
http://www.ed.ac.uk/∼stark/freamp.html

T
H

E

U N I V E R
S

I
T

Y

O
F

E
D I N B U

R
G

H

Free-Algebra Models for the π-Calculus

Ian Stark

Laboratory for Foundations of Computer Science
School of Informatics

The University of Edinburgh

Tuesday 14 June 2005

http://www.ed.ac.uk/~stark/freamp.html
http://www.ed.ac.uk/~stark/freamp.html
http://www.ed.ac.uk/~stark

Summary

The finite π-calculus:

P ::= x̄y.P | x(y).P | νx.P | P + Q | P |Q | 0

has an explicit set-theoretic model, fully-abstract for strong late
bisimulation congruence. [Fiore, Moggi, Sangiorgi; Stark]

We characterise this as the minimal free algebra for certain operations and
equations, in the setting of Power and Plotkin’s enriched Lawvere theories.

Ian Stark (LFCS Edinburgh) Free-Algebra Models for the π-Calculus LiX 2005-06-14 1 / 22

http://www.ed.ac.uk/~stark/freamp.html

Summary

The finite π-calculus:

P ::= x̄y.P | x(y).P | νx.P | P + Q | P |Q | 0

has an explicit set-theoretic model, fully-abstract for strong late
bisimulation congruence. [Fiore, Moggi, Sangiorgi; Stark]

We characterise this as the minimal free algebra for certain operations and
equations, in the setting of Power and Plotkin’s enriched Lawvere theories.

This combines separate theories of nondeterminism, I/O and name creation in a

modular fashion. As a bonus, we get a whole category of models, a modal logic

and a computational monad. The tricky part is that everything has to happen

inside the functor category SetI .

Ian Stark (LFCS Edinburgh) Free-Algebra Models for the π-Calculus LiX 2005-06-14 1 / 22

http://www.ed.ac.uk/~stark/freamp.html

Overview

Equational theories for different features of computation

Using the functor category SetI

A theory of π

Free-algebra models and full abstraction

Ian Stark (LFCS Edinburgh) Free-Algebra Models for the π-Calculus LiX 2005-06-14 2 / 22

http://www.ed.ac.uk/~stark/freamp.html

Notions of computation

Moggi: Computational monads for programming language features

Nondeterminism TX = PfinX

Mutable state TX = (S × X)S

Interactive I/O TX = µY.(X + V × Y + YV)

Exceptions TX = X + E

Power and Plotkin:

Monad Algebraic theory

Use correspondence to characterize each T as free model for appropriate
“notion of computation”

Ian Stark (LFCS Edinburgh) Free-Algebra Models for the π-Calculus LiX 2005-06-14 3 / 22

http://www.ed.ac.uk/~stark/freamp.html

Algebras for nondeterministic computation

An object of nondeterministic computation A in cartesian C needs . . .

Operations

choice : A2 −→ A

nil : 1 −→ A

Equations

choice(p,q) = choice(q,p)

choice(nil,p) = choice(p,p) = p

choice(p, (choice(q, r)) = choice(choice(p,q), r)

. . . giving a category ND(C) of algebras (A, choice,nil)

Ian Stark (LFCS Edinburgh) Free-Algebra Models for the π-Calculus LiX 2005-06-14 4 / 22

http://www.ed.ac.uk/~stark/freamp.html

Free algebras

Free ND-algebras over sets give a computational monad:

ND(Set)

⊣free F U forgetful

Set

T = (U ◦ F) = Pfin

Operations induce generic effects in the Kleisli category:

choice : A2 −→ A1

nil : A0 −→ A1

}

=⇒

{

arb : 1 −→ T 2

deadlock : 1 −→ T 0

Ian Stark (LFCS Edinburgh) Free-Algebra Models for the π-Calculus LiX 2005-06-14 5 / 22

http://www.ed.ac.uk/~stark/freamp.html

Notions of computation determine monads

Power/Plotkin

Operations + Equations −→ Free-algebra models
of computational features

−→ Monads + generic effects

Characterisation of known computational monads and effects

Simple and flexible combination of theories

Enriched models and arities: countably infinite, posets, ωCpo

Ian Stark (LFCS Edinburgh) Free-Algebra Models for the π-Calculus LiX 2005-06-14 6 / 22

http://www.ed.ac.uk/~stark/freamp.html

Varying sets

Functor category SetI : structures that vary with the available names
where I = finite name sets and injections

Set

• •

B(s)

I s

Object B ∈ SetI is a varying set: for finite name set s it gives a set B(s) of
values using names from s, and says how they change with renaming.

Ian Stark (LFCS Edinburgh) Free-Algebra Models for the π-Calculus LiX 2005-06-14 7 / 22

http://www.ed.ac.uk/~stark/freamp.html

Structure in SetI

SetI has two jobs:

Arena for building name-aware algebras and monads

Source of arities for operations

Relevant structure:

Pairs A × B and function space A → B

Separated pairs A ⊗ B and fresh function space A ⊸ B

Object of names N

Shift endofunctor δA = A(+ 1), with δA ∼= N ⊸ A

In particular, object N serves as a varying arity.

Ian Stark (LFCS Edinburgh) Free-Algebra Models for the π-Calculus LiX 2005-06-14 8 / 22

http://www.ed.ac.uk/~stark/freamp.html

Constructions in SetI

Cartesian closed

(A × B)(k) = A(k) × B(k)

BA(k) = [A(k +),B(k +)]

Monoidal closed

(A ⊗ B)(k) =

∫k ′+k ′′
֒→k

A(k ′) × B(k ′′)

(A ⊸ B)(k) = [A(),B(k +)]

Ian Stark (LFCS Edinburgh) Free-Algebra Models for the π-Calculus LiX 2005-06-14 9 / 22

http://www.ed.ac.uk/~stark/freamp.html

More constructions in SetI

Object of names, shift operator

N(k) = k

δA(k) = A(k + 1)

Connections

A ⊗ B −→ A × B δA ∼= N ⊸ A

(A → B) −→ (A ⊸ B) δN ∼= N + 1

When A and B are pullback-preserving, the two maps are injective and
surjective respectively.

Ian Stark (LFCS Edinburgh) Free-Algebra Models for the π-Calculus LiX 2005-06-14 10 / 22

http://www.ed.ac.uk/~stark/freamp.html

Structure in SetI

SetI has two jobs:

Arena for building name-aware algebras and monads

Source of arities for operations

Relevant structure:

Pairs A × B and function space A → B

Separated pairs A ⊗ B and fresh function space A ⊸ B

Object of names N

Shift endofunctor δA = A(+ 1), with δA ∼= N ⊸ A

In particular, object N serves as a varying arity.

Ian Stark (LFCS Edinburgh) Free-Algebra Models for the π-Calculus LiX 2005-06-14 11 / 22

http://www.ed.ac.uk/~stark/freamp.html

Theory of π: operations

Nondeterministic computation

nil : 1 −→ A inactive process 0

choice : A2 −→ A process sum P + Q

Input/Output

out : A −→ AN×N output prefix x̄y.P

in : AN −→ AN input prefix x(y).P

tau : A −→ A silent prefix τ.P

Dynamic name creation

new : δA −→ A restriction νx.P

Ian Stark (LFCS Edinburgh) Free-Algebra Models for the π-Calculus LiX 2005-06-14 12 / 22

http://www.ed.ac.uk/~stark/freamp.html

Theory of π: component equations

Nondeterministic computation

choice: commutative, associative and idempotent with unit nil

Input/Output

None

Dynamic name creation

new(x.p) = p

new(x.new(y.p)) = new(y.new(x.p))

Ian Stark (LFCS Edinburgh) Free-Algebra Models for the π-Calculus LiX 2005-06-14 13 / 22

http://www.ed.ac.uk/~stark/freamp.html

Theory of π: combining equations

Commuting component theories

new(x.choice(p,q)) = choice(new(x.p),new(x.q))

new(z.outx,y(p)) = outx,y(new(z.p)) z /∈ {x,y}

new(z.inx(py)) = inx(new(z.py)) z /∈ {x,y}

new(z.tau(p)) = tau(new(z.p))

Interaction between component theories

new(x.outx,y(p)) = nil

new(x.inx(py)) = nil

Ian Stark (LFCS Edinburgh) Free-Algebra Models for the π-Calculus LiX 2005-06-14 14 / 22

http://www.ed.ac.uk/~stark/freamp.html

Models for the theory of π

Category PI(SetI) of π-algebras (A ∈ SetI ; in,out, . . . ,new)

Process P with free names in s interpreted by [[P]]A : Ns −→ A

Definition by induction over the structure of P, using operations of
the theory (and the expansion law for parallel composition)

Theorem

Every such π-algebra interpretation respects strong late bisimulation

congruence:

P ≈ Q =⇒ [[P]]A = [[Q]]A

Of course, this doesn’t yet give us any actual π-algebras to work with

Ian Stark (LFCS Edinburgh) Free-Algebra Models for the π-Calculus LiX 2005-06-14 15 / 22

http://www.ed.ac.uk/~stark/freamp.html

Free models for π

Each component theory has a standard monad:

Nondeterminism Pfin(X)

Input/Output µY.
(

X + (N × N × Y) + ()N × YN) + Y
)

Name creation Dyn(X) =

∫k

X(+ k)

For the full theory of π:

Pi(X) = µY.Pfin

(

Dyn(X) + (N × N × Y) + (N × δY) + (N × YN) + Y
)

... which is not quite an interleaving of the component monads

Ian Stark (LFCS Edinburgh) Free-Algebra Models for the π-Calculus LiX 2005-06-14 16 / 22

http://www.ed.ac.uk/~stark/freamp.html

Results

Theorem

The category of π-algebras is monadic over SetI :

PI(SetI)

⊣free Pi U forgetful

SetI

Monad Tπ = (U ◦ Pi) for concurrent name-passing programs:

arb : 1 −→ T2 send : N × N −→ T1

deadlock : 1 −→ T0 receive : N −→ TN

skip : 1 −→ T1 fresh : 1 −→ TN

Ian Stark (LFCS Edinburgh) Free-Algebra Models for the π-Calculus LiX 2005-06-14 17 / 22

http://www.ed.ac.uk/~stark/freamp.html

Results

We have the following:

A category PI(SetI) of π-algebras, all sound models of π-calculus
bisimulation:

P ≈ Q =⇒ [[P]]A = [[Q]]A

An explicit free-algebra construction Pi : SetI → PI(SetI) such that
all Pi(X) are fully-abstract models of π:

P ≈ Q ⇐⇒ [[P]]Pi(X) = [[Q]]Pi(X)

The initial free algebra Pi(0) is in fact the previously known
fully-abstract model.

Ian Stark (LFCS Edinburgh) Free-Algebra Models for the π-Calculus LiX 2005-06-14 18 / 22

http://www.ed.ac.uk/~stark/freamp.html

Review

Operations + equations with enriched arities
=⇒ algebraic models for features of computation

Modular theory for π-calculus, with SetI for both arities and algebras:

π = (Nondeterminism + I/O + Name creation) / new ↔ i/o

Explicit formulation of free algebras for this theory; all fully abstract
for bisimulation congruence

The induced computational monad is almost, but not quite, the
combination of its three components.

Ian Stark (LFCS Edinburgh) Free-Algebra Models for the π-Calculus LiX 2005-06-14 19 / 22

http://www.ed.ac.uk/~stark/freamp.html

What next?

Use FM-Cpo for the full π-calculus

Partial order arities for testing equivalences [Hennessy]

Modal logic from the theory of π

Modify interpretation or equations for early/open/weak bisimulation

Try Pi(X) for applied π

Investigate algebraic par (with effect fork : 1 → T2)

Expose SetI as the category of algebras for a theory of equality
testing in SetF ; and redo everything in the single cartesian closed
structure of SetF . (F finite sets and all maps)

Ian Stark (LFCS Edinburgh) Free-Algebra Models for the π-Calculus LiX 2005-06-14 20 / 22

http://www.ed.ac.uk/~stark/freamp.html

Parallel composition

Parallel composition of π-calculus processes is not algebraic, but still:

All π-algebras can support (P |Q) externally by expansion.

All free π-algebras have an internally-defined map

parX,Y : Pi(X) × Pi(Y) −→ Pi(X × Y) .

Any multiplication µ : X × X → X then gives us

parµ : Pi(X) × Pi(X) −→ Pi(X) .

For X = 0, this is standard parallel composition; for X = 1 we get the
same with an extra success process X.

Ian Stark (LFCS Edinburgh) Free-Algebra Models for the π-Calculus LiX 2005-06-14 21 / 22

http://www.ed.ac.uk/~stark/freamp.html

Modal logic

Any theory gives rise to a modal logic over its algebras, with possibility
and necessity modalities for every operation.

P ² ♦outx,y(φ) ⇐⇒ ∃Q. P ∼ x̄y.Q ∧ Q ² φ

P ² ¤outx,y(φ) ⇐⇒ ∀Q. P ∼ x̄y.Q ⇒ Q ² φ

P ² ♦choice(φ,ψ) ⇐⇒ ∃Q,R. P ∼ (Q + R) ∧ Q ² φ ∧ R ² ψ

HML is definable:

〈x̄y〉φ = ♦choice(♦outx,y(φ), true)

We could also take other algebraic operations and define modalities.
However, in no case is there a (φ | ψ) modality.

Ian Stark (LFCS Edinburgh) Free-Algebra Models for the π-Calculus LiX 2005-06-14 22 / 22

http://www.ed.ac.uk/~stark/freamp.html

	Opening
	Notions of computation
	Set^I
	Theory of π
	Models for π
	Closing

