
Appears in the Proceedings of LICS ’96

A Fully Abstract Domain Model for the π-Calculus

Ian Stark
BRICS∗

Department of Computer Science
University of Aarhus

Denmark
Ian.Stark@brics.dk

Abstract

Abramsky’s domain equation for bisimulation and the
author’s categorical models for names combine to give a
domain-theoretic model for theπ-calculus. This is set in a
functor category which provides a syntax-free interpretation
of fresh names, privacy, visibility and non-interference be-
tween processes. The model is fully abstract for strong late
bisimilarity and equivalence (bisimilarity under all name
substitutions).

1. Introduction

Theπ-calculus is a calculus of mobile processes [11]. It
aims to provide a prototypical language for communicating
systems where configurations and topology change dynam-
ically. The notion of anameis central to theπ-calculus:
names are labels for communication channels, and names
are the only values sent over them. This turns out to be a
remarkably powerful system, which supports encodings of
theλ-calculus and higher-order process calculi.

Most work on theπ-calculus to date has been opera-
tional, looking directly at the actions a process may per-
form. This paper initiates a denotational approach, pre-
senting a novel domain-theoretic model of name-passing
processes, based on functor categories. The model is fully
abstract and captures exactly the operational notions of tran-
sitions, strong late bisimilarity and equivalence. This im-
proves models such as Hennessy’s for higher-order pro-
cesses [6] which implements dynamic rather than static
binding, and a much coarser equivalence. However the
most significant contribution is that the categorical con-

∗BasicResearchin ComputerScience, a centre of the Danish National
Research Foundation. The author was previously supported by the Euro-
pean Community under the HCM network ‘EuroFoCS’ and ESPRIT basic
research action ‘CLICS-II’.

structions used provide a syntax-free handling of names,
visibility, privacy, and interference between processes.

The method is quite straightforward; we solve the fol-
lowing predomain equations:

Pi ∼= 1 + P (Pi⊥ + In + Out) (1)

In ∼= N × (N → Pi⊥) (2)

Out ∼= N × (N × Pi⊥ +N (Pi⊥) . (3)

These express a process as the set of things it may do:
deadlock, silent transitions, input or output. Intuitively,
N is an object of names,P is a power operation, and
(N(Pi⊥) is a non-standard exponential that takes a fresh
name to a process that uses it. The catch is that we must first
find a categoryC in which these make sense; this occupies
Section 2 of this paper.

In Section 3 we solve the equations and look at theobject
of processesPi⊥. Section 4 interpretsπ-calculus processes
in the categoryC and shows the model to be fully abstract.
Section 5 outlines further possibilities for this denotational
approach to name-passing calculi.

This work draws on two distinct lines of existing re-
search. Hennessy and Plotkin [7] showed how the convex
powerdomain models concurrency, and Abramsky [1] used
this to present a domain equation for strong bisimulation in
SCCS. More recently, Pitts and the author [15, 20, 21] have
given a general categorical interpretation for dynamically
generated names. The results presented here are the fruitful
combination of both approaches.

Ingólfsdóttir has given domain models of value-passing
CCS [8]; curiously, this is more arduous than theπ-
calculus, because of the infinity of possible communica-
tions. Independently of the work presented here, Fiore,
Moggi and Sangiorgi [5] have developed a model of the
π-calculus which starts from the same domain equations,
but then uses rather different methods to carry out the inter-
pretation; while Abramsky and Meredith have considered
using non-wellfounded sets rather than domains.

1

2. Choosing a CategoryC

Any π-calculus process is defined over some finite set
of free names, which may change as the process performs
input and output. To capture this, we build our model in
a functor categoryBI, whereI is the category of finite
sets of names, and injections between them. The object of
processesPi⊥ is then a functorI → B: so if s is a set
of names, thenPi⊥s is a domain of processes with free
names ins; similarly if f : s → s′ is a morphism inI,
thenPi⊥f : Pi⊥s→ Pi⊥s′ is a relabelling operator.

For base categoryB we take the category of bifinite pre-
domains and continuous maps described by Pitts in [14,§5].
This has both function spaces and a concrete description of
the Plotkin powerdomain; while selective use of the lift op-
eration gives precise control over coalesced sum and smash
product. Working with pointed domains would in fact give
the same objectPi⊥, but the intermediate constructions are
unwieldy.

Within the functor categoryBI we take the full subcat-
egoryC of functors that are pullback-preserving, and also
bifinite as functors; that is, they are bilimits ofω-chains of
functors into the category of finite posets. This inherits an
O-structure fromB; in particular there is an evident cate-
gory Ce of embeddings, which we can use to solve domain
equations [19]. Finite limits, colimits and lifting can all be
taken pointwise inC, and there is a lifted function space,
with object part

(A→ B⊥)s = HomC
(
A(s+), B⊥(s+)

)
. (4)

This is the standard construction for exponentials in a func-
tor category: the requirement thatA andB be bifinite as
functors ensures that the hom-object is a bifinite predomain,
and the disjoint union ‘+’ in I leads to a particularly sim-
ple presentation. Informally, a function fromA toB⊥ over
the namess must take account of arguments defined over
any larger sets′, with naturality ensuring that fresh names
are treated alike.

Pitts gives an adaptationP of the Plotkin (convex) pow-
erdomainP \ to bifinite predomains, with the property that
P (D)⊥ = P \(D⊥) for D ∈ B [14, §5]. This gives a point-
wise power operation onC, and following Abramsky [1,
Def. 3.4] we adjoin the empty set as1 + P (−).

2.1.C is Symmetric Monoidal Closed

Naturally arising from its presentation as a functor cate-
gory,C has additional structure that captures the distinctive
behaviour of a system based on names.

For any elementa ∈As define thesupportof a to be the
leasts′ ⊆ s such thata is the image of somea′ ∈As′. This
is the set of names whicha actually needs; the requirement
thatA preserve pullbacks ensures that it is unique. There

is then a symmetric monoidal structure(1,⊗) on C, with
elements of(A ⊗ B)s being pairs fromAs andBs with
disjoint support:

(A⊗B)s = {〈a, b〉 ∈ (A×B)s |
∃f : i→ s, g : j → s, a′ ∈ Ai, b′ ∈ Bj .
a = Afa′ & b = Bgb′ & Im f ∩ Im g = ∅}.

These can be regarded as pairs of mutually non-interfering
elements. In fact this tensor comes from the disjoint
union ‘+’ in the index categoryI by a general construc-
tion of Day [4].

There is a corresponding lifted function space ‘(’, with

(A(B⊥)s = HomC
(
A,B⊥(s+)

)
(5)

Informally, an element of(A(B⊥)s is a function defined
at all larger name setss′, but only on arguments not using
the names ins. Thus for example the evaluation map

(A(B⊥)⊗A −→ B⊥

expresses the situation where a function and its argument
may not share names.

The monoidal and cartesian closed structures are related,
with a natural inclusion

(A⊗B) ↪−→ (A×B) (6)

and a corresponding surjection

(A→ B⊥) −� (A(B⊥) . (7)

2.2. The Object of NamesN

The object of namesN in the categoryC is the inclusion
taking a set of namess to the discrete predomains. As it
happens,N is the only exponent that we need, and there
are particularly simple forms for the function spaces:

(N → A)s ∼= (As)s ×A(s+ 1)

(N (A)s ∼= A(s+ 1) .

These arise from the naturality constraints of equations (4)
and (5): an element of(N → A) is determined by its
behaviour at all existing names, and one new name; while
elements of(N (A) are elements ofA using one fresh
name.

Given an object of names, we can now step back a little
from the detailed structure ofC. For a set of namess,
we writeNs for the |s|-fold productN × · · · ×N ; this is
the object ofs-environments, with elements ofNss′ being
substitutionsρ : s → s′. Similarly, N⊗s is the monoidal
productN ⊗· · ·⊗N ; the object ofdistincts-environments,
where no two names are identified.

2

3. The Object Pi⊥

The definitions ofN , P (−) and ‘(’ above give mean-
ing to the equations (1)–(3); using the O-categorical struc-
ture ofC we can solve them to obtain an objectPi . Lifted,
this gives theobject of processesPi⊥. The method is stan-
dard [19], though it is significant thatPi itself only appears
lifted on the right hand side of the equations. Indeed, be-
cause it also only appears positively, we could adapt the
equations to give a solution inSetI ; but would then be
unable to interpret recursion or replication of processes.

Formally, operations onPi⊥ are defined by unfolding
the equations and using various properties ofN , P (−)
and ‘(’. This abstract approach ensures that we stay
within C, and also allows for other choices of category by
highlighting the general structure required. Such anony-
mous manipulation of morphisms is sound but unillumi-
nating, so we give here a more explicit presentation, using
the detailed structure ofPi⊥ andC.

3.1. Finite Elements

The standard union ‘]’ and singleton ‘{|−|}’ maps for
powerdomains give rise in an obvious way to morphisms
into Pi⊥, making allowance for the empty set:

∅ : 1 −→ Pi⊥] : Pi⊥ × Pi⊥ −→ Pi⊥

{|−|} : (Pi⊥ + In + Out)⊥ −→ Pi⊥ .

Figure 1 uses these to present three setsK(Pi⊥s), K(In s)
andK(Out s), which consist of all the finite elements for
the corresponding predomains. The elements{|⊥|} and∅
of K(Pi⊥s) represent the undetermined process and the
inactive process0 respectively. Element{|⊥|} is the least
in Pi⊥s, while ∅ is incomparable save for{|⊥|} v ∅.

Input and bound output both involveN -exponentials,
for which we use the following representation of finite
elements:

λy.p ∈ K((N → Pi⊥)s)

λy
¯
.p ∈ K((N (Pi⊥)s) .

An element writtenλy.p is a function from any name, old
or new, to a finite element ofPi⊥. Herep is not an element
itself, but rather gives elementsp[z/y] ∈ K(Pi⊥(s∪{z}))
for any namez, with all fresh names treated equally. Ele-
mentλy

¯
.p is less general: the underbar ony indicates that

it is certain to be instantiated to a fresh name, so we can
essentially takep ∈ K(Pi⊥(s+ {y})) for anyy /∈ s. This
notation recalls the surjection between the two kinds of ex-
ponential, noted in equation (7):

(N → Pi⊥) −� (N (Pi⊥)

λy.p 7−→ λy
¯
.p .

3.2. Mapsnew and par

We can now define two particular morphisms ofC:

new : (N (Pi⊥) −→ Pi⊥

par : Pi⊥ × Pi⊥ −→ Pi⊥ .

The morphismnew is used to interpret name restriction.
It takes an agent expecting a new name to a process, es-
sentially by providing a fresh private name. The morphism
par interprets parallel composition as interleaving. In both
cases existing knowledge of operational behaviour, such as
the expansion law [11], is used to guide the denotational
construction.

Although both maps are best defined abstractly, we can
present them concretely by giving their action at finite
elements, over somes ∈ I. For example,news acts on
free output according to:

news(λx
¯
.{|out(y, z, p)|}) =

∅ x = y

{|out(y, λx
¯
.p)|} x = z 6= y

{|out(y, z,news(λx
¯
.p))|} otherwise.

This expresses the fact that actions on the restricted channel
become unavailable, and free output may become bound
output.

For parallel composition, we break down the mappars
with two auxiliary maps:

pars(p, q) = lpar s(p, q)] lpars(q, p)

] lcoms(p, q)] lcoms(q, p) .

Here lpars(p, q) is prioritised parallel composition: firstp
does a transition, thenq interleaves with its residue. Pro-
cesslcoms(p, q) allowsp to send toq, and interleaves their
residues. The most significant clause is that for communi-
cation, where an input action may match either free output:

lcoms({|out(x, y, p)|}, {|in(x, λz.q)|})

= {|tau(par s(p, q[y/z]))|},

bound output:

lcoms({|out(x, λy
¯
.p)|}, {|in(x, λz.q)|})

= {|tau(news(λy
¯
.pars+{y}(p, q[y/z])))|},

or nothing at all:

lcoms({|a|}, {|b|}) = ∅

when neither of the previous two apply.

3

General processesK(Pi⊥s):

{|⊥|}, ∅ ∈ K(Pi⊥s) p, q ∈ K(Pi⊥s) ⇒ p] q ∈ K(Pi⊥s) choice

p ∈ K(Pi⊥s) ⇒ {|tau(p)|} ∈ K(Pi⊥s) silent action

i ∈ K(In s) ⇒ {|in(i)|} ∈ K(Pi⊥s) input action

o ∈ K(Out s) ⇒ {|out(o)|} ∈ K(Pi⊥s) output action

Input and output agents:

x ∈ s, λy.p ∈ K((N → Pi⊥)s) ⇒ (x, λy.p) ∈ K(In s) input

x, y ∈ s, p ∈ K(Pi⊥s) ⇒ (x, y, p) ∈ K(Out s) free output

x ∈ s, λy
¯
.p ∈ K((N (Pi⊥)s) ⇒ (x, λy

¯
.p) ∈ K(Out s) bound output

Figure 1. Finite elements of Pi⊥s, In s and Out s.

4. Interpretation of the π-Calculus

With the machinery of the previous section, we construct
an interpretation of theπ-calculus in the categoryC: for
any processP with free names ins, there is a morphism
[[P]]s : Ns −→ Pi⊥ from the object ofs-environments.
Again the formal definition is by manipulation of mor-
phisms inC, without reference to the underlying functors;
while for clarity we present here a more concrete descrip-
tion.

We interpret the fullπ-calculus, with unguarded sums
and both match and mismatch operators,[x = y]P and
[x 6= y]P . However, none of these operations are essential;
as we do not rely on any equational transformations of
process terms, the model also handles any subset of the
language. Infinite processes are available through guarded
replication!α.P for any prefixα, though the interpretation
works equally well for unguarded replication and guarded
recursion.

4.1. Translation

This is in two stages: we begin with certain elements
of the domainPi⊥s, and then build the morphisms from
these. For aπ-calculus processP with free names ins,
Figure 2 describes an element([P])s ∈Pi⊥s, inductively on
the structure ofP . Guarded replication!α.P is interpreted
using the order structure ofPi⊥s; for unguarded replication
we can either use([!P])s = µp.lpars(([P | P])s, p) or recall
Sangiorgi’s result that these two forms are interdefinable up
to strong equivalence [17,§6.3]. Note the use of prioritised
parallel compositionlpar , non-strict in its right argument,
to ensure that the resulting least fixed point is a fully
determined process. Guarded recursion can be handled

similarly.
To raise([P])s from an element to a morphism we define

[[P]]s : Ns −→ Pi⊥ by taking [[P]]ss
′ρ = ([P [ρ]])s′ for

s′ ∈ I and ρ ∈ Nss′, that isρ : s → s′. The difference
between the two forms is that interpreting a process as
an element assumes that all names are distinct, whereas
the morphism includes behaviour under all possible name
identifications. Thus([−])s is the ‘ground’ notion, and[[−]]s
the more general one.

4.2. Results

We consider thestrong, late semantics for process be-
haviour, whereτ -actions are significant and input actions
commit on a channel before value transmission. A suitable
transition relation for this semantics appears in [11], which
then derives a notion ofbisimilarity betweenπ-calculus
processes. This is not closed under input prefix, so pro-
cesses are further defined to beequivalentif they are bisim-
ilar under all name substitutions. Both of these relations are
captured exactly by the model inC, thanks to the following
strong result on transitions.

Theorem 1. If P is aπ-calculus process then its interpre-
tation in C both reflects and preserves transitions. For ex-
ample:

P
x̄y−→ Q ⇒ out(x, y, ([Q])s) ∈ ([P])s

tau(q) ∈ ([P])s ⇒ ∃Q . P
τ−→ Q & ([Q])s = q

being respectively instances of soundness and adequacy.

Proof. Soundness is shown by rule induction: the transla-
tion respects every rule of the operational semantics. Ad-
equacy requires an inductively defined formal approxima-

4

([x̄y.P])s = {|out(x, y, ([P])s)|} ([0])s = ∅
([x(y).P])s = {|in(x, λy.([P])s+{y})|} ([P +Q])s = ([P])s] ([Q])s

([νxP])s = news(λx
¯
.([P])s+{x}) ([P | Q])s = par s(([P])s, ([Q])s)

([!α.P])s = µp.lpar s(([α.P])s, p)

([[x = y]P])s =

{
([P])s x = y

∅ x 6= y
([[x 6= y]P])s =

{
∅ x = y

([P])s x 6= y

Figure 2. Interpretation of π-calculus processes as elements of Pi⊥s.

tion relationp Cs P between elements ofPi⊥s and pro-
cesses over namess; loosely, any transition in the ele-
ment p can be matched by the processP . The method
is standard, but its application here is rather delicate. We
only consider elementsp that are ‘image finite’ — finite
sets, in the explicit representation of the powerdomain. All
elements arising from the translation([−]) are image fi-
nite, even those involving replication, and we can show that
([P])s Cs P by induction on the structure ofP , from which
the result follows. Note that this is a proof directly on the
transitions, so it does not depend on the expansion law or
any other equations.

Corollary 2 (Adequacy). The model inC is adequate for
strong bisimilarity ‘∼̇’ and strong equivalence ‘∼’ between
processes:

([P])s = ([Q])s ⇒ P ∼̇ Q
[[P]]s = [[Q]]s ⇒ P ∼ Q .

Proof. We combine the result above with the definition
of bisimulation and equivalence in terms of transitions.
Roughly speaking, if two processes have equal interpre-
tations then they have matching transitions, and this is
enough to show strong bisimilarity or equivalence as ap-
propriate. Again we have the distinction between ground
notions (elements, bisimilarity) and more general ones
that consider all possible name substitutions (morphisms,
equivalence).

Thus the model inC can be used to prove equivalences be-
tween specific processes, and to verify algebraic laws for
theπ-calculus [11, 12]. Indeed because we have not even
used the basic structural equivalences, such as commutativ-
ity of ‘ +’, the model proves their validity too. Furthermore,
this method is complete.

Theorem 3. The objectPi⊥ is ‘internally fully abstract’,
in that elements are determined entirely by their transitions
and whether they contain⊥.

Proof. In [14], Pitts provides proof principles that give
exactly this result for a wide range of recursive predomain
constructions. The general scheme is to define a notion
of bisimilarity between domain elements, and then use
coinduction to show that elements are equal if and only
if they are bisimilar. ForPi⊥ we can repeat this work in
the functor categoryC.

Corollary 4 (Full Abstraction). The model inC is fully
abstract for strong bisimilarity and strong equivalence:

P ∼̇ Q ⇒ ([P])s = ([Q])s
P ∼ Q ⇒ [[P]]s = [[Q]]s .

Proof. Theorem 3 involves a form of bisimilarity between
domain elements. By Theorem 1 on transitions, operational
bisimilarity between two processes corresponds exactly to
this domain bisimilarity between their interpretations. In-
ternal full abstraction then gives that such bisimilar pro-
cesses actually have equal interpretations. The same result
for strong equivalence follows by considering all possible
name substitutions.

Figure 3 summarises how the various operational notions of
process behaviour are interpreted by the categorical model.

5. Further Work

The purpose in having simple equations and a sophisti-
cated category is that, once the tools are assembled, further
work is simple and intuitive. For example we can immedi-
ately give a fully abstract interpretation of equivalence up
to distinctionsor even up to Parrow and Sangiorgi’scon-
ditionson name sets [12], completing a spectrum between
bisimilarity and equivalence. The key observation here is
that every subobject ofNs representss-environments with
some restriction upon which names must or must not be
identified. Alternatively, replacing equations (2) and (3)
with In ∼= Out ∼=N× (N(Pi⊥) gives a model of theπI-
calculus, where all communicated names are fresh [18]; this

5

Operation Denotation

Transitions: P
x̄y−→ Q {|out(x, y, ([Q])s)|} ∈ ([P])s etc.

Bisimilarity: P ∼̇ Q ([P])s = ([Q])s ∈ Pi⊥s

Equivalence: P ∼ Q [[P]]s = [[Q]]s : Ns −→ Pi⊥

Figure 3. Operational notions and their categorical interpretation.

clearly highlights the symmetry between input and output
in πI. For a second-orderπ-calculus an obvious first step
is to replaceN by Pi⊥ as the object of the input and output
clauses; though it is not yet clear what this corresponds to
operationally. It might also be possible to adapt the equa-
tions to model early, weak or open variants of bisimilarity.
Similarly, we could look at processes with sorts, or transi-
tions annotated to allow more detailed analysis of concur-
rency [3, 13, 16].

There are various ways we might try to give a more ab-
stract presentation of the model inC. An internal language
would allow a more succinct description of the morphisms
used; unfortunately, the rich interaction between the carte-
sian and monoidal closed structures, that makes possible
this model of names, also leads to well-known problems in
the formulation of an internal language. The approaches of
axiomaticandsyntheticdomain theory would allow us to
treat the objects ofC not as functors but as standard do-
mains or even sets; indeed this work provides a concrete
example of the need for such generalised domain theory.

The work of Fiore, Moggi and Sangiorgi [5] follows up
some of these lines. They give an internal language for their
category, not for the whole monoidal closed structure but
just the essential operationN ((−) (which they callδ).
This leads to a more abstract presentation of how process
terms are interpreted as morphisms. With the proof of full
abstraction though, a tradeoff becomes apparent: although
their proof uses no explicit handling of domain elements,
it does require thatπ-calculus processes be manipulated
into a certain normal form. Axioms and rule schemes for
operational reasoning about processes are thus essential;
while our proofs have needed no sucha priori results on
bisimilarity or equivalence.

Following Abramsky [1] we might use Stone duality
and seek adomain logicfor Pi⊥. It would be interesting
to see how this compares with the range of modal logics
already proposed forπ-calculus processes [2, 10]. We can
also consider what this denotational semantics suggests for
the formulation of theπ-calculus itself. Concretion and
abstraction are naturally interpreted by the objects(N ×
Pi⊥) and(N → Pi⊥) — perhaps other constructions inC
also give useful operational notions.

Finally, we may ask what happens when other categor-
ical models of concurrency, such as those in [9, 22], are
indexed byI: does the monoidal closed structure still cap-
ture some appropriate notion of a ‘name’?

References

[1] S. Abramsky. A domain equation for bisimulation.Infor-
mation and Computation, 92(2):161–218, June 1991.

[2] R. Amadio and M. Dam. Toward a modal theory of types
for the π-calculus. Research Report R96:03, Swedish In-
stitute of Computer Science, 1996.

[3] M. Boreale and D. Sangiorgi. A fully abstract semantics for
causality in theπ-calculus. InProceedings of STACS ’95:
12th Annual Symposium on Theoretical Aspects of Com-
puter Science, Lecture Notes in Computer Science 900.
Springer-Verlag, 1995.

[4] B. J. Day. On closed categories of functors. InReports
of the Midwest Category Seminar, Lecture Notes in Math-
ematics 137, pages 1–38. Springer-Verlag, 1970.

[5] M. Fiore, E. Moggi, and D. Sangiorgi. A fully-abstract
model for theπ-calculus. InProceedings of the Eleventh
Annual IEEE Symposium on Logic in Computer Science.
IEEE Computer Society Press, 1996.

[6] M. Hennessy. A fully abstract denotational model for
higher-order processes (extended abstract). InProceed-
ings of the Eighth Annual IEEE Symposium on Logic in
Computer Science, pages 397–408. IEEE Computer Soci-
ety Press, 1993.

[7] M. Hennessy and G. Plotkin. Full abstraction for a simple
parallel programming language. InMathematical Founda-
tions of Computer Science: Proceedings of the 8th Interna-
tional Symposium MFCS ’79, Lecture Notes in Computer
Science 74, pages 108–120. Springer-Verlag, 1979.

[8] A. Ingólfsdóttir. A semantic theory for value-passing pro-
cesses, late approach. Part I: A denotational model and
its complete axiomatization. BRICS Report RS-95-3, De-
partment of Computer Science, University of Aarhus, Jan.
1995.

[9] A. Joyal, M. Nielsen, and G. Winskel. Bisimulation from
open maps. BRICS Report RS-94-7, Department of Com-
puter Science, University of Aarhus, May 1994. To appear
in Information and Computation.

[10] R. Milner, J. Parrow, and D. Walker. Modal logics for mo-
bile processes. Technical Report ECS-LFCS-91-136, Labo-
ratory for Foundations of Computer Science, University of
Edinburgh, Apr. 1991.

6

[11] R. Milner, J. Parrow, and D. Walker. A calculus of mobile
processes, parts I and II.Information and Computation,
100:1–77, 1992.

[12] J. Parrow and D. Sangiorgi. Algebraic theories for name-
passing calculi.Information and Computation, 120(2):172–
197, Aug. 1994.

[13] B. Pierce and D. Sangiorgi. Typing and subtyping for
mobile processes. To appear inMathematical Structures in
Computer Science. A summary was presented at LICS ’93.

[14] A. M. Pitts. A co-induction principle for recursively de-
fined domains. Theoretical Computer Science, 124:195–
219, 1994.

[15] A. M. Pitts and I. Stark. Observable properties of higher
order functions that dynamically create local names, or:
What’s new? In Mathematical Foundations of Computer
Science: Proceedings of the 18th International Symposium
MFCS ’93, Lecture Notes in Computer Science 711, pages
122–141. Springer-Verlag, 1993.

[16] D. Sangiorgi. Locality and true-concurrency in calculi
for mobile processes. InTheoretical Aspects of Computer
Software: TACS ’94, Lecture Notes in Computer Science
789. Springer-Verlag, 1994.

[17] D. Sangiorgi. On the bisimulation proof method. Technical
Report Report ECS-LFCS-94-299, Laboratory for Founda-
tions of Computer Science, University of Edinburgh, Aug.
1994.

[18] D. Sangiorgi. π-calculus, internal mobility, and agent-
passing calculi. Rapport de recherche 2539, INRIA, Sophia
Antipolis, Apr. 1995.

[19] M. B. Smyth and G. D. Plotkin. The category-theoretic
solution of recursive domain equations.SIAM Journal on
Computing, 11(4):761–783, Nov. 1982.

[20] I. Stark. Names and Higher-Order Functions. PhD thesis,
University of Cambridge, Dec. 1994. Also published as
Technical Report 363, University of Cambridge Computer
Laboratory.

[21] I. Stark. Categorical models for local names.Lisp and
Symbolic Computation, 9(1):77–107, Feb. 1996.

[22] G. Winskel and M. Nielsen. Models for concurrency. In
S. Abramsky, D. M. Gabbay, and T. S. E. Maibaum, edi-
tors, Handbook of Logic in Computer Science, volume IV.
Oxford University Press, Apr. 1995.

7

