
APPSEM II - Nottingham - Thursday 27 March 2003

Mobile Resource
Guarantees

Ian Stark

Laboratory for Foundations of Computer Science
School of Informatics, University of Edinburgh

David Aspinall, Stephen Gilmore, Don Sannella,
*Kenneth MacKenzie, *Lennart Beringer, Michal Konečný

LMU Munich: Martin Hofmann, Hans-Wolfgang Loidl, Olha Shkaravska

Mobile Resource Guarantees

MRG is a joint Edinburgh / Munich project funded for 2002–2005 by the
European initiative in Global Computation.

The aim is to develop an infrastructure that endows mobile code with
independently verifiable certificates describing resource requirements.

We plan to do this by mapping resource types for high-level programs
into proof-carrying bytecode that runs on the Java virtual machine.

I’ll talk about progress over the first year, and in particular some
properties of our GRAIL intermediate language.

(LFPL + PCC / JVM)

Context for MRG project

Mobile code and global computation:

Our target scale is from Java smartcards to desktop applications.
Self-service code pulled from multiple providers
Heterogenous clients with irregular resource limitations

How to ensure that programs can still run safely, securely and
successfully in this setting? One solution is proof-carrying code:

Certifies program with a compact proof of desired property
Complements exisiting cryptographic authentication of provider
Proofs may be hard to generate, but are easy to check

(Necula, Lee, Appel)

Resources can include:

processor time
heap space
stack size

There exist strong theoretical results, but applying them is a challenge.

Hofmann – A type system for bounded space and functional in-place update
Hofmann+Jost – Static prediction of heap space usage for first-order

functional programs
Amadio – Max-plus quasi-interpretations

Inferring resource usage

system calls
disk files
network bandwidth, etc.

Implementation

Code consumer

JVM

Code producer

Resource
policyCamelot

Grail Proof
checkerGrail

Java
classfile

Java
classfile

OK?

GRAIL
Guaranteed Resource Aware Intermediate Language

A key component of the MRG platform is our intermediate language,
which needs to be all of the following:

The target for the Camelot compiler
A basis for attaching resource assertions
Amenable to formal proof about resource usage
The format for sending and receiving guaranteed code
Executable

Grail mediates between all of these roles by having two distinct
semantic interpretations, one functional and one imperative.

Fibonacci in functional Grail

method static int fib (int n) =
let val a = 0

val b = 1
fun loop (int a, int b, int n) =

let val b = add a b
val a = sub b a
val n = sub n 1

in
test(n,a,b)

end
fun test (int n, int a, int b) =

if n<=1 then b else loop(a,b,n)
in

test(n,a,b)
end

Fibonacci in functional Grail

method static int fib (int n) =
let val a = 0

val b = 1
fun loop (int a, int b, int n) =

let val b = add a b
val a = sub b a
val n = sub n 1

in
test(n,a,b)

end
fun test (int n, int a, int b) =

if n<=1 then b else loop(a,b,n)
in

test(n,a,b)
end

function arguments

local function
declarations

lexically scoped variables
hide outer declarations

local variable declarations

mutually recursive
function calls

Imperative Grail

Grail also has a simple imperative semantics:

Assignable global variables (registers)
Labelled basic blocks
Goto and conditional jumps
Live-variable annotations

The Grail assembler and disassembler convert this to and from Java
bytecodes as an executable binary format.

Fibonacci in imperative Grail

method static int fib (int n) =
let val a = 0

val b = 1
fun loop (int a, int b, int n) =

let val b = add a b
val a = sub b a
val n = sub n 1

in
test(n,a,b)

end
fun test (int n, int a, int b) =

if n<=1 then b else loop(a,b,n)
in

test(n,a,b)
end

Fibonacci in imperative Grail

method static int fib (int n) =
let val a = 0

val b = 1
fun loop (int a, int b, int n) =

let val b = add a b
val a = sub b a
val n = sub n 1

in
test(n,a,b)

end
fun test (int n, int a, int b) =

if n<=1 then b else loop(a,b,n)
in

test(n,a,b)
end

annotate live variables

basic blocks
update global variables

initial assignment to global variables

goto and
conditional jumps

What makes it work

The two semantics really are quite different. Things only work out
because we place tight constraints on well-formed Grail.

No nesting: only one level of local functions
Functions must include all free variables as parameters
Tail calls only
Functions are only applied to values, which must syntactically
coincide with the parameter names: fun f(int x) … f(x)

Imperative Grail is similarly well-behaved: for example, the stack is
empty at all jumps and branches. This is what makes it possible to
disassemble JVM classfiles back into Grail again. (metadata helps too)

Relating functional and imperative

1. If E is a variable environment and s a matching initial state, then
for all v, E ⊢fun mbody ⇒ v if and only if s ⊢imp blocklist ⇒ v

2. A method body satisfies the “no-free-variable” condition on local
function declarations if and only if the given parameter lists are a
valid solution for the imperative liveness dataflow equations.

3. A method can be typed with variable x linear if and only if the
imperative usage dataflow analysis has a solution where x is read
just once after each update (it is “forwardable”).

mbody blocklist
imp

fun

MRG project progress

Progress so far:

High level language compiler (camelot)
Grail assembler (gdf) and disassembler (gf)
Isabelle formulation of Grail operational semantics and cost model

Working on:

Resource logic for Grail (use separation logic for heap?)
Generating proofs from high-level resource information (types etc.)

Looking for more examples and applications — suggestions please!

http://www.lfcs.ed.ac.uk/mrg

