
Free-Algebra Models for the π-Calculus

Ian Stark

Laboratory for Foundations of Computer Science
School of Informatics

University of Edinburgh

University of Cambridge Computer Laboratory — 2005-02-16 Ian Stark — Free-Algebra Models for the π-Calculus – p. 1/29

Summary

The finite π-calculus has an explicit set-theoretic
functor-category model that is known to be fully-abstract for
strong late bisimulation congruence [Fiore, Moggi, Sangiorgi]

We can characterise this as the initial free algebra for certain
operations and equations in the setting of Power and Plotkin’s
enriched Lawvere theories.

This combines separate theories of nondeterminism, I/O and name
creation in a modular fashion. As a bonus, we get a whole category of
models, a modal logic and a computational monad. The tricky part is
that everything has to happen inside the functor category SetI .

University of Cambridge Computer Laboratory — 2005-02-16 Ian Stark — Free-Algebra Models for the π-Calculus – p. 2/29

Overview

• Equational theories for different features of computation.

• Enrichment over the functor category SetI .

• A theory of π.

• Free-algebra models; full abstraction; modal logic.

University of Cambridge Computer Laboratory — 2005-02-16 Ian Stark — Free-Algebra Models for the π-Calculus – p. 3/29

Nondeterministic computation

Operations

choice : A2 −→ A

nil : 1 −→ A

Equations

choice(P,Q) = choice(Q,P)

choice(nil, P) = choice(P, P) = P

choice(P, (choice(Q,R)) = choice(choice(P,Q), R)

University of Cambridge Computer Laboratory — 2005-02-16 Ian Stark — Free-Algebra Models for the π-Calculus – p. 4/29

Algebras for nondeterminism

For any Cartesian category C we can form the category ND(C)
of models (A, choice, nil) for the theory. In particular, there is:

ND(Set)

afree F U forgetful

Set

In fact (U ◦ F) is finite powerset and the adjunction is monadic:
ND(Set) is isomorphic to the category of Pfin-algebras.

University of Cambridge Computer Laboratory — 2005-02-16 Ian Stark — Free-Algebra Models for the π-Calculus – p. 5/29

Computational monad for nondeterminism

ND(Set)

afree F U forgetful

Set

The composition T = (U ◦ F) = Pfin is the computational monad
for finite nondeterminism. Operations choice and nil then
induce generic effects in the Kleisli category:

from choice : A2 −→ A1 we get arb : 1 −→ T 2

nil : A0 −→ A1 deadlock : 1 −→ T 0

[Plotkin, Power: Algebraic Operations and Generic Effects]

University of Cambridge Computer Laboratory — 2005-02-16 Ian Stark — Free-Algebra Models for the π-Calculus – p. 6/29

I/O computation

Operations

in : AV −→ A

out : A −→ AV

Equations
none

From any Cartesian C we form the category IO(C) of models
(A, in, out) for I/O computation over C.

University of Cambridge Computer Laboratory — 2005-02-16 Ian Stark — Free-Algebra Models for the π-Calculus – p. 7/29

I/O adjunction and monad

IO(Set)

afree F U forgetful

Set

The adjunction is monadic: IO(Set) ∼= T -Alg for the
resumptions monad, the computational monad for I/O:

T(X) = µY.(X+ YV + Y × V) .

The operations induce suitable effects in its Kleisli category:

from in : AV −→ A1 we get read : 1 −→ T V

out : A1 −→ AV write : V −→ T 1

University of Cambridge Computer Laboratory — 2005-02-16 Ian Stark — Free-Algebra Models for the π-Calculus – p. 8/29

Notions of computation determine monads

Operations + Equations −→ Free-algebra models
of computational features

−→ Monads + generic effects

• Characterise known computational monads and effects.

• Simple and flexible combination of theories.

• Enriched models and arities: countably infinite, posets,
ωCpo.

University of Cambridge Computer Laboratory — 2005-02-16 Ian Stark — Free-Algebra Models for the π-Calculus – p. 9/29

The functor category SetI

To account for names, we work with structures that vary
according to the names available.

Set

• •

I

An object B ∈ SetI is a varying set: it specifies for any finite set
of names s the set B(s) of values using names from s, together
with information about how these values change with renaming.

University of Cambridge Computer Laboratory — 2005-02-16 Ian Stark — Free-Algebra Models for the π-Calculus – p. 10/29

Structure within SetI

We use SetI both as the arena for building name-aware
algebras and monads, and as the source of arities for
operations.

Relevant structure includes:

• Pairs A× B and function space A → B;
• Separated pairs A⊗ B and fresh function space A(B;
• The object of names N;
• The shift endofunctor δA = A(+ 1), with δA = N(A.

In particular, the object N serves as a varying arity.

University of Cambridge Computer Laboratory — 2005-02-16 Ian Stark — Free-Algebra Models for the π-Calculus – p. 11/29

Theory of π: operations

Nondeterminism

nil : 1 −→ A inactive process 0

choice : A2 −→ A process sum P +Q

I/O
out : A −→ AN×N output prefix x̄y.P

in : AN −→ AN input prefix x(y).P

tau : A −→ A silent prefix τ.P

Dynamic name creation

new : δA −→ A restriction νx.P

University of Cambridge Computer Laboratory — 2005-02-16 Ian Stark — Free-Algebra Models for the π-Calculus – p. 12/29

Theory of π: interlude

Each operation induces a corresponding effect:

send : N×N −→ T 1 deadlock : 1 −→ T 0

receive : N −→ T N arb : 1 −→ T2

skip : 1 −→ T 1 fresh : 1 −→ T N

Other possible operations:

• par is not algebraic (because (P | Q);R 6= (P;R) | (Q;R))

• eq, neq : A −→ AN×N definable from N×N ∼= N⊗N+N

• bout : δA −→ AN can be defined from new and out

University of Cambridge Computer Laboratory — 2005-02-16 Ian Stark — Free-Algebra Models for the π-Calculus – p. 13/29

Theory of π: operations

Nondeterminism

nil : 1 −→ A inactive process 0

choice : A2 −→ A process sum P +Q

I/O
out : A −→ AN×N output prefix x̄y.P

in : AN −→ AN input prefix x(y).P

tau : A −→ A silent prefix τ.P

Dynamic name creation

new : δA −→ A restriction νx.P

University of Cambridge Computer Laboratory — 2005-02-16 Ian Stark — Free-Algebra Models for the π-Calculus – p. 14/29

Theory of π: component equations

Nondeterminism

choice is associative, commutative and idempotent,
with identity nil.

I/O

None.

Dynamic name creation

new(x.p) = p

new(x.new(y.p)) = new(y.new(x.p))

University of Cambridge Computer Laboratory — 2005-02-16 Ian Stark — Free-Algebra Models for the π-Calculus – p. 15/29

Theory of π: combining equations

Commuting

new(x.choice(p, q)) = choice(new(x.p), new(x.q))

new(z.outx,y(p)) = outx,y(new(z.p)) z /∈ {x, y}

new(z.inx(py)) = inx(new(z.py)) z /∈ {x, y}

new(z.tau(p)) = tau(new(z.p))

Interaction

new(x.outx,y(p)) = nil

new(x.inx(py)) = nil

University of Cambridge Computer Laboratory — 2005-02-16 Ian Stark — Free-Algebra Models for the π-Calculus – p. 16/29

Models of the theory of π

The category PI(SetI) of π-algebras has objects of the form
(A ∈ SetI ; in, out, . . . , new) satisfying the equations given.

In any π-algebra A, each finite π-calculus process P has
interpretation [[P]]A defined by induction over the structure of P,
using the operations of the theory (and the expansion law for
parallel composition).

Thm: Every such π-algebra interpretation respects strong late
bisimulation congruence:

P ≈ Q =⇒ [[P]]A = [[Q]]A .

Of course, this doesn’t yet give us any actual π-algebras to work with.

University of Cambridge Computer Laboratory — 2005-02-16 Ian Stark — Free-Algebra Models for the π-Calculus – p. 17/29

Models of the theory of π

The category of π-algebras has a forgetful functor to SetI , taking
each algebra to its underlying (varying) set:

PI(SetI)

U forgetful

SetI

Naturally, we now look for a free functor left adjoint to U, and its
accompanying monad.

As it happens, using both closed structures at the same time means
that general results engaged earlier don’t immediately apply :-(

University of Cambridge Computer Laboratory — 2005-02-16 Ian Stark — Free-Algebra Models for the π-Calculus – p. 18/29

Free models for π

Each component theory has a standard monad:

Nondeterminism Pfin(X)

I/O µY.(X+N×N× Y +N× YN + Y)

Name creation Dyn(X) =

∫k
X(+ k)

Weaving these together as monad transformers gives

µY.Pfin(Dyn(X+N×N× Y +N× YN + Y)). . .

University of Cambridge Computer Laboratory — 2005-02-16 Ian Stark — Free-Algebra Models for the π-Calculus – p. 19/29

Free models for π

Each component theory has a standard monad:

Nondeterminism Pfin(X)

I/O µY.(X+N×N× Y +N× YN + Y)

Name creation Dyn(X) =

∫k
X(+ k)

Weaving these together as monad transformers gives

µY.Pfin(Dyn(X+N×N× Y +N× YN + Y))

. . . but the algebras for this do not satisfy the interaction
equations between new and in/out.

University of Cambridge Computer Laboratory — 2005-02-16 Ian Stark — Free-Algebra Models for the π-Calculus – p. 20/29

Free models for π

Each component theory has a standard monad:

Nondeterminism Pfin(X)

I/O µY.(X+N×N× Y +N× YN + Y)

Name creation Dyn(X) =

∫k
X(+ k)

The correct monad for the combined theory is

Pi(X) = µY.Pfin(Dyn(X) +N×N× Y +N× δY +N× YN + Y)

which adds bound output but otherwise does little with name
creation.

University of Cambridge Computer Laboratory — 2005-02-16 Ian Stark — Free-Algebra Models for the π-Calculus – p. 21/29

Results

Thm: There is an adjunction making the category of π-algebras
monadic over SetI .

PI(SetI)

afree Pi U forgetful

SetI

The composition Tπ = (U ◦ Pi) is a computational monad for
concurrent name-passing programs, with effects send, receive,
arb, deadlock, skip and fresh.

University of Cambridge Computer Laboratory — 2005-02-16 Ian Stark — Free-Algebra Models for the π-Calculus – p. 22/29

Results

We have the following:

• A category PI(SetI) of π-algebras, all sound models of
π-calculus bisimulation.

P ≈ Q =⇒ [[P]]A = [[Q]]A

• An explicit free-algebra construction Pi : SetI → PI(SetI)

such that all Pi(X) are fully-abstract models of π.

P ≈ Q ⇐⇒ [[P]]Pi(X) = [[Q]]Pi(X)

• The inital free algebra Pi(0) is in fact the previously known
fully-abstract model.

University of Cambridge Computer Laboratory — 2005-02-16 Ian Stark — Free-Algebra Models for the π-Calculus – p. 23/29

Parallel composition

Parallel composition of π-calculus processes is not algebraic,
but we can nevertheless handle it in the following ways:

• All π-algebras can support (P |Q) externally by expansion.

• All free π-algebras have an internally-defined map

parX,Y : Pi(X)× Pi(Y) −→ Pi(X× Y) .

• Any multiplication µ : X× X → X then gives us

parµ : Pi(X)× Pi(X) −→ Pi(X) .

• For X = 0, this is standard parallel composition; for X = 1 we
get the same with an extra success process X.

University of Cambridge Computer Laboratory — 2005-02-16 Ian Stark — Free-Algebra Models for the π-Calculus – p. 24/29

Modal logic

Any theory gives rise to a modal logic over its algebras, with
possibility and necessity modalities for every operation.

P ² ♦outx,y(φ) ⇐⇒ ∃Q. P ∼ x̄y.Q ∧ Q ² φ

P ² ¤outx,y(φ) ⇐⇒ ∀Q. P ∼ x̄y.Q ⇒ Q ² φ

P ² ♦choice(φ,ψ) ⇐⇒ ∃Q,R. P ∼ Q+ R ∧ Q ² φ ∧ R ² ψ

HML is definable:

〈x̄y〉φ = ♦choice(♦outx,y(φ), true)

We could also take other algebraic operations and define
modalities. However, in no case is there a (φ | ψ) modality.

University of Cambridge Computer Laboratory — 2005-02-16 Ian Stark — Free-Algebra Models for the π-Calculus – p. 25/29

Review

Operations and equations with enriched arities can give
algebraic models for features of computation.

Taking SetI for both arities and algebras, we can give a modular
theory for the π-calculus:

π = (Nondeterminism + I/O + Name creation) / new ↔ i/o

We have an explicit formulation of free algebras for this theory;
all of these are fully abstract for bisimulation congruence.

The induced computational monad is almost, but not quite, the
combination of its three components.

University of Cambridge Computer Laboratory — 2005-02-16 Ian Stark — Free-Algebra Models for the π-Calculus – p. 26/29

What next?

• Use CpoI for the full π-calculus. (OK, FM-Cpo)

• Partial order arities for testing equivalences. [Hennessy]

• Modify equations for early/open/weak bisimulation.
• Try Pi(X) for applied π.
• Investigate algebraic par. (with effect fork : 1 → T2?)

• Build a proper theory of arities over two closed structures.

OR
• Exhibit SetI as the category of algebras for a theory of

equality testing in SetF , and then redo everything in the
single Cartesian closed structure of SetF .

University of Cambridge Computer Laboratory — 2005-02-16 Ian Stark — Free-Algebra Models for the π-Calculus – p. 27/29

Constructions in SetI

Cartesian closed

(A× B)(k) = A(k)× B(k)

BA(k) = [A(k+), B(k+)]

Monoidal closed

(A⊗ B)(k) =

∫k ′+k ′′
↪→k

A(k ′)× B(k ′′)

(A(B)(k) = [A(), B(k+)]

University of Cambridge Computer Laboratory — 2005-02-16 Ian Stark — Free-Algebra Models for the π-Calculus – p. 28/29

More constructions in SetI

Object of names, shift operator

N(k) = k

δA(k) = A(k+ 1)

Connections

A⊗ B −→ A× B δA ∼= N(A

(A → B) −→ (A(B) δN ∼= N+ 1

When A and B are pullback-preserving,
these are injective and surjective respectively.

University of Cambridge Computer Laboratory — 2005-02-16 Ian Stark — Free-Algebra Models for the π-Calculus – p. 29/29

	Summary
	Overview
	Nondeterministic computation
	Algebras for nondeterminism
	Computational monad for nondeterminism
	I/O computation
	I/O adjunction and monad
	Notions of computation determine monads
	The functor category $SetI $
	Structure within $SetI $
	Theory of $pi $: operations
	Theory of $pi $: interlude
	Theory of $pi $: operations
	Theory of $pi $: component equations
	Theory of $pi $: combining equations
	Models of the theory of $pi $
	Models of the theory of $pi $
	Free models for $pi $
	Free models for $pi $
	Free models for $pi $
	Results
	Results
	Parallel composition
	Modal logic
	Review
	What next?
	Constructions in $SetI $
	More constructions in $SetI $

