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Summary

The continuous π-calculus (cπ) is a process algebra for modelling
behaviour and variation in molecular systems.

It has a structured operational semantics that captures system behaviour
as trajectories through a continuous process space, by generating familiar
differential-equation models.

We have existing biochemical systems expressed in cπ; in particular, a
standard setting of the MAPK cascade.

By systematically exploring neighbourhoods of this basic pathway model,
we have been able to identify the robustness and evolvability of its
individual components.
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Development and Evolution

Development is the process by which genetic information (genotype) is
translated to a functional biological object (phenotype).

In most settings of interest, development is notoriously complex. For
example, an embryo becoming an organism or a peptide chain folding into
a protein.

Evolutionary developmental biology (evo-devo) is concerned with
evolution-related properties of development, such as evolvability,
robustness, canalisation and plasticity.

Mathematical abstractions and simple instances of development help to
illuminate generic features of this process.
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Neutral Spaces and Neighbours

The neutral space of a phenotype is the collection of all genotypes giving
rise to that phenotype.

3 robustness
3 evolvability
3 neutral evolution

? recombination
? horizontal gene transfer

7 phenotype plasticity
7 variable development

A. Wagner Robustness and Evolvability in Living Systems Princeton University Press, 2005
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The Continuous π-Calculus

The continuous π-calculus (cπ) is a name-passing process algebra that
generates system behaviours as trajectories over time through a real-valued
vector space.

The intended application is modelling behaviour and variation in
biomolecular systems, where the vector space is a phase space of chemical
concentrations.

Marek Kwiatkowski and Ian Stark.
The Continuous π-Calculus: A Process Algebra for Biochemical Modelling. In
Computational Methods in Systems Biology: Proc. CMSB 2008
Lecture Notes in Computer Science 5307, pages 103–122. Springer 2008

Marek Kwiatkowski.
A Formal Computational Framework for the Study of Molecular Evolution
PhD Dissertation, University of Edinburgh, December 2010.

Stark & Kwiatkowski The Continuous π-Calculus 2010-12-16

http://www.inf.ed.ac.uk/~stark/continuous-pi.html
http://mareklab.org/phd.html


The Continuous π-Calculus

Formality: Unambiguous description
Parsimony: Few primitives

Compositionality: The behaviour of a whole arises entirely from the
behaviour of its parts.

Abstraction: System description distinct from system dynamics
Intermediation: Potentially many analysis techniques for a single

description

Continuous rather than discrete amounts of agents
Flexible interaction structure of names
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Basics of cπ

Continuous π has two levels of system description:

Species
Individual molecules (proteins)
Transition system semantics

Processes
Bulk population (concentration)
Differential equations

Process space arises as a real-valued vector space over species, with each
point the state of a system and behaviours as trajectories through that.
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Names in cπ

As in standard π-calculus, names indicate a
potential for interaction: for example, the
docking sites on an enzyme where other
molecules may attach.

These sites may interact with many different
other sites, to different degrees.

This variation is captured by an affinity network:
a graph setting out the interaction potential
between different names.
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Restriction in cπ

Name restriction νx(A |B) captures molecular
complexes, with local name x mediating further
internal modification, or decomplexation.

The binder can be a single local name (νx.−),
or several names with their own affinity
network (νM.−).

As in the classic π-calculus “cocktail party”
model, interacting names can communicate
further names, allowing further interactions.

In particular, we use name extrusion to model
complex formation.
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Example Species: Enzyme Catalysis

S = s(x,y).(x.S+ y.(P|P ′))

E = ν(u, r, t:M).(e〈u, r〉.t.E)

P = P ′ = τ@kdegrade.0

s

e

kbind

u r

M t

kunbind kreact

E |S

νM(t.E |(u.S+ r.(P |P ′)))

E |S E |P |P ′

kbind

kunbind kreact
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Formalities: Species and Processes

Species A,B ::= . . .

Processes P,Q ::= 0 | c ·A | P ‖ Q

Component c ·A of species A at concentration c ∈ R>0.

Mixture of processes P ‖ Q.

Set S of species up to structural congruence, and S# of prime species.

We can identify processes, up to structural congruence, with elements of
process space P = RS# .

Species embed in process space 〈−〉 : S → P at unit concentration.
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Formalities: Process Semantics

dP
dt : Immediate behaviour

Vector field over process space P

Equivalent to an ODE system

∂P: Interaction potential
Captures response to available sites

Rank 3 tensor field over P

d(P ‖ Q)

dt
=
dP

dt
+
dQ

dt
+ ∂P � ∂Q

∂(P ‖ Q) = ∂P + ∂Q
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Example Process: Enzyme Catalysis

S = s(x,y).(x.S+ y.(P|P ′))

E = ν(u, r, t:M).(e〈u, r〉.t.E)

P = P ′ = τ@kdegrade.0

cS · S ‖ cE · E

enzyme.cpi
. . .
species E() = {

site t, u, r;
. . .

ODEs
x ′2 = −k1x4x2 + . . .

...

Cpi tool Octave
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Tool Syntax

const kbind=1e−3; const kreact=2.0;
const kunbind=1.0; const kdegrade=3e−4;

site e,s; react (e,s)@kbind;

species S() = { body s(;x,y).(x(;).S() + y(;).P()); init 1000.0; }

species E() = { site u,r,t;
react (u,t)@kunbind;
react (r,t)@kreact;
body e(u,r;).act(;).E();
init 10.0; }

species P() = { body tau<kdegrade>.0; init 0.0; }
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Process Space: Substrate & Product
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Process Space: Substrate & Product & Enzyme
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Examples

Enzyme catalysis

Competitive and noncompetitive inhibition

KaiABC circadian cycle in the blue-green algae Synechococcus
Elongatus

MAPK signalling cascade
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Remember Neutral Spaces?

We need:
1 genotype space

(done: cπ models)
2 phenotype space

(done: model dynamics)
3 a mapping between the two

(done: ODE extraction)
4 accessibility relation
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Variation Operators

Variation operators are transformations of cπmodels which correspond to
evolutionary events.

Example: site reconfiguration

b

a

c

d

k1

k2

k3

k4

b

a

c

d

f(b)

f(c)

f(d)

f(a)

k3

k4

We have defined a dozen operators modelling gene duplications, gene
knockouts, changes in expression levels, and more.
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The MAPK Cascade

Ras

Raf Raf*

PP2A1

MEK MEK* MEK**

PP2A2

ERK ERK* ERK**

MKP3

Functionally conserved in most animals
Crucial component of signal transduction pathways
Relays and amplifies a signal
Benchmark for new modelling techniques
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MAPK in cπ

Ras ∆= (νx—x)ras(x;y).(x.Ras + y.Ras)
Raf ∆= (νx—x)raf(x;y).(x.Raf + y.Raf ∗)

Raf ∗ ∆= (νx—x)(νz—z)(raf ∗(x;y).(x.Raf ∗ + y.Raf ∗) + raf ∗b (z;y).(z.Raf ∗ + y.Raf))
PP2A1 ∆= (νx—x)pp2a1(x;y).(x.PP2A1 + y.PP2A1)

MEK ∆= (νx—x)mek(x;y).(x.MEK + y.MEK∗)

MEK∗ ∆= (νx—x)(νz—z)(mek∗(x;y).(x.MEK∗ + y.MEK∗∗) + mek∗b(z;y).(z.MEK∗∗ + y.MEK∗))

MEK∗∗ ∆= (νx—x)(νz—z)(mek∗∗(x;y).(x.MEK∗∗ + y.MEK∗∗) + mek∗∗b (z;y).(z.MEK∗∗ + y.MEK∗))

PP2A2 ∆= (νx—x)pp2a2(x;y).(x.PP2A2 + y.PP2A2)

ERK ∆= (νx—x)erk(x;y).(x.ERK + y.ERK∗)

ERK∗ ∆= (νx—x)(νz—z)(erk∗(x;y).(x.ERK∗ + y.ERK∗∗) + erk∗b(z;y).(z.ERK∗∗ + y.ERK∗))

ERK∗∗ ∆= (νx—x)erk∗∗b (x;y).(x.ERK∗∗ + y.ERK∗)

MKP3 ∆= (νx—x)mkp3(x;y).(x.MKP3 + y.MKP3)

Π =́ c1 ·Raf ‖ c2 ·Ras ‖ c3 ·MEK ‖ c4 · ERK ‖ c5 ·PP2A1 ‖ c6 ·PP2A2 ‖ c7 ·MKP3

ras

raf
raf∗

raf∗b

pp2a1

mek
mek∗

mek∗b

mek∗∗

mek∗∗b

pp2a2

erk
erk∗

erk∗b
erk∗∗

mkp3
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MAPK Behaviour

The tool compiles MAPK into 23 differential equations, which are then
solved with Octave. Every reaction acquires emergent Michaelis-Menten
kinetics.
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Evolutionary Analysis of MAPK

ras

raf
raf∗

raf∗b

pp2a1

mek
mek∗

mek∗b

mek∗∗

mek∗∗b

pp2a2

erk
erk∗

erk∗b
erk∗∗

mkp3

Reconfigure every site in every way possible (ca. 1M variants)
Determine the phenotype class of every variant using LTL checking
Find evolutionarily fragile and robust sites
Compute the fitness of every variant using signal integration
Find the distribution of mutation effects on fitness
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Phenotype Classes and Fitness

Phenotype classes

Four categories: peak, switch, oscillatory, noise.
Automatically identified using LTL checking.
Results: peak 7.0%; switch 45.2%; oscillatory 0.0; noise 47.8%.

Fitness
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Fitness is the area marked green minus the area marked red.

Stark & Kwiatkowski The Continuous π-Calculus 2010-12-16



Fitness Distributions
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Advantageous Mutations
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Summary
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