
Mobius

PCC infrastructure
Mobius develops infrastructure for proof carrying code on all stages of the development and deployment cycle.

• Proof-transforming compilers translate code, specifications (types or logical assertions) and certificates 
from the source code to the byte code level. Alternatively, certifying compilers may generate certificates 
directly at the byte code level.

• In a wholesale PCC scenario, trusted intermediaries check certificates and sign checked code for 
transmission over the network.  Consumers rely on a PKI for checking signatures.

• With the Coq proof assistant a verified certificate checker can be mechanically extracted from the 
formalized proof of soundness for a program logic, analysis or type system.

Three flavours of PCC
Historically, the first approaches to proof carrying code have been based on formal proofs in a program logic.  
Later approaches have extended the notion of proof to any form of evidence that is efficiently checkable.  
Mobius uses three different flavours of PCC.

Logic-based PCC

Specifications are expressed in a general-purpose program logic, such as Hoare logic or the Java Modeling 
Language (JML).  Certificates are proofs in this program logic, and checking a certificate means checking that 
a given proof tree is well-formed.
+ Flexible due to highly expressive program logic.
+ Proofs in the program logic as lingua franca for certificates.
- Certificate generation (= proof search in the program logic) requires human intervention.

Type-based PCC

Specifications (e.g. information flow properties, resource boundedness, aliasing relationships) are expressed as 
typability in special purpose type systems.  Certificates are type derivations, and certificate checking amounts 
to checking the well-formedness of a given type derivation.
+ Automatic certificate generation by type inference.
+ Type derivations can be translated to proofs in a program logic.
- Analysis may be too conservative.
- Each type system is customized to a particular property.

Abstract interpretation PCC

Specifications are expressed as systems of equations in complete lattices.  Certificates are representations of 
fixpoint solutions. Certificate checking amounts to checking that a given representation is a fixpoint.
+ Automatic certificate generation by abstract interpretation.
- Different properties require customized abstractions.

Mobius Consortium

Information flow
Policies prevent or limit the disclosure of sensitive 
information (e.g. contacts, diary entries, photos, 
credit card numbers) to untrusted parties, in order 
to protect the user’s privacy or assets.

Mobius targets confidentiality policies for:

• non-interference and

• declassification.

Resource usage
Policies bound the use of certain resources because 
they are expensive or their abuse compromises 
availability.

Mobius targets policies for:

• CPU time,

• memory space
 (stack, heap, persistent store), and

• billable events 
 (e.g. sending text messages).

Mobius is funded from 2005-2009 as project IST-015905 under the Global 
Computing II proactive initiative of the Future and Emerging Technologies objective 
in the Information Society Technologies priority of the European Commission’s 6th 
Framework programme.
• INRIA, France (Coordinator)
• TLS Technologies, Poland
• ETH Zürich, Switzerland

• Radboud Universiteit Nijmegen, the Netherlands
• Ludwig-Maximilians-Universität, Munich, Germany
• The University of Edinburgh, United Kingdom
• Institute of Cybernetics, Tallinn, Estonia
• Chalmers Technical University, Sweden
• Imperial College, London, United Kingdom
• University College Dublin, Ireland

• University of Warsaw, Poland
• Trusted Labs, France
• France Telecom, France
• Universidad Politecnica de Madrid, Spain
• SAP AG, Germany
• RWTH Aachen, Germany (till March 2007)
• Technische Universität Darmstadt, Germany (since April 2007)

Mission
Mobius is a European Integrated Project developing novel technologies for trustworthy global 
computing, using proof-carrying code to give users independent guarantees of the safety and security of 
Java applications for their mobile phones and PDAs.

Global computing means that applications today may run anywhere, with data and code moving freely 
between servers, PCs and other devices: this kind of mobility over the ubiquitous internet magnifies the 
challenge of making sure that such software runs safely and reliably.

In this context, the Mobius project focuses on securing applications downloaded to the Java MIDP 
platform: globally deployed across a host of phones, this is the common runtime environment for a myriad 
mobile applications.

Techniques of static analysis make it possible to check program behaviour by analysing source code 
before it ever executes.  But mobile code means that this assurance must somehow travel with the 
application to reach the user.  Conventional digital signatures use cryptography to identify who supplied 
a program; the breakthrough of proof-carrying code is to give mathematical proofs that guarantee the 
security of the code itself.  We can strengthen digital signatures with digital evidence.

Key features of the Mobius security architecture are:

• Innovative trust management, with digital evidence of program behaviour that can be independently 
checked by users or any third party.

• Static enforcement, checking code before it starts; adaptable to manage a range of user security 
concerns, and configurable to match the real-world mix of mobile platforms.

• Modularity, allowing developers to build up trusted applications from trusted components.

Mobius is a consortium of leading academic and industrial research partners, at 16 sites across ten 
countries.  Members bring international expertise in software security, Java, mobile telecoms and smart 
devices.  All these combine with the aim of delivering a platform for innovative trust management in the 
next generation of mobile applications.

Proof Carrying Code
Proof Carrying Code (PCC, developed by Necula, Lee and others in the 1990s) is a general technique 
for mobile code security which associates security information (certificates) to programs.

• Producer generates certificate (or proof) of 
compliance with security policy by using a 
certifier at compile time.

• Consumer receives the untrusted package 
“program + certificate” and runs a checker to 
verify compliance with security policy.

PCC has many uses in systems whose trusted computing base is dynamic, either because of mobile code 
or because of regular updates.  Examples include extensible operating systems, Internet browsers capable 
of downloading code, active network nodes and safety-critical embedded controllers.

The proof carrying code paradigm can be combined with trust by reputation.

• Producers submit programs and certificates to 
a trusted intermediary.

• Trusted intermediary - any trusted third party 
chosen by consumers, e.g. the phone operator - 
checks certificates and signs checked programs.

• Consumers receive programs from trusted 
intermediary and check signatures (not 
certificates).

Challenges
PCC shifts some of the burden of ensuring compliance with a desired security policy from the code 
consumer to the producer.  To enable the use of PCC technology widely, Mobius will:

• define expressive security policies covering a wide range of properties,

• develop easy-to-use certificate generators, and

• design reliable and efficient checkers for certificates.

Mobius Platform
Mobius targets Java-enabled embedded execution frameworks that can run third party applications 
which must be checked against a platform security policy.  Focus on devices (e.g. mobile phones) that 
support the Mobile Information Device Profile (MIDP version 2) and the Connected Limited Device 
Configuration (CLDC) of the Java 2 Micro Edition.

Reasons for choosing CLDC/MIDP:

• Uniform access to many resources specific to mobile devices
  (e.g. persistent store, players, camera, geolocalisation).

• Available on many devices (> 1 billion).

• Interesting subset of the Java language.

• Thousands of existing applications.

• Standardised through the Java Community Process.

Security Requirements

Enabling Technologies

Code

Certificate

Producer Consumer

Se
cu

rit
y 

Po
lic

y

Se
cu

rit
y 

Po
lic

y

Wholesale PCC

Producer m

Producer 2

1

Consumer n

Consumer 2

Consumer 1

Trusted
Intermediary

PCC

Producer

PKI

...

...

...

...

...

...

?

...nspec

1cert ncert

nspec

1cert

1spec

1cert ncert

nspec1spec

nspec1spec1spec Network

certificate generation

codecertificate generation

C
om

piler

Byte Code

Source Code

code

C
er

t C
he

ck
er

JVM

Trusted

Untrusted

Code Producer Code Consumer

codecode

User Policy

Mobility, Ubiquity and Security
Enabling proof-carrying code for Java on mobile devices

http://mobius.inria.fr


