variables, and for all definitions 𝛽 = 𝐵 in Θ1, we must have Θ′ ⊢ 𝜃𝛽 ≡ 𝜃𝐵 for the problem to be
solved. Most cases follow from similar and routine usages of IHs. We only elaborate interesting
and representative cases.
Case U-Rigid-Rigid and U-Flex-Flex-Id. Trivial.
Case U-Flex-Flex-SkipMark.

Θ0 ⊢ 𝛼 ≡ 𝛽 ⊣ Θ1 (1)
Θ0# ⊢ 𝛼 ≡ 𝛽 ⊣ Θ1#

For any other solution 𝜃 ⦂ Θ0# ⊑ Θ′ # Ξ, we have 𝜃 ⦂ Θ0 ⊑ Θ′. IH on (1) gives a cofactor 𝜁
such that 𝜃 ≡ 𝜁 ⦂ Θ0 ⊑ Θ′, which further gives 𝜃 ≡ 𝜁 ⦂ Θ0# ⊑ Θ′ # Ξ.

Case U-Flex-Flex-L and U-Flex-Flex-R. Follow from IH.
Case U-Flex-Flex-Subst. Follow from IH.
Case U-Flex-Flex-SkipFlex. Follow from IH.
Case U-Flex-Flex-SkipRigid. Follow from IH.
Case U-Flex-Flex-SkipTerm. Follow from IH.
Case U-Flex-Flex-SkipLock. Follow from IH.
Case U-Flex-Rigid-L and U-Flex-Rigid-R. Follow from IH.
Case U-Mod and U-Arrow. Follow from IH and Lemma C.2.
Case U-Relative and U-Effect-Closed. Trivial.
Case U-Absolute. Follow from IH.
Case U-Effect-L and U-Effect-R. Follow from IH.
Case U-Effect-LR.

𝐿1 ⊈ 𝐿2 𝐿2 ⊈ 𝐿1
Θ0, 𝜀 ⊢ 𝜀1 := 𝐿2 − 𝐿1, 𝜀 ⊣ Θ1 (1) Θ1 ⊢ 𝜀2 := 𝐿1 − 𝐿2, 𝜀 ⊣ Θ2 (2)

Θ0 ⊢ 𝐿1, 𝜀1 ≡ 𝐿2, 𝜀2 ⊣ Θ2

For any other solution 𝜃 ⦂ Θ0 ⊑ Θ′, suppose 𝜃𝜀1 = 𝐸1 and 𝜃𝜀2 = 𝐸2. Since 𝐿1, 𝐸1 = 𝐿2, 𝐸2,
there exists 𝐸 such that 𝐸1 = 𝐿2 − 𝐿1, 𝐸 and 𝐸2 = 𝐿1 − 𝐿2, 𝐸. Then by IHs on (1) and (2), and
Lemma C.2, we can show that 𝜁 = 𝜃, 𝐸/𝜀 is the required cofactor.

Case U-Flex-Rigid-Solve. Any other solutions must solve 𝐴 : (𝐾, 𝑅) and 𝛼 ≡ 𝐴. Follow from IH.
Case U-Flex-Rigid-Subst and U-Flex-Rigid-Depend. Follow from IH.
Case U-Flex-Rigid-SkipFlex, U-Flex-Rigid-SkipRigid, U-Flex-Rigid-SkipTerm,

U-Flex-Rigid-SkipLock, and U-Flex-Rigid-SkipMark. Follow from IH.
□

Lemma B.7 (Completeness of unification).
1. If 𝜃 ⦂ Θ0 ⊑ Θ is a solution to the unification question (Θ0;𝐴 ≡ 𝐵), then there exists Θ1 such

that Θ0 ⊢ 𝐴 ≡ 𝐵 ⊣ Θ1.

2. If 𝜃 ⦂ Θ0,Ξ ⊑ Θ is a solution to the unification question (Θ0,Ξ;𝛼 ≡ 𝐴), then there exists Θ1
such that Θ0 | Ξ ⊢ 𝛼 ≡ 𝐴 ⊣ Θ1.

Proof. We prove 1 and 2 simultaneously. By a straightforward induction on the declarative
rules for unification, we can show that if 𝜃 is a solution for (Θ0;𝐴 ≡ 𝐵), then it must also solve the
questions of all premises forΘ0 ⊢ 𝐴 ≡ 𝐵 ⊣ _ in the algorithmic rules. Then by IHs and Lemma B.5 we
can show that there exists Θ1 such that Θ0 ⊢ 𝐴 ≡ 𝐵 ⊣ Θ1 holds. The same applies to (Θ0,Ξ;𝛼 ≡ 𝐴).
Base cases 𝛼 ≡ 𝛼 and 𝛼 ≡ 𝛼 hold trivially. The only case where the algorithmic rules require extra
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conditions to succeed is U-Flex-Rigid-Solve where in the premise the kinding of𝐴 cannot depend
on the flexible variable 𝛼 . For 𝛼 ≡ 𝐴 where 𝐴 is not a flexible variable and 𝛼 is not assigned to
a type in Θ0, we can show that Θ ⊢ 𝜃𝛼 ≡ 𝜃𝐴 does not hold for any solutions if 𝐴 contains 𝛼 by
induction on the declarative rules of type equivalence. □

C.3 Type Inference

Lemma C.3 (Soundness and generality of transformation). For the question (Θ0, (𝜇, 𝜎) ⇒
𝜈 @ e), if Θ0 ⊢ (𝜇, 𝜎) ⇒ 𝜈 @𝐸 ⊣ Θ1, then (Θ0 ⊑ Θ1, 𝐸) is a minimal solution.

Proof. Follow from Lemma B.4 and Lemma B.8. □

Lemma C.4 (Soundness and generality of instantiation). For the question (Θ0, 𝜎 ⪯𝑅 e), if
Θ0 ⊢ 𝜎 ⪯𝑅 𝐴 ⊣ Θ1, then (Θ0 ⊑ Θ1, 𝐴) is a minimal solution.

Proof. By definition, Θ1 = Θ0,Ξ where Ξ contains exactly all flexible type variables introduced
by this instantiation. It is obvious that all other solutions can factor through Θ0 ⊑ Θ0,Ξ by
substituting flexible variables in Ξ with proper types. □

Lemma C.5 (Polymorphic weakening). If Γ, 𝑥 :𝜇 𝜎, Γ′ ⊢𝑠 𝑀 : 𝐴 @𝐸 and 𝜎 ⪯gen 𝜎 ′, then
Γ, 𝑥 :𝜇 𝜎 ′, Γ′ ⊢𝑠 𝑀 : 𝐴 @𝐸.

Lemma B.10 (No negative effects). For the type inference question (Θ0;𝑀 : e@ e) with the

implicit condition ⊢ Θ0 pos and ⊢ 𝑀 pos, if Θ0 ⊢ 𝑀 : 𝐴 @𝐸 ⊣ Θ1, then ⊢ Θ1 pos and ⊢ 𝐴 pos.

Proof. By straightforward induction on the typing judgement of type inference. □

Theorem B.11 (Soundness and generality of type inference). For the type inference question
(Θ0;𝑀 : e@ e), if Θ0 ⊢ 𝑀 : 𝐴 @𝐸 ⊣ Θ1, then (Θ0 ⊑ Θ1, 𝐴, 𝐸) is a minimal solution.

Proof. We want to show that if ⊢ Θ0 ng, Θ0 ⊢ 𝑀 ok and Θ0 ⊢ 𝑀 : 𝐴 @𝐸 ⊣ Θ1, then Θ0 ⊑ Θ1
and Θ1 ⊢ 𝑀 : 𝐴 @𝐸. Moreover, for any 𝜃 ′ ⦂ Θ0 ⊑ Θ′ with Θ′ ⊢ 𝑀 : 𝐴′ @𝐸′, there exists
𝜁 ⦂ Θ1 ⊑ Θ′ such that 𝜃 ′ ≡ 𝜁 ⦂ Θ0 ⊑ Θ′, Θ′ ⊢ 𝜁𝐴 ⪯gen 𝐴

′, and 𝐸 ⩽ 𝐸′.
By induction on the derivation of Θ0 ⊢ 𝑀 : 𝐴 @𝐸 ⊣ Θ1. Soundness follows from routine usages

of IHs straightforwardly. The only non-trivial cases is for T-Letmod and T-Handler where we
probably need to show the principal condition for some terms. They follow from the generality of
corresponding sub-judgements, and generality follows from IHs on these sub-judgements.
We focus on proving generality.

Case
I-Freeze

𝜉 = alocks(Θ0) ∀Δ.𝐴 = subst(Θ;𝜎)
Θ,Θ0 ⊢ (𝜇,∀Δ.𝐴) ⇒ 𝜉 @𝐸 ⊣ Θ1 (1) Θ1 ⊢ ∀Δ.𝐴 ⪯m 𝐵 ⊣ Θ2 (2)

Θ, 𝑥 :𝜇 𝜎,Θ0 ⊢ ⌈𝑥⌉ : 𝐵 @𝐸 ⊣ Θ2

For any other solution (𝜃 ′ ⦂ Θ, 𝑥 :𝜇 𝜎,Θ0 ⊑ Θ′
0, 𝑥 :𝜇 𝜃 ′𝜎,Θ′

1;𝐵
′;𝐸′)whereΘ′ = Θ′

0, 𝑥 :𝜇 𝜃 ′𝜎,Θ′
1,

by ⊢ Θ, 𝑥 :𝜇 𝜎,Θ0 ng and Lemma B.1, we have 𝜇 and 𝜉 unchanged after metasubstitution of
𝜃 ′. Moreover, subst(Θ′

0;𝜃
′𝜎) is pure only if subst(Θ;𝜎) is pure since substitution preserves

purity. Thus, 𝜃 ′ must solve the question of (1). By Lemma C.3 on (1), we have 𝐸 ⩽ 𝐸′ (3)
and 𝜃 ′ factors through Θ,Θ0 ⊑ Θ1 (the metasubstitution of (1)) with cofactor 𝜁1 ⦂ Θ1 ⊑ Θ′.
Then (𝜁1, 𝐵′) must solve (2). By Lemma C.4 on (2), 𝜁1 factors through Θ1 ⊑ Θ2 (the meta-
substitution of (2)) with cofactor 𝜁2 ⦂ Θ2 ⊑ Θ′ such that Θ′ ⊢ 𝜁2𝐵 ≡ 𝐵′ (4), Thus, 𝜃 ′ factors
through Θ, 𝑥 :𝜇 𝜎,Θ0 ⊑ Θ2 with cofactor 𝜁2 ⦂ Θ2 ⊑ Θ′. Our goal follows from cofactor 𝜁2,
(3), and (4).
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Case
I-Var

𝜉 = alocks(Θ0) ∀Δ.𝐴 = subst(Θ;𝜎) (𝜈,𝐴′) = split(Δ, 𝐴)
Θ,Θ0 ⊢ (𝜇 ◦ 𝜈,∀Δ.𝐴′) ⇒ 𝜉 @𝐸 ⊣ Θ1 (1) Θ1 ⊢ ∀Δ.𝐴 ⪯m 𝐵 ⊣ Θ2 (2)

Θ, 𝑥 :𝜇 𝜎,Θ0 ⊢ 𝑥 : 𝐵 @𝐸 ⊣ Θ2

For any other solution (𝜃 ′ ⦂ Θ, 𝑥 :𝜇 𝜎,Θ0 ⊑ Θ′;𝐵′;𝐸′), by ⊢ Θ, 𝑥 :𝜇 𝜎,Θ0 ng, Lemma B.1,
and the definition of split(−), we have 𝜇, 𝜈 , and 𝜉 unchanged after metasubstitution of 𝜃 ′.
The remaining part is almost the same as the proof for I-Freeze.

Case
I-Letmod

Θ0,µ𝜈 ⊢ 𝑀 : 𝐴 @𝐸 ⊣ Θ1,µ𝜈 ,Ξ1 (1)
Θ1 # Ξ1, 𝛼 : (Any,m) ⊢ 𝐴 ≡ 𝜙𝛼 ⊣ Θ2 # Ξ2 (2) Θ2 ⊢ (𝑀 ;𝜈 ;𝜙 ;Ξ2;𝛼) ⇕ (𝜉, 𝜎) ⊣ Θ3 (3)

Θ3, 𝑥 :𝜉 𝜎 ⊢ 𝑁 : 𝐵 @ 𝐹 ⊣ Θ4 (4) 𝐹 ′ = solve(𝜈 : 𝐸 → 𝐹 ) (5)
Θ0 ⊢ let𝜈 𝜙 𝑥 = 𝑀 in 𝑁 : 𝐵 @ 𝐹 ′ ⊣ Θ3

For any other solution (𝜃 ′ ⦂ Θ0 ⊑ Θ′;𝐵′; 𝐹 ′1), we have Θ′ ⊢ let𝜈 𝜙 𝑥 = 𝑀 in 𝑁 : 𝐵′ @ 𝐹 ′1.
Inversion gives

Θ′ ⊢ (𝑀 ;𝜈 ;Δ;𝜙 ;𝐴′) ⇕ (𝜉 ′, 𝜎 ′)
Θ′,µ𝜈 ,Δ ⊢𝑠 𝑀 : 𝜙𝐴′ @𝐸′

Θ′, 𝑥 :𝜉 ′ 𝜎 ′ ⊢𝑠 𝑀 : 𝐵′ @ 𝐹 ′1
𝜈𝐹 ′1 : 𝐸

′ → 𝐹 ′1
By definition, we have 𝜉 ′ = 𝜉 . Since 𝜈 does not contain flexible variables, by

Θ′,µ𝜈 ,Δ ⊢𝑠 𝑀 : 𝜙𝐴′ @𝐸′

we have (𝜃 ′ ⦂ Θ0,µ𝜈 ⊑ Θ′,µ𝜈 ,Δ;𝐴′;𝐸′) solves the question of (1). By IH on (1), we have 𝜃 ′
factors through the metasubstitution of (1) with cofactor 𝜁1 ⦂ Θ1,µ𝜈 ,Ξ1 ⊑ Θ′,µ𝜈 ,Δ such
that 𝐸 ⩽ 𝐸′ and Θ′ ⊢ 𝜁1𝐴 ≡ 𝜙𝐴′.
Then 𝜁 ′1 = 𝜁1, 𝐴

′/𝛼 must solve the statement of (2). By Lemma B.6 on (2), we have 𝜁 ′1 factors
through the metasubstitution of (2) with cofactor 𝜁2 ⦂ Θ2 # Ξ2 ⊑ Θ′ # Δ. Case analysis on
whether value restriction is satisfied.
Case 𝑀 ∈ Val. We have 𝜎 = gen(Ξ2;𝛼) and 𝜎 ′ = ∀Δ.𝐴′. By 𝜁2 ⦂ Θ2 # Ξ2 ⊑ Θ′ # Δ and

𝜁2𝛼 ≡ 𝐴′, we have Θ′ ⊢ 𝜎 ⪯gen 𝜎
′. Then by Lemma C.5 on Θ′, 𝑥 :𝜉 ′ 𝜎 ′ ⊢𝑠 𝑀 : 𝐵′ @ 𝐹 ′

and 𝜉 = 𝜉 ′, we have

Θ′, 𝑥 :𝜉 𝜎 ⊢𝑠 𝑀 : 𝐵′ @ 𝐹 ′1

Thus, (𝜁2 ⦂ Θ3, 𝑥 :𝜉 𝜎 ⊑ Θ′, 𝑥 :𝜉 𝜎 ;𝐵′; 𝐹 ′1) solves the question of (4). Observe that
by (1) and (2), 𝜎 cannot contain flexible modal or effect variables; otherwise it would
violate ⊢ Θ0 ng since the only way for the type of𝑀 to rely on flexible modal or effect
variables in Θ0 is via usage of term variables in Θ0. Thus we have ⊢ Θ3, 𝑥 :𝜉 𝜎 ng. Then
by IH on (4), we have 𝜁2 factors through the metasubstitution of (4) with cofactor 𝜁3
such that 𝐹 ⩽ 𝐹 ′1 and Θ ⊢ 𝜁3𝐵 ≡ 𝐵′ (6). By Lemma B.8 on (5) and 𝜈𝐹 ′1 : 𝐸′ → 𝐹 ′1, we
have 𝐹 ′ ⩽ 𝐹 ′1 (7). Our goal follows from cofactor 𝜁3, (6), and (7).

Case 𝑀 ∉ Val. We have

Θ2 ⊢ gen(Ξ2;𝛼) ⪯i 𝜎 ⊣ Θ3
Θ′ ⊢ ∀Δ.𝐴′ ⪯i 𝜎

′

Same as the above sub-case, we have Θ′ ⊢ gen(Ξ2;𝛼) ⪯gen ∀Δ.𝐴′. By definition of
algorithmic ⪯i, we have Θ3 = Θ2,Ξ3 where Ξ3 contains the flexible intuitionistic
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variables appearing in 𝜎 . Thus, by 𝜁2 ⦂ Θ2 ⊑ Θ′, there exists a metasubstitution
𝜁 ′2 ⦂ Θ2,Ξ3 ⊑ Θ2 which substitutes flexible variables in Ξ3 such that Θ′ ⊢ 𝜁2𝜁 ′2𝜎 ≡ 𝜎 ′.
Then we have 𝜁2𝜁 ′2 ⦂ Θ3, 𝑥 :𝜉 𝜎 ⊑ Θ′, 𝑥 :𝜉 𝜎 ′, which gives that (𝜁2𝜁 ′2 ;𝐵′; 𝐹 ′1) solves (4).
Similar to the above sub-case, 𝜎 does not contain flexible modal or effect variables
since we use ⪯i and have ⊢ Θ0 ng. Then by IH on (4), we have 𝜁2𝜁 ′2 factors through
the metasubstitution of (4) with cofactor 𝜁3 such that 𝐹 ⩽ 𝐹 ′1 and Θ ⊢ 𝜁3𝐵 ≡ 𝐵′ (6).
By Lemma B.8 on (5) and 𝜈𝐹 ′1 : 𝐸

′ → 𝐹 ′1, we have 𝐹
′ ⩽ 𝐹 ′1 (7). Our goal follows from

cofactor 𝜁3, (6), and (7).
Case

I-Abs
Θ0, 𝛼 : (Any, i), 𝑥 : 𝛼 ⊢ 𝑀 : 𝐵 @𝐸 ⊣ Θ1, 𝑥 : 𝛼,Ξ1 (1)

Θ0 ⊢ 𝜆𝑥.𝑀 : 𝛼 → 𝐵 @𝐸 ⊣ Θ1,Ξ1

For any other solution (𝜃 ′ ⦂ Θ0 ⊑ Θ′;𝐴′ → 𝐵′;𝐸′), we have Θ′ ⊢𝑠 𝜆𝑥 .𝑀 : 𝐴′ → 𝐵′ @𝐸′.
Inversion gives

Θ′, 𝑥 : 𝐴′ ⊢𝑠 𝑀 : 𝐵′ @𝐸′

Letting 𝜃1 = 𝜃 ′, 𝐴′/𝛼 , we have that (𝜃1, 𝐵′, 𝐸′) solves the question of (1). By ⊢ Θ0 ng

we have ⊢ Θ0, 𝛼 : (Any, i), 𝑥 : 𝛼 ng. Then by IH on (1), we have 𝜃1 factors through the
metasubstitution of (1) with cofactor 𝜁 ⦂ Θ1, 𝑥 : 𝛼,Ξ1 ⊑ Θ′, 𝑥 : 𝛼, 𝑥 : 𝐴′ such that 𝐸 ⩽ 𝐸′ (2)
and Θ′ ⊢ 𝜁𝐵 ≡ 𝐵′ (3). Observe that 𝜃 ′ ≡ 𝜃1 ≡ 𝜁 ⦂ Θ0 ⊑ Θ′. Our goal follows from cofactor 𝜁 ,
(2), and (3).

Case
I-AbsAnno
Θ0, 𝑥 : 𝐴 ⊢ 𝑀 : 𝐵 @𝐸 ⊣ Θ1, 𝑥 : 𝐴,Ξ1 (1)

Θ0 ⊢ 𝜆𝑥𝐴 .𝑀 : 𝐴 → 𝐵 @𝐸 ⊣ Θ1,Ξ1

Our goal follows from IH on (1).
Case

I-App
Θ0 ⊢ 𝑀 : 𝐴 @𝐸 ⊣ Θ1 (1)

Θ1 ⊢ 𝑁 : 𝐵 @ 𝐹 ⊣ Θ2 (2) Θ2, 𝛼 : (Any,m) ⊢ 𝐴 ≡ 𝐵 → 𝛼 ⊣ Θ3 (3)
Θ0 ⊢ 𝑀 𝑁 : 𝛼 @𝐸 ∪ 𝐹 ⊣ Θ3

For any other solution (𝜃 ′ ⦂ Θ0 ⊑ Θ′;𝐴1;𝐸1), we have Θ′ ⊢ 𝑀 𝑁 : 𝐴1 @𝐸1. Inversion gives

Θ′ ⊢𝑠 𝑀 : 𝐴′ → 𝐴1 @𝐸1
Θ′ ⊢𝑠 𝑁 : 𝐵′ @𝐸1

Then (𝜃 ′;𝐴′ → 𝐴1;𝐸1) must solve the question of (1). By IH on (1), we have 𝜃 ′ factors
through the metasubstitution of (1) with cofactor 𝜁1 ⦂ Θ1 ⊑ Θ′ such that 𝐸 ⩽ 𝐸1 and
Θ′ ⊢ 𝜁1𝐴 ≡ 𝐴′ → 𝐴1.
Then (𝜁1;𝐵′;𝐸1) must solve the question (2). By IH on (2), we have 𝜁1 factors through the
metasubstitution of (2) with cofactor 𝜁2 ⦂ Θ2 ⊑ Θ′ such that 𝐹 ⩽ 𝐸1 and Θ′ ⊢ 𝜁2𝐵 ≡ 𝐵′.
Letting 𝜁 ′2 = 𝜁2, 𝐴1/𝛼 , we have 𝜁 ′2 solves the statement of (3). By Lemma B.6 on (3), 𝜁 ′2
factors through the metasubstitution of (3) with cofactor 𝜁3 ⦂ Θ3 ⊑ Θ′. By 𝜁2 ≡ 𝜁3 ⦂ Θ2, 𝛼 :
(Abs,m) ⊑ Θ′, we have Θ′ ⊢ 𝜁3𝛼 ≡ 𝐴1 (4). By 𝐸 ⩽ 𝐸1 and 𝐹 ⩽ 𝐹1 we have 𝐸 ∪ 𝐹 ⩽ 𝐸1 (5).
Our goal follows from cofactor 𝜁3, (4), and (5).
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Case
I-LetAnno

Θ0 ⊢ (𝑀 ;Δ;𝐴) ⇕† 𝜎 ⊣ Θ1 (1) Θ1 # Δ ⊢ 𝑀 : 𝐴′ @𝐸 ⊣ Θ2 # Δ,Ξ2 (2)
Θ2 # Δ,Ξ2 ⊢ 𝐴′ ≡ 𝐴 ⊣ Θ3 # Δ,Ξ3 (3) Θ3, 𝑥 : 𝜎 ⊢ 𝑁 : 𝐵 @ 𝐹 ⊣ Θ4, 𝑥 : 𝜎,Ξ4 (4)

Θ0 ⊢ let 𝑥∀Δ.𝐴 = 𝑀 in 𝑁 : 𝐵 @𝐸 ∪ 𝐹 ⊣ Θ4,Ξ4

By definition of ⇕† and (1), Θ0 = Θ1. For any other solution (𝜃 ′ ⦂ Θ0 ⊑ Θ′, 𝐵′, 𝐸1), we have

Θ′ ⊢𝑠 let 𝑥∀Δ.𝐴 = 𝑀 in 𝑁 : 𝐵′ @𝐸1.

Inversion gives
Θ′ ⊢ (𝑀,Δ, 𝐴) ⇕† 𝜎
Θ′,Δ ⊢𝑠 𝑀 : 𝐴 @𝐸1
Θ′, 𝑥 : 𝜎 ⊢𝑠 𝑁 : 𝐵′ @𝐸1

We have 𝜃 ′ ⦂ Θ0 # Δ ⊑ Θ′ # Δ and Θ′ # Δ ⊢𝑠 𝑀 : 𝐴 @𝐸1, which gives that (𝜃 ′, 𝐴, 𝐸1) solves
the question of (2). By IH on (2), we have 𝜃 ′ factors through the metasubstitution of (2) with
cofactor 𝜁1 ⦂ Θ2 # Δ,Ξ2 ⊑ Θ′ # Δ such that Θ′ # Δ ⊢ 𝜁1𝐴′ ≡ 𝐴 and 𝐸 ⩽ 𝐸1.
Then 𝜁1 solves the statement of (3). By Lemma B.6 on (3), 𝜁1 factors through the metasubsti-
tution of (3) with cofactor 𝜁2 ⦂ Θ3 # Δ,Ξ3 ⊑ Θ′ # Δ.
Since 𝜎 does not contain any flexible variable, we have 𝜁2 ⦂ Θ3, 𝑥 : 𝜎 ⊑ Θ′, 𝑥 : 𝜎 . Thus,
we have (𝜁2, 𝐵′, 𝐸1) solves the question of (4). By IH on (4), we have 𝜁2 factors through the
metasubstitution of (4) with cofactor 𝜁3 ⦂ Θ4, 𝑥 : 𝜎,Ξ4 ⊑ Θ′, 𝑥 : 𝜎 such thatΘ′ ⊢ 𝜁3𝐵 ≡ 𝐵′ (5)
and 𝐹 ⩽ 𝐸1. By 𝐸 ⩽ 𝐸1 and 𝐹 ⩽ 𝐸1 we have 𝐸 ∪ 𝐹 ⩽ 𝐸1 (6). Our goal follows from cofactor
𝜁3, (5), and (6).

Case
I-Do
Σ ∋ ℓ : 𝐴 ↠ 𝐵 Θ0 ⊢ 𝑀 : 𝐴1 @𝐸 ⊣ Θ1 (1) Θ1 ⊢ 𝐴1 ≡ 𝐴 ⊣ Θ2 (2)

Θ0 ⊢ do ℓ 𝑀 : 𝐵 @ {ℓ} ∪ 𝐸 ⊣ Θ2

Our goal follows from IH on (1) and Lemma B.6 on (2).
Case

I-Mask
Θ0,µ⟨𝐿 |⟩ ⊢ 𝑀 : 𝐴 @𝐸 ⊣ Θ1 (1) 𝐹 = solve(⟨𝐿 |⟩ : 𝐸 → ·) (2)

Θ0 ⊢ mask𝐿 𝑀 : ⟨𝐿 |⟩𝐴 @ 𝐹 ⊣ Θ2

Our goal follows from IH on (1) and Lemma B.8 on (2).
Case

I-Handler
𝐷 = {ℓ𝑖 }𝑖 {ℓ𝑖 : 𝐴𝑖 ↠ 𝐵𝑖 } ⊆ Σ

Θ,µ⟨|𝐷 ⟩ ⊢ 𝑀 : 𝐴0 @𝐸′ ⊣ Θ−1,µ⟨|𝐷 ⟩,Ξ
′ (1) Θ−1 ⊢ (𝑀 ;Ξ′;𝐴0) ⇓ 𝐴 ⊣ Θ0 (2)

Θ0, 𝑥 : ⟨|𝐷⟩𝐴 ⊢ 𝑁 : 𝐵0 @𝐸𝑟 ⊣ Θ′
0, 𝑥 : _,Ξ′

0 (3) Θ′
0 ⊢ (𝑁 ;Ξ′

0;𝐵0) ⇓ 𝐵 ⊣ Θ1 (4)
[Θ𝑖 , 𝑝𝑖 : 𝐴𝑖 , 𝑟𝑖 : 𝐵𝑖 → 𝐵 ⊢ 𝑁𝑖 : 𝐵𝑖 @𝐸𝑖 ⊣ Θ′

𝑖 , 𝑝𝑖 : _, 𝑟𝑖 : _,Ξ
′
𝑖 (5)

Θ′
𝑖 ,Ξ

′
𝑖 ⊢ 𝐵𝑖 ≡ 𝐵 ⊣ Θ𝑖+1 (6)]𝑛𝑖=1

𝐸 = solve(⟨|𝐷⟩ : 𝐸′ → ·) 𝐹 = 𝐸 ∪ 𝐸𝑟 ∪ (∪𝑖𝐸𝑖 )
Θ ⊢ handle 𝑀 with {return 𝑥 ↦→ 𝑁 } ⊎ {ℓ𝑖 𝑝𝑖 𝑟𝑖 ↦→ 𝑁𝑖 }𝑛𝑖=1 : 𝐵 @ 𝐹 ⊣ Θ𝑛+1

Though this rule looks scary, there is nothing special we need for proving it compared to
the cases we have shown. For any other solution (𝜃 ′ ⦂ Θ ⊑ Θ′;𝐵′; 𝐹 ′), we have

Θ′ ⊢𝑠 handle 𝑀 with 𝐻 : 𝐵′ @ 𝐹 ′ .
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Inversion gives
Θ′ ⊢𝑠 (𝑀 ;Δ;𝐴′

0) ⇓ 𝐴′

Θ′ ⊢𝑠 (𝑁 ;Δ′;𝐵′0) ⇓ 𝐵′
Θ′,µ⟨|𝐷 ⟩,Δ ⊢𝑠 𝑀 : ⟨|𝐷⟩𝐴′

0 @𝐷 + 𝐹 ′
Θ′, 𝑥 : ⟨|𝐷⟩𝐴′,Δ′ ⊢𝑠 𝑁 : 𝐵′0 @ 𝐹 ′

[Θ′, 𝑝𝑖 : 𝐴𝑖 , 𝑟𝑖 : 𝐵𝑖 → 𝐵′ ⊢𝑠 𝑁𝑖 : 𝐵′ @ 𝐹 ′]𝑖
Our goal follow from IHs on (1), (3), (5), and Lemma B.6 on (6). To use IH on (3), we need
to show that ⊢ Θ0, 𝑥 : ⟨|𝐷⟩𝐴 ng is satisfied and ⟨|𝐷⟩𝐴 can be transformed to ⟨|𝐷⟩𝐴′ via a
proper metasubstitution. We can show both using (2) similarly to the proof for T-Letmod
when value restriction is not satisfied. Similarly, to use IHs on (4), we can again show that
⊢ Θ𝑖 , 𝑝𝑖 : 𝐴𝑖 , 𝑟𝑖 : 𝐵𝑖 → 𝐵 ng is satisfied and 𝐵𝑖 → 𝐵 can be transformed to 𝐵𝑖 → 𝐵′ via a
proper metasubstitution using (5).

□

Theorem B.12 (Completeness of Type Inference). If ⊢ Θ0 ng, Θ0 ⊢ 𝑀 ok, 𝜃 ⦂ Θ0 ⊑ Θ, and
Θ ⊢𝑠 𝑀 : 𝐴 @ 𝐹 , then Θ0 ⊢ 𝑀 : 𝐵 @𝐸 ⊣ Θ1 for some Θ1, 𝐵, and 𝐸.

Proof. By induction on the typing derivation Θ ⊢𝑠 𝑀 : 𝐴 @ 𝐹 .
Case

T-Freeze
𝜉 = alocks(Θ′) ∀Δ.𝐴 = subst(Θ;𝜎)

Θ,Θ′ ⊢ (𝜇,∀Δ.𝐴) ⇒ 𝜉 @𝐸 (1) Θ,Θ′ ⊢ ∀Δ.𝐴 ⪯m 𝐵

Θ, 𝑥 :𝜇 𝜎,Θ′ ⊢𝑠 ⌈𝑥⌉ : 𝐵 @𝐸

Suppose Θ0 = Θ−1, 𝑥 :𝜇′ 𝜎 ′,Θ′
0. By Lemma B.1 and ⊢ Θ0 ng, we have ⊢ Θ, 𝑥 :𝜇 𝜎,Θ′

ng,
𝜇′ = 𝜇, and alocks(Θ′

0) = 𝜉 . Case analysis on (1).
Case There exists 𝐹 such that 𝜇𝐹 ⇒ 𝜉𝐹 . Then Θ−1,Θ′

0 ⊢ (𝜇, 𝜎 ′) ⇒ 𝜉 @𝐸′ ⊣ Θ1 also
succeeds. Our goal follows from I-Freeze.

Case Otherwise. We have Θ,Θ′ ⊢ ∀Δ.𝐴 : Abs and solve(𝜇 ⇒ 𝜉) fails. Let ∀Δ.𝐴′ =

subst(Θ−1;𝜎 ′). By Θ,Θ′ ⊢ ∀Δ.𝐴 : Abs and Θ,Θ′ ⊢ 𝜎 = 𝜃𝜎 ′, we have Θ,Θ′ ⊢ ∀Δ.𝐴 =

𝜃 (∀Δ.𝐴′). Then by 𝜃 ⦂ Θ−1,Θ0 ⊑ Θ,Θ′, we have Θ−1,Θ′
0 ⊢ ∀Δ.𝐴′ : (Abs,m) ⊣ Θ1

succeeds for some Θ1. Our goal follows from I-Freeze.
Case

T-Var
𝜉 = alocks(Θ′) ∀Δ.𝐴 = subst(Θ;𝜎)

(𝜈,𝐴1) = split(Δ, 𝐴) Θ,Θ′ ⊢ (𝜇 ◦ 𝜈,∀Δ.𝐴1) ⇒ 𝜉 @𝐸 Θ,Θ′ ⊢ ∀Δ.𝐴1 ⪯m 𝐵

Θ, 𝑥 :𝜇 𝜎,Θ′ ⊢𝑠 𝑥 : 𝐵 @𝐸

Suppose Θ0 = Θ−1, 𝑥 :𝜇′ 𝜎 ′,Θ′
0 and ∀Δ.𝐴′ = subst(Θ−1;𝜎 ′). Let (𝜈 ′, 𝐴′

1) = split(Δ, 𝐴′). By
Lemma B.1 and ⊢ Θ0 ng, we have ⊢ Θ, 𝑥 :𝜇 𝜎,Θ′

ng. Thus, 𝜎 and 𝜎 ′ do not contain flexible
modal and effect variables, which implies that 𝜈 = 𝜈 ′. The remaining part is similar to the
case of T-Freeze.

Case
T-Mod
Θ,µ𝜇 ⊢𝑠 𝑉 : 𝐴 @𝐸 (1) 𝜇𝐹 : 𝐸 → 𝐹 (2)

Θ ⊢𝑠 mod𝜇 𝑉 : 𝜇𝐴 @ 𝐹

IH on (1) gives
Θ0,µ𝜇 ⊢ 𝑉 : 𝐴′ @𝐸′ ⊣ Θ1,µ𝜇,Ξ1
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for some 𝐴′, 𝐸′, Θ1 and Ξ1. By (2) and Lemma B.9, we have 𝐹 ′ = solve(𝜇 : 𝐸′ → ·). Our goal
follows from I-Mod.

Case
T-AbsAnno
Θ, 𝑥 : 𝐴 ⊢𝑠 𝑀 : 𝐵 @𝐸 (1)
Θ ⊢𝑠 𝜆𝑥𝐴 .𝑀 : 𝐴 → 𝐵 @𝐸

Our goal follows from IH on (1) and I-AbsAnno.
Case

T-Abs
Θ, 𝑥 : 𝑆 ⊢𝑠 𝑀 : 𝐵 @𝐸 (1)
Θ ⊢𝑠 𝜆𝑥 .𝑀 : 𝑆 → 𝐵 @𝐸

Let 𝜃 ′ = 𝜃, 𝑆/𝛼 . We have 𝜃 ′ ⦂ Θ0, 𝛼 : (Any, i), 𝑥 : 𝛼 ⊑ Θ, 𝑥 : 𝑆 . Our goal follows from IH on
(1) and 𝜃 ′, and I-Abs.

Case
T-App
Θ ⊢𝑠 𝑀 : 𝐴 → 𝐵 @𝐸 (1) Θ ⊢𝑠 𝑁 : 𝐴 @𝐸 (2)

Θ ⊢𝑠 𝑀 𝑁 : 𝐵 @𝐸

IH on (1) gives
Θ0 ⊢ 𝑀 : 𝐴′ @𝐸′ ⊣ Θ1 (3)

for some 𝐴′, 𝐸′, and Θ1. By Theorem B.11 we have 𝜃 factors through the metasubstitution
of (3) with cofactor 𝜁1 ⦂ Θ1 ⊑ Θ such that Θ ⊢ 𝜁1𝐴′ ≡ 𝐴 → 𝐵. Then IH on (2) gives

Θ1 ⊢ 𝑁 : 𝐵′ @ 𝐹 ′ ⊣ Θ2 (4)
for some 𝐵′, 𝐹 ′, and Θ2. Again by Theorem B.11 we have 𝜁1 factors through the metasub-
stitution of (4) with cofactor 𝜁2 ⦂ Θ2 ⊑ Θ such that Θ ⊢ 𝜁2𝐵′ ≡ 𝐴. Then by Lemma B.6,
𝜁3 = 𝜁2, 𝐵/𝛼 factors through

Θ2, 𝛼 : (Any,m) ⊢ 𝐴′ ≡ 𝐵′ → 𝛼 ⊣ Θ3 (5)
with some cofactor. Our goal follows from I-App, (3), (4), and (5).

Case
T-Letmod
Θ ⊢ (𝑀 ;𝜈 ;Δ;𝜙 ;𝐴) ⇕ (𝜉, 𝜎) Θ,µ𝜈 ,Δ ⊢𝑠 𝑀 : 𝜙𝐴 @𝐸 (1)

𝜈𝐹 : 𝐸 → 𝐹 Θ, 𝑥 :𝜉 𝜎 ⊢𝑠 𝑁 : 𝐵 @ 𝐹 (2)
Θ ⊢𝑠 let𝜈 𝜙 𝑥 = 𝑀 in 𝑁 : 𝐵 @ 𝐹

IH on (1) gives
Θ0,µ𝜈 ,Δ ⊢ 𝑀 : 𝐴1 @𝐸′ ⊣ Θ1,µ𝜈 ,Δ,Ξ1 (3)

for some 𝐴1, 𝐸′, Θ1, and Ξ1. By Theorem B.11, 𝜃 factors through the metasubstitution of
(3) with cofactor 𝜁1 ⦂ Θ1,µ𝜈 ,Δ,Ξ1 ⊑ Θ,µ𝜈 ,Δ such that Θ,Δ ⊢ 𝜁1𝐴1 ≡ 𝜙𝐴. Observe that
since𝑀 does not mention Δ in type annotations, 𝐴1 cannot contain any rigid variables in
Δ, which gives

Θ0,µ𝜈 ⊢ 𝑀 : 𝐴1 @𝐸′ ⊣ Θ1,µ𝜈 ,Ξ1 (4)
𝜁1 ⦂ Θ1,µ𝜈 ,Ξ1 ⊑ Θ,µ𝜈 ,Δ

Letting 𝜁 ′1 = 𝜁1, 𝐴/𝛼 , by Lemma B.7, we have

Θ1 # Ξ1, 𝛼 : (Any,m) ⊢ 𝐴1 ≡ 𝜙𝛼 ⊣ Θ2 # Ξ2 (5)
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By Lemma B.6, 𝜁1 factors through the metasubstitution of (5) with cofactor 𝜁2 ⦂ Θ2,µ𝜈 ,Ξ2 ⊑
Θ,µ𝜈 ,Δ. Case analysis on whether value restriction is satisfied.
Case 𝑀 ∈ Val. We have 𝜎 = ∀Δ.𝐴, 𝜎 ′ = gen(Ξ2;𝛼), and

Θ2 ⊢ (𝑀 ;𝜈 ;𝜙 ;Ξ2;𝛼) ⇕ (𝜉, 𝜎 ′) ⊣ Θ2 (6).

By 𝜁2 ⦂ Θ2,µ𝜈 ,Ξ2 ⊑ Θ,µ𝜈 ,Δ, we have Θ ⊢ 𝜁2𝜎 ′ ⪯gen 𝜎 . Then by Lemma C.5 on (2) we
have

Θ, 𝑥 :𝜉 𝜁2𝜎 ′ ⊢𝑠 𝑁 : 𝐵 @ 𝐹 (7).

By principal(Θ,µ𝜈 ;𝑀 ;Δ;𝜙𝐴) and ⊢ Θ ng, 𝜎 does not contain flexible modal or effect
variables. Otherwise, 𝜎 would not be the principal type since these flexible variables
could be further generalised. Thus, 𝜁2𝜎 ′ does neither contain flexible modal or effect
variables, which gives ⊢ Θ, 𝑥 : 𝜁1𝜎 ′ ng. Our goal follows from IH on (7), I-Let, (4), (5),
(6), and Lemma B.9.

Case 𝑀 ∉ Val. We have

Θ ⊢ ∀Δ.𝐴 ⪯i 𝜎

Θ2 ⊢ gen(Ξ2;𝛼) ⪯i 𝜎
′ ⊣ Θ3

Θ2 ⊢ (𝑀 ;𝜈 ;𝜙 ;Ξ2;𝛼) ⇕ (𝜉, 𝜎 ′) ⊣ Θ3 (8)

By definition of ⪯i, we have Θ3 = Θ2,Ξ3 where Ξ3 only contains flexible variables in 𝜎 ′.
By 𝜁2 ⦂ Θ2,µ𝜈 ,Ξ2 ⊑ Θ,µ𝜈 ,Δ, there exists 𝜁 ′2 ⦂ Θ2,Ξ3 ⊑ Θ2 such that Θ ⊢ 𝜁2𝜁 ′2𝜎 ′ ≡ 𝜎 .
Then we have 𝜁2𝜁 ′2 ⦂ Θ2,Ξ3, 𝑥 : 𝜎 ′ ⊑ Θ, 𝑥 : 𝜎 . By principal(Θ, 𝑀,Δ, 𝐴) and ⊢ Θ ng, 𝜎0
does not contain flexible modal or effect variables, which further gives that 𝜎 does not
contain flexible modal or effect variables. Thus we have ⊢ Θ, 𝑥 : 𝜎 ng. Our goal follows
from IH on (2), I-Let, (4), (5), and (8).

Case

T-LetAnno
Θ ⊢ (𝑀 ;Δ;𝐴) ⇕† 𝜎 Θ,Δ ⊢𝑠 𝑀 : 𝐴 @𝐸 (1) Θ, 𝑥 : 𝜎 ⊢𝑠 𝑁 : 𝐵 @𝐸 (2)

Θ ⊢𝑠 let 𝑥∀Δ.𝐴 = 𝑀 in 𝑁 : 𝐵 @𝐸

By definition, we have Θ0 ⊢ (𝑀 ;Δ;𝐴) ⇕† 𝜎 ⊣ Θ1 where Θ0 = Θ1. Our goal follows from IH
on (1), Theorem B.11, Lemma B.6, and IH on (2).

Case

T-Do
Σ ∋ ℓ : 𝐴 ↠ 𝐵 𝐸 = ℓ, 𝐹 Θ ⊢𝑠 𝑀 : 𝐴 @𝐸 (1)

Θ ⊢𝑠 do ℓ 𝑀 : 𝐵 @𝐸

Our goal follows from IH on (1) and Theorem B.11.
Case

T-Mask
Θ,µ⟨𝐿 |⟩ ⊢𝑠 𝑀 : 𝐴 @ 𝐹 − 𝐿 (1)
Θ ⊢𝑠 mask𝐿 𝑀 : ⟨𝐿 |⟩𝐴 @ 𝐹

Our goal follows from IH on (1) and Lemma B.9.
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Case
T-Handler

𝐷 = {ℓ𝑖 }𝑖 {ℓ𝑖 : 𝐴𝑖 ↠ 𝐵𝑖 } ⊆ Σ
Γ ⊢ (𝑀 ;Δ;𝐴0) ⇓ 𝐴 (1) Γ,µ⟨|𝐷 ⟩,Δ ⊢𝑠 𝑀 : 𝐴0 @𝐷 + 𝐹 (2)
Γ ⊢ (𝑁 ;Δ′;𝐵0) ⇓ 𝐵 (3) Γ, 𝑥 : ⟨|𝐷⟩𝐴,Δ′ ⊢𝑠 𝑁 : 𝐵0 @ 𝐹 (4)

[Γ, 𝑝𝑖 : 𝐴𝑖 , 𝑟𝑖 : 𝐵𝑖 → 𝐵 ⊢𝑠 𝑁𝑖 : 𝐵 @ 𝐹 (5)]𝑖
Γ ⊢𝑠 handle 𝑀 with {return 𝑥 ↦→ 𝑁 } ⊎ {ℓ𝑖 𝑝𝑖 𝑟𝑖 ↦→ 𝑁𝑖 }𝑖 : 𝐵 @ 𝐹

Though this rule looks scary, there is nothing special we need for proving it compared to
the cases we have shown. Our goal follows from IHs on (2), (4), and (5), using Theorem B.11
and Lemma B.9. To use IHs on (4) and (5), we need to connect the declarative intuitionistic
instantiations of (1) and (3) with their corresponding algorithmic intuitionistic instantiations,
as well as main the ⊢ − ng invariant using the principal condition of (1) and (3), similarly
to the proof for T-Letmod when value restriction is not satisfied.

□
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