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Overview

The continuous π-calculus (cπ) is a process algebra for modelling
behaviour and variation in molecular systems.

It has a structured operational semantics that captures system behaviour
as trajectories through a continuous process space, by generating familiar
differential-equation models.

We have existing biochemical systems expressed in cπ; the aim is to use
this to investigate evolutionary properties of biochemical pathways.

Marek Kwiatkowski and Ian Stark.
The Continuous π-Calculus: A Process Algebra for Biochemical Modelling. In
Computational Methods in Systems Biology: Proc. CMSB 2008
Lecture Notes in Computer Science 5307, pages 103–122. Springer 2008
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Systems Biology

Biology is the study of living organisms; Systems Biology is the study of
the dynamic processes that take place within those organisms.

In particular:

Interaction between processes;

Behaviour emerging from such interaction; and

Integration of component behaviours.
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Systems Biology

Biology is the study of living organisms; Systems Biology is the study of
the dynamic processes that take place within those organisms.

Observation

Experiment Simulation

Theory

Results Model

AnalysisDesign
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What can Computer Science do for Systems Biology?

Machines

Large Databases: Semistructured data; data integration; data mining
Large Simulations: Experiments in silico; parameter scans; folding search

Ideas

Language: Abstraction; modularity; semantics; formal models
Reasoning: Logics; behavioural description; model checking
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Biochemical Simulation

Biologists routinely use one of two alternative approaches to
computational modelling of biochemical systems:

Stochastic simulation
Continuous time
Discrete behaviour: tracking individual molecules
Randomized
Gillespie’s algorithm

Ordinary Differential Equations
Continuous time
Continuous behaviour: chemical concentrations
Deterministic
Numerical ODE solutions

The classical approach is to use the mathematics directly as the target
formal system; CS suggests the value of a mediating language.
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Process Algebras in Systems Biology

Petri nets
π-calculus; stochastic π; BioSPI; SPiM
Beta binders
Ambients, bioAmbients
Brane calculi; Bitonal systems
PEPA, bioPEPA
Kappa
PRISM
Pathway Logic
. . .
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The Continuous π-Calculus

The Continuous π-Calculus (cπ) is a process algebra for modelling
behaviour and variation in molecular systems.

Based on the π-calculus, it introduces continuous variability in:

rates of reaction;
affinity between interacting names; and
quantities of processes.

while retaining classic process-algebra features of:

compositional semantics (modular, not monolithic);

abstraction (separating language and semantics);

specifying interaction (taking behaviour as it emerges).

Motivated by Fontana’s work on evolutionary change, neutral spaces and
the “topology of the possible”.
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Basics of cπ

Continuous π has two levels of system description:

Species
Individual molecules (proteins)
Transition system semantics

Processes
Bulk population (concentration)
Differential equations

Process space arises as a real-valued vector space over species, with each
point the state of a system and behaviours as trajectories through that.
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Names in cπ

As in standard π-calculus, names indicate a
potential for interaction: for example, the
docking sites on an enzyme where other
molecules may attach.

These sites may interact with many different
other sites, to different degrees.

This variation is captured by an affinity network:
a graph setting out the interaction potential
between different names.
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Restriction in cπ

Name restriction νx(A |B) captures molecular
complexes, with local name x mediating further
internal modification, or decomplexation.

The binder can be a single local name (νx.−),
or several names with their own affinity
network (νM.−).

As in the classic π-calculus “cocktail party”
model, interacting names can communicate
further names, allowing further interactions.

In particular, we use name extrusion to model
complex formation.
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Example Species: Enzyme Catalysis

S = s(x,y).(x.S+ y.(P|P ′))
E = νM.e〈u, r〉.t.E
P = P ′ = τ@kdegrade.0

u r

t

kunbind kreact

s

e

kbind

E |S

νM(a.E |(u.S+ r.(P |P ′)))

E |S E |P |P ′

kbind

kunbind kreact
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Species

Species A,B ::= 0 | S(~a) | Σa(~b;~y).A | τ@k.A | A |B | νM.A

Symmetric prefix a(b, c; x,y).A for two-way communication.

Guarded sums Σiαi.A or α.A+ α ′.A ′ for alternative choices.

Silent transition τ@k.A for constitutive reactions at rate k ∈ R>0.

Parallel composition A |B within complexes.

Recursion via guarded species definitions S(~x) = . . .

Set S of species up to structural congruence, and S# of prime species.
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Operational Semantics for Species

The behaviour of a species is given by transitions:

A
a−→ (~b;~y)B Potential interaction

A
τ@k−→ B Immediate action

A
τ〈x,y〉−→ B Internal action

Here (~b;~y)B is a concretion representing potential interaction; the result of
actual interaction is given by pseudo application:

(~a;~x)A ◦ (~b;~y)B = A{~b/~x} |B{~a/~y}

Rules for deriving transitions give a structural operational semantics:

A
a−→ F B

b−→ G

A |B
τ〈a,b〉−→ F ◦G

A
τ〈a,b〉−→ B a,b ∈M

νM.A
τ@M(a,b)−→ B

. . .
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Processes

Processes P,Q ::= 0 | c ·A | P ‖Q

Component species c ·A at concentration c ∈ R>0.

Mixture of processes P ‖Q.

We can identify processes, up to structural congruence, with elements of
process space P = RS# .

Species embed in process space 〈−〉 : S → P at unit concentration.
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Operational Semantics for Processes

Immediate behaviour
dP

dt
∈ RS

#
vector in process space

Interaction potential ∂P ∈ RS×N×C = D interaction space

Space D has basis 〈A a−→ F〉 for species A, name a, concretion F.

Interaction tensor � : D ×D → P

Bilinear function generated by

〈A a−→ F〉� 〈B b−→ G〉 = Aff(a,b)(〈F ◦G〉− 〈A〉− 〈B〉)
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Process Semantics

dP
dt : Immediate behaviour

Vector field d
dt over process space P

Equivalent to an ODE system

∂P: Interaction potential

Element of RS×N×C

Equivalent to transition system

∂(P ‖Q) = ∂P + ∂Q

d(P ‖Q)

dt
=
dP

dt
+
dQ

dt
+ ∂P � ∂Q
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Example Process: Enzyme Catalysis

S = s(x,y).(x.S+ y.(P|P ′))
E = νM.e〈u, r〉.t.E
P = P ′ = τ@kdegrade.0

cS · S ‖ cE · E

enzyme.cpi
. . .
species E() = {

site t, u, r;
. . .

ODEs
x ′2 = −k1x4x2 + . . .

...

Cpi tool Octave
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Example: Synechococcus Elongatus

Synechococcus is a genus of cyanobacteria
(blue-green algae): single-celled
photosynthesising plankton that provide a
foundation for the aquatic food chain.

S. Elongatus is a species of Synechococcus
that is particularly abundant: some
estimates suggest that it contributes 25% of
marine nutrient primary production.
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Circadian Clock in S. Elongatus

S. Elongatus has an internal clock, that
turns genes on and off through day and
night.

The cycling mechanism does not require
gene transcription, and will operate in a test
tube (in vitro).

Although it is entrained by light, it will also
run for weeks without external stimulus.

Tomita, Nakajima, Kondo, Iwasaki.
No transcription-translation feedback in
circadian rhythm of KaiC phosphorylation.
Science 307(5707) (2005) 251–254

Stark & Kwiatkowski The Continuous π-Calculus 2009-03-20



Proposed Mechanism

The S. Elongatus clock requires three proteins: KaiA, KaiB and KaiC (for
kaiten). One proposed mechanism is the following:

KaiC forms hexamers, with six phosphorylation sites.

KaiC also has two conformations; it preferentially phosphorylates in one and
dephosphorylates in the other,

KaiA catalyses phosphorylation of the first (active) conformation.

KaiB dimers stabilise the second (inactive) conformation.

A KaiB dimer bound to KaiC will bind a further two KaiA, removing them
from other possible interactions.

Cyclic phosphorylation of individual KaiC gives the basic mechanism;
interaction with varying levels of KaiA and KaiB coordinates this across the
cell.

van Zon, Lubensky, Altena, ten Wolde.
An allosteric model of circadian KaiC phosphorylation.
PNAS 104(18) (2007) 7420–7425
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ODE Model

C0 C1 · · · C6 Active forms

C ′
0 C ′

1 · · · C ′
6 Inactive forms

kps kps kps

f6

k ′dpsk ′dpsk ′dps

b0

van Zon et al. give an ODE model of this mechanism, and show that it
cycles. They conjecture that differential affinities are a key feature.
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Continuous π Model

Ci = (νMi)(τ@kps.Ci+1+τ@fi.C̃i+τ@kdps.Ci−1+ai〈acti〉.(ui.Ci+ri.Ci+1))

C̃i = τ@k̃ps.C̃i+1+τ@bi.Ci+τ@k̃dps.C̃i−1+bi.b ′.BC̃i

BC̃i = τ@k̃ps.BC̃i+1+τ@kBb
i .(C̃i | B | B)+τ@k̃dps.BC̃i−1+ãi.ã ′.ABC̃i

ABC̃i = τ@k̃ps.ABC̃i+1+τ@k̃Ab
i .(BC̃i | A | A)+τ@k̃dps.ABC̃i−1

A = a(x).x.A+ã.0

B = b.0

P = cA·A ‖ cB·B ‖ cC·C0

a

a0 a6· · ·
kAf

0 kAf
0

ã

ã0 ã6· · ·

ã′

k̃Af
0

k̃Af
6

kvf
b

b0 b6· · ·

b′

kBf
0

kBf
6

kvf
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Running π
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Modification: Remove autonomous phosphorylation
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ABC̃i = τ@k̃ps.ABC̃i+1+τ@k̃Ab
i .(BC̃i | A | A)+τ@k̃dps.ABC̃i−1

A = a(x).x.A+ã.0

B = b.0

P = cA·A ‖ cB·B ‖ cC·C0

a

a0 a6· · ·
kAf

0 kAf
0

ã

ã0 ã6· · ·

ã′

k̃Af
0

k̃Af
6

kvf
b

b0 b6· · ·

b′
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0

kBf
6

kvf
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Modification: Remove autonomous phosphorylation
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Modification: Weaken KaiA binding
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Modification: Weaken KaiA binding
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Modification: KaiA-KaiB dimers
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ã0 ã6· · ·

ã′
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Modification: KaiA-KaiB dimers
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ã
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kãb

Stark & Kwiatkowski The Continuous π-Calculus 2009-03-20



Modification: KaiA-KaiB dimers
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Review

Continuous π-calculus

Modular description of biomolecular systems
Compositional semantics in real vector spaces
Flexible interaction structure

S. Elongatus circadian clock

Protein-protein interaction in vitro
Candidate mechanism oscillates
Behaviour under system variation
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Future Work

Behavioural analysis
Continuous temporal logic P ` G6t(φ) and Q ` Fc·a

6t G(ψ)

Model checking
Similarity metric

System Evolution
Evolutionary trajectories
Variation, evolvability
Robustness and neutrality

Alternative Semantics
Markov chains
Stochastic simulation
Hybrid models, protein/DNA interaction
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