Free-Algebra Models for the π -Calculus

Ian Stark

Laboratory for Foundations of Computer Science School of Informatics University of Edinburgh

Monday 4 April 2005

Summary

The finite π -calculus:

$$P ::= \bar{x}y.P \mid x(y).P \mid \nu x.P \mid P + Q \mid P \mid Q \mid 0$$

has an explicit set-theoretic model, fully-abstract for strong late bisimulation congruence. [Fiore, Moggi, Sangiorgi; Stark]

We characterise this as the minimal free algebra for certain operations and equations, in the setting of Power and Plotkin's enriched Lawvere theories.

Overview

- Equational theories for different features of computation
- ullet Using the functor category $Set^{\mathcal{I}}$
- ullet A theory of π
- Free-algebra models and full abstraction

Notions of computation

Moggi: Computational monads for programming language features

• Nondeterminism
$$TX = \mathcal{P}_{fin}X$$

• Mutable state
$$TX = (S \times X)^S$$

• Interactive I/O
$$TX = \mu Y.(X + V \times Y + Y^{V})$$

• Exceptions
$$TX = X + E$$

Power and Plotkin:

Use correspondence to characterize each T as free model for appropriate "notion of computation"

Algebras for nondeterministic computation

An object of nondeterministic computation A in Cartesian ${\mathcal C}$ needs \dots

Operations

choice:
$$A^2 \longrightarrow A$$

 $nil: 1 \longrightarrow A$

Equations

$$choice(p, q) = choice(q, p)$$

$$choice(nil, p) = choice(p, p) = p$$

$$choice(p, (choice(q, r)) = choice(choice(p, q), r)$$

... giving a category $\mathcal{ND}(\mathcal{C})$ of algebras (A, choice, nil)

Free algebras

Free \mathcal{ND} -algebras over sets give a computational monad:

$$\begin{array}{cccc} & \mathcal{ND}(Set) \\ & & & \\ \text{free} & & F & \begin{pmatrix} \neg & & \\ \neg & & & \\ & & & \\ & & Set & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & \\ & & & \\$$

Operations induce generic effects in the Kleisli category:

$$\begin{array}{c} \text{choice}: A^2 \longrightarrow A^1 \\ \text{nil}: A^0 \longrightarrow A^1 \end{array} \right\} \quad \Longrightarrow \quad \left\{ \begin{array}{c} \text{arb}: 1 \longrightarrow \mathsf{T2} \\ \text{deadlock}: 1 \longrightarrow \mathsf{T0} \end{array} \right.$$

Notions of computation determine monads

Power/Plotkin

$$\begin{array}{ccc} \mathsf{Operations} + \mathsf{Equations} & \longrightarrow & \mathsf{Free}\text{-algebra models} \\ & \mathsf{of} \ \mathsf{computational} \ \mathsf{features} \\ & \longrightarrow & \mathsf{Monads} + \mathsf{generic} \ \mathsf{effects} \end{array}$$

- Characterisation of known computational monads and effects
- Simple and flexible combination of theories
- ullet Enriched models and arities: countably infinite, posets, $\omega C po$

Varying sets

Functor category $\mathbf{Set}^{\mathcal{I}}:\mathbf{structures}$ that vary with the available names where $\mathcal{I}=\mathbf{finite}$ name sets and injections

Object $B \in Set^{\mathcal{I}}$ is a varying set: for finite name set s it gives a set B(s) of values using names from s, and says how they change with renaming.

Structure in $Set^{\mathcal{I}}$

$Set^{\mathcal{I}}$ has two jobs:

- Arena for building name-aware algebras and monads
- Source of arities for operations

Relevant structure:

- Pairs $A \times B$ and function space $A \rightarrow B$
- Separated pairs $A \otimes B$ and fresh function space $A \multimap B$
- Object of names N
- Shift endofunctor $\delta A = A(\bot + 1)$, with $\delta A \cong N \multimap A$

In particular, object N serves as a varying arity.

Theory of π : operations

Nondeterministic computation

 $nil: 1 \longrightarrow A$ inactive process 0

choice: $A^2 \longrightarrow A$ process sum P + Q

Input/Output

out: $A \longrightarrow A^{N \times N}$ output prefix $\bar{x}y.P$

 $in: A^N \longrightarrow A^N$ input prefix x(y).P

 $tau: A \longrightarrow A$ silent prefix $\tau.P$

Dynamic name creation

new: $\delta A \longrightarrow A$ restriction $\nu x.P$

Theory of π : component equations

Nondeterministic computation

choice: commutative, associative and idempotent with unit nil

Input/Output

None

Dynamic name creation

$$new(x.p) = p$$

$$new(x.new(y.p)) = new(y.new(x.p))$$

Theory of π : combining equations

Commuting component theories

```
\begin{split} \text{new}(\textbf{x}.\text{choice}(\textbf{p},\textbf{q})) &= \text{choice}(\text{new}(\textbf{x}.\textbf{p}),\text{new}(\textbf{x}.\textbf{q})) \\ \text{new}(\textbf{z}.\text{out}_{\textbf{x},\textbf{y}}(\textbf{p})) &= \text{out}_{\textbf{x},\textbf{y}}(\text{new}(\textbf{z}.\textbf{p})) \\ \text{new}(\textbf{z}.\text{in}_{\textbf{x}}(\textbf{p}_{\textbf{y}})) &= \text{in}_{\textbf{x}}(\text{new}(\textbf{z}.\textbf{p}_{\textbf{y}})) \\ \text{new}(\textbf{z}.\text{tau}(\textbf{p})) &= \text{tau}(\text{new}(\textbf{z}.\textbf{p})) \end{split}
```

Interaction between component theories

```
new(x.out_{x,y}(p)) = nil

new(x.in_x(p_y)) = nil
```

Models for the theory of π

- Category $\mathcal{PI}(\mathsf{Set}^{\mathcal{I}})$ of π -algebras $(A \in \mathsf{Set}^{\mathcal{I}}; \mathsf{in}, \mathsf{out}, \ldots, \mathsf{new})$
- ullet Process P with free names in s interpreted by $\llbracket P \rrbracket_A : N^s \longrightarrow A$
- Definition by induction over the structure of P, using operations of the theory (and the expansion law for parallel composition)

Theorem

Every such π -algebra interpretation respects strong late bisimulation congruence:

$$\mathbf{P} \approx \mathbf{Q} \quad \Longrightarrow \quad \llbracket \mathbf{P} \rrbracket_A = \llbracket \mathbf{Q} \rrbracket_A$$

Of course, this doesn't yet give us any actual π -algebras to work with

Free models for π

Each component theory has a standard monad:

$$\begin{array}{ll} \text{Nondeterminism} & \mathcal{P}_{\text{fin}}(X) \\ \\ \text{Input/Output} & \mu Y.(X+N\times N\times Y+N\times Y^N+Y) \\ \\ \text{Name creation} & \text{Dyn}(X) = \int^k X(\underline{\ } + k) \end{array}$$

For the full theory of π :

$$\text{Pi}(X) = \mu Y. \mathcal{P}_{\text{fin}}(\text{Dyn}(X) + N \times N \times Y + N \times \delta Y + N \times Y^N + Y)$$

... which is not quite an interleaving of the component monads

Results

Theorem

The category of π -algebras is monadic over $Set^{\mathcal{I}}$:

Monad $T_{\pi} = (U \circ Pi)$ for concurrent name-passing programs:

 $arb: 1 \longrightarrow T2$ $send: N \times N \longrightarrow T1$ $deadlock: 1 \longrightarrow T0$ $receive: N \longrightarrow TN$ $skip: 1 \longrightarrow T1$ $fresh: 1 \longrightarrow TN$

Results

We have the following:

• A category $\mathcal{PI}(\mathsf{Set}^{\mathcal{I}})$ of π -algebras, all sound models of π -calculus bisimulation:

$$P \approx Q \implies [P]_A = [Q]_A$$

• An explicit free-algebra construction $Pi: Set^{\mathcal{I}} \to \mathcal{PI}(Set^{\mathcal{I}})$ such that all Pi(X) are fully-abstract models of π :

$$P \approx Q \iff \llbracket P \rrbracket_{Pi(X)} = \llbracket Q \rrbracket_{Pi(X)}$$

 The initial free algebra Pi(0) is in fact the previously known fully-abstract model.

What next?

- Use FM-Cpo for the full π -calculus
- Partial order arities for testing equivalences

[Hennessy]

- Modify equations for early/open/weak bisimulation
- Try Pi(X) for applied π
- Investigate algebraic pαr

(with effect fork: $1 \rightarrow T2$)

• Expose $Set^{\mathcal{I}}$ as the category of algebras for a theory of equality testing in $Set^{\mathcal{F}}$; and redo everything in the single Cartesian closed structure of $Set^{\mathcal{F}}$. (\mathcal{F} finite sets and all maps)