
Oxidizing OCaml with Modal Memory Management

ANTON LORENZEN, The University of Edinburgh, UK
LEO WHITE, Jane Street, UK
STEPHEN DOLAN, Jane Street, UK
RICHARD A. EISENBERG, Jane Street, USA
SAM LINDLEY, The University of Edinburgh, UK

Programmers can often improve the performance of their programs by reducing heap allocations: either
by allocating on the stack or reusing existing memory in-place. However, without safety guarantees, these
optimizations can easily lead to use-after-free errors and even type unsoundness. In this paper, we present
a design based on modes which allows programmers to safely reduce allocations by using stack allocation
and in-place updates of immutable structures. We focus on three mode axes: affinity, uniqueness and locality.
Modes are fully backwards compatible with existing OCaml code and can be completely inferred. Our work
makes manual memory management in OCaml safe and convenient and charts a path towards bringing the
benefits of Rust to OCaml.

1 INTRODUCTION
Functional programming languages such as OCaml typically avoid troubling the user over memory
management by leveraging automatic garbage collection. The effectiveness of automatic garbage
collection is a key factor driving software engineering toward languages that put immutability first,
thus aiding reasoning about our code and making it easier to write correct software. However, this
comes at a cost:

• Latency:Any allocation can trigger a garbage collection cycle, which can lead to unexpected
latencies. If programmers wish to write code that is guaranteed to be latency-free, they
must avoid heap allocation—usually by tricks such as pre-allocating an array used as an
unsafe arena allocator.

• Cache-Locality: Allocating a value on the minor heap advances the bump pointer, which
may lead to a new cache line being fetched. However, in some cases, we can reuse the space
of the value and avoid this cache miss.

To avoid these pitfalls, we wish to mix the safety and convenience of high-level functional
programming with the ability to avoid garbage-collected heap allocations.
This paper describes how introducing modes to a type system can safely allow the allocation-

reducing optimizations of stack allocation and memory reuse. The designs of the two features mesh
together well and form a cohesive whole; we are thus presenting them together, though either could
be implemented separately. Indeed, we have implemented the stack allocation idea in a branch of
the OCaml compiler, to general acclaim among the programmer colleagues using the feature. We
say more about this implementation in Section 7.
Improvements in this direction are necessary in our business for certain performance-critical

applications; if we were unable to improve the memory behavior of OCaml programs in this way,
we would have to seriously consider switching these applications to Rust or some other lower-level
language, thus losing out on the advanced type system and fluid expressiveness inherent in typed
functional programming.

To give you a flavor of the problem we are trying to solve, consider the following example:

Authors’ addresses: Anton Lorenzen, anton.lorenzen@ed.ac.uk, The University of Edinburgh, UK; Leo White, lwhite@
janestreet.com, Jane Street, UK; Stephen Dolan, sdolan@janestreet.com, Jane Street, UK; Richard A. Eisenberg, reisenberg@
janestreet.com, Jane Street, USA; Sam Lindley, sam.lindley@ed.ac.uk, The University of Edinburgh, UK.

2 Lorenzen et al.

let get_indented_lines filename prefix =
let lines = read_lines_from_file filename in
List.map (fun line -> prefix ^ line) lines

There are two separate sources of unnecessary allocation here:
(1) A naive implementation will allocate the closure for the function passed to List.map on

the heap, as it contains a reference to the prefix argument to get_indented_lines. Yet
we know that List.map does not save this closure anywhere, and we should be able to
de-allocate this closure as soon as List.map is complete, without the need for a garbage-
collection pass.

(2) The list lines is fresh: it was just produced by reading a file. It is not returned from
get_indented_lines nor saved anywhere. We can thus safely reuse the memory created
for it, making List.map unobservably destructive.

The techniques in this paper solve both problems, by allowing us to state that the function passed
to List.map is local and that the list returned from a hypothetical read_lines_from_file is
unique. Further examples comprise the bulk of Section 2.

We offer the following contributions:
• We present the design of an OCaml extension enabling stack allocation, memory reuse and
borrowing, based on three mode axes: affinity, uniqueness and locality (Sections 2 and 6).

• We describe a mode calculus modelling these features using type qualifiers, and show that
we can infer all modes, including those of closures (Section 3).

• We prove soundness of our calculus against a usage-aware store semantics (Section 4)
• We relate our mode calculus to a graded modal calculus (suitably adapted to account for
call-by-value side-effects) instantiated with a carefully chosen semiring (Section 5).

• We have implemented our design in a branch of the OCaml compiler (Section 7), and
enabled stack allocation support by default. This branch has been successfully employed
by hundreds of developers to write production software, where adopters have described
that these improvements have allowed them to “stay functional” even while writing heap-
allocation-free code.

Section 8 discusses related work and Section 9 discusses future work.

2 PROGRAMMINGWITH MODES
In this section we illustrate our design through examples written using our extension to OCaml. A
summary of our definitions and terminology is given in Figure 1 on page 8.

2.1 Uniqueness
Immutable data structures are central to many functional programming languages. They allow
programmers to reason about their code locally, without worrying about mutation introduced by
other parts of the program. However, immutable data structures can be expensive to use, since any
small update requires allocation and subsequent reclamation.

However, there is an escape hatch: if a value is guaranteed by the type system to have only one
reference—what we call unique—it can unobservably be mutated in-place. For example, if the list
given to the reverse function is unique, we can write an in-place reversal function as follows:
type 'a list = Nil | Cons of { hd : 'a; tl : 'a list }

let rec rev_append xs acc =
match xs with

Oxidizing OCaml with Modal Memory Management 3

| Nil -> acc
| Cons x_xs -> rev_append x_xs.tl (Cons { overwrite x_xs with tl = acc })

let reverse xs = rev_append xs Nil

The overwrite prefix in the functional update (Cons { overwrite x_xs with tl = acc })
instructs the compiler to reuse the memory associated with the existing constructor, instead of
allocating a fresh constructor.

As a first modal axis, we will thus consider uniqueness, giving us the ability to ensure that in-place
reuse is safe. We distinguish unique values from ordinary (potentially aliased, or shared) values
by annotating them with the unique mode:
type ('a, 'b) pair = { fst : 'a; snd : 'b }
let update_snd : ((('a, 'b) pair) @ unique) -> 'c -> ('a, 'c) pair =
fun c pair -> { overwrite pair with snd = c }

Given a unique pair, we can use projections to extract unique sub-parts of pair (assuming that
we do not use pair after these assignments):
let process_parts (pair @ unique) =

let x @ unique = pair.fst in
let y @ unique = pair.snd in
...

For this example to be accepted (as it is in our prototype), we have to carefully track the fact
that pair.fst is an occurrence only of the fst field; the use of pair.snd on the following line is
considered separate.
If, on the other hand, we tried to use pair again or tried to use fst twice as unique, we would

get a mode error:
let process_parts_wrong (pair @ unique) =

let x @ unique = pair.fst in
let y @ unique = pair.fst in
...

(* ^^^^^^^^ *)
(* Error: This value is used here, but it has already been used as unique: *)
(* Line 2, characters 19-26: *)
(* 2 | let x @ unique = pair.fst in *)
(* ^^^^^^^^ *)

Uniqueness is considered a deep property by default; that is, we expect components of a unique
value also to be unique. Individual types can override this default; see Section 2.3. Because of this
assumption of depth, it is disallowed to ascribe uniqueness to values that are only partly unique:
let f (ys @ unique : int list) =

let zs1 @ unique : int list = Cons {hd = 0; tl = ys} in
let zs2 @ unique : int list = Cons {hd = 1; tl = ys} in ...

(* ^^ *)
(* Error: This value is used here, but it has already been used as unique *)

The assumption of depth is useful in practice. Returning to our reverse example, the uniqueness
of xs implies the same for its tail x_xs.tl extracted in the match. Soundness requires that our
in-place update work only on unique values, and this propagates to the argument:
val reverse : 'a list @ unique -> 'a list @ unique

4 Lorenzen et al.

However, while uniqueness is quite useful, its restrictions make some programming patterns
(such as persistence or memoization) impossible. For this reason, it can be desirable to allocate
unique values, use several in-place updating functions and then forget their uniqueness (making
further in-place updates impossible). We thus have a sub-moding relation: any unique value is also
a shared value, giving us unique < shared. We can thus write code like this:
let process_parts_shared (pair @ unique) =

let x = pair.fst in
let y = pair.fst in (* a repeated occurrence *)
...

No error arises here, because we just treat the unique pair as shared. We still must be careful:
any shared use of a variable makes all uses of that variable shared:
let process_parts_partial_sharing (pair @ unique) =

let x = pair.fst in
let y = pair.snd in
process_parts pair;
... x ...

(* ^ *)
(* Error: This value is used here, but it has already been used as unique *)

This example demonstrates that our occurrence analysis tracks x as a component of pair; after
a unique usage of pair, a use of x causes an error. (Because of this alias tracking, we do not error
on the unique use of pair itself; neither x nor y has yet been used.)

2.2 Affinity
A uniqueness mode alone is not enough to create a safe uniqueness type system. To see why,
consider the following example, where we capture the unique xs in the closure f:
let rejected =

let xs @ unique : int list = [1;2;3] in
let f = fun zs -> rev_append xs zs in
let ys = f [4] in
let zs = f [5] (* Oh no! zs and ys refer to the same memory! *)
in ...

We have not put any restriction on the closure f and can thus invoke it twice. But since the
reverse function uses in-place update on unique value xs, we end up with ys and zs both referring
to the same memory. Worse, ys and zs refer have a tail of [1;2;3] since the memory underlying
xs was reversed twice, cancelling out the effect.

Though other languages with support for in-place update solve this problem in different ways—
see Section 8—our approach is to create a new mode for affinity. An affine value can be used at most
once, in contrast to many times.1 It is easy to get confused between the uniqueness and affinity
modes; it may be helpful to note that both uniqueness modes have 6 letters, while the affinity ones
have 4. Only affine closures may close over unique values:
... let f @ once = fun zs -> rev_append xs zs in ...

Unlike with uniqueness, affinity cannot be forgotten. Uniqueness is a statement about the past
(a value has not been shared); it is safe to forget this detail. In contrast, affinity is a statement
about the future (a value cannot be shared); forgetting it could potentially make memory reuse
1An affine value is not required to be used. We could support linear values in our language, by adding a modal axis for
relevant values which are required to be used at least once.

Oxidizing OCaml with Modal Memory Management 5

observable [Marshall et al. 2022]. To prevent this sharing, it is not allowed to use an affine value
many times, ensuring the affine closure is called only once:
... let fs = (f, f) in ...
(* ^ *)
(* Error: This value has mode *once* and has already been used *)

Because affinity imposes a restriction, we can always safely assume a value to be affine; doing
so restricts how we use the value later, but doing so is always safe. This dovetails well with our
sub-moding feature, where many < once.

One may wonder at this point if we need to introduce a third mode axis for closures that capture
affine values. Thankfully, we do not: to ensure that a closure can safely capture an affine value, it
suffices to ensure that it is only used once—and thus once itself.
In the examples above, we have annotated values only if they are unique or once. This is

because OCaml values have always been shared (without alias tracking, the safe assumption) and
many (meaning that they are unrestricted). Mode inference (see Section 3.7) propagates modes to
un-annotated variables. Where this is impossible, the legacy mode of shared or many is assumed.

2.3 Modalities
While modes are naturally deep, there are cases where this behaviour is undesirable. For example,
when we consider unique lists, we require only the cons cells to be unique to perform in-place
update in a function like reverse. But our previous definition forces us also to ensure that the
list elements are unique—a strong and unnecessary restriction. To override this restriction, we can
annotate fields of constructors with a modality which adjusts the underlying mode. Modalities are
marked with @@s.
type 'a list_with_shared_elts =

Nil | Cons of { hd : 'a @@ shared; tl : 'a list_with_shared_elts }

The @@ shared annotation here ensures that even if the list itself is unique, its elements may be
shared. Note that such a type must actually be distinct from the list type we defined above. An
element extracted from a unique list is itself unique so may be updated in-place, whereas an
element extracted from a unique list_with_shared_elts is shared, so may not. On the other
hand, we cannot insert shared elements into a unique list, but we can insert shared elements into
a unique list_with_shared_elts.

Not all modes give rise to a corresponding modality. For instance, it would be unsound to have
a shared list which contains a unique value, since we cannot guarantee uniqueness of the inner
value anymore. Similarly, we cannot capture affine values in a list at mode many.

We can create a type that does nothing but wrap a modality. Here are the type declarations for
shared and many:2

type 'a shared = { s : 'a @@ shared } [@@unboxed]
type 'a many = { m : 'a @@ many } [@@unboxed]

These are annotated [@@unboxed] [Doligez 2016] to tell the compiler to omit any runtime alloca-
tion and indirection; these types exist only at compile time. Now, instead ofwriting list_with_shared_elts,
we can instead talk about 'a shared list: the shared allows us to store shared elements without
affecting the uniqueness (and in-place updateability) of the overall list.
(* val graph_nodes : graph -> node shared list @ unique *)
(* val map_to_shared : ('a @ unique -> 'b) -> 'a list @ unique -> 'b list *)

2In our concrete syntax, modes can always be distinguished from other grammars; the namespace for modes is thus distinct
from all other namespaces.

6 Lorenzen et al.

let rev_graph_nodes graph =
let nodes = graph_nodes graph in
let rev_nodes = reverse nodes in
map_to_shared (fun shared_node -> shared_node.s) rev_nodes

This function first gets a unique list of shared nodes: the list structure itself is unique (the
graph_nodes function just produced it), but its contents are shared (because of cycles in the graph).
We can then reverse the list in place, with reverse, which takes a unique list (the contents of
which are immaterial). Finally, we assume the client of rev_graph_nodes just wants a node list,
so we use map_to_shared to remove the shared type. 3

2.4 Locality
The third (and last) modal axis we consider in this paper is locality. It describes values which cannot
leave a region. Our regions are lexical, created around certain expressions in our grammar. For
example, the body of a function is a region, as is the definition of a module-level variable. (More
details in Section 6.2.) Accordingly, the following code results in an error.
let bad () =

let xs @ local : int list = [1;2;3] in xs
(* ^^ *)
(* Error: This local value escapes its region *)

On the other hand, the following code is permitted.
let good =

let xs @ local : int list = [1;2;3] in List.length xs

Annotating a definition with local means that the memory it points to is guaranteed not to be
accessible outside its defining region. Not only can we not return xs from such a definition, we
also cannot store it in a mutable cell.

Like affinity, locality describes a restriction on an operation (escape) to take place in the future.
Accordingly, we can arbitrarily assume locality, but never forget it once it is assumed. We thus have
global < local. Also echoing affinity, we can store global values in local ones via a modality, but
not the other way around. Lastly, a closure can capture local values only if it is itself local.

2.5 Stack Allocation
We can use the locality mode to enable sound stack allocation. In the good example above, the list
xs can be allocated on the stack. Stack allocation is particularly useful for function closures, which
are usually not captured. For example, consider the List.iter function:
let rec iter f = function
| [] -> ()
| a :: l -> f a; iter f l

This function does not capture f, which can thus be made local. As such, call sites can allocate their
closures on the stack.4

3The map_to_shared function is one of many map functions we might like in a system with modes. Avoiding duplication in
such functions would be the domain of mode polymorphism [Bernardy et al. 2017], which we do not attempt in this paper
but expect to eventually incorporate in our implementation.
4There is a delicate interaction between region placement and the tail-call optimization. After all, a naive design would
place the end of a region after an apparent tail call, making the tail-call optimization invalid. We return to this point and
explain the design in Section 6.3, though these details are not included in our formalization.

Oxidizing OCaml with Modal Memory Management 7

2.6 Borrowing
Connecting this locality mode to our uniqueness and affinity modes, we can use locality to im-
plement safe immutable borrows, using the Rust terminology. We create shared references from a
unique value, and if the references do not leave their scope, we can safely assume uniqueness of
the value afterwards again. For instance, we can define a borrow combinator:

val borrow : 'a @ unique -> ('a @ local -> 'b) -> ('a * 'b shared) @ unique

The intended semantics of borrow v f is to pass the unique value v to f as a borrowed value and
then return v, still as a unique value, paired up with the result of f. The reason this is sound is that
the argument type of f is local, so there can be no other reference to v once f has returned.

We define borrow using the & syntax from Rust:

let borrow x f =
let result = f &x in
x, { s = result }

Though x is used twice, the first use is a borrow (meaning that the mode of the argument to f is
local), so the second use can safely be treated as unique.
However, we have to be careful when using borrowing with the global modality. As with the

shared and many wrapper types, we can define a global wrapper type:

type 'a global = { g : 'a @@ global } [@@unboxed]

Now, consider the following sneaky trick.

let sneaky : int list @ unique -> (int list * int list shared) @ unique =
fun xs ->
let global_xs @ unique : int list global = { g = xs } in
let { g = (ys @ unique) }, { s = ys' } =

borrow global_xs (fun { g = xs' } -> xs') in
ys, { s = ys' }

(* Error: ys is shared; it cannot be treated as unique *)

This erroneous code launders a unique value xs through a borrow, returning it uniquely and

shared. This would be disastrous, because later code could reverse the unique output, observably
mutating the contents of the apparently-immutable second return value. The root cause of the
problem here is the unsound assumption that the global modality does not affect uniqueness.
In order to ensure borrowed unique values remain local, the global modality incorporates the
shared modality. Accordingly, the type definition for 'a global actually wraps a shared global
value, which is why the unique annotation on the binding site for ys results in a mode error.

3 MODES AS TYPE QUALIFIERS
In this section, we introduce a formal calculus of modes sufficient to capture the essence of the
examples from Section 2. Our calculus is call-by-value and related to calculi for type qualifiers
[Foster et al. 1999], and similar to the linear system proposed by Walker [2005].

The syntax of modes is given by the following grammar:

(modes) 𝜇 F (𝑎,𝑢, 𝑙)
(affinities) 𝑎 F many | once
(uniquenesses) 𝑢 F uniqe | shared
(localities) 𝑙 F global | local

8 Lorenzen et al.

axis minimum maximum legacy modality
affinity (a) many once many many
uniqueness (u) unique shared shared shared
locality (l) global local global global

A mode refers to members of any of the axes above, and also to the triple (𝑎,𝑢, 𝑙) of all three axes. We
allow mode ascriptions (with @) in the following places:

• On types on either side of an arrow:
graph @ local -> string @ unique

When a modal axis is missing in a function type, we assume the legacy mode for that axis.
• On variable patterns:

let f (x @ unique) = ... in ...
Omitted modal axes are inferred.

Note that it is meaningless to give a type a mode without an arrow nearby; thus this is an error:
type t = string @ shared

A modality is a function from a mode triple to a mode triple. We define three:

shared (𝑎,𝑢, 𝑙) = (𝑎, shared, 𝑙)
many (𝑎,𝑢, 𝑙) = (many, 𝑢, 𝑙)

global (𝑎,𝑢, 𝑙) = (𝑎, shared, global)
(global affects uniqueness as well as locality to soundly support borrowing; see Section 2.6).
These appear in modality ascriptions (with @@) on types for record fields:

type 'a shared = { s : 'a @@ shared }

If a record r has mode m and field f has modality n, then r.f has mode n(m).

Fig. 1. Modes and Modalities

A mode 𝜇 comprises a triple (𝑎,𝑢, 𝑙) of an affinity 𝑎, a uniqueness 𝑢, and a locality 𝑙 . The following
sub-moding relationships hold on the constituents of a mode:

many < once uniqe < shared global < local

Modes are ordered pointwise, and when 𝜇 ≤ 𝜇′ a term at mode 𝜇 can be used at mode 𝜇′. Modes
form a lattice, where ∧ gives the greatest lower bound and ∨ gives the least upper bound.

3.1 Boxes and Modalities
Systems based on type qualifiers, like Walker [2005], annotate all types with qualifiers. The syntax
of types is defined by pretypes 𝑃 F 𝑇 ×𝑇 | 𝑇 → 𝑇 . . . and qualified types 𝑇 F 𝑃 @ 𝜇, where 𝜇 is
a type qualifier (in our setting qualifiers are modes). The qualifiers inside value types must preserve
an ordering relationship: a pair 𝑇1 ×𝑇2 can be qualified by 𝜇 only if both 𝑇1 and 𝑇2 have qualifiers
≤ 𝜇. The qualifiers inside computation types have no such constraints: 𝑇1 → 𝑇2 can have any
qualifier. Our system is similar, except we elide modes (qualifiers) from value types: 𝜏 F 𝜏 ×𝜏 | . . . ;
we assume the subparts of a value are always at the same mode, unless specified otherwise.

Instead, we use modalities when a subpart of a value is at a different mode from that value.
We support three modalities S, M and G, giving us three associated box types �S, �M and �G.
Modalities act on modes, describing the mode of the box’s contents given the mode of the box itself:

S(𝑎,𝑢, 𝑙) = (𝑎, shared, 𝑙) M(𝑎,𝑢, 𝑙) = (many, 𝑢, 𝑙) G(𝑎,𝑢, 𝑙) = (𝑎, shared, global)

Oxidizing OCaml with Modal Memory Management 9

Note that G affects both uniqueness and locality, which is necessary for borrowing (see Section 2.6).
For instance, the type of a unique pair of a boxed shared value of type 𝜏1 and a unique value of

type 𝜏2 is (�S𝜏1) × 𝜏2.

3.2 Locks for Closures
Closures capture free variables from their environments, but when should a variable of mode
(𝑎1, 𝑢1, 𝑙1) be available in a closure of mode (𝑎2, 𝑢2, 𝑙2)? We already saw that a global closure can
only store global variables, and a many closure can only store many variables. Thus it must be the
case that 𝑎1 ≤ 𝑎2 and 𝑙1 ≤ 𝑙2. But we must also ensure that unique variables are not captured by
closures that can be invoked multiple times. We do so using the following dagger operation to
relate each affinity with its corresponding uniqueness:

once† B uniqe many† B shared

Then we require that 𝑢1 ≤ 𝑎
†
2 . We need not use the uniqueness of the closure 𝑢2, as it has no effect

on the variables the closure may capture.
We enforce the latter constraint by applying a lock µ 𝜇 to the context, which we write as Γ,µ 𝜇 .

Unlike the context containment operation of Walker [2005], our Γ,µ 𝜇 is not merely a predicate on
the bindings of Γ, but may actually change modes to reflect that bindings have become shared:

∅,µ (𝑎2,𝑢2,𝑙2) = ∅
Γ, 𝑥 : −,µ (𝑎2,𝑢2,𝑙2) = Γ,µ (𝑎2,𝑢2,𝑙2) , 𝑥 : −

Γ, 𝑥 : 𝜏 @ (𝑎1, 𝑢1, 𝑙1),µ (𝑎2,𝑢2,𝑙2) =

{
Γ,µ (𝑎2,𝑢2,𝑙2) , 𝑥 : 𝜏 @ (𝑎1, 𝑢1 ∨ 𝑎

†
2, 𝑙1) if 𝑎1 ≤ 𝑎2 and 𝑙1 ≤ 𝑙2

Γ,µ (𝑎2,𝑢2,𝑙2) , 𝑥 : − otherwise

In our inference rules (outlined in Section 3.7 and detailed in Appendix B), we evaluate the
context operation lazily, by making Γ,µ 𝜇 part of the syntax of contexts (rather than an operation
on contexts as it is here) and applying the locks in the variable rule. This adjustment enables us to
infer the modes of locks, and consequently infer the modes of closures as well as other values.

3.3 Syntax
We define contexts as an ordered list of variables, which occur either with a type andmode (𝑥 : 𝜏@𝜇)
or as unusable (𝑥 : −):

Γ F ∅ | Γ, 𝑥 : − | Γ, 𝑥 : 𝜏 @ 𝜇

Our types consist of the unit type 1, sum types 𝜏 + 𝜏 and product types 𝜏 × 𝜏 . Furthermore, we have
a function type 𝜏 @ 𝜇 → 𝜏 @ 𝜇 which stores the modes for the argument and result of the function
and a box type �𝜈𝜏 to represent the modality 𝜈 . To model in-place update, we also include a type
for space credits ♣:

𝜏 F 1 | 𝜏 + 𝜏 | 𝜏 × 𝜏 | �𝜈𝜏 | 𝜏 @ 𝜇 → 𝜏 @ 𝜇 | ♣

Our syntax is largely standard. We introduce modalities with box𝜈 𝑒 and eliminate them with
unbox𝜈 𝑒 . Our elimination form for pairs let (𝑥,𝑦, 𝑧) = 𝑒 in 𝑒 gives us access to the elements 𝑦, 𝑧 of
the pair and additionally the space credit 𝑥 of the allocation itself, which can be reused (if unique) to
allocate a new pair with reuse 𝑒 in (𝑒, 𝑒). Finally, we model borrowing by allowing 𝑥 to be borrowed

10 Lorenzen et al.

until 𝑦 is computed. The final computation then has access to both 𝑥 and 𝑦:

𝑒 F 𝑥 | () | inl 𝑒 | inr 𝑒 | (𝑒, 𝑒) | box𝜈 𝑒 | unbox𝜈 𝑒 | 𝜆𝑥. 𝑒 | 𝑒 𝑒
| let𝑥 = 𝑒 in 𝑒 | let (𝑥,𝑦, 𝑧) = 𝑒 in 𝑒 | case 𝑒 { inl𝑥 → 𝑒; inr𝑦 → 𝑒 }
| reuse 𝑒 in (𝑒, 𝑒) | borrow 𝑥 = 𝑒 for 𝑦 = 𝑒 in 𝑒

We do not include an explicit construct for stack allocation regions, representing them instead as:
borrow _ = () for 𝑦 = 𝑒1 in 𝑒2, which already has the effect of running 𝑒2 inside a fresh region.

3.4 Joining Usages
We use the typing context to track the usage of variables and join contexts to combine usages. Our
context consists of a list of variables 𝑥 : 𝜏 @ 𝜇, containing a mode 𝜇 at which 𝑥 is used, or 𝑥 : − if it
is unused. To combine the usages of variables in two contexts, we use a (partial) join operation +,
which assumes that the two contexts contain the same variables, in the same order:

∅ +∅ = ∅
(Γ1, 𝑥 : −) + (Γ2, 𝑥 : −) = (Γ1 + Γ2), 𝑥 : −

(Γ1, 𝑥 : 𝜏 @ 𝜇) + (Γ2, 𝑥 : −) = (Γ1 + Γ2), 𝑥 : 𝜏 @ 𝜇

(Γ1, 𝑥 : −) + (Γ2, 𝑥 : 𝜏 @ 𝜇) = (Γ1 + Γ2), 𝑥 : 𝜏 @ 𝜇

(Γ1, 𝑥 : 𝜏 @ (_, shared, 𝑙)) + (Γ2, 𝑥 : 𝜏 @ (_, shared, 𝑙)) = (Γ1 + Γ2), 𝑥 : 𝜏 @ (many, _, 𝑙)

Contexts are ordered as follows:

Γ, 𝑥 : −, Γ′ ≥ Γ, 𝑥 : 𝜏 @ 𝜇, Γ′

Γ, 𝑥 : 𝜏 @ 𝜇1, Γ
′ ≥ Γ, 𝑥 : 𝜏 @ 𝜇2, Γ

′ if 𝜇1 ≥ 𝜇2

3.5 Typing Rules
We present the typing rules for our calculus in Figure 2. We write _ for a meta-variable that only
appears once in a rule (hence its actual name is immaterial). Whenever we have more than one
premise, we join the contexts of the premises using the + operation (the only exception is the case
rule, where both branches use the same context).
The var rule is standard, which may be surprising to the reader familiar with modal calculi.

Since our locks are defined as operations on the context, their effect has already been applied in Γ,
so no side-conditions are necessary. However, the algorithmic rules that we use for mode inference
(see Appendix B) treat locks lazily, and consequently have a more complicated variable rule.

The sub rule allows us to use a term at a more restrictive mode or assume that variables are
given at a more permissive mode. We have submoding but not subtyping: the sub rule does not
change types.

The lam rule differs from the usual one in that it introduces a lock, ensuring that global functions
do not have local free variables, and that many functions do not have uniqe free variables. (Per
the definition of locking, the uniqueness of a function has no effect). As we already restrict usage
of variables inside a closure, the mode of the function is immaterial in the app rule.

Our rules for the unit, sum, and product types are standard; note that modes commute with both
sums and products. The split rule gives us access not only to the elements of the pair, but also its
space credit. This may seem unsafe: what if the pair is not uniqe? However, we also store a mode
for the space credit and can only reuse it if the space credit is uniqe.

The let rule and the case rule are standard. The box and unbox rules allow us to box and unbox
a term at a modality (𝜈 ranges over the modalities of Figure 1).

Oxidizing OCaml with Modal Memory Management 11

Γ, 𝑥 : 𝜏 @ 𝜇, Γ′ ⊢ 𝑥 : 𝜏 @ 𝜇
var

Γ1 ≥ Γ2 𝜇1 ≤ 𝜇2
Γ1 ⊢ 𝑒 : 𝜏 @ 𝜇1

Γ2 ⊢ 𝑒 : 𝜏 @ 𝜇2
sub

Γ,µ 𝜇3 , 𝑥 : 𝜏1 @ 𝜇1 ⊢ 𝑒 : 𝜏2 @ 𝜇2

Γ ⊢ 𝜆𝑥. 𝑒 : (𝜏1 @ 𝜇1 → 𝜏2 @ 𝜇2) @ 𝜇3
lam

Γ1 ⊢ 𝑒1 : (𝜏1 @ 𝜇1 → 𝜏2 @ 𝜇2) @ _
Γ2 ⊢ 𝑒2 : 𝜏1 @ 𝜇1

Γ1 + Γ2 ⊢ 𝑒1 𝑒2 : 𝜏2 @ 𝜇2
app

Γ ⊢ () : 1@ 𝜇
unit

Γ ⊢ 𝑒 : 𝜏1 @ 𝜇

Γ ⊢ inl 𝑒 : 𝜏1 + 𝜏2 @ 𝜇
inl

Γ ⊢ 𝑒 : 𝜏1 @ 𝜇

Γ ⊢ inr 𝑒 : 𝜏1 + 𝜏2 @ 𝜇
inr

Γ1 ⊢ 𝑒1 : 𝜏1 @ 𝜇

Γ2 ⊢ 𝑒2 : 𝜏2 @ 𝜇

Γ1 + Γ2 ⊢ (𝑒1, 𝑒2) : 𝜏1 × 𝜏2 @ 𝜇
pair

Γ1 ⊢ 𝑒1 : 𝜏1 × 𝜏2 @ 𝜇1
Γ2, 𝑥 : ♣@ 𝜇1, 𝑦 : 𝜏1 @ 𝜇1, 𝑧 : 𝜏2 @ 𝜇1 ⊢ 𝑒2 : 𝜏3 @ 𝜇2

Γ1 + Γ2 ⊢ let (𝑥,𝑦, 𝑧) = 𝑒1 in 𝑒2 : 𝜏3 @ 𝜇2
split

Γ1 ⊢ 𝑒1 : 𝜏1 @ 𝜇1
Γ2, 𝑥 : 𝜏1 @ 𝜇1 ⊢ 𝑒2 : 𝜏2 @ 𝜇2

Γ1 + Γ2 ⊢ let𝑥 = 𝑒1 in 𝑒2 : 𝜏2 @ 𝜇2
let

Γ1 ⊢ 𝑒1 : 𝜏1 + 𝜏2 @ 𝜇1
Γ2, 𝑥1 : 𝜏1 @ 𝜇1 ⊢ 𝑒2 : 𝜏3 @ 𝜇2
Γ2, 𝑥2 : 𝜏2 @ 𝜇1 ⊢ 𝑒3 : 𝜏3 @ 𝜇2 case

Γ1 + Γ2 ⊢ case 𝑒1 { inl 𝑥1 → 𝑒2; inr 𝑥2 → 𝑒3 } : 𝜏3 @ 𝜇2

Γ ⊢ 𝑒 : 𝜏 @ 𝜈 (𝜇)
Γ ⊢ box𝜈 𝑒 : �𝜈𝜏 @ 𝜇

box
Γ ⊢ 𝑒 : �𝜈𝜏 @ 𝜇

Γ ⊢ unbox𝜈 𝑒 : 𝜏 @ 𝜈 (𝜇)
unbox

Γ1 ⊢ 𝑒1 : ♣@ (_, uniqe, global)
Γ2 ⊢ 𝑒2 : 𝜏1 @ (𝑎,𝑢, global)
Γ3 ⊢ 𝑒3 : 𝜏2 @ (𝑎,𝑢, global)

Γ1 + Γ2 + Γ3 ⊢ reuse 𝑒1 in (𝑒2, 𝑒3) : 𝜏1 × 𝜏2 @ (𝑎,𝑢, global)
reuse

Γ1 ⊢ 𝑒1 : 𝜏1 @ (many, 𝑢1, 𝑙1)
Γ2, 𝑥 : 𝜏1 @ (many, shared, local) ⊢ 𝑒2 : 𝜏2 @ (𝑎2, 𝑢2, global)
Γ3, 𝑥 : 𝜏1 @ (many, 𝑢1, 𝑙1), 𝑦 : 𝜏2 @ (𝑎2, 𝑢2, global) ⊢ 𝑒3 : 𝜏2 @ 𝜇

Γ1 + Γ2 + Γ3 ⊢ borrow 𝑥 = 𝑒1 for 𝑦 = 𝑒2 in 𝑒3 : 𝜏3 @ 𝜇
borrow

Fig. 2. Mode Calculus

The reuse rule allows us to reuse a space credit to allocate a new pair. We demand that the space
credit is uniqe and that all components of the pair are global. This restriction is imposed by our
garbage collector, which assumes that there are never pointers from the heap to the stack, making
it unsafe to reuse a heap-allocated pair with stack-allocated elements. We avoid this problem by
requiring that all elements of the reused pair are global and thus not stack-allocated.

Finally, the borrow rule allows us to borrow the result of evaluating 𝑒1 for the duration of 𝑒2. We
demand that 𝑒1 yields a many value since we make 𝑥 available to both 𝑒2 and 𝑒3. In 𝑒2 it is shared
which ensures that no in-place update can take place. Furthermore, it is local while the return

12 Lorenzen et al.

mode of 𝑒2 is global, which ensures that 𝑥 may not escape. Once 𝑒2 is evaluated, we can safely
make 𝑥 available to 𝑒3 (as well as the result 𝑦 of 𝑒2).

3.6 Substitution
We give a substitution lemma for our calculus here, though we defer discussion of the semantics
until Section 4:

Lemma 3.1 (Substitution). If Γ1, 𝑥 : 𝜏1 @ 𝜇1, Γ
′ ⊢ 𝑒 : 𝜏2 @ 𝜇2 and Γ2 ⊢ 𝑣 : 𝜏1 @ 𝜇1 and Γ1 + Γ2 is

defined, then (Γ1 + Γ2), Γ′ ⊢ 𝑒 [𝑣/𝑥] : 𝜏2 @ 𝜇2.

Recall that Γ1 + Γ2 is only defined (Section 3.4) if any variable used by both Γ1 and Γ2 is not used
uniquely by either, ensuring that the unique variables in 𝑒 and 𝑣 are disjoint.

3.7 Inference
Our calculus admits a type inference algorithm that can infer all types and modes in a program.
The mode inference works by generating inequality constraints that can be solved by a simple
solver. We cannot generate constraints based on the rules in Figure 2 directly because the lam
rule uses locks, which act on the modes in Γ, which are still being inferred. We instead switch to a
different presentation of contexts, where locks are part of the syntax of contexts:

Γ F ∅ | Γ, 𝑥 : − | Γ, 𝑥 : 𝜏 @ 𝜇 | Γ,µ 𝜇

and their effect is applied lazily in the var rule, rather than eagerly in the lam rule:
var
𝑎1 ≤ 𝑎2 ∧

∧
µ (𝑎𝑖 ,_,_) ∈Γ′

𝑎𝑖 𝑢1 ∨
∨

µ (𝑎𝑖 ,_,_) ∈Γ′
†(𝑎𝑖) ≤ 𝑢2 𝑙1 ≤ 𝑙2 ∧

∧
µ (_,_,𝑙𝑖) ∈Γ′

𝑙𝑖

Γ, 𝑥 : 𝜏 @ (𝑎1, 𝑢1, 𝑙1), Γ′ ⊢ 𝑥 : 𝜏 @ (𝑎2, 𝑢2, 𝑙2)

The inequalities in the premises of this rule are the constraints that our solver satisfies. We offer
the details in Appendix B.

4 USAGE-AWARE STORE SEMANTICS
In order to formulate soundness for our mode calculus, we give a usage-aware store semantics
[Abel and Bernardy 2020; Choudhury et al. 2021]. A store semantics differs from a more traditional
operational semantics in that substitutions 𝑥 ↦→ 𝑣 are not applied immediately, but rather keep
the value in the store 𝑏 ↦→ 𝑣 under a fresh name 𝑏 and substitute 𝑥 ↦→ 𝑏 instead. Each binding in
the store is annotated by a mode 𝜇 (or consumed) and its location, either in the global heap or a
particular (local) stack frame. We denote addresses by 𝑏, 𝑐, 𝑑 (to distinguish them from variables)
and a generation 𝑛:

𝑣 F 𝑏 | () | inl𝑏 | inr𝑏 | (𝑏,𝑏) | box𝜈 𝑏 | 𝜆𝑥 . 𝑒
𝜇 F 𝜇 | −

𝑆 F ∅ | 𝑆, 𝑏 ↦→𝜇
𝑛 𝑣

In our semantics, we only change the mode 𝜇 of a binding when accessing an address using mode
𝜇2: In that case we split 𝜇 into 𝜇1 + 𝜇2 and keep 𝜇1 in the store. Since we do not allow modes to be
unused (𝑥 : −) in our terms, the join operator 𝜇1 + 𝜇2 is defined with a case for − only on the left:

− + 𝜇 = 𝜇

(many, shared, 𝑙) + (𝑎, shared, 𝑙) = (many, 𝑢, 𝑙)

Oxidizing OCaml with Modal Memory Management 13

As usual for usage-aware semantics, 𝜇1 + 𝜇2 is non-deterministic, where we can choose to either
use a unique value as shared and keep it usable, use it as unique and mark it as consumed (−), or
even use it as shared and mark it as consumed (−). We will assume that the + operator always
chooses the most permissive mode for its first argument, which excludes the last option.

Through the usage-aware semantics, we can easily derive the soundness of in-place updates: A
value is uniqe in the store only if it was created as uniqe and was not used before (in which
case it would have been split up into shared parts by the + operator). To show the soundness of
stack allocation, we keep a counter 𝑛 ∈ N that is incremented whenever we enter a region and
decremented whenever we leave a region. We then mark every value in the store with the current
stack-frame counter. At the end of a region, we delete all bindings that were allocated as local in
the current stack frame:

∅ − 𝑛 = ∅ (𝑆, 𝑏 ↦→𝜇
𝑚 𝑣) − 𝑛 =

{
𝑆 − 𝑛 if 𝜇 = (𝑎,𝑢, local) and𝑚 = 𝑛

𝑆 − 𝑛,𝑏 ↦→𝜇
𝑚 𝑣 otherwise

We can use this to show the soundness of borrowing as well. To show that no further references
remain when a borrowed use ends, we model borrowing by copying the borrowed value into the
new stack frame. When the region ends the stack frame is deleted, which allows us to show that
no further references to the borrowed value remain as long as we can show that the store has no
dangling references.
Our store semantics is modelled using an abstract machine where each state is denoted by

𝑆 8𝐸 ▷𝜇
𝑛 𝑒 with a store 𝑆 , an evaluation context 𝐸 (stored as a zipper), current mode 𝜇, current stack

frame 𝑛 and expression 𝑒 . We show the reduction steps in Figure 3. We omit the steps that merely
load and unload expressions from the evaluation context from the main text, since these steps do
not modify the store and merely adjust the current mode (they can be found in the Appendix, see
Figure 9, 10). However, we include these steps for the borrow construct, since these are the steps
were the stack frame counter is incremented and decremented.

The steps for the value constructors are straightforward: We allocate the value at a fresh address
𝑑 using the current mode and stack frame counter. In the elimination steps, we split the mode of
the accessed binding using the + operator and keep 𝜇1 in the store. The complement 𝜇2 is given by
the expression, except in the (𝑎𝑝𝑝) step, where any 𝜇2 is allowed (mirroring the app rule which
ignores the mode of the closure).
For the split steps, we split on whether this step requires a uniqe value or not. If the value is

uniqe, then 𝑏 is not used later to access the pair. Thus, we can safely overwrite it to point to a
space credit. Otherwise, we keep the binding of 𝑏 to the pair in the store and use a special space
credit null which is shared. In the reuse step, we overwrite the space credit by the new pair and
move it to the end of the store to ensure that it is define after the elements of the pair. Since this
rule demands a uniqe space credit, it can be safely overwritten (and is not null).

When entering a region, we increase the stack frame counter and copy the borrowed value into
the new stack frame. This copying operation is deep and applies to all children of the value up to
closures and global boxes. We do not have to copy those, since they can only hold shared values
(remember that 𝑏 is many by the region rule). When leaving a region, we decrement the stack
frame counter and delete all local bindings in that stack frame.
We call a store well-typed, if the modes only get more permissive when following pointers in

the store, except for boxes and closures, which may also store more restrictive modes. Furthermore
a variable should be allocated in the heap if and only if it is global and stack allocated variables can
only refer to values in the same or an earlier stack frame. We denote typing contexts that contain
store addresses instead of variables by Σ. We write 𝑆 :𝑛 Σ to denote that the store 𝑆 is well-typed

14 Lorenzen et al.

(unit) 𝑆 8 𝐸 ▷𝜇
𝑛 () ⇝ 𝑆, 𝑑 ↦→𝜇

𝑛 () 8 𝐸 ▷𝜇
𝑛 𝑑 (𝑑 fresh)

(inl) 𝑆 8 𝐸 ▷𝜇
𝑛 inl𝑏 ⇝ 𝑆, 𝑑 ↦→𝜇

𝑛 inl𝑏 8 𝐸 ▷𝜇
𝑛 𝑑 (𝑑 fresh)

(inr) 𝑆 8 𝐸 ▷𝜇
𝑛 inr𝑏 ⇝ 𝑆, 𝑑 ↦→𝜇

𝑛 inr𝑏 8 𝐸 ▷𝜇
𝑛 𝑑 (𝑑 fresh)

(pair) 𝑆 8 𝐸 ▷𝜇
𝑛 (𝑏, 𝑐) ⇝ 𝑆, 𝑑 ↦→𝜇

𝑛 (𝑏, 𝑐) 8 𝐸 ▷𝜇
𝑛 𝑑 (𝑑 fresh)

(box) 𝑆 8 𝐸 ▷𝜇
𝑛 box𝜈 𝑏 ⇝ 𝑆, 𝑑 ↦→𝜇

𝑛 box𝜈 𝑏 8 𝐸 ▷𝜇
𝑛 𝑑 (𝑑 fresh)

(lam) 𝑆 8 𝐸 ▷𝜇
𝑛 𝜆𝑥.𝑒 ⇝ 𝑆, 𝑑 ↦→𝜇

𝑛 𝜆𝑥.𝑒 8 𝐸 ▷𝜇
𝑛 𝑑 (𝑑 fresh)

(let) 𝑆 8 𝐸 ▷𝜇
𝑛 let𝑥 = 𝑏 in 𝑒 ⇝ 𝑆 8 𝐸 ▷𝜇

𝑛 𝑒 [𝑥 ≔ 𝑏]

(app) 𝑆, 𝑏 ↦→𝜇1+𝜇2
𝑚 𝜆𝑥.𝑒, 𝑆 ′ 8 𝐸 ▷𝜇

𝑛 𝑏 𝑐 ⇝ 𝑆, 𝑏 ↦→𝜇1
𝑚 𝜆𝑥.𝑒, 𝑆 ′ 8 𝐸 ▷𝜇

𝑛 𝑒 [𝑥 ≔ 𝑐]

(unbox) 𝑆, 𝑏 ↦→𝜇1+𝜇2
𝑚 box𝜈 𝑐, 𝑆 ′ 8 𝐸 ▷𝜇2

𝑛 unbox𝜈 𝑏

⇝ 𝑆, 𝑏 ↦→𝜇1
𝑚 box𝜈 𝑐, 𝑆 ′ 8 𝐸 ▷𝜇2

𝑛 𝑐

(casel) 𝑆, 𝑏 ↦→𝜇1+𝜇2
𝑚 inl 𝑐, 𝑆 ′ 8 𝐸 ▷𝜇

𝑛 case𝜇2 𝑏 { inl 𝑥 → 𝑒1; inr 𝑦 → 𝑒2 }

⇝ 𝑆, 𝑏 ↦→𝜇1
𝑚 inl 𝑐, 𝑆 ′ 8 𝐸 ▷𝜇

𝑛 𝑒1 [𝑥 ≔ 𝑐]

(caser) 𝑆, 𝑏 ↦→𝜇1+𝜇2
𝑚 inr 𝑐, 𝑆 ′ 8 𝐸 ▷𝜇

𝑛 case𝜇2 𝑏 { inl 𝑥 → 𝑒1; inr 𝑦 → 𝑒2 }

⇝ 𝑆, 𝑏 ↦→𝜇1
𝑚 inr 𝑐, 𝑆 ′ 8 𝐸 ▷𝜇

𝑛 𝑒2 [𝑦 ≔ 𝑐]
(split_unique) 𝑆, 𝑏 ↦→𝜇1+𝜇2

𝑚 (𝑐, 𝑑), 𝑆 ′ 8 𝐸 ▷𝜇
𝑛 let𝜇2 (𝑥,𝑦, 𝑧) = 𝑏 in 𝑒 (𝜇2 = (_, uniqe, _))

⇝ 𝑆, 𝑏 ↦→𝜇2
𝑚 ♣, 𝑆 ′ 8 𝐸 ▷𝜇

𝑛 𝑒 [𝑥 ≔ 𝑏,𝑦 ≔ 𝑐, 𝑧 ≔ 𝑑]

(split_shared) 𝑆, 𝑏 ↦→𝜇1+𝜇2
𝑚 (𝑐, 𝑑), 𝑆 ′ 8 𝐸 ▷𝜇

𝑛 let𝜇2 (𝑥,𝑦, 𝑧) = 𝑏 in 𝑒 (𝜇2 = (_, shared, _))

⇝ 𝑆, 𝑏 ↦→𝜇1
𝑚 (𝑐, 𝑑), 𝑆 ′ 8 𝐸 ▷𝜇

𝑛 𝑒 [𝑥 ≔ null, 𝑦 ≔ 𝑐, 𝑧 ≔ 𝑑]
(reuse) 𝑆, 𝑏 ↦→𝜇1

𝑚 ♣, 𝑆 ′ 8 𝐸 ▷𝜇
𝑛 reuse 𝑏 with (𝑐, 𝑑)

⇝ 𝑆, 𝑆 ′, 𝑏 ↦→𝜇
𝑛 (𝑐, 𝑑) 8 𝐸 ▷𝜇

𝑛 𝑏

(enter_region) 𝑆 8 𝐸 ▷𝜇
𝑛 borrow 𝑥 = 𝑏 for 𝑦 = 𝑒2 in 𝑒3

⇝ 𝑆, copy(𝑛 + 1, 𝑆, 𝑏, 𝑏′) 8 borrow 𝑥 = 𝑏 for 𝑦 = 𝐸 in 𝑒3 ▷
𝜇

𝑛+1 𝑒2 [𝑥 ≔ 𝑏′]
(leave_region) 𝑆 8 borrow 𝑥 = 𝑏 for 𝑦 = 𝐸 in 𝑒3 ▷

𝜇

𝑛+1 𝑐

⇝ 𝑆 − (𝑛 + 1) 8 𝐸 ▷𝜇
𝑛 𝑒3 [𝑥 ≔ 𝑏,𝑦 ≔ 𝑐]

copy(𝑛, 𝑆, 𝑏, 𝑏′) =



𝑏′ ↦→(many,shared,local)
𝑛 () if 𝑏 ↦→𝜇

𝑚 () ∈ 𝑆

copy(𝑛, 𝑆, 𝑐, 𝑐′), 𝑏′ ↦→(many,shared,local)
𝑛 inl 𝑐′ if 𝑏 ↦→𝜇

𝑚 inl 𝑐 ∈ 𝑆

copy(𝑛, 𝑆, 𝑐, 𝑐′), 𝑏′ ↦→(many,shared,local)
𝑛 inr 𝑐′ if 𝑏 ↦→𝜇

𝑚 inr 𝑐 ∈ 𝑆

copy(𝑛, 𝑆, 𝑐, 𝑐′), copy(𝑛, 𝑆, 𝑑, 𝑑 ′), 𝑏′ ↦→(many,shared,local)
𝑛 (𝑐′, 𝑑 ′)

if 𝑏 ↦→𝜇
𝑚 (𝑐, 𝑑) ∈ 𝑆

copy(𝑛, 𝑆, 𝑐, 𝑐′), 𝑏′ ↦→(many,shared,local)
𝑛 boxM 𝑐′ if 𝑏 ↦→𝜇

𝑚 boxM 𝑐 ∈ 𝑆

𝑏′ ↦→(many,shared,local)
𝑛 boxS 𝑐′ if 𝑏 ↦→𝜇

𝑚 boxS 𝑐 ∈ 𝑆

𝑏′ ↦→(many,shared,local)
𝑛 boxG 𝑐 if 𝑏 ↦→𝜇

𝑚 boxG 𝑐 ∈ 𝑆

𝑏′ ↦→(many,shared,local)
𝑛 𝜆𝑥. 𝑒 if 𝑏 ↦→𝜇

𝑚 𝜆𝑥 . 𝑒 ∈ 𝑆)

Fig. 3. Usage-Aware Store Semantics: Reduction Steps

Oxidizing OCaml with Modal Memory Management 15

with respect to Σ using 𝑛 stack frames:

𝜇 = (many, shared, global)
∅ :𝑛 (null : ♣@ 𝜇)

wf-base

𝑆 :𝑚 Σ1 𝑚 ≤ 𝑛

𝑚 ≤ 𝑘 ≤ 𝑛 or 𝜇 = (_, _, global)
(𝑆, 𝑏 ↦→𝜇

𝑘
♣) :𝑛 (Σ1, 𝑏 : ♣@ 𝜇)

wf-space

𝑆 :𝑚 Σ1 𝑚 ≤ 𝑛

(𝑆, 𝑏 ↦→−
𝑘
𝑣) :𝑛 (Σ1, 𝑏 : −)

wf-unused

𝑆 :𝑚 (Σ1 + Σ2) Σ2 ⊢ 𝑣 : 𝜏 @ 𝜇

𝑚 ≤ 𝑛 𝑚 ≤ 𝑘 ≤ 𝑛 or 𝜇 = (_, _, global)
(𝑆, 𝑏 ↦→𝜇

𝑘
𝑣) :𝑛 (Σ1, 𝑏 : 𝜏 @ 𝜇)

wf-ext

Notice that this definition allows a variable to be marked unique in the store, even if there are
several references to it. However, in the context, all such references may only use the value as
shared. Further, we call a pair (𝐸, 𝑒) well-formed for (𝑆, 𝑛) if all free variables of 𝐸 [𝑒] are either
global or are stack-allocated in a frame𝑚 ≤ 𝑛 − 𝑘 , where 𝑘 is the number of borrowing frames in 𝐸

that need to be traversed to reach the variable.
We now formulate the progress and preservation lemmas (see Appendix A.3 for the proofs). We

write 𝐸 [𝑒 : 𝜏 @ 𝜇] to denote that expression 𝑒 has type 𝜏 and mode 𝜇 in the evaluation context 𝐸.

Lemma 4.1 (Progress). If Σ ⊢ 𝐸 [𝑒 : 𝜏1 @ 𝜇1] : 𝜏2 @ 𝜇2 and 𝑆 :𝑛 Σ and (𝐸, 𝑒) is well-formed for

(𝑆, 𝑛), then either execution concludes with 𝐸 = ? and 𝑒 = 𝑏 for some store address 𝑏 or a step is possible:

𝑆 8 𝐸 ▷𝜇1
𝑛 𝑒 ⇝ 𝑆 ′ 8 𝐸′ ▷

𝜇′1
𝑛′ 𝑒

′
.

Lemma 4.2 (Preservation). If Σ ⊢ 𝐸 [𝑒 : 𝜏1 @ 𝜇1] : 𝜏2 @ 𝜇2 and (𝐸, 𝑒) is well-formed for (𝑆, 𝑛),
and 𝑆 :𝑛 Σ and 𝑆 8 𝐸 ▷𝜇1

𝑛 𝑒 ⇝ 𝑆 ′ 8 𝐸′ ▷
𝜇′1
𝑛′ 𝑒

′
, then Σ′ ⊢ 𝐸′ [𝑒′ : 𝜏 ′1 @ 𝜇′1] : 𝜏2 @ 𝜇2 and (𝐸′, 𝑒′) is

well-formed for (𝑆 ′, 𝑛′), and 𝑆 ′ :𝑛′ Σ′
.

5 TRANSLATION TO A GRADED MODAL CALCULUS
While our mode calculus is modelled using type qualifiers, there is a close relationship to graded
modal calculi [Abel and Bernardy 2020; Choudhury et al. 2021; Orchard et al. 2019; Petricek et al.
2014], which annotate variables in the context with grades from a partially-ordered semiring. Such
calculi are a popular approach to creating type systems that track how values are used, but it is not
immediately obvious how to use them to track uniqueness and affinity in the way that our mode
calculus does. In this section we give a translation (by choosing an appropriate partially-ordered
semiring) from our mode calculus into a graded modal calculus.

5.1 Modal Axiom K is Incompatible with Call-by-Value
Axiom K is a core axiom of modal logic, stating that if �(𝐴 → 𝐵) and �𝐴, then also �𝐵. In our
effectful call-by-value setting, this axiom is unsound. To see why, and how to fix the problem, let
us consider a simple example in the style of Choudhury et al. [2021]. Variables in the context are
annotated by a grade 𝑞, which in our example will be a natural number that denotes the number of
times the variable may be used. The typing rules for variables, applications and boxes are:

0 · Γ, 𝑥 :1 𝐴 ⊢ 𝑥 : 𝐴
var

Γ1 ⊢ 𝑒1 : 𝑞𝐴 → 𝐵 Γ2 ⊢ 𝑒2 : 𝐴
Γ1 + 𝑞 · Γ2 ⊢ 𝑒1 𝑒2 : 𝐵

app
Γ ⊢ 𝑒 : 𝐴

𝑞 · Γ ⊢ box𝑞 𝑒 : �𝑞𝐴
box

The var rule allows us to use a variable one time, the app rule allows us to pass an argument 𝑒2 to
a function that will use the argument 𝑞 times as long as we multiply the grades of the variables in
the argument by 𝑞. Similarly, the box rule allows us to create a box that can be used 𝑞 times as
long as we multiply the grades by 𝑞.

16 Lorenzen et al.

With these three rules we can derive a version of the modal Axiom K:

𝑓 :1 (1𝐴 → 𝐵), 𝑥 :0 𝐴 ⊢ 𝑓 : 𝐴 → 𝐵
var

𝑓 :0 (1𝐴 → 𝐵), 𝑥 :1 𝐴 ⊢ 𝑥 : 𝐴
var

𝑓 :1 (1𝐴 → 𝐵), 𝑥 :1 𝐴 ⊢ 𝑓 𝑥 : 𝐵
app

𝑓 :𝑞 ·1 (1𝐴 → 𝐵), 𝑥 :𝑞 ·1 𝐴 ⊢ box𝑞 (𝑓 𝑥) : □𝑞𝐵
box

This rule allows us to use the result of (𝑓 𝑥) 𝑞 times if we can use both 𝑓 and 𝑥 𝑞 times. In a
call-by-name setting, (𝑓 𝑥) can be treated as a thunk which is evaluated anew every time it is used—
this only requires that 𝑓 and 𝑥 are available 𝑞 times, as guaranteed by the rules. In a call-by-value
setting, however, (𝑓 𝑥) evaluates to a value which may not be usable 𝑞 times. Concretely, a function
such as open_file : 1 → File can be used many times and so can a unit value, but the resulting
File should only be used affinely.

Thankfully, it is not hard to rule out Axiom K by restricting the box rule to values:

Γ ⊢ 𝑉 : 𝐴
𝑞 · Γ ⊢ box𝑞 𝑉 : �𝑞𝐴

box

This prevents the derivation above since it is no longer possible to box an application.

5.2 Graded Call-by-Value Calculus
Our graded calculus uses a fine-grain call-by-value [Levy et al. 2003] formulation in which terms
are divided into value terms and computation terms. The full syntax and typing rules are given in
Appendix C.

In the types, we include grades on boxes and for the arguments of functions, as usual for graded
type theories. Following Abel and Bernardy [2020], but unlike other graded type theories, we order
our grades such that if 𝑞 ≤ 𝑟 then a value at grade 𝑞 can be used at grade 𝑟 , maintaining consistency
with the ordering of our modes.

For contexts, multiplication (𝑞 · Γ), addition (Γ1 + Γ2) and ordering (Γ1 ⪯ Γ2) are defined point-wise
on the grades of their bindings.

In addition to the semiring, our rules are parameterised by a choice of grade 𝜎 that is required of
values of sum types when they are eliminated.

Γ1 ⊢v 𝑉 : 𝐴 + 𝐵 𝑞 ≤ 𝜎

Γ2, 𝑥 :𝑞 𝐴 ⊢c 𝑀 : 𝐶 Γ2, 𝑦 :𝑞 𝐵 ⊢c 𝑁 : 𝐶
𝑞 · Γ1 + Γ2 ⊢c case𝑞 𝑉 { inl𝑥 → 𝑀 ; inr𝑦 → 𝑁 } : 𝐶

case

(The superscripts on turnstyles distinguish the value typing judgement, ⊢v, from the computation
typing judgement, ⊢c.) In existing graded calculi 𝜎 is usually chosen to be 1 but, as noted by
Choudhury et al. [2021], that choice is not necessary for general type soundness.

5.3 The Naive Semiring
Now that we have a graded calculus, we need to construct an appropriate semiring to model our
modes. For brevity we restrict attention to uniqueness and affinity, but the same techniques also
apply to locality and borrowing.
The plus operation of the semiring should correspond to the join operation on contexts from

our mode calculus. That means we need a 0 grade to represent the 𝑥 : − case in contexts, grades
for each of the modes, and a ⊥ grade to represent the cases where the join operation is undefined.

Oxidizing OCaml with Modal Memory Management 17

That gives us the following elements for our semiring:

{unused (0), shared once (S), shared many (SM),
uniqe once (1), uniqe many (M), uniqe error (⊥)}

The ordering on the semiring corresponds to the ordering on contexts in our mode calculus. We
choose shared once for 𝜎 essentially allowing any sum value to be eliminated.
The multiplication operation of the semiring should correspond to the modalities of our mode

calculus: multiplying by S should behave like the S modality and multiplying by M like the M
modality. The rest of multiplication is forced by the semiring laws. Interesting equations include:

S + S = SM
1 + 1 = ⊥

1 + S = ⊥
M +M = ⊥

S · S = S
M ·M = M

S ·M = SM
M · S = SM

S · ⊥ = SM
M · ⊥ = ⊥

Using this semiring as grades, we can safely enable in-place updates. When splitting a pair, we
now also get access to its space credit and we add a reuse construct which allows us to reuse the
space credit for a new pair. The extended syntax and typing rules are shown in Appendix C.3.

5.4 Extending the Semiring for Sharable Closures
The naive semiring gives us a sound system, but one that prevents functions from being applied
once they have been shared. Consider the app rule of our graded calculus:

Γ1 ⊢v 𝑉 : 𝑞𝐴 → 𝐵

Γ2 ⊢v 𝑊 : 𝐴
Γ1 + 𝑞 · Γ2 ⊢c 𝑉 𝑊 : 𝐵

app

Γ1 are the inputs required for𝑉 produce a function at grade 1. In particular, if𝑉 is a variable 𝑥 then
Γ1 will be {𝑥 :1 𝑞𝐴 → 𝐵}. Γ1 isn’t multiplied by a grade in the conclusion, and it can’t be multiplied
by a grade in a surrounding rule because there is no boxS construct for computations. That means
that, given a binding 𝑥 :S 𝑞𝐴 → 𝐵 in the context there is no way to apply it.5

Relatedly, a function that closes over a use of a value at grade uniqe many:

𝑥 :M 𝐴 ⊢c 𝜆𝑦. 𝑁 : 𝐵 → 𝐶

can be placed in a boxS expression so that it no longer requires 𝑥 uniquely:

𝑥 :S·M 𝐴 ⊢c boxS (𝜆𝑦. 𝑁) : �S (𝐵 → 𝐶)

This is sound only because shared functions can never be applied, and is why we can’t simply
adjust the app rule to allow applying shared functions.

Both these problems would be addressed if we had a type constructor 𝑅 such that �S ◦ 𝑅 was a
comonad. This would allow us to use 𝑅 (𝐴 → 𝐵) as the type of functions that can still be applied
after they have been shared. Similarly, placing such a function in a boxS expression would still
require the values in its context at �S ◦ 𝑅, which is at least as strong as the original requirements.

If we had an element S � 1 in our semiring that acted as a right residual to S:

S · 𝑞 ≤ 𝑟 ⇐⇒ 𝑞 ≤ (S � 1) · 𝑟

then �S�1 would be a right adjoint to �S, and �S ◦ �S�1 would be the desired comonad.

5Technically, we could put the application inside a lambda and then put that in a boxS expression, but that just gets us
another shared lambda we can’t apply.

18 Lorenzen et al.

Our naive semiring does not contain such an element, so we would like to embed it into a larger
semiring that does. There is an initial such embedding which extends the semiring with three
additional elements:

{unshared once (S � 1), unshared many (S � M), unshared error (S � ⊥)}

The ordering for this extended semiring is shown in 4, and the full set of equations for addition
and multiplication are in Appendix D. The most interesting of those equations are:

S � 1 + S � 1 = S � ⊥
S � 1 + 1 = S � ⊥

S · (S � 1) = S � 1
(S � 1) · S = S

M · (S � 1) = S � ⊥
(S � 1) ·M = S � M

unused(0)

shared once(S)

shared many(SM)
uniqe once(1)

uniqe many(M)

uniqe error(⊥)

unshared once(S � 1)

unshared many(S � M)

unshared error(S � ⊥)

Fig. 4. Ordering of the Extended Semiring

5.5 Translation from the Mode Calculus
We can now translate our mode calculus to the graded calculus. Our modes and modalities are
translated directly into grades in the obvious way. The translation for types is mostly straight-
forward, with the exception of arrow types, which are translated as:

J𝜏1 @ 𝜇1 → 𝜏2 @ 𝜇2K = �(S�1) ((S�1) ·J𝜇1KJ𝜏1K → �(S�1) ·J𝜇2KJ𝜏2K))

which has been wrapped in an S � 1 box. Note that the grades on the parameter and return have
also been multiplied by S � 1. This ensures that parameters and results always stand for values
that can in turn be used inside a closure.

Similarly, contexts are translated as:

J∅K = ∅ JΓ, 𝑥 : −K = JΓK JΓ, 𝑥 : 𝜏 @ 𝜇K = JΓK, 𝑥 :(S�1) ·J𝜇K J𝜏K

with the grades on variable bindings multiplied by S � 1.
We translate judgements Γ ⊢ 𝑒 : 𝑡@𝜇 into judgements of the form JΓK ⊢c 𝑀 : �(S�1) ·J𝜇KJ𝑡K. The

rules are quite mechanical, so for brevity we show only a few of instances of the translation:

JΓ ⊢ 𝜆𝑥 . 𝑒 : (𝜏1@𝜇1 → 𝜏2 @ 𝜇2) @ 𝜇3K
= JΓK ⊢c return (box(S�1) ·J𝜇3K (box(S�1) (𝜆𝑥. J𝑒K)))

: �(S�1) ·J𝜇3K �S�1 ((S�1) ·J𝜇1KJ𝜏1K → �(S�1) ·J𝜇2KJ𝜏2K)

Oxidizing OCaml with Modal Memory Management 19

JΓ ⊢ 𝑒1 𝑒2 : 𝜏 @ 𝜇K
= JΓK ⊢c J𝑒1K to 𝑥1. J𝑒2K to 𝑥2 .

let box(S�1) ·J𝜇1K 𝑥3 = 𝑥1 in let box(S�1) ·J𝜇2K 𝑥4 = 𝑥2 in
let(S�1) ·J𝜇1K boxS�1 𝑥5 = 𝑥3 in
𝑥5 𝑥4

: �(S�1) ·J𝜇K (J𝜏1K × J𝜏2K)

6 SURFACE-LANGUAGE DESIGN DECISIONS
Not only do we need a sound theory supporting stack allocation andmemory reuse, but we also need
to incorporate these ideas into a surface language that is approachable and expressive. This section
describes our decisions around the design of these language features, as used by the programmer.

6.1 Borrowing
While the borrowing rule in our mode calculus captures the essence of borrowing in our system, it
is much less flexible in practice than the borrowing construct available in our surface language.
Programmers can implicitly place borrows around functions that take local arguments and have a
global return value using the & syntax from Rust:
let apply_and_reverse b f g x =
let result =
if b

then f &x
else g &x in

result, reverse x

Here, we use x twice, but since the first use (in either branch of the if) is a borrow, we can still
destructively reverse x and return it as part of a unique pair.

We allow borrowing with & in two different contexts:
• In the right-hand side of a let: In let x = &y in expr, both x and y can be used as shared
within expr. However, y remains in scope after the let is done evaluating, and it can be
used uniquely.

• In a function argument: We treat f ... &y ... just like let x = &y in f ... x
(If the same variable is borrowed multiple times in the same function call, only one borrow
is inferred.)

The typing rules that explain how borrowing works are in Figure 5, which we now explain.

Borrowing Annotations. The typing context here comprises a list of bindings 𝑥 : 𝜏 @𝑏 𝜇, newly
carrying a borrowing annotation 𝑏. This annotation is B if the variable has been returned after
a borrow, or omitted otherwise. We extend the + operation of Section 3.4 to an associative, non-
commutative operator # by adding an annotation variable 𝑏 to every equation of + (requiring that
the 𝑏 be the same when combining two used variable bindings) and adding the following equation:

(Γ1, 𝑥 : 𝜏 @B (_, shared, 𝑙)) #(Γ2, 𝑥 : 𝜏 @𝑏 (_, 𝑢, 𝑙)) = (Γ1 # Γ2), 𝑥 : 𝜏 @𝑏 (many, 𝑢, 𝑙)

This new equation says that if the variable has been borrowed in Γ1, we can join it with any use
in Γ2. The borrow annotation from Γ2 is retained in the joined annotation, allowing us to borrow a
variable multiple times.

20 Lorenzen et al.

Γ1 ⊢ 𝑥 : 𝜏 @ (many, _, global)
Γ2, 𝑦 : 𝜏 @ (many, shared, local) ⊢ 𝑒 : 𝜏2 @ (𝑎,𝑢, global)

Γ2 #⌈Γ1⌉ ⊢ let 𝑦 = &𝑥 in 𝑒 : 𝜏2 @ (𝑎,𝑢, global)
borrow

Γ,µ 𝜇3 , 𝑥 : 𝜏1 @ 𝜇1 ⊢ 𝑒 : 𝜏2 @ 𝜇2

⌊Γ⌋ ⊢ 𝜆𝑥. 𝑒 : (𝜏1 @ 𝜇1 → 𝜏2 @ 𝜇2) @ 𝜇3
lam

⌈∅⌉ = ∅

⌈Γ, 𝑥 @𝑏 𝜇⌉ = ⌈Γ⌉, 𝑥 @B 𝜇

⌊∅⌋ = ∅

⌊Γ, 𝑥 @𝑏 𝜇⌋ = ⌊Γ⌋, 𝑥 @ 𝜇

Fig. 5. Rules for Borrowing

When comparing contexts, we allow for borrowing annotations to be forgotten:

Γ, 𝑥 : −, Γ′ ≥ Γ, 𝑥 : 𝜏 @B 𝜇, Γ′

Γ, 𝑥 : 𝜏 @B 𝜇, Γ′ ≥ Γ, 𝑥 : 𝜏 @ 𝜇, Γ′

Adding and Removing Borrowing Annotations. We see in the borrow rule that 𝑦 is available as
shared and local in 𝑒 , where 𝑒 itself is required to be global. (This requirement means that 𝑒 cannot
be a conduit for letting 𝑦 escape.)

Γ1 will have a usage for 𝑥 and no usage for all other variables. In the result of the rule, the binding
for 𝑥 is marked with B in ⌈Γ1⌉. This is then combined with Γ2, leading to 𝑥 being marked borrowed
in the conclusion of the rule. This setup means that any unique use of 𝑥 before the borrow will be
rejected: when a B is on the right of #, the left-hand usage must be shared. However, a unique use
of 𝑥 after the borrow is fine, using our new equation above for #.

Furthermore, we have to adjust the lam rule to ensure that borrowing annotations do not escape
a closure. This is necessary, since a closure may be invoked at a later point in the control-flow, where
the previously borrowed variable may have been used. As such, we have to delete all borrowing
annotations using the ⌊Γ⌋ operator.

Elaboration. To show the soundness of this surface-level borrowing construct, we desugar the
syntax into our mode calculus. The key step is a translation to ANF, which allows us to reason
cleanly about what gets evaluated after the borrow. The details are in Appendix A.2.

6.2 Region Placement
We describe local values as unable to escape their region. But what is a region? Though our
formalism supports regions through the explicit borrow construct, we have no such syntax in the
surface language. Instead, we assume regions surround function and loop bodies. Thus, defining
a function also defines a region around its contents, and writing a loop (for or while in OCaml)
surrounds its body in a region.
However, sometimes a user does not want a region. For example, we might want to write an

implementation for
val init_local : len:int -> (int -> 'a @ local) -> 'a list @ local

that creates a stack-allocated list. Yet the body of this function must somehow return its local
result. Our approach is to introduce a new keyword, exclave, that ends a region prematurely. It
can be written only in tail position of an existing region (e.g. function). Values allocated in an
exclave are placed in the memory from an outer region. This is exactly the behavior we want

Oxidizing OCaml with Modal Memory Management 21

for init_local: its allocated cons cells should be in the region of the caller, not in the region of
init_local. Concretely, here is the implementation of init_local:

let init_local ~len f =
let rec loop n acc =
if n = 0 then acc else
let n = n - 1 in exclave loop n (f n :: acc)

in exclave loop len []

We need to write exclave in both the outer function and its inner helper; this allows the local list
to be returned without crossing a region boundary.
The construct exclave 𝑒 ends the current region and then executes 𝑒 in the outer region. We

cannot re-enter a region once it has ended, so exclave is only supported in tail position of a region.

6.3 Tail Calls
Leaving a region is a run-time concern: the implementation must move a stack pointer to release
the memory in the region. Yet this bit of cleanup interferes with the tail-call optimization, where
the calling function’s stack frame is lost before jumping to a function called in tail position [Clinger
1998]. To preserve tail calls, we end the function’s region before performing any tail calls; any
local values allocated in the function’s region are unavailable for passing to tail calls. (This is
distinct from exclave, which allows stack allocation in tail positions; if you leave off the exclave,
tail-position allocations must be on the heap.)

This would prevent most tail-recursive functions, including our iter example from Section 2.5,
from having local parameters. In our implementation, but not formalized in this paper, we include
a regional mode between local and global, representing values that may escape only the current
region. This is sufficient to allow iter to accept its argument f with local mode, since f can be
given regional mode inside the body of iter, and thus safely passed to the tail call.

OCaml currently optimizes all calls in tail position into tail calls. In cases where the programmer
wishes to stack-allocate values in the current region and pass them to a call in tail position, we
require the programmer to annotate the call to instruct the compiler to not perform a tail-call
optimization.

6.4 Currying and Partial Application
Consider a function f : t1 @ local -> t2 -> t3 and a partial application f x. The partial
application will, at run-time, allocate a closure that captures both f and x. Thus, because a closure
capturing a local must itself be local, we require f x to be at the local mode; it cannot escape
from a region. Yet the type of f suggests that f x is global: there is no local annotation on the tail
t2 -> t3. (That is, we do not see f : t1 @ local -> (t2 -> t3) @ local.)

Because any function that takes a local argument has this problem, we interpret the original type
for f—with only one @local—as meaning the second. That is, all partial applications of a function
that takes a local parameter must themselves be local. This happens invisibly to programmers;
we can understand this as a slightly-unexpected interpretation of the concrete syntax of function
types. It applies to local parameters, as we see here, but also to once or unique ones, where both
of those induce partial applications to be once.

Interestingly, the complications here go away if we imagine a change to the language forbidding
currying. That is, if a function of type t1 -> t2 -> t3 were unambiguously a two-argument
function, we would not have to propagate mode information down the spines of functions. If we
had f : t1 -> t2 -> t3 and wanted to apply it only to one argument x, we could easily write

22 Lorenzen et al.

fun y -> f x y. This new closure would infer its own result mode, possibly allocating the closure
on the stack or possibly on the heap.

Given this simplification in the absence of currying—and the fact that currying does not preserve
semantics in the presence of effects—we are experimenting with the idea of introducing a non-
curried function arrow to the language. This is solidly future work, but we see it as a promising
direction, removing awkward mode propagation, clarifying the semantics of function applications
in the presence of side effects, making closure allocation more apparent, and improving type errors
arising from over- or under-application.

6.5 Syntax
This paper presents a postfix syntax for mode information, introduced with @ for modes and @@ for
modalities. Writing modes postfix was motivated by a desire to reduce the number of new keywords
in the language: if a mode or modality is always introduced with a special operator, then we have
syntactic freedom in the specification of the mode or modality. We can even imagine user-written
mode or modality abbreviations, living in a namespace distinct from the many namespaces OCaml
already has.
(OCaml uses @ and @@ in expressions as list-append and function application, respectively. Our

syntax, though, appears only in types and patterns, where these symbols are unused.)
Beyond just the syntax included in this paper, we have designed what we call an unzipped syntax,

which we believe will make mode-heavy code easier to read. We conjecture that most users, most
of the time, will not care deeply about the modes on a function. Instead, when reading a module
interface, the programmer will want to see types, not modes. We thus want a syntax where mode
information can be separated from type information. For example, consider a fold function on
local, shared lists, building a unique result:
val fold : ('a @ unique -> 'b @ local -> 'a @ unique) @ local

-> 'a @ unique -> 'b list @ local -> 'a @ unique

A programmer reading this type signature has a hard time finding the types among all the modes.
While we will continue to support the syntax as written here, we also plan to support a syntax
where all the mode information is placed after all the type information, thus:
val fold : ('a -> 'b -> 'a) -> 'a -> 'b list -> 'a

@@ (unique -> local -> unique) local -> unique -> local -> unique

Now a programmer can easily spot the type independent of the mode. Note that we use a @@marker
for an unzipped mode signature; these are available only on type schemes, not on types within a
larger type expression. Accordingly, despite the fact that we have used @ and @@ to discriminate
between modes and modalities in this paper, the final design actually distinguishes between inline
(or zipped) mode annotations and a mode/modality that applies to an entire type.

6.6 Generalization
Suppose we have a function:
let get_x r = r.x

What modes should be in the inferred type of get_x? Assuming there is no modality on the field
x, then any modes will do. But, lacking mode polymorphism, we must choose some modes. Our
answer is to echo OCaml’s existing treatment of the value restriction [Wright 1995], and infer a
type for get_x that is weakly polymorphic in its modes.

Weak polymorphism in OCaml describes the situation where inferring a generalized type for a
definition cannot commit to a specific type, but instead leaves a type variable to be solved later.

Oxidizing OCaml with Modal Memory Management 23

Once this type variable is solved for, the resulting type is used at all occurrences of the definition.
The canonical example of weak polymorphism is in inferring the type of let cell = ref [].
The value restriction says that the type of cell cannot be 'a ref; inferring that polymorphic
type would be unsound. Instead, we infer a weakly polymorphic type: the next use of cell will
determine the type of the contents of the ref.

It is the same with our get_x example: the next usage of get_x will determine the modes in its
inferred type. For example, if get_x is used to extract the field of a local argument, then it will
both expect and return local types, which means it would no longer be suitable to pass as the
function argument to the standard List.map, say, which expects a function whose argument and
return are at the legacy mode.

A future expansion of our ideas to encompass full mode polymorphism will remove the need for
this extra little complication.

7 IMPLEMENTATION
We have included our prototype implementation as part of our submission. It is a work in progress;
we detail what is implemented and what is not in this section. This is current as of the end of
February 2024.

Locality. The features around locality described in this paper are fully implemented, including
using stack allocation for local values. This feature has met widespread adoption among our
colleagues, where the ability to avoid heap allocation has enabled several projects to simplify
implementations over what they wrote previously. In some of these applications, requirements
are such that garbage collection is simply not acceptable; the code previously had to pre-allocate
blocks of memory to be carefully managed during the execution of a low-latency program. Now,
these programmers can program in a more functional style, which they describe as increasing their
productivity.

As of February 2024, our codebase has 187,765 .mli files. Of these, 2,648 have a use of local or
global, with a total of 27,382 occurrences. The feature has been available to programmers for about
a year, and we are pleased with this uptake. We looked only in interfaces, not implementations, as
the implementations can generally infer locality, whereas interfaces must write it down explicitly.

Uniqueness and Affinity. We have implemented the uniqueness and affinity modes, including
alias-tracking uniqueness analysis, but these have not been widely advertised to our colleagues. We
believe these features are unused outside of our development tests. The reason we have held back
encouraging our colleagues to adopt these features is that we are still in the process of implementing
memory reuse; without that key feature, the motivation for uniqueness and affinity is less than we
would like, and so we have not pushed the features.

Syntax. The syntax we have implemented is different from what is described in this paper. It is, in
fact, our experience getting feedback from programmers that informed the ideas in Section 6.5. The
implemented syntax puts mode annotations in prefix, using new keywords. A noteworthy advantage
of working in a branch of the compiler—instead of eagerly trying to include our innovations in the
main OCaml compiler—is that we can test out syntax, gather feedback, and then iterate.

8 RELATEDWORK
8.1 Linearity, Affinity and Uniqueness
Substructural type systems based on linear logic force variables to be used exactly once, providing
both linearity, since the program cannot share a value that it is given, and uniqueness, since the
values it is given cannot have been shared. There have been many languages and calculi which use

24 Lorenzen et al.

this insight to model memory and resource management, by integrating linearity/uniqueness with
standard functional programming.
The simplest approach is to entirely separate the linear/unique world (containing values that

cannot be and have not been shared) from the functional world, by having separate variables
for each, sometimes even bound by separate typing contexts. Examples include LNL [Benton
and Wadler 1996], the dependent LNL𝐷 [Krishnaswami et al. 2015], and Walker’s linear type
system [Walker 2005].

Linearity. Desiring less strict separation between the linear/unique and the functional world,
many authors have chosen to build linear (or affine, if usage is not mandatory) rather than unique
type systems. It is always safe to turn a nonlinear value into a linear one by promising to use it only
once, but allowing this means that linear values may no longer be assumed unique. 𝐹 ◦ [Mazurak et al.
2010] expresses this with subkinding, an approach also implemented in the Links web programming
language [Cooper et al. 2006] in order to support session typing [Lindley and Morris 2017; Tang
et al. 2024].
Linear Haskell [Bernardy et al. 2017; Spiwack 2018] also opts for linearity, sharing our goal of

allowing unobservable memory reuse. Moreover, that work also relies on adding substructural
aspects to a type system to prevent duplication of the value to be updated in-place. Because it does
not track uniqueness, the key property allowing safe update—the lack of any aliases—can be assured
only when the type of the value is abstract and is produced by a carefully audited interface which
ensures uniqueness. That is, the safety of in-place updates is a property of a module boundary
and API, not of the type system (though support for linearity in the type system is a necessary
component).

The Alms [Tov and Pucella 2011] and Quill [Morris 2016] systems both use qualified types (not
to be confused with type qualifiers!) to track linearity. They offer more precise linear types than
many other systems at the cost of more complex constraints.

Uniqueness. Other systems take the opposite approach, supporting unique rather than linear
types. It is always safe to turn a unique value into a shared value by forgetting that it is unique, but
this means that unique values may be used more than once. Clean [Barendsen and Smetsers 1995,
1996; De Vries et al. 2008] takes this approach, as does Pony [Clebsch et al. 2017] (using capabilities
to track aliasing and mutability), and Rust [Matsakis and Klock 2014]. Mezzo [Pottier and Protzenko
2013] uses singleton types to control aliasing less restrictively, allowing multiple references to a
unique value but only in statically-tracked ways.
However, all uniqueness type systems must contend with the issue detailed in Section 2.2, in

that closing over a unique value yields a linear closure. Different systems deal with this in different
ways, often by introducing multiple function types (for instance, Fn and FnOnce in Rust). Instead,
we follow [Marshall et al. 2022] in supporting both linearity and uniqueness, and use locks to
ensure that closing over unique values yields linear closures.

Rather than statically tracking uniqueness, in-place updates can also be made safe by dynamically
detecting uniqueness using reference counting [Didrich et al. 1994; Reinking et al. 2021; Ullrich
and de Moura 2019]. A major advantage of that approach is that it can reuse all memory that
happens to be unique at runtime, even if this property is hard to track in a type system. However,
it provides few guarantees that memory is actually reused at runtime beyond a first-order check
[Lorenzen et al. 2023]. Our system could be used to complement reference counting to provide
static guarantees that memory will be reused; even in a higher-order setting.

Oxidizing OCaml with Modal Memory Management 25

8.2 Regions and Locality
Stack allocation of memory is very efficient, but requires that all references to the memory be
gone when the stack is popped. A major line of work in type systems to enforce this is the region
calculus [Tofte and Talpin 1997] as implemented in MLKit, initially to replace garbage collection
and later alongside it [Elsman and Hallenberg 2020; Tofte et al. 2002]. The region calculus is much
more expressive than our local and global modes, introducing an arbitrary number of regions
named by region variables with which every type is annotated. This resulted in complicated types,
although this was less of a concern than usual as these region-annotated types were produced
during compilation and rarely became user-visible. However, these complicated types made separate
compilation more difficult. [Tofte et al. 2004].

Instead of a type system, it is possible to implement stack allocation and memory reuse using an
escape analysis [Bruynooghe 1986; Park and Goldberg 1992]. Such an analysis examines the control-
flow at compile time to determine which values are guaranteed to be unique (or non-escaping).
While such an analysis can be more powerful than a type system, it provides no guarantees to the
user that memory will be reused, and can be brittle depending on the exact heuristics used.

8.3 Borrowing
When a unique value is used multiple times in sequence, one way to track its uniqueness is to
thread it through each operation, returning it each time so that the returned value gets used just
once. This is the standard approach in Linear Haskell, whose designers proposed using implicit
linearity tokens [Spiwack 2023; Spiwack et al. 2022] to improve this aspect of the user interface;
these tokens allow the user to elide the threading.

By contrast, borrowing allows a unique value to be directly used multiple times within a region,
and to regain its uniqueness once that region has ended. Rust [Matsakis and Klock 2014] has a
sophisticated borrow-checker, which tracks the precise region in which a borrowed value may be
used using lifetime variables. This is much more expressive than our system (which tracks only
local and global), but requires much heavier annotation to thread lifetime variables through types.
In particular, higher-order functions in Rust that pass newly borrowed values to their callbacks
must have higher-rank types [Beingessner et al. 2017], while in our system such functions have
rank-1 types that can be fully inferred.

8.4 Modal Type Systems
As discussed in Section 5, our system is closely related to graded modal type systems [Abel
and Bernardy 2020; Atkey 2018; Orchard et al. 2019; Wood and Atkey 2022]. These systems are
parameterised by some form of ordered semiring and can support a wide array of uses. They are
especially suited to comonadic modalities such as the bounded exponential modality from bounded
linear logic. Their combination with side-effects, and especially how that interacts with monadic
modalities such as our shared modality, is less well studied.

Another modal approach to combining different forms of substructural typing is to use modalities
to represent adjunctions between these different forms, as pioneered by [Benton 1994] and since
generalized to other modalities[Jang et al. 2024; Licata and Shulman 2016; Pruiksma et al. 2018].
Our mode system combines multiple modes and modalities. There have been a number of

attempts to define generic multimodal type systems that are parameterised by some collection of
modes and modalities, including Multimodal Dependent Type Theory [Gratzer et al. 2020] and
Multimodal Adjoint Type Theory [Shulman 2023]. Such theories do not yet support substructural
type systems or side-effects, but could potentially model a system such as ours.

26 Lorenzen et al.

Our system combines both uniqueness and side-effects, which is a key part of what takes our
design away from much of the existing graded modal types work. Other attempts to understand
the interaction between these features include the work of Curien et al. [2016], which extends the
categorical semantics of Call-By-Push-Value with linearity and the exponential modality, and the
work of Torczon et al. [2023], which combines graded modal types with Call-By-Push-Value.

9 FUTUREWORK
We are exploring extending our system with several new modes which can be used to track other
properties of values. In particular, we are interested in modes that track whether values are thread-
shared or not, which could enable us to add safe concurrency primitives to OCaml 5. Moreover,
we are exploring the use of modes to track user-defined effects. We are also interested in allowing
polymorphism over modes.

REFERENCES
Andreas Abel and Jean-Philippe Bernardy. 2020. A unified view of modalities in type systems. Proceedings of the ACM on

Programming Languages 4, ICFP (2020), 1–28.
Robert Atkey. 2018. Syntax and semantics of quantitative type theory. In Proceedings of the 33rd Annual ACM/IEEE Symposium

on Logic in Computer Science. 56–65.
Erik Barendsen and Sjaak Smetsers. 1995. Uniqueness Type Inference. In Proceedings of the 7th International Symposium on

Programming Languages: Implementations, Logics and Programs. 189–206.
Erik Barendsen and Sjaak Smetsers. 1996. Uniqueness typing for functional languages with graph rewriting semantics.

Mathematical structures in computer science 6, 6 (1996), 579–612.
Aria Beingessner, Steve Klabnik, and Yuki Okushi. 2017. Higher-Rank Trait Bounds (HRTBs) (The Rustonomicon, sec. 3.7).

https://doc.rust-lang.org/nomicon/hrtb.html.
Nick Benton and Philip Wadler. 1996. Linear logic, monads and the lambda calculus. In Proceedings 11th Annual IEEE

Symposium on Logic in Computer Science. IEEE, 420–431.
P Nick Benton. 1994. A mixed linear and non-linear logic: Proofs, terms and models. In International Workshop on Computer

Science Logic. Springer, 121–135.
Jean-Philippe Bernardy, Mathieu Boespflug, Ryan R. Newton, Simon Peyton Jones, and Arnaud Spiwack. 2017. Linear

Haskell: practical linearity in a higher-order polymorphic language. Proc. ACM Program. Lang. 2, POPL, Article 5 (dec
2017), 29 pages. https://doi.org/10.1145/3158093

Maurice Bruynooghe. 1986. Compile time garbage collection. Katholieke Universiteit Leuven. Departement Computerweten-
schappen.

Pritam Choudhury, Harley Eades III, Richard A Eisenberg, and Stephanie Weirich. 2021. A graded dependent type system
with a usage-aware semantics. Proceedings of the ACM on Programming Languages 5, POPL (2021), 1–32.

Sylvan Clebsch, Juliana Franco, Sophia Drossopoulou, Albert Mingkun Yang, Tobias Wrigstad, and Jan Vitek. 2017. Orca:
GC and type system co-design for actor languages. Proceedings of the ACM on Programming Languages 1, OOPSLA
(2017), 1–28.

William D Clinger. 1998. Proper tail recursion and space efficiency. In Proceedings of the ACM SIGPLAN 1998 conference on

Programming language design and implementation. 174–185.
Ezra Cooper, Sam Lindley, Philip Wadler, and Jeremy Yallop. 2006. Links: Web Programming Without Tiers. In FMCO

(Lecture Notes in Computer Science, Vol. 4709). Springer, 266–296.
Pierre-Louis Curien, Marcelo Fiore, and Guillaume Munch-Maccagnoni. 2016. A theory of effects and resources: adjunction

models and polarised calculi. ACM SIGPLAN Notices 51, 1 (2016), 44–56.
Edsko De Vries, Rinus Plasmeijer, and David M Abrahamson. 2008. Uniqueness typing simplified. In Implementation and

Application of Functional Languages: 19th International Workshop, IFL 2007, Freiburg, Germany, September 27-29, 2007.

Revised Selected Papers 19. Springer, 201–218.
Klaus Didrich, Andreas Fett, Carola Gerke, Wolfgang Grieskamp, and Peter Pepper. 1994. OPAL: Design and implementation

of an algebraic programming language. In Programming Languages and System Architectures. Springer, 228–244.
Damien Doligez. 2016. Unboxed types. Pull request against OCaml source. https://github.com/ocaml/ocaml/pull/606
Martin Elsman and Niels Hallenberg. 2020. On the effects of integrating region-based memory management and generational

garbage collection in ML. In International Symposium on Practical Aspects of Declarative Languages. Springer, 95–112.
Jeffrey S Foster, Manuel Fähndrich, and Alexander Aiken. 1999. ACM SIGPLAN Notices 34, 5 (1999), 192–203.

https://doc.rust-lang.org/nomicon/hrtb.html
https://doi.org/10.1145/3158093
https://github.com/ocaml/ocaml/pull/606

Oxidizing OCaml with Modal Memory Management 27

Daniel Gratzer, GA Kavvos, Andreas Nuyts, and Lars Birkedal. 2020. Multimodal dependent type theory. In Proceedings of

the 35th Annual ACM/IEEE Symposium on Logic in Computer Science. 492–506.
Junyoung Jang, Sophia Roshal, Frank Pfenning, and Brigitte Pientka. 2024. Adjoint Natural Deduction (Extended Version).

CoRR abs/2402.01428 (2024).
Neelakantan R. Krishnaswami, Cécilia Pradic, and Nick Benton. 2015. Integrating Linear and Dependent Types. In Principles

of Programming Languages (POPL). http://www.cs.bham.ac.uk/~krishnan/dlnl-paper.pdf.
Paul Blain Levy, John Power, and Hayo Thielecke. 2003. Modelling environments in call-by-value programming languages.

Inf. Comput. 185, 2 (2003), 182–210.
Daniel R Licata and Michael Shulman. 2016. Adjoint logic with a 2-category of modes. In Logical Foundations of Computer

Science: International Symposium, LFCS 2016, Deerfield Beach, FL, USA, January 4-7, 2016. Proceedings. Springer, 219–235.
Sam Lindley and J Garrett Morris. 2017. Lightweight Functional Session Types. In Behavioural Types: from Theory to Tools.

River Publishers, 265–286.
Anton Lorenzen, Daan Leijen, and Wouter Swierstra. 2023. FP2: Fully in-Place Functional Programming. Proceedings of the

ACM on Programming Languages 7, ICFP (2023), 275–304.
Daniel Marshall, Michael Vollmer, and Dominic Orchard. 2022. Linearity and uniqueness: An entente cordiale. In European

Symposium on Programming. Springer International Publishing Cham, 346–375.
Nicholas D. Matsakis and Felix S. Klock. 2014. The Rust Language. Ada Lett. 34, 3 (oct 2014), 103–104. https://doi.org/10.

1145/2692956.2663188
Karl Mazurak, Jianzhou Zhao, and Steve Zdancewic. 2010. Lightweight linear types in system fdegree. In TLDI. ACM, 77–88.
J. Garrett Morris. 2016. The best of both worlds: linear functional programming without compromise. In ICFP. ACM,

448–461.
Dominic Orchard, Vilem-Benjamin Liepelt, and Harley Eades III. 2019. Quantitative program reasoning with graded modal

types. Proceedings of the ACM on Programming Languages 3, ICFP (2019), 1–30.
Young Gil Park and Benjamin Goldberg. 1992. Escape analysis on lists. In Proceedings of the ACM SIGPLAN 1992 conference

on Programming language design and implementation. 116–127.
Tomas Petricek, Dominic Orchard, and Alan Mycroft. 2014. Coeffects: A Calculus of Context-dependent Computation. In

Proceedings of the 19th ACM SIGPLAN International Conference on Functional Programming (Gothenburg, Sweden) (ICFP
’14). ACM, 123–135.

François Pottier and Jonathan Protzenko. 2013. Programming with Permissions in Mezzo. In Proceedings of the 18th ACM

SIGPLAN International Conference on Functional Programming (Boston, Massachusetts, USA) (ICFP ’13). ACM, 173–184.
https://doi.org/10.1145/2500365.2500598

Klaas Pruiksma, William Chargin, Frank Pfenning, and Jason Reed. 2018. Adjoint logic. Unpublished manuscript, April

(2018).
Alex Reinking, Ningning Xie, Leonardo de Moura, and Daan Leijen. 2021. Perceus: Garbage free reference counting

with reuse. In Proceedings of the 42nd ACM SIGPLAN International Conference on Programming Language Design and

Implementation. 96–111.
Michael Shulman. 2023. Semantics of multimodal adjoint type theory. arXiv preprint arXiv:2303.02572 (2023).
Arnaud Spiwack. 2018. Linear types. A GHC Proposal. https://github.com/ghc-proposals/ghc-proposals/blob/master/

proposals/0111-linear-types.rst
Arnaud Spiwack. 2023. Linear constraints proposal. A GHC Proposal. https://github.com/tweag/ghc-proposals/blob/linear-

constraints/proposals/0621-linear-constraints.rst
Arnaud Spiwack, Csongor Kiss, Jean-Philippe Bernardy, Nicolas Wu, and Richard A. Eisenberg. 2022. Linearly qualified

types: generic inference for capabilities and uniqueness. Proc. ACM Program. Lang. 6, ICFP, Article 95 (aug 2022), 28 pages.
https://doi.org/10.1145/3547626

Wenhao Tang, Daniel Hillerström, Sam Lindley, and J. Garrett Morris. 2024. Soundly Handling Linearity. Proc. ACM Program.

Lang. 8, POPL (2024), 1600–1628.
Mads Tofte, Lars Birkedal, Martin Elsman, and Niels Hallenberg. 2004. A retrospective on region-based memory management.

Higher-Order and Symbolic Computation 17 (2004), 245–265.
Mads Tofte, Lars Birkedal, Martin Elsman, Niels Hallenberg, Tommy Højfeld Olesen, and Peter Sestoft. 2002. Programming

with regions in the ML Kit (for version 4). IT University of Copenhagen.
Mads Tofte and Jean-Pierre Talpin. 1997. Region-based memory management. Information and computation 132, 2 (1997),

109–176.
Cassia Torczon, Emmanuel Suárez Acevedo, Shubh Agrawal, Joey Velez-Ginorio, and Stephanie Weirich. 2023. Effects and

Coeffects in Call-By-Push-Value (Extended Version). arXiv preprint arXiv:2311.11795 (2023).
Jesse A. Tov and Riccardo Pucella. 2011. Practical affine types. In POPL. ACM, 447–458.
Sebastian Ullrich and Leonardo de Moura. 2019. Counting immutable beans: Reference counting optimized for purely

functional programming. In Proceedings of the 31st Symposium on Implementation and Application of Functional Languages.

http://www.cs.bham.ac.uk/~krishnan/dlnl-paper.pdf
https://doi.org/10.1145/2692956.2663188
https://doi.org/10.1145/2692956.2663188
https://doi.org/10.1145/2500365.2500598
https://github.com/ghc-proposals/ghc-proposals/blob/master/proposals/0111-linear-types.rst
https://github.com/ghc-proposals/ghc-proposals/blob/master/proposals/0111-linear-types.rst
https://github.com/tweag/ghc-proposals/blob/linear-constraints/proposals/0621-linear-constraints.rst
https://github.com/tweag/ghc-proposals/blob/linear-constraints/proposals/0621-linear-constraints.rst
https://doi.org/10.1145/3547626

28 Lorenzen et al.

1–12.
David Walker. 2005. Substructural type systems. Advanced topics in types and programming languages (2005), 3–44.
James Wood and Robert Atkey. 2022. A Framework for Substructural Type Systems. In ESOP (Lecture Notes in Computer

Science, Vol. 13240). Springer, 376–402.
Andrew K. Wright. 1995. Simple Imperative Polymorphism. LISP and Symbolic Computation 8 (1995), 343–355. https:

//doi.org/10.1007/BF01018828

https://doi.org/10.1007/BF01018828
https://doi.org/10.1007/BF01018828

Oxidizing OCaml with Modal Memory Management 29

A PROOFS
A.1 Modes as TypeQualifiers
We write that Γ1 + Γ2 is defined if for all variables 𝑥 occurring in both Γ1 and Γ2 at modes (𝑎1, 𝑢1, 𝑙1)
and (𝑎2, 𝑢2, 𝑙2) respectively, we have 𝑢1 = 𝑢2 = shared and 𝑙1 = 𝑙2.

Lemma A.1. If (Γ1 + Γ2) + (Γ3 + Γ4) is defined, then Γ𝑖 + Γ𝑗 is defined for 𝑖 < 𝑗 .

Proof. Clear. □

Lemma A.2 (Context joining is monotone). If Γ1+Γ2 is defined, then Γ1 ≥ Γ1+Γ2 and Γ2 ≥ Γ1+Γ2.

Proof. By induction on the contexts. If 𝑥 occurs in both Γ1 and Γ2 at modes (𝑎1, 𝑢1, 𝑙1) and
(𝑎2, 𝑢2, 𝑙2) respectively, then it occurs in Γ1 + Γ2 at mode (𝑎3, 𝑢3, 𝑙3) with 𝑙1 = 𝑙2 = 𝑙3 and 𝑎3 = many
and 𝑢1 = 𝑢2 = shared. Thus (𝑎1, 𝑢1, 𝑙1) ≥ (𝑎3, 𝑢3, 𝑙3) and (𝑎2, 𝑢2, 𝑙2) ≥ (𝑎3, 𝑢3, 𝑙3) □

Lemma A.3 (Weakening variables). If Γ, Γ′ ⊢ 𝑒 : 𝜏2 @ 𝜇2, then Γ, 𝑥 : 𝜏1 @ 𝜇1, Γ
′ ⊢ 𝑒 : 𝜏2 @ 𝜇2.

Proof. By straightforward induction on the typing derivation. □

Lemma A.4 (Monotonicity of locks). If Γ ≤ Γ′ and 𝜇 ≥ 𝜇′, then Γ,µ 𝜇 ≤ Γ′,µ 𝜇′

Proof. Induction on the length of Γ, Γ′. The nontrivial case is a variable 𝑥 present in both Γ and
Γ′, where we have:

𝑥 : (𝑎1, 𝑢1, 𝑙1) ∈ Γ 𝜇 = (𝑎2, 𝑢2, 𝑙2)
𝑥 : (𝑎′1, 𝑢′

1, 𝑙
′
1) ∈ Γ′ 𝜇′ = (𝑎′2, 𝑢′

2, 𝑙
′
2)

(𝑎1, 𝑢1, 𝑙1) ≤ (𝑎′1, 𝑢′
1, 𝑙

′
1) (𝑎′2, 𝑢′

2, 𝑙
′
2) ≤ (𝑎2, 𝑢2, 𝑙2)

If the variable is present in Γ′,µ 𝜇′ (because 𝑎′1 ≤ 𝑎′2 and 𝑙
′
1 ≤ 𝑙 ′2) we must show it is also in Γ,µ 𝜇

with a submode, that is we need to prove:

(𝑎1, 𝑢1 ∨ 𝑎
†
2, 𝑙1) ≤ (𝑎′1, 𝑢′

1 ∨ 𝑎′2
†
, 𝑙 ′1) 𝑎1 ≤ 𝑎2 𝑙1 ≤ 𝑙2

which follow by transitivity from the assumptions above and the antimonotonicity of (−)†. □

Since Γ = Γ,µ once,shared,local by definition of locking and this is the largest mode, we have as a
corollary of the above that Γ ≤ Γ,µ 𝜇 .

As another corollary, if Γ,µ 𝜇1 ⊢ 𝑒 : 𝜏 @ 𝜇2 and 𝜇1 ≤ 𝜇′1, then Γ,µ 𝜇′1
⊢ 𝑒 : 𝜏 @ 𝜇2 by application of

the sub rule.

Lemma A.5 (Duplicating values). If Γ ⊢ 𝑣 : 𝜏 @ (many, 𝑢, 𝑙) then Γ = Γ1 + Γ2 and Γ𝑖 ⊢ 𝑣 :
𝜏 @ (many, shared, 𝑙).

Proof. We obtain Γ1, Γ2 by using the same affinity and locality as in Γ for all free variables of 𝑣
and setting their uniqueness to shared. The first claim then follows by sequencing join. We show
the second claim by induction on the typing derivation of 𝑣 . For variables, this follows since we use
the same affinity and locality and use the variable as shared. For closures, a µ (many,𝑢,𝑙) is applied to
their body which turns all uniqe bindings into shared, so any variables used by the closure must
be present with the same modes in Γ𝑖 . For other value constructors, it follows directly from the
inductive hypothesis. □

Lemma A.6 (Substitution). If Γ1, 𝑥 : 𝜏1 @ 𝜇1, Γ2 ⊢ 𝑒 : 𝜏2 @ 𝜇2 and Γ′ ⊢ 𝑣 : 𝜏1 @ 𝜇1 and Γ1 + Γ′ is
defined, then (Γ1 + Γ′), 𝑥 : −, Γ2 ⊢ 𝑒 [𝑣/𝑥] : 𝜏2 @ 𝜇2.

Proof. By induction on the typing derivation of 𝑒 .

30 Lorenzen et al.

• Case var, matching variables: We have Γ′ ⊢ 𝑣 : 𝜏2@𝜇2 and we we show that (Γ1+Γ′), Γ2 ⊢ 𝑣 :
𝜏1 @ (𝑎2, 𝑢2, 𝑙2) by first using monotonicity of context joining and then weakening variables
repeatedly.

• Case var, mismatching variables: Clear.
• Case sub: If 𝑥 is weakened 𝜇1 ≤ 𝜇3, then use the sub-rule to obtain Γ′ ⊢ 𝑣 : 𝜏1 @ 𝜇3 and
apply the inductive hypothesis. If 𝑥 becomes unused, the claim follows directly.

• Case pair: If 𝑥 is only used in one component, use the inductive hypothesis on that compo-
nent. If 𝑥 is used in both components and is split, use the duplicating values and invoke the
inductive hypothesis.

• Case lam: The inductive hypothesis yields:

((Γ1,µ 𝜇2) + Γ′), 𝑥 : −, (Γ2,µ 𝜇2) ⊢ (𝜆𝑦.𝑒) [𝑣/𝑥] : 𝜏2 @ 𝜇2

from which the result follows by the sub rule since Γ𝑖 ≤ Γ𝑖 ,µ 𝜇2 .
• All other cases are clear, since they do not modify the context beyond adding new variables,
or joining contexts (which can be done analogous to the pair rule).

□

A.2 Borrowing
A.2.1 Approach. We first recast our let𝑦 = &𝑥 in 𝑒 construct into a more general borrow! 𝑦 =

(𝑥1, . . . , 𝑥𝑛) for 𝑒 construct, allowing simultaneous borrowing. (This transformation is not necessary
for this proof, but instead relates the simpler surface construct to a more general one that we have
already worked with.)
We need to be able to access the continuation of the borrow! construct. We can do this by

transforming the program into A-normal form (ANF), which floats all compound computations out
of let-bindings and thus makes the continuation explicit. Returning to our introductory example,
we can desugar the program as follows:

case𝑏
inl𝑦 → borrow! 𝑧 = 𝑧 for 𝑥 = (𝑓 𝑧) in ℎ (𝑥, 𝑧)
inr𝑦 → borrow! 𝑧 = 𝑧 for 𝑥 = (𝑔 𝑧) in ℎ (𝑥, 𝑧)

...where the final computation ℎ (𝑥, 𝑧) got duplicated into both branches. To achieve this, we
perform a standard ANF transformation, which can easily be shown to be type-preserving in our
extended calculus:

Lemma A.7 (Normalization to ANF is type-preserving). If Γ ⊢ 𝑒1 : 𝜏 @ 𝜇 and 𝑒1 ⇝𝐴𝑁𝐹 𝑒2,

then Γ ⊢ 𝑒2 : 𝜏 @ 𝜇.

Unfortunately, though, a translation to ANF is not quite enough. This is because a standard ANF
transformation can not normalize the borrow! construct. In particular, if borrow!’s are nested, the
inner borrow! can not be moved to obtain full access to its continuation:

let𝑥 = (borrow! 𝑦 = 𝑦 for let 𝑧 = 𝑒1 in borrow! 𝑧′ = 𝑧′ for ℎ (𝑦, 𝑧, 𝑧′)) in 𝑒2

Here, the borrow of 𝑧′ = 𝑧′ should allow us to use 𝑧′ again in 𝑒2. However, to achieve this with
our original borrowing rule, we would need to ensure that the borrow of 𝑧′ = 𝑣2 and 𝑒2 are in the
same scope. Unfortunately, there is no easy transformation that would allow us to do this (e.g.,
𝑒2 can not be moved into the scope of the borrow since it may not be global). Instead, we will

Oxidizing OCaml with Modal Memory Management 31

explicitly pass the borrowed variables out of their scope to obtain a term in our mode calculus:

borrow! 𝑦 = 𝑦 for 𝑥 = (let 𝑧 = 𝑒1 in borrow! 𝑧′ = 𝑧′ for 𝑥 ′ = ℎ (𝑦, 𝑧, 𝑧′) in (𝑥 ′, 𝑧′))
in let𝑦 = 𝑦 in let (_, 𝑥, 𝑧′) = 𝑥 in 𝑒2

This is possible since our borrow rule ensures that borrowed variables are global and so are
allowed to escape the region. We can show that the transformed program can then be checked in
the mode calculus:

Lemma A.8 (Passing borrowed variables is type-preserving). If Γ ⊢ 𝑒1 : 𝜏@𝜇 and 𝑒1 ⇝𝑝𝑎𝑠𝑠 𝑒2,

then Γ ⊢ 𝑒2 : 𝜏 @ 𝜇.

A.2.2 Proofs.

Lemma A.9 (Context joining is associative). Γ1 #(Γ2 # Γ3) = (Γ1 # Γ2) # Γ3

Proof. By induction over the contexts. We only consider the cases where a variable occurs in
all three contexts with a mode and borrowing annotation. If a variable is omitted in at least one of
the three contexts, associativity follows easily. For the purpose of this proof, we will consider a
mode 𝜇 as a collection of three functions 𝑎(𝑢), 𝑙 (𝑢), 𝑏 that map uniqueness to affinity, locality and a
borrowing tag ∈ {B,O}—corresponding to the flow of information.

Our sequencing join operation is then written as follows:

𝑠𝑒𝑞(𝑎1, 𝑎2) (𝑢) = many
𝑠𝑒𝑞(𝑙1, 𝑙2) (𝑢) = 𝑙1 (shared) ∧ 𝑙2 (shared)
𝑠𝑒𝑞(𝑏1, 𝑏2) = O

And the borrowing join operation is written as follows:

𝑏𝑜𝑟 (𝑎1, 𝑎2) (𝑢) = many
𝑏𝑜𝑟 (𝑙1, 𝑙2) (𝑢) = 𝑙1 (shared) ∧ 𝑙2 (𝑢)

𝑏𝑜𝑟 (B, 𝑏2) = 𝑏2

Given as input affinities (𝑎1, 𝑎2, 𝑎3), uniqueness 𝑢 and localities (𝑙1, 𝑙2, 𝑙3) and borrowing tags
(𝑏1, 𝑏2, 𝑏3), we have to consider four cases, depending on whether (𝑏1, 𝑏2) are borrowing:

𝑠𝑒𝑞(𝑠𝑒𝑞(𝑎1, 𝑎2), 𝑎3) (𝑢) = many
= 𝑠𝑒𝑞(𝑎1, 𝑠𝑒𝑞(𝑎2, 𝑎3)) (𝑢)

𝑠𝑒𝑞(𝑠𝑒𝑞(𝑙1, 𝑙2), 𝑙3) (𝑢) = 𝑠𝑒𝑞(𝑙1, 𝑙2) (shared) ∧ 𝑙3 (shared)
= (𝑙1 (shared) ∧ 𝑙2 (shared)) ∧ 𝑙3 (shared)
= 𝑙1 (shared) ∧ (𝑙2 (shared) ∧ 𝑙3 (shared))
= 𝑙1 (shared) ∧ 𝑠𝑒𝑞(𝑙2, 𝑙3) (shared)
= 𝑠𝑒𝑞(𝑙1, 𝑠𝑒𝑞(𝑙2, 𝑙3)) (𝑢)

𝑠𝑒𝑞(𝑠𝑒𝑞(O,O), 𝑏3) = O
= 𝑠𝑒𝑞(O, 𝑠𝑒𝑞(O, 𝑏3))

32 Lorenzen et al.

𝑠𝑒𝑞(𝑠𝑒𝑞(𝑎1, 𝑎2), 𝑎3) (𝑢) = many
= 𝑠𝑒𝑞(𝑎1, 𝑏𝑜𝑟 (𝑎2, 𝑎3)) (𝑢)

𝑠𝑒𝑞(𝑠𝑒𝑞(𝑙1, 𝑙2), 𝑙3) (𝑢) = 𝑠𝑒𝑞(𝑙1, 𝑙2) (shared) ∧ 𝑙3 (shared)
= (𝑙1 (shared) ∧ 𝑙2 (shared)) ∧ 𝑙3 (shared)
= 𝑙1 (shared) ∧ (𝑙2 (shared) ∧ 𝑙3 (shared))
= 𝑙1 (shared) ∧ 𝑏𝑜𝑟 (𝑙2, 𝑙3) (shared)
= 𝑠𝑒𝑞(𝑙1, 𝑏𝑜𝑟 (𝑙2, 𝑙3)) (𝑢)

𝑠𝑒𝑞(𝑠𝑒𝑞(O,B), 𝑏3) = O
= 𝑠𝑒𝑞(O, 𝑏𝑜𝑟 (B, 𝑏3))

𝑠𝑒𝑞(𝑏𝑜𝑟 (𝑎1, 𝑎2), 𝑎3) (𝑢) = many
= 𝑏𝑜𝑟 (𝑎1, 𝑠𝑒𝑞(𝑎2, 𝑎3)) (𝑢)

𝑠𝑒𝑞(𝑏𝑜𝑟 (𝑙1, 𝑙2), 𝑙3) (𝑢) = 𝑏𝑜𝑟 (𝑙1, 𝑙2) (shared) ∧ 𝑙3 (shared)
= (𝑙1 (shared) ∧ 𝑙2 (shared)) ∧ 𝑙3 (shared)
= 𝑙1 (shared) ∧ (𝑙2 (shared) ∧ 𝑙3 (shared))
= 𝑙1 (shared) ∧ 𝑠𝑒𝑞(𝑙2, 𝑙3) (𝑢)
= 𝑏𝑜𝑟 (𝑙1, 𝑠𝑒𝑞(𝑙2, 𝑙3)) (𝑢)

𝑠𝑒𝑞(𝑏𝑜𝑟 (B,O), 𝑏3) = O
= 𝑏𝑜𝑟 (B, 𝑠𝑒𝑞(O, 𝑏3))

𝑏𝑜𝑟 (𝑏𝑜𝑟 (𝑎1, 𝑎2), 𝑎3) (𝑢) = many
= 𝑏𝑜𝑟 (𝑎1, 𝑏𝑜𝑟 (𝑎2, 𝑎3)) (𝑢)

𝑏𝑜𝑟 (𝑏𝑜𝑟 (𝑙1, 𝑙2), 𝑙3) (𝑢) = 𝑏𝑜𝑟 (𝑙1, 𝑙2) (shared) ∧ 𝑙3 (𝑢)
= (𝑙1 (shared) ∧ 𝑙2 (shared)) ∧ 𝑙3 (𝑢)
= 𝑙1 (shared) ∧ (𝑙2 (shared) ∧ 𝑙3 (𝑢))
= 𝑙1 (shared) ∧ 𝑏𝑜𝑟 (𝑙2, 𝑙3) (𝑢)
= 𝑏𝑜𝑟 (𝑙1, 𝑏𝑜𝑟 (𝑙2, 𝑙3)) (𝑢)

𝑏𝑜𝑟 (𝑏𝑜𝑟 (B,B), 𝑏3) = 𝑏3

= 𝑏𝑜𝑟 (B, 𝑠𝑒𝑞(B, 𝑏3))
□

Wewrite that Γ1 # Γ2 is defined if for all variables 𝑥 occurring in both Γ1 and Γ2 at modes (𝑎1, 𝑢1, 𝑙1)𝑏1
and (𝑎2, 𝑢2, 𝑙2)𝑏2 respectively, we have 𝑢1 = shared and either 𝑢2 = shared or 𝑏1 = B.

Lemma A.10. If (Γ1 # Γ2) #(Γ3 # Γ4) is defined, then Γ𝑖 # Γ𝑗 is defined for 𝑖 < 𝑗 .

Proof. By induction on the contexts. By the assumption, we have that a variable is unique in Γ𝑖
only if it is unused in all Γ𝑗 (𝑖 < 𝑗). Similarly, a variable is only unique in Γ𝑗 if it is borrowed in all
Γ𝑖 (𝑖 < 𝑗). □

Oxidizing OCaml with Modal Memory Management 33

Lemma A.11 (Context joining is monotone). If Γ1 # Γ2 is defined, then Γ1 ≥ Γ1 # Γ2 and Γ2 ≥
Γ1 # Γ2.

Proof. By induction on the contexts. Obvious for the empty context and if (at least) one of the
variables is unused. Otherwise, we have 𝑎 ≥ many for any affinity 𝑎 and 𝑙𝑖 ≥ 𝑙1 ∧ 𝑙2 for any locality
𝑙𝑖 (i=1,2). □

Lemma A.12 (Borrowing values). If Γ ⊢ 𝑣 : 𝜏 @ (many, 𝑢, 𝑙) then Γ = ⌈Γ1⌉ # Γ2 and ⌈Γ1⌉ ⊢ 𝑣 :
𝜏 @ (many, shared, 𝑙) and Γ2 ⊢ 𝑣 : 𝜏 @ (many, 𝑢, 𝑙).

Proof. We obtain Γ1 from Γ by making all variables shared. We let Γ2 be Γ. Then we can see
the first claim by induction on the typing derivation of 𝑣 . For variables, this follows directly. For
closures, this follows from the duplicating closures lemma. For all other value constructors it follows
directly from the inductive hypothesis. □

Lemma A.13 (Substitution). If Γ1, 𝑥 : 𝜏1 @ 𝜇1, Γ2 ⊢ 𝑒 : 𝜏2 @ 𝜇2 and Γ′ ⊢ 𝑣 : 𝜏1 @ 𝜇1 and Γ1 # Γ′ is
defined, then (Γ1 # Γ′), Γ2 ⊢ 𝑒 [𝑣/𝑥] : 𝜏2 @ 𝜇2.

Proof. By induction on the typing derivation of 𝑒 , using as a second inductive hypothesis
that: If Γ1, 𝑥 : 𝜏1 @B 𝜇1, Γ2 ⊢ 𝑒 : 𝜏2 @ 𝜇2 and ⌈Γ′⌉ ⊢ 𝑣 : 𝜏1 @ 𝜇1 and Γ1 #⌈Γ′⌉ is defined, then
(Γ1 #⌈Γ′⌉), Γ2 ⊢ 𝑒 [𝑣/𝑥] : 𝜏2 @ 𝜇2.

• Case var, matching variables: Since 𝑥 is not borrowed in the var-rule, the first premise
applies. Then use the weakening variables lemma repeatedly to obtain exactly Γ′.

• Case var, mismatching variables: Clear.
• Case sub: If 𝑥 is weakened 𝜇1 ≤ 𝜇3, then use the sub-rule to obtain Γ′ ⊢ 𝑣 : 𝜏1 @ 𝜇3. If 𝑥
becomes unused, the claim follows directly.

• Case pair: If 𝑥 is only used in one component, use the inductive hypothesis on that com-
ponent. If 𝑥 is used in both components and is split using a borrowing join, then use the
borrowing values lemma.

• Case lam: 𝑥 can not be marked borrowed in the context, since the context of the lam rule
was applied to the ⌊Γ⌋ operation. If 𝑥 occurs as owned, then we can invoke either inductive
hypothesis, depending on 𝑥 was marked as borrowed before this annotation was removed.
The inductive hypothesis yields:

((Γ1,µ 𝜇2) + Γ′), 𝑥 : −, (Γ2,µ 𝜇2) ⊢ (𝜆𝑦.𝑒) [𝑣/𝑥] : 𝜏2 @ 𝜇2

from which the result follows by the sub rule since Γ𝑖 ≤ Γ𝑖 ,µ 𝜇2 .
• Case region: If 𝑥 is borrowed in this region, then to show the second hypothesis, use the
first inductive hypothesis.

• All other cases are clear, since they do not modify the context beyond adding new locks or
variables, or joining contexts (which can be done analogous to the pair rule).

□

We show the transformation into ANF in two steps, by first normalizing to fine-grain call-by-
value. In our translation, we will accumulate the tail context of an expression, that contains all
computations in the order in which they occur in the program:

𝐸 F ? | let𝑥 = 𝑒 in𝐸

Lemma A.14 (Splitting of tail contexts). If Γ1 ⊢ 𝐸 [𝑒] : 𝜏 @ 𝜇, then Γ1 = Γ2 # Γ3 and Γ2 ⊢ 𝐸 [()] :
1@ 𝜇 and Γ3, Γ4 ⊢ 𝑒 : 𝜏 @ 𝜇, where Γ4 contains all variables bound in 𝐸.

34 Lorenzen et al.

Proof. By induction on 𝐸.
• If 𝐸 = ?, then let Γ2 contain all variables from Γ1 as unused. Let Γ3 be Γ1 and Γ4 be the empty
context. Then the claim follows.

• Let 𝐸 = let𝑥 = 𝑒′ in𝐸′. Then Γ1 = Γ′1 # Γ′′1 , and Γ′1 ⊢ 𝑒′ and Γ′′1 , 𝑥 ⊢ 𝐸′ [𝑒] : 𝜏 @ 𝜇. By the
induction hypothesis, we obtain (Γ′′1 , 𝑥) = (Γ2, 𝑥) #(Γ3, 𝑥) and Γ2, 𝑥 ⊢ 𝐸′ [()] : 1@ 𝜇 and
(Γ3, 𝑥), Γ4 ⊢ 𝑒 : 𝜏@𝜇. Then Γ1 = Γ′1 # Γ2 # Γ3 and Γ′1 # Γ2 ⊢ 𝐸 [()] : 1@𝜇 and Γ3, (𝑥, Γ4) ⊢ 𝑒 : 𝜏@𝜇.

□

Lemma A.15 (Joining of tail contexts). If Γ1 = Γ2 # Γ3 is defined and Γ2 ⊢ 𝐸 [()] : 1@ 𝜇 and

Γ3, Γ4 ⊢ 𝑒 : 𝜏 @ 𝜇 where Γ4 contains all variables bound in 𝐸, then Γ1 ⊢ 𝐸 [𝑒] : 𝜏 @ 𝜇.

Proof. By induction on 𝐸.
• If 𝐸 = ?, then the claim follows directly using the sub-rule and monotonicity of context join.
• Let 𝐸 = let𝑥 = 𝑒′ in𝐸′. Then Γ2 = Γ′2 # Γ′′2 , and Γ′2 ⊢ 𝑒′ and Γ′′2 , 𝑥 ⊢ 𝐸′ [()] : 1@ 𝜇. By the
induction hypothesis, we obtain (Γ′′2 , 𝑥) #(Γ3, 𝑥) ⊢ 𝐸′ [𝑒] : 𝜏 @ 𝜇. Then Γ′2 # Γ′′2 # Γ3 ⊢ let𝑥 =

𝑒′ in𝐸′ [𝑒] : 𝜏 @ 𝜇.
□

For the definition of the translation to fine-grain call-by-value, see Figure 6.

Lemma A.16 (Normalization to fine-grain is type-preserving). If Γ ⊢ 𝑒 : 𝜏@𝜇 and 𝑒 ⇝ 𝐸 | 𝑣 ,
then Γ ⊢ 𝐸 [𝑣] : 𝜏 @ 𝜇.

Proof. By induction on the translation.
• Case var, case unit: Clear.
• Case inl, case inr, case box: Apply the inductive hypothesis to 𝑒 . Split the typing derivation
of 𝐸 [𝑣]. Then join the typing derivation to 𝐸 [inl 𝑣].

• Case pair: Apply the inductive hypothesis to 𝑒1. Apply the inductive hypothesis to 𝑒2. Then
derive let𝑥1 = 𝐸1 [𝑣1] in let𝑥2 = 𝐸2 [𝑣2] in(𝑥1, 𝑥2) using variable weakening by 𝑥1.

• Case lam: Apply the inductive hypothesis to 𝑒 . Then derive 𝜆𝑥 . 𝐸 [𝑣].
• Case app: Apply the inductive hypothesis to 𝑒1. Apply the inductive hypothesis to 𝑒2. Then
derive let𝑥1 = 𝐸1 [𝑣1] in let𝑥2 = 𝐸2 [𝑣2] in let𝑥 = 𝑥1 𝑥2 in𝑥 using variable weakening by 𝑥1.

• Case unbox: Apply the inductive hypothesis to 𝑒 . Split the typing derivation of 𝐸 [𝑣]. Then
join the typing derivation to derive let𝑥 = 𝐸 [unbox𝜇 𝑣] in𝑥 .

• Case let: Apply the inductive hypothesis to 𝑒1. Apply the inductive hypothesis to 𝑒2. Then
derive let𝑥 = 𝐸1 [𝑣1] in𝐸2 [𝑣2] using variable weakening by 𝑥 .

• Case split: Apply the inductive hypothesis to 𝑒1. Apply the inductive hypothesis to 𝑒2. Then
derive let𝑥 ′ = 𝐸1 [𝑣1] in let (𝑥,𝑦, 𝑧) = 𝑥 ′ in𝐸2 [𝑣2] using variable weakening by 𝑥 ′.

• Case case: Apply the inductive hypothesis to 𝑒1. Apply the inductive hypothesis to 𝑒2. Apply
the inductive hypothesis to 𝑒3. Then derive let𝑥 ′ = 𝐸1 [𝑣1] in let𝑥 ′′ = case𝑥 ′ { inl𝑥 →
𝐸2 [𝑣2]; inr𝑦 → 𝐸3 [𝑣3] } in𝑥 ′′ using variable weakening by 𝑥 ′.

• Case reuse: Apply the inductive hypothesis to 𝑒1. Apply the inductive hypothesis to 𝑒2.
Apply the inductive hypothesis to 𝑒3. Then derive let𝑥1 = 𝐸1 [𝑣1] in let𝑥2 = 𝐸2 [𝑣2] in let𝑥3 =
𝐸3 [𝑣3] in let𝑥 = reuse 𝑥1 in (𝑥2, 𝑥3) in𝑥 using variable weakening by 𝑥1.

• Case borrow: Apply the inductive hypothesis to 𝑒 . Then derive let𝑥 ′ = borrow! 𝑥 =

(𝑥1, . . . , 𝑥𝑛) for 𝐸 [𝑣] in𝑥 ′.
□

Oxidizing OCaml with Modal Memory Management 35

𝑥 ⇝ ? | 𝑥
var

() ⇝ ? | ()
unit

𝑒 ⇝ 𝐸 | 𝑣
inl 𝑒 ⇝ 𝐸 | inl 𝑣

inl
𝑒 ⇝ 𝐸 | 𝑣

inr 𝑒 ⇝ 𝐸 | inr 𝑣
inr

𝑒 ⇝ 𝐸 | 𝑣
box𝜇 𝑒 ⇝ 𝐸 | box𝜇 𝑣

box
𝑒 ⇝ 𝐸 | 𝑣

𝜆𝑥 . 𝑒 ⇝ ? | 𝜆𝑥 . 𝐸 [𝑣]
lam

𝑒1 ⇝ 𝐸1 | 𝑣1 𝑒2 ⇝ 𝐸2 | 𝑣2 𝑥1, 𝑥2 fresh
(𝑒1, 𝑒2) ⇝ let𝑥1 = 𝐸1 [𝑣1] in let𝑥2 = 𝐸2 [𝑣2] in ? | (𝑥1, 𝑥2)

pair

𝑒1 ⇝ 𝐸1 | 𝑣1 𝑒2 ⇝ 𝐸2 | 𝑣2 𝑥, 𝑥1, 𝑥2 fresh
𝑒1 𝑒2 ⇝ let𝑥1 = 𝐸1 [𝑣1] in let𝑥2 = 𝐸2 [𝑣2] in let𝑥 = 𝑥1 𝑥2 in ? | 𝑥

app

𝑒 ⇝ 𝐸 | 𝑣 𝑥 fresh
unbox𝜇 𝑒 ⇝ let𝑥 = 𝐸 [unbox𝜇 𝑣] in ? | 𝑥

unbox
𝑒1 ⇝ 𝐸1 | 𝑣1 𝑒2 ⇝ 𝐸2 | 𝑣2

let𝑥 = 𝑒1 in 𝑒2 ⇝ let𝑥 = 𝐸1 [𝑣1] in𝐸2 | 𝑣2
let

𝑒1 ⇝ 𝐸1 | 𝑣1 𝑒2 ⇝ 𝐸2 | 𝑣2 𝑥 ′ fresh
let (𝑥,𝑦, 𝑧) = 𝑒1 in 𝑒2 ⇝ let𝑥 ′ = 𝐸1 [𝑣1] in let (𝑥,𝑦, 𝑧) = 𝑥 ′ in𝐸2 | 𝑣2

split

𝑒1 ⇝ 𝐸1 | 𝑣1 𝑒2 ⇝ 𝐸2 | 𝑣2 𝑒3 ⇝ 𝐸3 | 𝑣3 𝑥 ′, 𝑥 ′′ fresh
case 𝑒1 { inl𝑥 → 𝑒2; inr𝑦 → 𝑒3 } ⇝

let𝑥 ′ = 𝐸1 [𝑣1] in let𝑥 ′′ = case𝑥 ′ { inl𝑥 → 𝐸2 [𝑣2]; inr𝑦 → 𝐸3 [𝑣3] } in ? | 𝑥 ′′
case

𝑒1 ⇝ 𝐸1 | 𝑣1 𝑒2 ⇝ 𝐸2 | 𝑣2 𝑒3 ⇝ 𝐸3 | 𝑣3 𝑥, 𝑥1, 𝑥2, 𝑥3 fresh
reuse 𝑒1 in (𝑒2, 𝑒3) ⇝

let𝑥1 = 𝐸1 [𝑣1] in let𝑥2 = 𝐸2 [𝑣2] in let𝑥3 = 𝐸3 [𝑣3] in let𝑥 = reuse 𝑥1 in (𝑥2, 𝑥3) in ? | 𝑥

reuse

𝑒 ⇝ 𝐸 | 𝑣 𝑥 ′ fresh
borrow! 𝑥 = (𝑥1, . . . , 𝑥𝑛) for 𝑒 ⇝ let𝑥 ′ = borrow! 𝑥 = (𝑥1, . . . , 𝑥𝑛) for 𝐸 [𝑣] in ? | 𝑥 ′

borrow

Fig. 6. Normalizing Coarse-Grain to Fine-Grain Call-by-Value.

A.2.3 Translation to ANF. Our translation to ANF uses the following tail context:

𝐸 F ? | let𝑥 = 𝑣 in𝐸 | let𝑥 = 𝑣1 𝑣2 in𝐸 | let𝑥 = unbox𝜇 𝑣 in𝐸 | let (𝑥,𝑦, 𝑧) = 𝑣 in𝐸
| case 𝑣 { inl𝑥 → 𝐸; inr𝑦 → 𝐸 } | let𝑥 = reuse 𝑣 in (𝑣1, 𝑣2) in𝐸
| let𝑥 = borrow! 𝑦 = (𝑥1, . . . , 𝑥𝑛) for 𝑒 in𝐸

Again, we obtain a splitting and a joining lemma for tail contexts:

Lemma A.17 (Splitting of tail contexts). If Γ1 ⊢ 𝐸 [𝑒] : 𝜏 @ 𝜇, then Γ1 = Γ2 # Γ3 and Γ2 ⊢ 𝐸 [()] :
1@ 𝜇 and Γ3, Γ4 ⊢ 𝑒 : 𝜏 @ 𝜇, where Γ4 contains all variables bound in all branches of 𝐸.

Proof. By induction on 𝐸.
• If 𝐸 = ?, then let Γ2 contain all variables from Γ1 as unused. Let Γ3 be Γ1 and Γ4 be the empty
context. Then the claim follows.

36 Lorenzen et al.

• Let 𝐸 = let𝑥 = 𝑒′ in𝐸′. Then Γ1 = Γ′1 # Γ′′1 , and Γ′1 ⊢ 𝑒′ and Γ′′1 , 𝑥 ⊢ 𝐸′ [𝑒] : 𝜏 @ 𝜇. By the
induction hypothesis, we obtain (Γ′′1 , 𝑥) = (Γ2, 𝑥) #(Γ3, 𝑥) and Γ2, 𝑥 ⊢ 𝐸′ [()] : 1@ 𝜇 and
(Γ3, 𝑥), Γ4 ⊢ 𝑒 : 𝜏@𝜇. Then Γ1 = Γ′1 # Γ2 # Γ3 and Γ′1 # Γ2 ⊢ 𝐸 [()] : 1@𝜇 and Γ3, (𝑥, Γ4) ⊢ 𝑒 : 𝜏@𝜇.

• Let 𝐸 = let (𝑥,𝑦, 𝑧) = 𝑣 in𝐸′. Similar to the previous case.
• Let 𝐸 = case 𝑣 { inl𝑥 → 𝐸′; inr𝑦 → 𝐸′′ }. Then Γ1 = Γ′1 # Γ′′1 , and Γ′1 ⊢ 𝑣 and Γ′′1 , 𝑥 ⊢
𝐸′ [𝑒] : 𝜏 @ 𝜇 and Γ′′1 , 𝑦 ⊢ 𝐸′′ [𝑒] : 𝜏 @ 𝜇. By the induction hypothesis, we obtain (Γ′′1 , 𝑥) =
(Γ2, 𝑥) #(Γ3, 𝑥) and (Γ′′1 , 𝑦) = (Γ′2 , 𝑦) #(Γ′3 , 𝑦) and Γ2, 𝑥 ⊢ 𝐸′ [()] : 1@ 𝜇 and Γ′2 , 𝑥 ⊢ 𝐸′′ [()] :
1 @ 𝜇 and (Γ3, 𝑥), Γ4 ⊢ 𝑒 : 𝜏 @ 𝜇 and (Γ′3 , 𝑦), Γ′4 ⊢ 𝑒 : 𝜏 @ 𝜇. Then Γ1 = Γ′1 # Γ2 # Γ3 and
Γ1 = Γ′1 # Γ′2 # Γ′3 . Let Γ

′′
3 be the smallest context with Γ′′3 ≥ Γ3 and Γ′′3 ≥ Γ′3 . Let Γ

′′
4 be the

smallest context with Γ′′4 ≥ Γ4 and Γ′′4 ≥ Γ′4 . Then (Γ′′3 , 𝑦), Γ′′4 ⊢ 𝑒 : 𝜏 @ 𝜇. Let Γ′′2 be the
biggest context such that Γ1 = Γ′′2 # Γ′′3 . Then Γ′′2 ≤ Γ2 and Γ′′2 ≤ Γ′2 . Thus Γ

′′
2 ⊢ 𝐸′ [()] : 1@ 𝜇

and and Γ′′2 ⊢ 𝐸′′ [()] : 1@ 𝜇.
□

where we used that:

Lemma A.18 (Intersection of contexts). If Γ ⊢ 𝑒 : 𝜏 @ 𝜇 and Γ′ ⊢ 𝑒 : 𝜏 @ 𝜇. Let Γ′′ be the
smallest context with Γ′′ ≥ Γ and Γ′′ ≥ Γ′. Then Γ′′ ⊢ 𝑒 : 𝜏 @ 𝜇.

Proof. By induction over the typing derivation of 𝑒 .
• Case var: Assume that 𝑥 is at mode (𝑎1, 𝑢1, 𝑙1) in Γ and at mode (𝑎′1, 𝑢′

1, 𝑙
′
1) in Γ′. Then it is

at mode (𝑎1 ∨ 𝑎′1, 𝑢1 ∨ 𝑢′
1, 𝑙1 ∨ 𝑙 ′1) in Γ′′. Then each inequality 𝑎1 ∨ 𝑎′1 ≤ 𝑎2 is fulfilled since

it holds iff 𝑎1 ≤ 𝑎2 and 𝑎′1 ≤ 𝑎2.
• Case sub: Let Γ′′′ be the smallest context with Γ′′′ ≥ Γ1 and Γ′′′ ≥ Γ′1 , where Γ1 ≥ Γ and

Γ′1 ≥ Γ′. Then apply the induction hypothesis to Γ′′′. Since Γ′′′ ≥ Γ′′, use the sub-rule to
obtain the claim.

• All other cases are clear.
□

Lemma A.19 (Joining of tail contexts). If Γ1 = Γ2 # Γ3 is defined and Γ2 ⊢ 𝐸 [()] : 1@ 𝜇 and

Γ3, Γ4 ⊢ 𝑒 : 𝜏 @ 𝜇 where Γ4 contains all variables bound in all branches of 𝐸, then Γ1 ⊢ 𝐸 [𝑒] : 𝜏 @ 𝜇.

Proof. By induction on 𝐸.
• If 𝐸 = ?, then the claim follows directly using the sub-rule and monotonicity of context join.
• Let 𝐸 = let𝑥 = 𝑒′ in𝐸′. Then Γ2 = Γ′2 # Γ′′2 , and Γ′2 ⊢ 𝑒′ and Γ′′2 , 𝑥 ⊢ 𝐸′ [()] : 1@ 𝜇. By the
induction hypothesis, we obtain (Γ′′2 , 𝑥) #(Γ3, 𝑥 : −) ⊢ 𝐸′ [𝑒] : 𝜏 @ 𝜇. Then Γ′2 # Γ′′2 # Γ3 ⊢
let𝑥 = 𝑒′ in𝐸′ [𝑒] : 𝜏 @ 𝜇.

• Let 𝐸 = let (𝑥,𝑦, 𝑧) = 𝑣 in𝐸′. Similar to the previous case.
• Let 𝐸 = case 𝑣 { inl𝑥 → 𝐸′; inr𝑦 → 𝐸′′ }. Then Γ2 = Γ′2 # Γ′′2 , and Γ′2 ⊢ 𝑣 and Γ′′2 , 𝑥 ⊢
𝐸′ [()] : 1 @ 𝜇 and Γ′′2 , 𝑦 ⊢ 𝐸′′ [()] : 1 @ 𝜇. By the induction hypothesis, we obtain
(Γ′′2 , 𝑥) #(Γ3, 𝑥 : −) ⊢ 𝐸′ [𝑒] : 𝜏 @ 𝜇 and (Γ′′2 , 𝑦) #(Γ3, 𝑦 : −) ⊢ 𝐸′′ [𝑒] : 𝜏 @ 𝜇. Then Γ′2 # Γ′′2 # Γ3 ⊢
case 𝑣 { inl𝑥 → 𝐸′ [𝑒]; inr𝑦 → 𝐸′′ [𝑒] } : 𝜏 @ 𝜇.

□

For the definition of the translation to ANF, see Figure 7.

Lemma A.20 (Normalization to fine-grain is type-preserving). If Γ ⊢ 𝑣 : 𝜏 @ 𝜇 and 𝑣 ⇝ 𝑣 ′,
then Γ ⊢ 𝑣 ′ : 𝜏 @ 𝜇. If Γ ⊢ 𝑒 : 𝜏 @ 𝜇 and 𝑒 ⇝ 𝐸 | 𝑣 , then Γ ⊢ 𝐸 [𝑣] : 𝜏 @ 𝜇.

Proof. By induction on the translation. For values this follows directly from the inductive
hypothesis.

Oxidizing OCaml with Modal Memory Management 37

𝑥 ⇝ 𝑥
var

() ⇝ ()
unit

𝑣1 ⇝ 𝑣2

inl 𝑣1 ⇝ inl 𝑣2
inl

𝑣1 ⇝ 𝑣2

inr 𝑣1 ⇝ inr 𝑣2
inr

𝑣1 ⇝ 𝑤1 𝑣2 ⇝ 𝑤2

(𝑣1, 𝑣2) ⇝ (𝑤1,𝑤2)
pair

𝑣1 ⇝ 𝑣2

box𝜇 𝑣1 ⇝ box𝜇 𝑣2
box

𝑒1 ⇝ 𝐸 | 𝑒2
𝜆𝑥. 𝑒1 ⇝ 𝜆𝑥. 𝐸 [𝑒2]

lam

𝑣1 ⇝ 𝑣2

𝑣1 ⇝ ? | 𝑣2
value

𝑣1 ⇝ 𝑣 ′1 𝑣2 ⇝ 𝑣 ′2 𝑥 fresh
𝑣1 𝑣2 ⇝ let𝑥 = 𝑣 ′1 𝑣

′
2 in ? | 𝑥

app

𝑣1 ⇝ 𝑣 ′1 𝑥 fresh
unbox𝜇 𝑣1 ⇝ let𝑥 = unbox𝜇 𝑣 ′1 in ? | 𝑥

unbox
𝑒1 ⇝ 𝐸1 | 𝑣1 𝑒2 ⇝ 𝐸2 | 𝑣2

let𝑥 = 𝑒1 in 𝑒2 ⇝ 𝐸1 [let𝑥 = 𝑣1 in𝐸2] | 𝑣2
let

𝑣1 ⇝ 𝑣 ′1 𝑒 ⇝ 𝐸 | 𝑣2
let (𝑥,𝑦, 𝑧) = 𝑣1 in 𝑒 ⇝ let (𝑥,𝑦, 𝑧) = 𝑣 ′1 in𝐸 | 𝑣2

split

𝑣1 ⇝ 𝑣 ′1 𝑒1 ⇝ 𝐸1 | 𝑣2 𝑒2 ⇝ 𝐸2 | 𝑣3 𝑥 ′ fresh
case 𝑣1 { inl𝑥 → 𝑒1; inr𝑦 → 𝑒2 } ⇝

case 𝑣 ′1 { inl𝑥 → 𝐸1 [let𝑥 ′ = 𝑣2 in ?]; inr𝑦 → 𝐸2 [let𝑥 ′ = 𝑣3 in ?] } | 𝑥 ′
case

𝑣1 ⇝ 𝑣 ′1 𝑣2 ⇝ 𝑣 ′2 𝑣3 ⇝ 𝑣 ′3 𝑥 fresh
reuse 𝑣1 in(𝑣2, 𝑣3) ⇝ let𝑥 = (reuse 𝑣 ′1 in (𝑣 ′2, 𝑣 ′3)) in ? | 𝑥

reuse

𝑒 ⇝ 𝐸 | 𝑣 𝑥 ′ fresh
borrow! 𝑥 = (𝑥1, . . . , 𝑥𝑛) for 𝑒1 ⇝ let𝑥 ′ = borrow! 𝑥 = (𝑥1, . . . , 𝑥𝑛) for 𝐸 [𝑣] in ? | 𝑥 ′

borrow

Fig. 7. Normalizing Fine-Grain Call-by-Value to ANF

• Case app: Apply the inductive hypothesis to 𝑣1. Apply the inductive hypothesis to 𝑣2. Then
derive let𝑥 = 𝑣1 𝑣2 in𝑥 using the app-rule.

• Case unbox: Apply the inductive hypothesis to 𝑣1. Then derive let𝑥 = unbox𝜇 𝑣 ′1 in𝑥 using
the unbox-rule.

• Case let: Apply the inductive hypothesis to 𝑣1. Apply the inductive hypothesis to 𝑒2. Split the
typing derivation of 𝐸1 [𝑣1] into 𝐸1 and 𝑣1. Then use the let rule to derive let𝑥 = 𝑣1 in𝐸2 [𝑣2].
Join the tail contexts to obtain 𝐸1 [let𝑥 = 𝑣1 in𝐸2 [𝑣2]]

• Case split: Apply the inductive hypothesis to 𝑣1. Apply the inductive hypothesis to 𝑒 . Then
derive let (𝑥,𝑦, 𝑧) = 𝑣 ′1 in𝐸 [𝑣2] using the split-rule.

• Case case: Apply the inductive hypothesis to 𝑣1. Apply the inductive hypothesis to 𝑒1. Apply
the inductive hypothesis to 𝑒2. Split the typing derivation of the tail context 𝐸1 [𝑣2] into
𝐸1 and 𝑣2. Split the typing derivation of the tail context 𝐸2 [𝑣3] into 𝐸2 and 𝑣3. Then derive
𝐸1 [let𝑥 ′ = 𝑣2 in𝑥 ′] and 𝐸2 [let𝑥 ′ = 𝑣3 in𝑥 ′] using the let-rule and joining the tail contexts.
Then derive case 𝑣 ′1 { inl𝑥 → 𝐸1 [let𝑥 ′ = 𝑣2 in𝑥 ′]; inr𝑦 → 𝐸2 [let𝑥 ′ = 𝑣3 in𝑥 ′] }.

• Case reuse: Apply the inductive hypothesis to 𝑣1. Apply the inductive hypothesis to 𝑣2.
Apply the inductive hypothesis to 𝑣3. Then derive let𝑥 = reuse 𝑣 ′1 in(𝑣 ′2, 𝑣 ′3) in𝑥 using the
reuse-rule.

38 Lorenzen et al.

• Case borrow: Apply the inductive hypothesis to 𝑒 . Then derive let𝑥 ′ = borrow! 𝑥 =

(𝑥1, . . . , 𝑥𝑛) for 𝐸 [𝑣] in𝑥 ′ using the borrow-rule.
□

A.2.4 Translation to Passing Borrowed Variables. This translation passes borrowed variables ex-
plicitly from a scope, thus allowing us to check the program in the mode calculus. For expressions,
we compute a set 𝐵 of variables that are borrowed but not used in the expression:

For any mode 𝜇 = (𝑎,𝑢, 𝑙), we write box𝜇 𝜏 to denote:
• If (𝑎,𝑢) = (many, shared): Then �𝜇𝜏 ≔ �𝑀 �𝑆 𝜏 .
• If (𝑎,𝑢) = (many, uniqe): Then �𝜇𝜏 ≔ �𝑀𝜏 .
• If (𝑎,𝑢) = (once, shared): Then �𝜇𝜏 ≔ �𝑆𝜏 .
• If (𝑎,𝑢) = (once, uniqe): Then �𝜇𝜏 ≔ 𝜏 .

For a set of borrowed variables 𝐵, we write 𝜏 (𝐵) for the type of an n-tuple of borrowed variables
in 𝐵:

• If 𝐵 = ∅: Then 𝜏 (𝐵) ≔ 1.
• If 𝐵 = (𝑏1 : 𝜏1 @ 𝜇1), 𝐵′: Then 𝜏 (𝐵) ≔ �𝜇1𝜏1 × 𝜏 (𝐵′).

We write cfv(𝑒) for the consumed free variables of an expression 𝑒 , which includes all free
variables of 𝑒 except those occurring only in the n-tuples (𝑥1, . . . , 𝑥𝑛) of borrow! expressions.

The translation to the mode calculus is given in Figure 8.

Lemma A.21 (Passing borrowed variables is type-preserving). If Γ ⊢ 𝑒1 : 𝜏 @ (𝑎,𝑢, 𝑙) and
𝑒1 ⇝ 𝐵 | 𝑒2, then

• if 𝑥 ∈ fv(𝑒1) and 𝑥 is marked as borrowed in Γ, then 𝑥 ∈ 𝐵

• if 𝑙 = local, then 𝐵 = ∅
• Γ ⊢ 𝑒2 : (�(𝑎,𝑢,𝑙)𝜏) × 𝜏 (𝐵) @ (once, unique, 𝑙).

Proof. By induction on the translation.
• Case var, unit: The variable 𝑥 can not be borrowed. and the set of borrowed variables is
clearly empty.

• Case inl, inr, pair and box: The claim follows directly from the inductive hypothesis.
• Case lam: The claim follows from the inductive hypothesis. Notice that in our new lam-rule,
we delete all borrowing annotations from the context.

• Case value: Follows directly from the inductive hypothesis.
• Case app, unbox, reuse, split, let: The claim follows directly from the inductive hypothesis,
since the type and mode of the expression is the type and mode of 𝑒′.

• Case case: Apply the inductive hypothesis to both 𝑒1 and 𝑒2. In the case-rule, we assume
that both expressions are checked with the same context. Thus, if a variable is marked
borrowed in the context used to check the case statement, then it is also marked borrowed
in both branches. If the mode of the case statement is local, then this is also the mode of
the branches and the intersection of two empty sets is empty. Thus the claim follows.

• Case borrow: Apply the inductive hypothesis to 𝑒 . Since all variables 𝑥1, . . . , 𝑥𝑛 are marked
as borrowed in the context, we need to add them to the set of borrowed variables. We can do
so by splitting the 𝑥 re-introduced by the borrow-rule (of the mode calculus) into 𝑥1, . . . , 𝑥𝑛
and adding it to the tuple.

□

We can finish the transformation by wrapping any transformed expression 𝑒 into let(_, 𝑥, _) =
𝑒 in unbox𝜇 𝑥 . Then we obtain the original type and mode:

Oxidizing OCaml with Modal Memory Management 39

𝑥 ⇝ 𝑥
var

() ⇝ ()
unit

𝑣1 ⇝ 𝑣2

inl 𝑣1 ⇝ inl 𝑣2
inl

𝑣1 ⇝ 𝑣2

inr 𝑣1 ⇝ inr 𝑣2
inr

𝑣1 ⇝ 𝑤1 𝑣2 ⇝ 𝑤2

(𝑣1, 𝑣2) ⇝ (𝑤1,𝑤2)
pair

𝑣1 ⇝ 𝑣2

box𝜇 𝑣1 ⇝ box𝜇 𝑣2
box

𝑒 ⇝ 𝐵 | 𝑒′

𝜆𝑥. 𝑒 ⇝ 𝜆𝑥. 𝑒′
lam

𝑣1 ⇝ 𝑣2

𝑣1 ⇝ ∅ | (box𝜇 𝑣2, ())
value

𝑣1 ⇝ 𝑣 ′1 𝑣2 ⇝ 𝑣 ′2 𝑒 ⇝ 𝐵 | 𝑒′

let𝑥 = 𝑣1 𝑣2 in 𝑒 ⇝ 𝐵 | let𝑥 = 𝑣 ′1 𝑣
′
2 in 𝑒

′ app

𝑣 ⇝ 𝑣 ′ 𝑒 ⇝ 𝐵 | 𝑒′

let𝑥 = unbox𝜇 𝑣 in 𝑒 ⇝ 𝐵 | let𝑥 = unbox𝜇 𝑣 ′ in 𝑒′
unbox

𝑣1 ⇝ 𝑣 ′1 𝑣2 ⇝ 𝑣 ′2 𝑣3 ⇝ 𝑣 ′3 𝑒 ⇝ 𝐵 | 𝑒′

let𝑥 = reuse 𝑣1 in (𝑣2, 𝑣3) in 𝑒 ⇝ 𝐵 | let𝑥 = reuse 𝑣 ′1 in (𝑣 ′2, 𝑣 ′3) in 𝑒′
reuse

𝑣 ⇝ 𝑣 ′ 𝑒 ⇝ 𝐵 | 𝑒′

let (𝑥,𝑦, 𝑧) = 𝑣 in 𝑒 ⇝ 𝐵 | let (𝑥,𝑦, 𝑧) = 𝑣 ′ in 𝑒′
split

𝑣 ⇝ 𝑣 ′ 𝑒 ⇝ 𝐵 | 𝑒′

let𝑥 = 𝑣 in 𝑒 ⇝ 𝐵 | let𝑥 = 𝑣 ′ in 𝑒′
let

𝑣1 ⇝ 𝑣 ′1 𝑒1 ⇝ 𝐵1 | 𝑒′1 𝑒2 ⇝ 𝐵2 | 𝑒′2 𝑥 ′, 𝑦′ fresh
case 𝑣1 { inl𝑥 → 𝑒1; inr𝑦 → 𝑒2 } ⇝ 𝐵1 ∩ 𝐵2 | case 𝑣 ′1 {

inl𝑥 → let(_, 𝑥 ′, 𝐵1) = 𝑒′1 in (𝑥 ′, 𝐵1 ∩ 𝐵2);
inr𝑦 → let(_, 𝑦′, 𝐵2) = 𝑒′2 in (𝑦′, 𝐵1 ∩ 𝐵2) }

case

𝑒 ⇝ 𝐵 | 𝑒′ 𝑦 fresh
borrow! 𝑥 = (𝑥1, . . . , 𝑥𝑛) for 𝑒 ⇝ 𝐵, 𝑥1, . . . , 𝑥𝑛 | borrow 𝑥 = (𝑥1, . . . , 𝑥𝑛)
for 𝑦 = 𝑒′ in let (𝑥1, . . . , 𝑥𝑛) = 𝑥 in let (_, 𝑦, 𝐵) = 𝑦 in (𝑦, (𝐵, 𝑥1, . . . , 𝑥𝑛))

borrow

Fig. 8. Translation to Passing Borrowed Variables

Lemma A.22 (Passing borrowed variables is type-preserving). If Γ ⊢ 𝑒1 : 𝜏 @ 𝜇 and 𝑒1 ⇝𝑝𝑎𝑠𝑠

𝑒2, then Γ ⊢ 𝑒2 : 𝜏 @ 𝜇.

A.3 Semantics
In Figure 9 and 10, we extend the semantics of the mode calculus with rules to load and unload
expressions from our evaluation context. These rules are quite straightforward and do not modify
the store or current stack frame number. The only reason why we list them separately rather than
wrapping them up in a single step-rule is that we need to adjust the mode of the state depending
on the expression we are loading or unloading.
In the rules we further assume that the syntax of our language is annotated with the modes of

sub-expressions. For example, we write application as 𝑓 𝜇1𝑥 where 𝜇1 is the mode of the argument
𝑥 . We also include a sub𝜇 term former for the sub-rule, which is annotated with the mode of the
inner expression.

We store the evaluation context as a zipper in the semantics, and will write 𝐸 [𝑒] to mean that 𝑒 is
in the hole of the zipper 𝐸. Similarly, we write 𝐸 [𝐸′] to mean that 𝐸′ is in the hole of the zipper 𝐸.

40 Lorenzen et al.

𝐸 B ? | inl𝐸 | inr𝐸 | (𝐸, 𝑒) | (𝑎, 𝐸) | box𝜇 𝐸𝜇 | (𝐸 𝜇𝑒)𝜇 | (𝑏 𝐸)𝜇 | let𝜇 𝑥 = 𝐸 in𝜇 𝑒
| sub𝜇 𝐸 | unbox𝜇 𝐸𝜇 | let𝜇 (𝑥,𝑦, 𝑧) = 𝐸 in𝜇 𝑒 | case𝜇 𝐸𝜇 { inl 𝑥 → 𝑒; inr 𝑦 → 𝑒 }
| reuse𝐸 with𝜇 (𝑒, 𝑒) | reuse𝑏 with𝜇 (𝐸, 𝑒) | reuse𝑏 with𝜇 (𝑐, 𝐸)
| borrow 𝑥 = 𝐸 for 𝑦 = 𝑒 in𝜇 𝑒 | borrow 𝑥 = 𝑏 for 𝑦 = 𝐸 in𝜇 𝑒

(𝑖𝑛𝑙1) 𝑆 8 𝐸 ▷𝜇
𝑛 inl 𝑒 ⇝ 𝑆 8 inl𝐸 ▷𝜇

𝑛 𝑒

(𝑖𝑛𝑙2) 𝑆 8 inl𝐸 ▷𝜇
𝑛 𝑏 ⇝ 𝑆 8 𝐸 ▷𝜇

𝑛 inl𝑏

(𝑖𝑛𝑟1) 𝑆 8 𝐸 ▷𝜇
𝑛 inr 𝑒 ⇝ 𝑆 8 inr𝐸 ▷𝜇

𝑛 𝑒

(𝑖𝑛𝑟2) 𝑆 8 inr𝐸 ▷𝜇
𝑛 𝑏 ⇝ 𝑆 8 𝐸 ▷𝜇

𝑛 inr𝑏

(𝑝𝑎𝑖𝑟1) 𝑆 8 𝐸 ▷𝜇
𝑛 (𝑒1, 𝑒2) ⇝ 𝑆 8 (𝐸, 𝑒2) ▷𝜇

𝑛 𝑒1

(𝑝𝑎𝑖𝑟2) 𝑆 8 (𝐸, 𝑒2) ▷𝜇
𝑛 𝑏 ⇝ 𝑆 8 (𝑏, 𝐸) ▷𝜇

𝑛 𝑒2

(𝑝𝑎𝑖𝑟3) 𝑆 8 (𝑏, 𝐸) ▷𝜇
𝑛 𝑐 ⇝ 𝑆 8 𝐸 ▷𝜇

𝑛 (𝑏, 𝑐)

(𝑏𝑜𝑥𝑀) 𝑆 8 𝐸 ▷(𝑎,𝑢,𝑙)
𝑛 box𝑀 𝑒 ⇝ 𝑆 8 box𝑀 𝐸 (𝑎,𝑢,𝑙) ▷

(many,𝑢,𝑙)
𝑛 𝑒

(𝑏𝑜𝑥𝑆) 𝑆 8 𝐸 ▷(𝑎,𝑢,𝑙)
𝑛 box𝑆 𝑒 ⇝ 𝑆 8 box𝑆 𝐸 (𝑎,𝑢,𝑙) ▷

(𝑎,shared,𝑙)
𝑛 𝑒

(𝑏𝑜𝑥𝐺) 𝑆 8 𝐸 ▷(𝑎,𝑢,𝑙)
𝑛 box𝐺 𝑒 ⇝ 𝑆 8 box𝐺 𝐸 (𝑎,𝑢,𝑙) ▷

(𝑎,shared,global)
𝑛 𝑒

(𝑏𝑜𝑥2) 𝑆 8 box𝜈 𝐸𝜇 ▷_
𝑛 𝑏 ⇝ 𝑆 8 𝐸 ▷𝜇

𝑛 box𝜈 𝑏

(𝑎𝑝𝑝1) 𝑆 8 𝐸 ▷𝜇1
𝑛 𝑒1

𝜇2𝑒2 ⇝ 𝑆 8 (𝐸 𝜇2𝑒2)𝜇1 ▷
(once,shared,local)
𝑛 𝑒1

(𝑎𝑝𝑝2) 𝑆 8 (𝐸 𝜇2𝑒2)𝜇1 ▷_
𝑛 𝑏 ⇝ 𝑆 8 (𝑏 𝜇2𝐸)𝜇1 ▷

𝜇2
𝑛 𝑒2

(𝑎𝑝𝑝3) 𝑆 8 (𝑏 𝜇2𝐸)𝜇1 ▷_
𝑛 𝑐 ⇝ 𝑆 8 𝐸 ▷𝜇1

𝑛 𝑏 𝜇2𝑐

(𝑙𝑒𝑡1) 𝑆 8 𝐸 ▷𝜇1
𝑛 let𝜇2 𝑥 = 𝑒1 in 𝑒2 ⇝ 𝑆 8 let𝑥 = 𝐸 in𝜇1 𝑒2 ▷

𝜇2
𝑛 𝑒1

(𝑙𝑒𝑡2) 𝑆 8 let𝑥 = 𝐸 in𝜇1 𝑒2 ▷
_
𝑛 𝑏 ⇝ 𝑆 8 𝐸 ▷𝜇1

𝑛 let𝜇2 𝑥 = 𝑏 in 𝑒2
(𝑠𝑢𝑏1) 𝑆 8 𝐸 ▷𝜇1

𝑛 sub𝜇2 𝑒 ⇝ 𝑆 8 sub𝜇1𝐸 ▷
𝜇2
𝑛 𝑒

(𝑠𝑢𝑏2) 𝑆 8 sub𝜇 𝐸 ▷_
𝑛 𝑏 ⇝ 𝑆 8 𝐸 ▷𝜇

𝑛 𝑏

(𝑢𝑛𝑏𝑜𝑥𝑀) 𝑆 8 𝐸 ▷(𝑎,𝑢,𝑙)
𝑛 unbox𝑀 𝑒 ⇝ 𝑆 8 unbox𝑀 𝐸 (𝑎,𝑢,𝑙) ▷

(once,𝑢,𝑙)
𝑛 𝑒

(𝑢𝑛𝑏𝑜𝑥𝑆) 𝑆 8 𝐸 ▷(𝑎,𝑢,𝑙)
𝑛 unbox𝑆 𝑒 ⇝ 𝑆 8 unbox𝑆 𝐸 (𝑎,𝑢,𝑙) ▷

(𝑎,shared,𝑙)
𝑛 𝑒

(𝑢𝑛𝑏𝑜𝑥𝐺) 𝑆 8 𝐸 ▷(𝑎,𝑢,𝑙)
𝑛 unbox𝐺 𝑒 ⇝ 𝑆 8 unbox𝐺 𝐸 (𝑎,𝑢,𝑙) ▷

(𝑎,shared,local)
𝑛 𝑒

(𝑢𝑛𝑏𝑜𝑥2) 𝑆 8 unbox𝜇1 𝐸𝜇2 ▷
_
𝑛 𝑏 ⇝ 𝑆 8 𝐸 ▷𝜇2

𝑛 unbox𝜇1 𝑏

(𝑠𝑝𝑙𝑖𝑡1) 𝑆 8 𝐸 ▷𝜇1
𝑛 let𝜇2 (𝑥,𝑦, 𝑧) = 𝑒1 in 𝑒2 ⇝ 𝑆 8 let𝜇2 (𝑥,𝑦, 𝑧) = 𝐸 in𝜇1 𝑒2 ▷

𝜇2
𝑛 𝑒1

(𝑠𝑝𝑙𝑖𝑡2) 𝑆 8 let𝜇2 (𝑥,𝑦, 𝑧) = 𝐸 in𝜇 𝑒 ▷_
𝑛 𝑏 ⇝ 𝑆 8 𝐸 ▷𝜇

𝑛 let𝜇2 (𝑥,𝑦, 𝑧) = 𝑏 in𝜇 𝑒

(𝑟𝑒𝑢𝑠𝑒1) 𝑆 8 𝐸 ▷𝜇
𝑛 reuse 𝑒1 in (𝑒2, 𝑒3) ⇝ 𝑆 8 reuse 𝐸 in𝜇 (𝑒2, 𝑒3) ▷(once,uniqe,global)

𝑛 𝑒1

(𝑟𝑒𝑢𝑠𝑒2) 𝑆 8 reuse 𝐸 in𝜇 (𝑒2, 𝑒3) ▷_
𝑛 𝑎 ⇝ 𝑆 8 reuse 𝑎 in𝜇 (𝐸, 𝑒3) ▷𝜇

𝑛 𝑒2

(𝑟𝑒𝑢𝑠𝑒3) 𝑆 8 reuse 𝑏 in𝜇 (𝐸, 𝑒3) ▷_
𝑛 𝑐 ⇝ 𝑆 8 reuse 𝑏 in𝜇 (𝑐, 𝐸) ▷𝜇

𝑛 𝑒3

(𝑟𝑒𝑢𝑠𝑒4) 𝑆 8 reuse 𝑏 with𝜇 (𝑐, 𝐸) ▷_
𝑛 𝑑 ⇝ 𝑆 8 𝐸 ▷𝜇

𝑛 reuse 𝑏 with𝜇 (𝑐, 𝑑)

Fig. 9. Usage-Aware Store Semantics: Building up the Evaluation Context (1)

Oxidizing OCaml with Modal Memory Management 41

(𝑐𝑎𝑠𝑒1) 𝑆 8 𝐸 ▷𝜇1
𝑛 case𝜇2 𝑒1 { inl 𝑥 → 𝑒2; inr 𝑦 → 𝑒3 }

⇝ 𝑆 8 case𝜇2 𝐸𝜇1 { inl 𝑥 → 𝑒2; inr 𝑦 → 𝑒3 } ▷𝜇2
𝑛 𝑒1

(𝑐𝑎𝑠𝑒2) 𝑆 8 case𝜇2 𝐸𝜇 { inl 𝑥 → 𝑒1; inr 𝑦 → 𝑒2 } ▷_
𝑛 𝑏

⇝ 𝑆 8 𝐸 ▷𝜇
𝑛 case𝜇2 𝑏 { inl 𝑥 → 𝑒1; inr 𝑦 → 𝑒2 }

(𝑏𝑜𝑟𝑟𝑜𝑤1) 𝑆 8 𝐸 ▷𝜇1
𝑛 borrow𝜇2 𝑥 = 𝑒1 for𝜇3 𝑦 = 𝑒2 in 𝑒3

⇝ 𝑆 8 borrow𝜇2𝑥 = 𝐸 for𝜇3 𝑦 = 𝑒2 in𝜇1 𝑒3 ▷
𝜇2
𝑛 𝑒1

(𝑏𝑜𝑟𝑟𝑜𝑤2) 𝑆 8 borrow𝜇2 𝑥 = 𝐸 for𝜇3 𝑦 = 𝑒2 in𝜇1 𝑒3 ▷
_
𝑛 𝑏

⇝ 𝑆 8 𝐸 ▷𝜇3
𝑛 borrow𝜇2 𝑥 = 𝑏 for𝜇3 𝑦 = 𝑒2 in𝜇1 𝑒3

(𝑏𝑜𝑟𝑟𝑜𝑤3) 𝑆 8 𝐸 ▷𝜇1
𝑛 borrow𝜇2𝑥 = 𝑏 for𝜇3 𝑦 = 𝑐 in𝜇1𝑒3

⇝ 𝑆 8 𝐸 ▷𝜇1
𝑛 𝑒3 [𝑥 ≔ 𝑏,𝑦 ≔ 𝑐]

Fig. 10. Usage-Aware Store Semantics: Building up the Evaluation Context (2)

We will by a small abuse of notation consider the hole ? to be a term of our mode calculus of any
type and mode. Similarly, we will in the following occasionally omit the type and mode annotations
of terms, where they are clear to save space and improve readability. We can split and join the
typing derivations of evaluation contexts:

Lemma A.23 (Splitting of evaluation contexts). If Σ1 ⊢ 𝐸 [𝑒 : 𝜏1 @ 𝜇1] : 𝜏2 @ 𝜇2, then

Σ1 = Σ2 + Σ4 and Σ2, Σ3 ⊢ 𝑒 : 𝜏1 @ 𝜇1, and Σ4 ⊢ 𝐸 [?] : 𝜏2 @ 𝜇2, where Σ3 contains all borrowed

variables in 𝐸.

Proof. By induction on 𝐸.
• Case 𝐸 = ?: Then Σ3 = ∅ and the claim follows.
• Case 𝐸 = sub𝐸′, case 𝐸 = inl𝐸′, case 𝐸 = inr𝐸′, case 𝐸 = box𝜈 𝐸′, case 𝐸 = 𝑢𝑛𝑏𝑜𝑥𝜈𝐸

′:
Follows directly from the inductive hypothesis.

• Case 𝐸 = (𝐸′, 𝑒), case 𝐸 = (𝑏, 𝐸′), case 𝐸 = let𝑥 = 𝐸′ in 𝑒 , case 𝐸 = case𝐸′{ inl𝑥 →
𝑒1; inr𝑦 → 𝑒2 }, case 𝐸 = reuse 𝐸′ with (𝑒1, 𝑒2), case 𝐸 = reuse 𝑏 with (𝐸′, 𝑒), case 𝐸 =

reuse 𝑏 with (𝑐, 𝐸′), case 𝐸 = borrow 𝑥 = 𝐸′ for 𝑦 = 𝑒1 in 𝑒2: In each case, we have Σ1 =

Σ′
1 + · · · + Σ′

𝑛 corresponding to the sub-expressions. Invoke the inductive hypothesis on
𝐸′ and its corresponding context Σ′

𝑖 . Then we obtain Σ′
𝑖 = Σ′′

𝑖 + Σ′′′
𝑖 . Then, let Σ2 = Σ′′

𝑖

and Σ3 = Σ′′′
𝑖 + ∑

𝑗≠𝑖 Σ
′
𝑗 . We have Σ1 = Σ2 + Σ3 since the + operation is associative and

commutative. Then the claim follows.
• Case 𝐸 = borrow 𝑥 = 𝑏 for 𝑦 = 𝐸′ in 𝑒: We have Σ1 = Σ′

1 + Σ′
2 + Σ′

3. Apply the inductive
hypothesis to 𝐸′ and Σ′

2, 𝑥 . Then we obtain Σ′
2, 𝑥 = (Σ′′

2 , 𝑥) + (Σ′′′
2 , 𝑥). Let Σ2 = Σ′′

2 and
Σ3 = Σ′

1 +Σ′′′
2 +Σ′

3. Then Σ1 = Σ2 +Σ3 and the claim follows, where 𝑥 is part of the borrowed
variables in 𝐸.

□

LemmaA.24 (Joining of evaluation contexts). If Σ1 = Σ2+Σ4 is defined and Σ2, Σ3 ⊢ 𝑒 : 𝜏1@𝜇1
and Σ4 ⊢ 𝐸 [? : 𝜏1@𝜇1] : 𝜏2@𝜇2, where Σ3 contains all borrowed variables in 𝐸, then Σ1 ⊢ 𝐸 [𝑒] : 𝜏2@𝜇2.

Proof. By induction on 𝐸.
• Case 𝐸 = ?: Then Σ′

2 = Σ3 = ∅ and the claim follows.

42 Lorenzen et al.

• Case 𝐸 = sub𝐸′, case 𝐸 = inl𝐸′, case 𝐸 = inr𝐸′, case 𝐸 = box𝜈 𝐸′, case 𝐸 = 𝑢𝑛𝑏𝑜𝑥𝜈𝐸
′:

Follows directly from the inductive hypothesis.
• Case 𝐸 = (𝐸′, 𝑒), case 𝐸 = (𝑏, 𝐸′), case 𝐸 = let𝑥 = 𝐸′ in 𝑒 , case 𝐸 = case𝐸′{ inl𝑥 →
𝑒1; inr𝑦 → 𝑒2 }, case 𝐸 = reuse 𝐸′ with (𝑒1, 𝑒2), case 𝐸 = reuse 𝑏 with (𝐸′, 𝑒), case 𝐸 =

reuse 𝑏 with (𝑐, 𝐸′), case 𝐸 = borrow 𝑥 = 𝐸′ for 𝑦 = 𝑒1 in 𝑒2: In each case, we have Σ4 =

Σ′
1 + · · · + Σ′

𝑛 corresponding to the sub-expressions. Invoke the inductive hypothesis on
𝐸′ and its corresponding context Σ′

𝑖 (which is defined thanks to monotonicity of the +
operation). Then we obtain Σ2 + Σ′

𝑖 ⊢ 𝐸′ [𝑒] : 𝜏2 @ 𝜇2. Then Σ2 + Σ4 ⊢ 𝐸 [𝑒] : 𝜏2 @ 𝜇2 due to
associativity and commutativity of the + operation.

• Case 𝐸 = borrow 𝑥 = 𝑏 for 𝑦 = 𝐸′ in 𝑒: We have Σ4 = Σ′
1 + Σ′

2 + Σ′
3. Apply the inductive

hypothesis to 𝐸′ and Σ′
2, 𝑥 . Then we obtain (Σ2 + Σ′

2), 𝑥 ⊢ 𝐸′ [𝑒] : 𝜏2 @ 𝜇2. Then Σ2 + Σ4 ⊢
𝐸 [𝑒] : 𝜏2 @ 𝜇2 due to associativity and commutativity of the + operation.

□

LemmaA.25 (Substitution from store). If (𝑆, 𝑏 ↦→𝜇1
𝑚 𝑣, 𝑆 ′) :𝑛 (Σ1, 𝑏 : 𝜏@𝜇2, Σ2) and 𝜇2 = 𝜇3+𝜇4,

then there is a context Σ′
with Σ′ ⊢ 𝑣 : 𝜏@𝜇4 and Σ1+Σ′

is defined and (𝑆, 𝑏 ↦→𝜇′1
𝑚 𝑣, 𝑆 ′) :𝑛 ((Σ1+Σ′), 𝑏 :

𝜏 @ 𝜇3, Σ2).
Proof. By induction on 𝑆 ′. If 𝑆 ′ is empty, then by the wf-ext rule, we have a context Σ′ with

Σ′ ⊢ 𝑣 : 𝜏 @ 𝜇2 and 𝑆 :′𝑛 (Σ1 + Σ′) (and thus Σ1 + Σ′ is defined). If 𝜇3 is −, then (𝑆, 𝑏 ↦→−
𝑚 𝑣) :𝑛′

((Σ1 + Σ′), 𝑏 : −) by the wf-unused rule. If 𝜇3 is not −, then 𝜇2 is many and 𝜇3, 𝜇4 are shared. By
the duplicating values lemma, we can split Σ′ = Σ′′ + Σ′′′ with Σ′′ ⊢ 𝑣 : 𝜏 @ 𝜇3 and Σ′′′ ⊢ 𝑣 : 𝜏 @ 𝜇4.
Then we have (𝑆, 𝑏 ↦→𝜇3

𝑚 𝑣) :𝑛′ ((Σ1 + Σ′′′), 𝑏 : 𝜏 @ 𝜇3) by the wf-ext rule and Σ1 + Σ′′′ is defined
by monotonicity of the + operation.

If 𝑆 ′ is extended by an unused variable, the claim follows directly from the inductive hypothesis.
If 𝑆 ′ is extended by 𝑐 ↦→𝜇

𝑘
𝑤 such that Σ′

1, 𝑐 : 𝜏 @ 𝜇′3, Σ
′
2 ⊢ 𝑤 : 𝜏 ′ @ 𝜇 and (𝑆, 𝑏 ↦→𝜇′1

𝑚 𝑣, 𝑆 ′) :𝑚′

((Σ1 + Σ′
1), 𝑏 : 𝜏 @ 𝜇3 + 𝜇′3, Σ2 + Σ′

2), we can use the inductive hypothesis to obtain the context
Σ′ with (𝑆, 𝑏 ↦→𝜇′1

𝑚 𝑣, 𝑆 ′) :𝑚′ ((Σ1 + Σ′
1 + Σ′), 𝑏 : 𝜏 @ 𝜇3 + 𝜇′3, Σ2 + Σ′

2). Then by the wf-ext rule,
(𝑆, 𝑏 ↦→𝜇′1

𝑚 𝑣, 𝑆 ′, 𝑐 ↦→𝜇

𝑘
𝑤) :𝑛′ ((Σ1 + Σ′), 𝑏 : 𝜏 @ 𝜇3, Σ2, 𝑐 : 𝜏 ′ @ 𝜇). □

Lemma A.26 (Removing unused variables). If (𝑆, 𝑏 : −, 𝑆 ′) :𝑛 (Σ, 𝑏 : −, Σ′), then 𝑆, 𝑆 ′ :𝑛 Σ, Σ′
.

Proof. By induction on 𝑆 ′. If 𝑆 ′ is empty, then by the wf-unused rule, we have 𝑆 :𝑛 Σ. If 𝑆 ′
is extended by an unused address, the claim follows directly from the inductive hypothesis. If
𝑆 ′ is extended otherwise, we notice that 𝑏 is unused inside Σ2. If we denote by Σ′

2 the version
of Σ2 without 𝑏, then we still have Σ′

2 ⊢ 𝑣 : 𝜏 @ 𝜇. The claim then follows from the inductive
hypothesis. □

Lemma A.27 (Copying to stack). If (𝑆, 𝑏 ↦→𝜇1
𝑚 𝑣, 𝑆 ′) :𝑛 (Σ1, 𝑏 : 𝜏 @ 𝜇2, Σ2) where 𝜇2 is many, then

(𝑆, 𝑏 ↦→𝜇1
𝑚 𝑣, 𝑆 ′, copy(𝑛+𝑘,𝑏)) :𝑛+𝑘 (Σ1, 𝑏 : 𝜏@𝜇2, Σ2, Σ3), where𝑏′ : 𝜏@ (many, shared, local) ∈ Σ3

and 𝑘 ≥ 0.

Proof. By induction on the cases of the copy(𝑛,𝑏) operation. This is well-founded since the
copy operation considers increasingly earlier addresses in the store. If 𝑏 ↦→𝜇

𝑚 (), then the claim
follows directly from the wf-ext rule. If 𝑏 ↦→𝜇

𝑚 𝑣 , where 𝑣 = inl 𝑐, inr 𝑐, (boxM 𝑐), then the claim
follows from the inductive hypothesis and the wf-ext rule. If 𝑏 ↦→𝜇

𝑚 (𝑐, 𝑑), we have to invoke the
inductive hypothesis twice. First we use 𝑘 = 1 and then we invoke it on the result with 𝑘 = 0.
Then the claim follows from the wf-ext rule. If 𝑏 ↦→𝜇

𝑚 𝜆𝑥.𝑒 , then we can obtain a substitution
from the store for Σ′ ⊢ 𝜆𝑥.𝑒 : 𝜏 @ (many, shared, _). Using the sub-rule, we can assume that the
locality is local. Then the claim follows from thewf-ext rule. If 𝑏 ↦→𝜇

𝑚 (boxG 𝑐) or 𝑏 ↦→𝜇
𝑚 (boxS 𝑐),

Oxidizing OCaml with Modal Memory Management 43

then we can obtain a substitution from the store for Σ′ ⊢ 𝑐 : 𝜏 @ (many, shared, global). Using
the sub-rule, we can assume that the locality is local. Then the claim follows from the wf-ext
rule. □

We call (𝐸, 𝑒) well-formed for (𝑆, 𝑛) if:
• for all 𝑏 ∈ fv(𝑒), 𝑏 ↦→𝜇

𝑚 𝑣 ∈ 𝑆 and𝑚 ≤ 𝑛 or 𝜇 is global.
• 𝐸 = borrow 𝑥 = 𝑏 for 𝑦 = 𝐸′ in 𝑒′, implies that 𝑛 = 𝑛′ + 1 and (𝐸′, (𝑏, 𝑒′)) is well-formed for

(𝑆, 𝑛′).
• 𝐸 is any other constructor of our evaluation context 𝐸 = 𝑡 (𝐸′) implies that (𝐸′, 𝑡) is well-
formed for (𝑆, 𝑛).

In particular, both lemmas above will have Σ3 = ∅ for well-formed evaluation contexts, since
all free variables are store addresses rather than borrowed variables. Notice that unloading from
the evaluation context preserves this property, but loading a borrow 𝑥 = 𝑏 for 𝐸 in 𝑒3 frame onto
the evaluation context does not preserve this property in general. This is because the inner term
𝑒 might have 𝑥 as a free variable, which is not in the store. To preserve well-formedness, it is
necessary to substitute all occurrences of 𝑥 as in the (enter_region) rule.

Lemma A.28 (Progress). If Σ ⊢ 𝐸 [𝑒 : 𝜏1 @ 𝜇1] : 𝜏2 @ 𝜇2 and 𝑆 :𝑛 Σ and (𝐸, 𝑒) is well-formed

for (𝑆, 𝑛), then either execution concludes with 𝐸 = ? and 𝑒 = 𝑏 for some store address 𝑏 or a step is

possible: 𝑆 8 𝐸 ▷𝜇1
𝑛 𝑒 ⇝ 𝑆 ′ 8 𝐸′ ▷

𝜇′1
𝑛′ 𝑒

′
.

Proof. If 𝑒 = 𝑏, but 𝐸 ≠ ?, then we can unload a frame from the evaluation context and the claim
follows. If we can load a frame onto the evaluation context, then the claim follows. Otherwise, we
split the typing derivation Σ ⊢ 𝐸 [𝑒 : 𝜏1 @ 𝜇1] : 𝜏2 @ 𝜇2 into Σ = Σ1 + Σ2 and Σ1 ⊢ 𝐸 [?] : 𝜏2 @ 𝜇2
and Σ2 ⊢ 𝑒 : 𝜏1 @ 𝜇1. Then 𝑆 :𝑛 Σ1 + Σ2. Perform case-analysis on 𝑒:

• Case var: Then 𝑒 = 𝑏 for some store address 𝑏. By assumption 𝐸 = ?. Thus the execution
concludes.

• Case unit, case inl, case inr, case pair, case box, case lam, case let: Obvious.
• Case app: We have Σ2 ⊢ 𝑏 𝑐 : 𝜏1 @ 𝜇1 and thus Σ2 ⊢ 𝑏 : 𝜏3 @ 𝜇3 → 𝜏1 @ 𝜇1. By the store
typing, we thus have 𝑏 ↦→ 𝜆𝑥. ∈ 𝑆 and we can take an (app) step.

• Case unbox: We have Σ2 ⊢ unbox𝑏 : 𝜏1 @ 𝜇1 and thus Σ2 ⊢ 𝑏 : box𝜈 𝜏1 @ 𝜇′1. By the store
typing, we thus have 𝑏 ↦→ box𝜈 𝑐 and we can take an (unbox) step.

• Case case: We have Σ2 ⊢ case𝑏{ inl 𝑥 → 𝑒1; inr 𝑦 → 𝑒2 } : 𝜏1 @ 𝜇1 and thus Σ2 ⊢ 𝑏 :
𝜏3 + 𝜏4 @ 𝜇′. By the store typing, we thus have 𝑏 ↦→ inl 𝑐 or 𝑏 ↦→ inr 𝑐 and we can take a
(casel) or (caser) step.

• Case split: We have Σ2 ⊢ let(𝑥,𝑦, 𝑧) = 𝑏 in 𝑒1 : 𝜏1 @ 𝜇1 and thus Σ2 ⊢ 𝑏 : 𝜏3 × 𝜏4 @ 𝜇′.
By the store typing, we thus have 𝑏 ↦→ (𝑐, 𝑑) and we can take a (split_unique) step or a
(split_shared) step depending on the uniqueness of 𝜇′.

• Case reuse:We have Σ2 ⊢ reuse 𝑏 with (𝑐, 𝑑) : 𝜏1@𝜇1 and thus Σ2 ⊢ 𝑏 : ♣@(_, uniqe, global).
By the store typing, we thus have 𝑏 ↦→ ♣ ∈ 𝑆 (and in particular, 𝑏 ≠ null) and we can take
a (reuse) step.

• Case borrow: We can take either a (enter_region), (leave_region) or (borrow3) step, which
imposes no restrictions on the store or evaluation context. For the (leave_region) step, we
can assume that 𝑛 = 𝑛′ + 1 due to the well-formedness of the evaluation context.

□

Lemma A.29 (Preservation). If Σ ⊢ 𝐸 [𝑒 : 𝜏1 @ 𝜇1] : 𝜏2 @ 𝜇2 and (𝐸, 𝑒) is well-formed for (𝑆, 𝑛),
and 𝑆 :𝑛 Σ and 𝑆 8 𝐸 ▷𝜇1

𝑛 𝑒 ⇝ 𝑆 ′ 8 𝐸′ ▷
𝜇′1
𝑛′ 𝑒

′
, then Σ′ ⊢ 𝐸′ [𝑒′ : 𝜏 ′1 @ 𝜇′1] : 𝜏2 @ 𝜇2 and (𝐸′, 𝑒′) is

well-formed for (𝑆 ′, 𝑛′), and 𝑆 ′ :𝑛′ Σ′
.

44 Lorenzen et al.

Proof. By case-analysis on the reduction relation. This is obvious for all rules that merely load
and unload expressions from the evaluation context since neither the store nor the expression 𝐸 [𝑒]
changes. Otherwise, we split the typing derivation Σ ⊢ 𝐸 [𝑒 : 𝜏1 @ 𝜇1] : 𝜏2 @ 𝜇2 into Σ = Σ1 + Σ2
and Σ1 ⊢ 𝐸 [?] : 𝜏2 @ 𝜇2 and Σ2 ⊢ 𝑒 : 𝜏1 @ 𝜇1. Then 𝑆 :𝑛 Σ1 + Σ2.

• Case (unit), case inl, case inr, case (pair), case box, case lam: Since 𝑆 :𝑛 Σ1 + Σ2, we can apply
the wf-ext rule to obtain (𝑆, 𝑑 ↦→𝜇

𝑛 𝑒) :𝑛 (Σ1, 𝑑 : 𝜏1 @ 𝜇).
• Case (let): If Σ ⊢ let𝑥 = 𝑏 in 𝑒 , then Σ = Σ1 + Σ2 and Σ1 ⊢ 𝑏 and Σ2, 𝑥 ⊢ 𝑒 . Thus we can apply
the substitution lemma to obtain Σ ⊢ 𝑒 [𝑥 := 𝑏].

• Case (app): Obtain a substitution for 𝑏 from the store and apply it to 𝑏 𝑐 , thus obtaining a
well-typed expression (𝜆𝑥 .𝑒′) 𝑐 . Then Σ ⊢ (𝜆𝑥 .𝑒′) 𝑐 , which implies Σ = Σ1+Σ2 and Σ1 ⊢ 𝜆𝑥.𝑒′
and Σ2 ⊢ 𝑐 . Thus we can apply the substitution lemma again to obtain 𝑒′ [𝑥 := 𝑐].

• Case (unbox): Obtain a substitution for 𝑏 from the store and apply it to unbox𝑏, thus
obtaining a well-typed expression unbox(box𝜈 𝑐). Then 𝑐 has the same type and mode.

• Case (casel): Obtain a substitution for 𝑏 from the store and apply it to case𝑏{ inl 𝑥 →
𝑒1; inr 𝑦 → 𝑒2 }, thus obtaining awell-typed expression case (inl 𝑐){ inl 𝑥 → 𝑒1; inr 𝑦 → 𝑒2 }.
Then Σ ⊢ case (inl 𝑐){ inl 𝑥 → 𝑒1; inr 𝑦 → 𝑒2 } implies Σ = Σ1 + Σ2 and Σ1 ⊢ inl 𝑐 and
Σ2, 𝑥 ⊢ 𝑒1. Then apply the substitution lemma to obtain Σ ⊢ 𝑒1 [𝑥 := 𝑐].

• Case (caser): Obtain a substitution for 𝑏 from the store and apply it to case𝑏{ inr 𝑥 →
𝑒1; inr 𝑦 → 𝑒2 }, thus obtaining a well-typed expression case (inr 𝑐){ inl 𝑥 → 𝑒1; inr 𝑦 →
𝑒2 }. Then Σ ⊢ case (inl 𝑐){ inl 𝑥 → 𝑒1; inr 𝑦 → 𝑒2 } implies Σ = Σ1 + Σ2 and Σ1 ⊢ inr 𝑐 and
Σ2, 𝑦 ⊢ 𝑒2. Then apply the substitution lemma to obtain Σ ⊢ 𝑒2 [𝑦 := 𝑐].

• Case (split_unique): Obtain a substitution for 𝑏 from the store and apply it to let(𝑥,𝑦, 𝑧) =
𝑏 in 𝑒 , thus obtaining a well-typed expression let(𝑥,𝑦, 𝑧) = (𝑐, 𝑑) in 𝑒 . Then Σ ⊢ let(𝑥,𝑦, 𝑧) =
(𝑐, 𝑑) in 𝑒 implies Σ = Σ1 + Σ2 and Σ1 ⊢ (𝑐, 𝑑) and Σ2, 𝑥,𝑦, 𝑧 ⊢ 𝑒 . Since 𝜇2 = (_, uniqe, _),
we have 𝑏 : − in the store. Thus we can remove the unused address 𝑏. In its place, we then
create a space credit 𝑏 ↦→𝜇2

𝑚 ♣ using the wf-space rule. Then apply the substitution lemma
to obtain Σ ⊢ 𝑒 [𝑥 := 𝑏,𝑦 := 𝑐, 𝑧 := 𝑑].

• Case (split_shared): Obtain a substitution for 𝑏 from the store and apply it to let(𝑥,𝑦, 𝑧) =
𝑏 in 𝑒 , thus obtaining a well-typed expression let(𝑥,𝑦, 𝑧) = (𝑐, 𝑑) in 𝑒 . Then Σ ⊢ let(𝑥,𝑦, 𝑧) =
(𝑐, 𝑑) in 𝑒 implies Σ = Σ1 + Σ2 and Σ1 ⊢ (𝑐, 𝑑) and Σ2, 𝑥,𝑦, 𝑧 ⊢ 𝑒 . Furthermore, Σ1 ⊢ null :
♣@ (many, shared, 𝑙). Then apply the substitution lemma to obtain Σ ⊢ 𝑒 [𝑥 := null, 𝑦 :=
𝑐, 𝑧 := 𝑑].

• Case (reuse): Since 𝑏 : ♣ @ (_, uniqe, global) ∈ Σ, we have that 𝑏 ≠ null. Obtain
a substitution for 𝑏 from the store and apply it to reuse 𝑏 with (𝑐, 𝑑), thus obtaining the
expression reuse ♣ with (𝑐, 𝑑). Since 𝑏 was unique, we can remove the (now unused) address
𝑏 from the store. Then Σ ⊢ (𝑐, 𝑑) and we can allocate the pair at the (now fresh) address 𝑏
as in the (pair) step.

• Case (enter_region): By the copying to stack lemma, we have that (𝑆, copy(𝑛 + 1, 𝑏)) :𝑛+1 Σ.
Then we can obtain a substitution for 𝑏′ from the store and apply it to 𝑒2 [𝑥 ≔ 𝑏′]. Then
(𝐸′, 𝑒′) is well-formed for (𝑆 ′, 𝑛 + 1), since (𝐸, 𝑒2) was well-formed for (𝑆, 𝑛) and 𝑏′ is
annotated by 𝑛 + 1.

• Case (leave_region): We have that 𝑐 is global and (borrow 𝑥 = 𝑏 for 𝐸′ in 𝑒3, 𝑐) is well-
formed for (𝑆, 𝑛+1). By the definition of well-formedness, we thus have that (𝐸, borrow 𝑥 =

𝑏 for 𝑐 in 𝑒3) is well-formed for (𝑆, 𝑛). Then there is a context Σ′ ⊢ 𝐸 [borrow 𝑥 = 𝑏 for 𝑐 in 𝑒3]
such that (𝑆 − (𝑛 + 1)) :𝑛 Σ′ (which can be obtained by deleting all variables from Σ that
are deleted by the (S - (n+1)) operation — these are not free variables of the term). Then we
can apply the substitution lemma to obtain Σ′ ⊢ 𝑒3 [𝑥 ≔ 𝑏,𝑦 ≔ 𝑐].

Oxidizing OCaml with Modal Memory Management 45

□

46 Lorenzen et al.

B MODE INFERENCE
Our implementation features mode inference that can completely infer modes. We can describe
that inference as a combination of a simple constraint solver and syntax-directed typing rules that
generate constraints for that solver.

We extend our mode expressions to include inference variables (𝛼) both for whole mode triples
and for each individual mode axis:

𝜇 F (𝑎,𝑢, 𝑙) | 𝛼
𝑎 F many | once | 𝛼
𝑢 F uniqe | shared | 𝛼
𝑙 F global | local | 𝛼

We also define positive mode expressions (𝑎+, 𝑢+ and 𝑙+) and negative mode expressions (𝑎− , 𝑢− and
𝑙−) for each mode axis:

𝜇+ F (𝑎+, 𝑢+, 𝑙+)
𝑎+ F 𝑎 | 𝑎+ ∨ 𝑎+ | †−1 (𝑢−)
𝑢+ F 𝑢 | 𝑢+ ∨ 𝑢+ | †(𝑎−)
𝑙+ F 𝑙 | 𝑙+ ∨ 𝑙+

𝜇− F (𝑎−, 𝑢−, 𝑙−)
𝑎− F 𝑎 | 𝑎− ∧ 𝑎−

𝑢− F 𝑢 | 𝑢− ∧ 𝑢−

𝑙− F 𝑙 | 𝑙− ∧ 𝑙−

The positive expressions are all extended with join (∨) and the negative expressions with meet
(∧). The positive uniqueness expressions also include applications of the † function to negative
affinity expressions, whilst positive affinity expressions include applications of the inverse of the †
function to negative uniqueness expressions.

Our simple constraint solver is able to solve sets of constraints of the forms:

𝑎+ ≤ 𝑎− 𝑢+ ≤ 𝑢− 𝑙+ ≤ 𝑙− 𝜇+ ≤ 𝜇− 𝜇 = 𝜇

Solving such constraints is essentially just transitive closure.
The rules in Figure 2 have three issues that prevent them being used directly to generate

constraints for our solver:

(1) The lam rule uses locks, which act on the modes in Γ which are still being inferred.
(2) The sub rule is not syntax-directed.
(3) The context joining operation (+) is non-deterministic when used to split a context

We resolve issue (1) by switching to a different presentation of contexts, as described in Section 3.7.
We resolve issue (2) by integrating submoding directly into carefully chosen other rules, making

the system syntax-directed.
We resolve (3) by using a context splitting operation that is parameterised by the free variables

of the subterms:

/(𝑋,𝑌) (Γ) = Γ𝑋 + Γ𝑌

where Γ𝑋 and Γ𝑌 have the same variables as Γ, but have empty bindings for any variables not in 𝑋

or 𝑌 respectively.

Oxidizing OCaml with Modal Memory Management 47

The resulting syntax-directed system is formulated in Figure 11. We indicate generation of a new
constraint to solve with side-conditions on the rules. The definition of / is:

/(𝑋,𝑌) (∅) = ∅ + ∅
/(𝑋,𝑌) (Γ,µ 𝜇) = Γ𝑋 ,µ 𝜇 + Γ𝑌 ,µ 𝜇

where /(𝑋,𝑌) (Γ) = Γ𝑋 + Γ𝑌

/(𝑋,𝑌) (Γ, 𝑥 : −) = Γ𝑋 , 𝑥 : − + Γ𝑌 , 𝑥 : −
where /(𝑋,𝑌) (Γ) = Γ𝑋 + Γ𝑌

/(𝑋,𝑌) (Γ, 𝑥 : 𝜏 @ 𝜇) = Γ𝑋 , 𝑥 : 𝜏 @ 𝜇 + Γ𝑌 , 𝑥 : −
where𝑥 ∈ 𝑋, 𝑥 ∉ 𝑌, /(𝑋,𝑌) (Γ) = Γ𝑋 + Γ𝑌

/(𝑋,𝑌) (Γ, 𝑥 : 𝜏 @ 𝜇) = Γ𝑋 , 𝑥 : − + Γ𝑌 , 𝑥 : 𝜏 @ 𝜇

where𝑥 ∉ 𝑋, 𝑥 ∈ 𝑌, /(𝑋,𝑌) (Γ) = Γ𝑋 + Γ𝑌

/(𝑋,𝑌) (Γ, 𝑥 : 𝜏 @ (𝑎,𝑢, 𝑙)) = Γ𝑋 , 𝑥 : 𝜏 @ (𝑎, shared, 𝑙) + Γ𝑌 , 𝑥 : 𝜏 @ (𝑎, shared, 𝑙)
where𝑎 ≤ many, 𝑥 ∈ 𝑋, 𝑥 ∈ 𝑌, /(𝑋,𝑌) (Γ) = Γ𝑋 + Γ𝑌

Note that the last case includes a side condition on 𝑎 that adds a constraint to be solved by our
constraint solver. The operation is associative on the sets of variables, so we allow it to be used on
n-tuples of sets rather than just pairs..

48 Lorenzen et al.

var
𝑎1 ≤ 𝑎2 ∧

∧
µ (𝑎𝑖 ,_,_) ∈Γ′

𝑎𝑖 𝑢1 ∨
∨

µ (𝑎𝑖 ,_,_) ∈Γ′
†(𝑎𝑖) ≤ 𝑢2 𝑙1 ≤ 𝑙2 ∧

∧
µ (_,_,𝑙𝑖) ∈Γ′

𝑙𝑖

Γ, 𝑥 : 𝜏 @ (𝑎1, 𝑢1, 𝑙2), Γ′ ⊢ 𝑥 : 𝜏 @ (𝑎2, 𝑢2, 𝑙2)

lam
Γ,µ 𝜇1 , 𝑥 : 𝜏1 @ 𝜇2 ⊢ 𝑒 : 𝜏2 @ 𝜇3

Γ ⊢ 𝜆𝑥 . 𝑒 : (𝜏1 @ 𝜇2 → 𝜏2 @ 𝜇3) @ 𝜇1

Γ ⊢ 𝑒 : 𝜏1 @ 𝜇

Γ ⊢ inl 𝑒 : 𝜏1 + 𝜏2 @ 𝜇
inl

app
/(FV(𝑒1),FV(𝑒2)) (Γ) = Γ1 + Γ2

Γ1 ⊢ 𝑒1 : (𝜏1 @ 𝜇1 → 𝜏2 @ 𝜇2) @ 𝜇3
Γ2 ⊢ 𝑒2 : 𝜏1 @ 𝜇1 𝜇2 ≤ 𝜇4

Γ ⊢ 𝑒1 𝑒2 : 𝜏2 @ 𝜇4

Γ ⊢ 𝑒 : 𝜏1 @ 𝜇

Γ ⊢ inr 𝑒 : 𝜏1 + 𝜏2 @ 𝜇
inr

split
/(FV(𝑒1),FV(𝑒2)) (Γ) = Γ1 + Γ2

Γ1 ⊢ 𝑒1 : 𝜏1 × 𝜏2 @ 𝜇1
Γ2, 𝑥 : ♣@ 𝜇1, 𝑦 : 𝜏1 @ 𝜇1, 𝑧 : 𝜏2 @ 𝜇1 ⊢ 𝑒2 : 𝜏3 @ 𝜇2

Γ ⊢ let (𝑥,𝑦, 𝑧) = 𝑒1 in 𝑒2 : 𝜏3 @ 𝜇2 Γ ⊢ () : 1@ 𝜇
unit

let
/(FV(𝑒1),FV(𝑒2)) (Γ) = Γ1 + Γ2

Γ1 ⊢ 𝑒1 : 𝜏1 @ 𝜇1 Γ2, 𝑥 : 𝜏1 @ 𝜇1 ⊢ 𝑒2 : 𝜏2 @ 𝜇2

Γ ⊢ let 𝑥 = 𝑒1 in 𝑒2 : 𝜏2 @ 𝜇2

/(FV(𝑒1),FV(𝑒2)) (Γ) = Γ1 + Γ2
Γ1 ⊢ 𝑒1 : 𝜏1 @ 𝜇1

Γ2 ⊢ 𝑒2 : 𝜏2 @ 𝜇2 𝜇1 ∨ 𝜇2 ≤ 𝜇3

Γ ⊢ (𝑒1, 𝑒2) : 𝜏1 × 𝜏2 @ 𝜇3
pair

case
/(FV(𝑒1),FV(𝑒2)∪FV(𝑒3)) (Γ) = Γ1 + Γ2

Γ1 ⊢ 𝑒1 : 𝜏1 + 𝜏2 @ 𝜇1
Γ2, 𝑥1 : 𝜏1 @ 𝜇1 ⊢ 𝑒2 : 𝜏3 @ 𝜇2

Γ2, 𝑥2 : 𝜏2 @ 𝜇1 ⊢ 𝑒3 : 𝜏3 @ 𝜇3 𝜇2 ∨ 𝜇3 ≤ 𝜇4

Γ ⊢ case 𝑒1 { inl 𝑥1 → 𝑒2; inr 𝑥2 → 𝑒3 } : 𝜏3 @ 𝜇4

borrow
/(FV(𝑒1),FV(𝑒2),FV(𝑒3)) (Γ) = Γ1 + Γ2 + Γ3

Γ1 ⊢ 𝑒1 : 𝜏1 @ (many, 𝑢1, 𝑙1) Γ2, 𝑥 : 𝜏1 @ (many, shared, local) ⊢ 𝑒2 : 𝜏2 @ (𝑎2, 𝑢2, global)
Γ3, 𝑥 : 𝜏1 @ (many, 𝑢1, 𝑙1), 𝑦 : 𝜏2 @ (𝑎2, 𝑢2, global) ⊢ 𝑒3 : 𝜏2 @ 𝜇

Γ ⊢ borrow 𝑥 = 𝑒1 for 𝑦 = 𝑒2 in 𝑒3 : 𝜏3 @ 𝜇

reuse
/(FV(𝑒1),FV(𝑒2),FV(𝑒3)) (Γ) = Γ1 + Γ2 + Γ3
Γ1 ⊢ 𝑒1 : ♣@ (𝑎1, uniqe, global)
Γ2 ⊢ 𝑒2 : 𝜏1 @ (𝑎2, 𝑢1, global)

Γ3 ⊢ 𝑒3 : 𝜏2 @ (𝑎3, 𝑢2, global) 𝑎2 ∨ 𝑎3 ≤ 𝑎4 𝑢1 ∨ 𝑢2 ≤ 𝑢3

Γ ⊢ reuse 𝑒1 in (𝑒2, 𝑒3) : 𝜏1 × 𝜏2 @ (𝑎4, 𝑢3, global)

Fig. 11. Syntax-Directed Inference Rules

Oxidizing OCaml with Modal Memory Management 49

M-box
Γ ⊢ 𝑒 : 𝜏 @ (many, 𝑢, 𝑙)

Γ ⊢ boxM 𝑒 : �M𝜏 @ (𝑎,𝑢, 𝑙)
Γ ⊢ 𝑒 : �M𝜏 @ (𝑎1, 𝑢, 𝑙)

Γ ⊢ unboxM 𝑒 : 𝜏 @ (𝑎2, 𝑢, 𝑙)
M-unbox

S-box
Γ ⊢ 𝑒 : 𝜏 @ (𝑎,𝑢1, 𝑙)

Γ ⊢ boxS 𝑒 : �S𝜏 @ (𝑎,𝑢2, 𝑙)
Γ ⊢ 𝑒 : �S𝜏 @ (𝑎,𝑢, 𝑙)

Γ ⊢ unboxS 𝑒 : 𝜏 @ (𝑎, shared, 𝑙)
S-unbox

G-box
Γ ⊢ 𝑒 : 𝜏 @ (𝑎,𝑢1, global)
Γ ⊢ boxG 𝑒 : �G𝜏 @ (𝑎,𝑢2, 𝑙)

Γ ⊢ 𝑒 : �G𝜏 @ (𝑎,𝑢, 𝑙1)
Γ ⊢ unboxG 𝑒 : 𝜏 @ (𝑎, shared, 𝑙2)

G-unbox

Fig. 12. Syntax-Directed Inference Rules for Boxes

C GRADED CALCULUS
C.1 Syntax

Γ F ∅ | Γ, 𝑥 :𝑞 𝐴

𝐴, 𝐵,𝐶 F 1 | 𝐴 + 𝐵 | 𝐴 × 𝐵 | �𝑞𝐴 | 𝑞𝐴 → 𝐴

𝑉,𝑊 F 𝑥 | () | inl𝑉 | inr𝑉 | (𝑉 ,𝑊)
| box𝑞 𝑉 | 𝜆𝑥 .𝑀

𝑀, 𝑁 F return𝑞 𝑉 | 𝑉 𝑊 | 𝑀 to 𝑥 . 𝑁
| let𝑞 box𝑟 𝑥 = 𝑉 in𝑀 | let𝑞 (𝑥,𝑦) = 𝑉 in𝑀
| case𝑞 𝑉 { inl𝑥 → 𝑀 ; inr𝑦 → 𝑁 }

50 Lorenzen et al.

C.2 Typing Rules

0 · Γ1, 𝑥 :1 𝐴 ⊢v 𝑥 : 𝐴, 0 · Γ2
var

0 · Γ ⊢v () : 1
unit

Γ ⊢v 𝑉 : 𝐴
Γ ⊢v inl𝑉 : 𝐴 + 𝐵

inl

Γ ⊢v 𝑉 : 𝐵
Γ ⊢v inr𝑉 : 𝐴 + 𝐵

inr
Γ1 ⊢v 𝑉 : 𝐴 Γ2 ⊢v 𝑊 : 𝐵
Γ1 + Γ2 ⊢v (𝑉 ,𝑊) : 𝐴 × 𝐵

pair
Γ ⊢v 𝑉 : 𝐴

𝑞 · Γ ⊢v box𝑞 𝑉 : �𝑞𝐴
box

Γ, 𝑥 :𝑞 𝐴 ⊢c 𝑀 : 𝐵
Γ ⊢v 𝜆𝑥 .𝑀 : 𝑞𝐴 → 𝐵

lam

Γ1 ⊢v 𝑉 : 𝑞𝐴 → 𝐵

Γ2 ⊢v 𝑊 : 𝐴
Γ1 + 𝑞 · Γ2 ⊢c 𝑉 𝑊 : 𝐵

app

Γ1 ⊢v 𝑉 : �𝑟𝐴

Γ2, 𝑥 :𝑞 ·𝑟 𝐴 ⊢c 𝑀 : 𝐵
𝑞 · Γ1 + Γ2 ⊢c let𝑞 box𝑟 𝑥 = 𝑉 in𝑀 : 𝐵

unbox
Γ1 ⊢v 𝑉 : 𝐴

𝑞 · Γ1 ⊢c return 𝑉 : 𝐴
return

Γ1 ⊢c 𝑀 : 𝐴 Γ2, 𝑥 :1 𝐴 ⊢c 𝑁 : 𝐵
Γ1 + Γ2 ⊢c 𝑀 to 𝑥 . 𝑁 : 𝐵

let
Γ1 ⊢c 𝑀 : 𝐵 Γ2 ⪯ Γ1

Γ2 ⊢c 𝑀 : 𝐵
sub

Γ1 ⊢v 𝑉 : 𝐴 × 𝐵

Γ2, 𝑥 :𝑞 𝐴,𝑦 :𝑞 𝐵 ⊢c 𝑀 : 𝐶
𝑞 · Γ1 + Γ2 ⊢c let𝑞 (𝑥,𝑦) = 𝑉 in𝑀 : 𝐶

split

Γ1 ⊢v 𝑉 : 𝐴 + 𝐵 𝑞 ≤ 𝜎

Γ2, 𝑥 :𝑞 𝐴 ⊢c 𝑀 : 𝐶 Γ2, 𝑦 :𝑞 𝐵 ⊢c 𝑁 : 𝐶
𝑞 · Γ1 + Γ2 ⊢c case𝑞 𝑉 { inl𝑥 → 𝑀 ; inr𝑦 → 𝑁 } : 𝐶

case

C.3 Extension to In-Place Update

𝐴, 𝐵 F · · · | ♣
𝑀, 𝑁 F · · · | let𝑞 (𝑥,𝑦, 𝑧) = 𝑉 in𝑀

| reuse𝑞 𝑉 in (𝑊,𝑊 ′)

Γ1 ⊢v 𝑉 : ♣ Γ2 ⊢v 𝑊 : 𝐴 Γ3 ⊢v 𝑊 ′ : 𝐴
Γ1 + 𝑞 · Γ2 + 𝑞 · Γ3 ⊢c reuse𝑞 𝑉 in (𝑊,𝑊 ′) : �𝑞 (𝐴 × 𝐵)

reuse

Γ1 ⊢v 𝑉 : 𝐴 × 𝐵

Γ2, 𝑥 :𝑞 ♣, 𝑦 :𝑞 𝐴, 𝑧 :𝑞 𝐵 ⊢c 𝑀 : 𝐶
𝑞 · Γ1 + Γ2 ⊢c let𝑞 (𝑥,𝑦, 𝑧) = 𝑉 in𝑀 : 𝐶

destruct

D EQUATIONS FOR THE EXTENDED SEMIRING
Addition:

𝑞 + 0 = 0 + 𝑞 = 𝑞

{S, SM} + {S, SM} = SM
{1,M,⊥} + {S, SM} = {S, SM} + {1,M,⊥} = ⊥

{1,M,⊥} + {1,M,⊥} = ⊥
(S � {1,M,⊥}) + {S, SM, 1,M,⊥} = {S, SM, 1,M,⊥} + (S � {1,M,⊥}) = S � ⊥

(S � {1,M,⊥}) + (S � {1,M,⊥}) = S � ⊥

Oxidizing OCaml with Modal Memory Management 51

Multiplication:

0 · 𝑞 = 𝑞 · 0 = 0
1 · 𝑞 = 𝑞 · 1 = 𝑞

S · S = S
S · {SM,M,⊥} = SM

{M,⊥} · {S, SM} = SM
M ·M = M
M · ⊥ = ⊥

⊥ · {1,M,⊥} = ⊥

{S, S � 1} · (S � 𝑎) = S � 𝑎

{SM,M,⊥, S � M, S � ⊥} · S � 𝑎 = S � ⊥
(S � 1) · S = S

(S � {M,⊥}) · S = SM
(S � 𝑎) · (SM) = SM

(S � {1,M}) ·M = S � M
(S � ⊥) ·M = S � ⊥
(S � 𝑎) · ⊥ = S � ⊥

52 Lorenzen et al.

	Abstract
	1 Introduction
	2 Programming with Modes
	2.1 Uniqueness
	2.2 Affinity
	2.3 Modalities
	2.4 Locality
	2.5 Stack Allocation
	2.6 Borrowing

	3 Modes as Type Qualifiers
	3.1 Boxes and Modalities
	3.2 Locks for Closures
	3.3 Syntax
	3.4 Joining Usages
	3.5 Typing Rules
	3.6 Substitution
	3.7 Inference

	4 Usage-Aware Store Semantics
	5 Translation to a Graded Modal Calculus
	5.1 Modal Axiom K is Incompatible with Call-by-Value
	5.2 Graded Call-by-Value Calculus
	5.3 The Naive Semiring
	5.4 Extending the Semiring for Sharable Closures
	5.5 Translation from the Mode Calculus

	6 Surface-Language Design decisions
	6.1 Borrowing
	6.2 Region Placement
	6.3 Tail Calls
	6.4 Currying and Partial Application
	6.5 Syntax
	6.6 Generalization

	7 Implementation
	8 Related Work
	8.1 Linearity, Affinity and Uniqueness
	8.2 Regions and Locality
	8.3 Borrowing
	8.4 Modal Type Systems

	9 Future Work
	References
	A Proofs
	A.1 Modes as Type Qualifiers
	A.2 Borrowing
	A.3 Semantics

	B Mode Inference
	C Graded Calculus
	C.1 Syntax
	C.2 Typing Rules
	C.3 Extension to In-Place Update

	D Equations for the Extended Semiring

