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Abstract. The nu-calculus of Pitts and Stark is a typed lambda-calculus, extended
with state in the form of dynamically-generated names. These names can be created loc-
ally, passed around, and compared with one another. Through the interaction between
names and functions, the language can capture notions of scope, visibility and sharing.
Originally motivated by the study of references in Standard ML, the nu-calculus has
connections to local declarations in general; to the mobile processes of the π-calculus;
and to security protocols in the spi-calculus.
This paper introduces a logic of equations and relations which allows one to reason
about expressions of the nu-calculus: this uses a simple representation of the private
and public scope of names, and allows straightforward proofs of contextual equivalence
(also known as observational, or observable, equivalence). The logic is based on earlier
operational techniques, providing the same power but in a much more accessible form.
In particular it allows intuitive and direct proofs of all contextual equivalences between
first-order functions with local names.
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1. Introduction
Many convenient features of programming languages today involve some notion of gener-
ativity : the idea that an entity may be freshly created, distinct from all others. This is
clearly central to object-oriented programming, with the dynamic creation of new objects
as instances of a class, and the issue of object identity. In the study of concurrency, the
π-calculus [20] uses dynamically-generated names to describe the behaviour of mobile pro-
cesses, whose communication topology may change over time. The spi-calculus of Abadi
and Gordon [1] uses generative names to model cryptographic keys in the verification of se-
curity protocols. In functional programming, the language Standard ML [21] extends typed
lambda-calculus with a number of features, of which mutable reference cells, exceptions and
user-declared datatypes are all generative; so are the structures and functors of the module
system. More broadly, the concept of lexical scope rests on the idea that local identifiers
should always be treated as fresh, distinct from any already declared.

Such dynamic creation occurs at a variety of levels, from the run-time behaviour of Lisp’s
gensym to resolving questions of scope during program linking. Generally, the intention is
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that its use should be intuitive or even transparent to the programmer. Nevertheless, for
correct implementation and sound design it is essential to develop an appropriate abstract
understanding of what it means to be new.

The nu-calculus was devised to explore this common property of generativity, by adding
names to the simply-typed lambda-calculus. Names may be created locally, passed around,
and compared with one another, but that is all. The language is reviewed in Section 2; a
full description is given by Pitts and Stark in [28, 29], with its operational and denotational
semantics studied at some length in [35, 36]. Central to the nu-calculus is the use of name
abstraction: the expression νn.M represents the creation of a fresh name, which is then
bound to n within the body of M . So, for example, the expression

νn.νn′.(n = n′)

generates two new names, bound to n and n′, and compares them, finally returning the
answer false. Functions may have local names that remain private and persist from one use
of the function to the next; alternatively, names may be passed out of their original scope
and can even outlive their creator. It is precisely this mobility of names that allows the
nu-calculus to model issues of locality, privacy and non-interference.

Two expressions of the nu-calculus are contextually equivalent1 if they can be freely
exchanged in any program: there is no way in the language itself to distinguish them.
Contextual equivalence is an excellent property in principle, but in practice often hard to
work with because of the need to consider all possible programs. As a consequence a number
of authors have made considerable effort, in various language settings, to develop convenient
methods for demonstrating contextual equivalence.

Milner’s context lemma [19], Gordon’s ‘experiments’ [9], and the ‘ciu’ theorems of Mason
and Talcott [15, 37], provide one such approach. These show that instead of all program
contexts, it is sufficient to consider only those in some particular form. For the nu-calculus,
a suitable context lemma is indeed available [35, §2.6] and states that one need only con-
sider so-called ‘argument contexts’. However even this reduced collection of contexts is still
inconveniently large, a problem arising from the imperative nature of name creation.

Alternatively, one can look for relations that imply contextual equivalence but are easier
to work with. One possibility is to define such relations directly from the operational se-
mantics of the language, as with the applicative bisimilarity variously used by Abramsky [2],
Howe [13], Gordon [9], and others. Denotational semantics provides another route: if two
expressions have equal interpretation in some adequate model, then they are contextually
equivalent. For the nu-calculus, such operational methods are developed and refined in
[28, 29], while categorical models are presented in [36]. Both approaches are treated at
length in [35].

In principle, methods such as these do give techniques for proving contextual equivalences.
In practice however, they are often awkward and can require rather detailed mathematical
knowledge. The contribution of this paper is to take two existing operational techniques,
and extract from them a straightforward logic that allows simple and direct reasoning about
contextual equivalence in the nu-calculus.

The first operational technique, applicative equivalence, gives rise to an equational logic
with assertions of the form

s,Γ `M1 =σ M2 .

If such an assertion can be proved using the rules of the logic, then it is certain that expres-
sions M1 and M2 are contextually equivalent (here s and Γ list the free names and variables
respectively). This equational scheme is simple, but not particularly complete: it is good for
reasoning in the presence of names, but not so good at reasoning about names themselves.

1The same property is variously known as {operational/observational/observable} {equivalence/
congruence}.
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The technique of operational logical relations refines this by considering just how different
expressions make use of their local names. The corresponding logic is one of relational
reasoning, with assertions of the form

Γ `M1 Rσ M2 .

Here R is a relation between the free names of M1 and M2 that records information on
their privacy and visibility. This logic includes the equational one, and is considerably more
powerful: it is sufficient to prove all contextual equivalences between expressions of first-order
function type.

It is significant that these schemes both build on existing methods; all the proofs of
soundness and completeness work by transferring corresponding properties from the earlier
operational techniques. For the completeness results in particular this is a considerable saving
in proof effort. Such incremental development continues a form of ‘technology transfer’ from
the abstract to the concrete: these same operational techniques were in turn guided by a
denotational semantics for the nu-calculus based on categorical monads.

The layout of the paper is as follows: Section 2 reviews the nu-calculus and gives some
representative examples of contextual equivalence; Section 3 describes the techniques of
applicative equivalence and operational logical relations; Section 4 explains the new logic for
equational reasoning; Section 5 extends this to a logic for relational reasoning; and Section 6
concludes.

Related Work

The general issue of adding effects to functional languages has received considerable attention
over time, and there is a substantial body of work concerning operational and denotational
methods for proving contextual equivalence. A selection of references can be found in [30, 37],
for example. However, not so many practical systems have emerged for reasoning about
expressions and proving actual examples of contextual equivalence.

Felleisen and Hieb [6] present a calculus for equational reasoning about state and control
features. This extends βv-interconvertibility and is similar to the equational reasoning of
this paper, in that it is correct and convenient for proving contextual equivalence, but not
particularly complete.

Mason and Talcott’s logic for reasoning about destructive update in Lisp [16] is again
similar in power to our equational reasoning. Moreover, our underlying operational notion
of applicative equivalence corresponds quite closely to Mason’s ‘strong isomorphism’ [14].
Further work [17] adds some particular reasoning principles that resemble aspects of our
relational reasoning, but can only be applied to first-order functions; by contrast, our tech-
niques remain valid at all higher function types. In a similar vein, the ‘variable typed logic of
effects’ (VTLoE) of Honsell, Mason, Smith and Talcott [12] is an operationally-based scheme
for proving certain assertions about functions with state.

The ‘computational metalanguage’ of Moggi [22] provides a general method for equational
reasoning about additions to functional languages. Its application to the nu-calculus is
discussed in [35, §3.3], where it is shown to correspond closely to applicative equivalence.
Related to this is ‘evaluation logic’, a variety of modal logic that can express the possibility
or certainty of certain computational effects [23, 27]. Moggi has shown how a variety of
program logics, including VTLoE, can be expressed within evaluation logic [24].

Although the nu-calculus may appear simpler than the languages considered in the work
cited, the notion of generativity it highlights is still of real significance. Moreover, the
relational logic presented here goes beyond all of the above in the variety of contextual equi-
valences it can prove: we properly capture the subtle interaction between local declarations
and higher-order functions.
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s,Γ ` x : σ
(x : σ ∈ Γ)

s,Γ ` n : ν
(n ∈ s)

s,Γ ` b : o
(b = true, false)

s,Γ ` B : o s,Γ ` M : σ s,Γ `M ′ : σ
s,Γ ` if B then M else M ′ : σ

s,Γ ` N : ν s,Γ ` N ′ : ν
s,Γ ` (N = N ′) : o

s⊕ {n},Γ `M : σ
s,Γ ` νn.M : σ

s,Γ⊕ {x : σ} `M : σ′

s,Γ ` λx:σ.M : σ → σ′
s,Γ ` F : σ → σ′ s,Γ ` M : σ

s,Γ ` FM : σ′

Figure 1. Rules for assigning types to expressions of the nu-calculus

2. The Nu-Calculus
A full description of the nu-calculus can be found in [35, 36]; this section gives just a brief
overview. The language is based on the simply-typed lambda-calculus, with a hierarchy of
function types σ → σ′ built over ground types o of booleans and ν of names. Expressions
have the form

M ::= x | n | true | false | if M then M else M
| M = M | νn.M | λx:σ.M |MM .

Here x and n are typed variables and names respectively, taken from separate infinite sup-
plies. The expression ‘M = M ’ tests for equality between two names. Name abstraction
νn.M creates a fresh name bound to n within the body M ; during evaluation, names may
outlive their creator and escape from their original scope. We implicitly identify expressions
which only differ in their choice of bound variables and names (α-conversion). A useful
abbreviation is new for νn.n; this is the expression that generates a new name and then
immediately returns it.

Expressions are typed according to the rules in Figure 1. The type assertion

s,Γ ` M : σ

says that in the presence of s and Γ the expression M has type σ. Here s is a finite set of
names, Γ is a finite set of typed variables, and M is an expression with free names in s and
free variables in Γ. The symbol ⊕ represents disjoint union, here in s⊕ {n} and Γ⊕{x : σ}.
We may omit Γ when it is empty.

An expression is in canonical form if it is either a name, a variable, one of the boolean
constants true or false, or a function abstraction. These are to be the values of the nu-
calculus, and correspond to weak head normal form in the lambda-calculus. An expression
is closed if it has no free variables; a closed expression may still have free names. We define
the sets

Expσ(s,Γ) = {M | s,Γ `M : σ }
Canσ(s,Γ) = {C | C ∈ Expσ(s,Γ), C canonical }

Expσ(s) = Expσ(s, ∅)
Canσ(s) = Canσ(s, ∅)

of expressions and canonical expressions, open and closed.
The operational semantics of the nu-calculus is specified by the inductively defined eval-

uation relation given in Figure 2. Elements of the relation take the form

s `M ⇓σ (s′)C
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(CAN)
s ` C ⇓σ C

C canonical

(COND1)
s ` B ⇓o (s1)true s⊕ s1 ` M ⇓σ (s2)C
s ` if B then M else M ′ ⇓σ (s1 ⊕ s2)C

(COND2)
s ` B ⇓o (s1)false s⊕ s1 ` M ′ ⇓σ (s2)C ′

s ` if B then M else M ′ ⇓σ (s1 ⊕ s2)C ′

(EQ1)
s ` N ⇓ν (s1)n s⊕ s1 ` N ′ ⇓ν (s2)n

s ` (N = N ′) ⇓o (s1 ⊕ s2)true
n ∈ s

(EQ2)
s ` N ⇓ν (s1)n s⊕ s1 ` N ′ ⇓ν (s2)n′

s ` (N = N ′) ⇓o (s1 ⊕ s2)false
n, n′ distinct

(LOCAL)
s⊕ {n} `M ⇓σ (s1)C

s ` νn.M ⇓σ ({n} ⊕ s1)C
n /∈ (s⊕ s1)

(APP)

s ` F ⇓σ→σ′ (s1)λx:σ.M ′ s⊕ s1 ` M ⇓σ (s2)C
s⊕ s1 ⊕ s2 `M ′[C/x] ⇓σ′ (s3)C ′

s ` FM ⇓σ′ (s1 ⊕ s2 ⊕ s3)C ′

Figure 2. Rules for evaluating expressions of the nu-calculus
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where s and s′ are disjoint finite sets of names, M ∈ Expσ(s) and C ∈ Canσ(s⊕ s′). This is
intended to mean that in the presence of the names s, expression M of type σ evaluates to
canonical form C and creates fresh names s′. We may omit s or s′ when they are empty.

Evaluation is chosen to be left-to-right and call-by-value, after Standard ML; it can also
be shown to be deterministic and terminating [35, Theorem 2.4]. In addition to this ‘big
step’ semantics, there is an equivalent ‘small step’ version that specifies a reduction relation
M →σ M ′. As usual this factors into redexes within reduction contexts, which highlight the
detailed progress of nu-calculus computation [35, §2.3].

As an example of evaluation, consider the judgement

` (λx:ν.(x = x))(νn.n) ⇓o (n)true .

First the argument νn.n (or new ) is evaluated, returning a fresh name bound to n. This is
in turn bound to the variable x, and the body of the function compares this name to itself,
giving the result true. Compare this with

` (νn′.λx:ν.(x = n′))(νn.n) ⇓o (n′, n)false .

Here the evaluation of the function itself creates a fresh name, bound to n′; the argument
provides another fresh name, and the comparison then returns false .

Notice that for the rule (LOCAL) to evaluate a name abstraction νn.M , the identifier n
must not occur elsewhere (n /∈ (s⊕ s1)). We can always ensure this through α-conversion,
in the same way that we avoid variable capture during substitution M [C/x].

Repeated evaluation of a name abstraction will give different fresh names. Thus the two
expressions

νn.λx:o.n and λx:o.νn.n

behave differently: the first evaluates to the function λx:o.n, with every subsequent applic-
ation returning the private name bound to n; while the second gives a different fresh name
as result each time it is applied. The expressions are distinguished by the program

(λf : o→ ν . (ftrue = ftrue)) 〈〈−〉〉

which evaluates to true or false according to how the hole 〈〈−〉〉 is filled.
This leads us to the notion of program context. A formal definition is given in [35, §2.4];

here we simply note that the form P 〈〈−〉〉 represents a program P with some number of holes
〈〈−〉〉, and in P 〈〈(~x)M〉〉 these are filled by an expression M whose free variables are in the
list ~x. There is an arrangement to capture these free variables, and the completed program
is a closed expression of boolean type.

Definition 2.1. (Contextual Equivalence) If M1,M2 ∈ Expσ(s,Γ) then we say that
they are contextually equivalent, written

s,Γ `M1 ≈σ M2

if for all closing program contexts P 〈〈−〉〉 and boolean values b ∈ {true, false},

(∃s1 . s ` P 〈〈(~x)M1〉〉 ⇓o (s1)b ) ⇐⇒ (∃s2 . s ` P 〈〈(~x)M2〉〉 ⇓o (s2)b ).

That is, P 〈〈−〉〉 always evaluates to the same boolean value, whether the hole is filled by M1
or M2. If both s and Γ are empty then we write simply M1 ≈σ M2.

This is in many ways the right and proper notion of equivalence between nu-calculus expres-
sions. For example to check code transformations, replace algorithms, or match specification
to implementation, contextual equivalence is the benchmark for correctness. However the
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quantification over all programs makes it inconvenient to demonstrate directly; as discussed
in the introduction, the purpose of this paper is to present simple methods for reasoning
about contextual equivalence without the need to consider contexts or even evaluation.

Examples.

Up to contextual equivalence unused names are irrelevant, as is the order in which names
are generated:

s,Γ ` νn.M ≈σ M n /∈ fn(M) (1)
s,Γ ` νn.νn′.M ≈σ νn′.νn.M . (2)

Evaluation respects contextual equivalence:

s `M ⇓σ (s′)C =⇒ s `M ≈σ νs′.C (3)

where νs′.C abbreviates multiple name abstractions. A variety of equivalences familiar
from the call-by-value lambda-calculus also hold. For instance Plotkin’s βv-rule [31]: if
C ∈ Canσ(s,Γ) and M ∈ Expσ′(s,Γ⊕ {x : σ}) then

s,Γ ` (λx:σ.M)C ≈σ′ M [C/x]. (4)

Names can be used to detect that general β-equivalence fails, as with

(λx:ν.x = x)new 6≈o (new = new ) (5)

which evaluate to true and false respectively. More interestingly, distinct expressions may
be contextually equivalent if they differ only in their use of ‘private’ names:

νn.λx:ν.(x = n) ≈ν→o λx:ν.false . (6)

Here the right-hand expression is the function that always returns false; while the left-hand
expression evaluates to a function with a persistent local name n, that it compares against
any name supplied as an argument. Although these function bodies are quite different, no
external context can supply the private name bound to n that would distinguish between
them; hence the original expressions are in fact contextually equivalent.

A range of further examples can be found in earlier work on the nu-calculus [28, 29, 35, 36].
Among other things, these show how expressions of higher type can capture finer graduations
of privacy and sharing than that in (6). Analysing such behaviour also demands more
complex testing contexts: for example, the function

νn.νn′.λx:ν.(if x = n′ then n else n′)

must be applied at least twice to extract all the names within it.
Taking this further still, there is a representation of the natural numbers as functions

from names to names: a set of expressions {Fp : ν → ν | p ∈ N} where each Fp cycles
through (p + 1) local names [35, §2.5]. This even supports an addition operation A with
AFpFq ≈ Fp+q. To show however that (p 6= q ⇒ Fp 6≈ Fq) requires a context that applies
the functions at least min(p, q) times, passing the result of each application in again as the
argument of the next. This is in sharp contrast to PCF or other pure simply-typed lambda-
calculi, where Milner’s context lemma proves that to distinguish two terms of type σ → σ′

it is only necessary to apply them once, to some term of the structurally simpler type σ [19].
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3. Operational Reasoning
This section describes two operational techniques for demonstrating contextual equivalences
in the nu-calculus. Applicative equivalence captures much of the general behaviour of higher-
order functions and their evaluation, while the more sophisticated operational logical relations
highlight the particular properties of name privacy and visibility. Both are discussed in more
detail in [28] and [35], which also give proofs of the results below.

Definition 3.1. (Applicative Equivalence) We define two relations, one between canon-
ical forms and another for general expressions:

s ` C1 ∼can
σ C2 for C1, C2 ∈ Canσ(s), and

s ` M1 ∼exp
σ M2 for M1,M2 ∈ Expσ(s).

These are given together by induction over the structure of the type σ, according to:

s ` b1 ∼can
o b2 ⇐⇒ b1 = b2

s ` n1 ∼can
ν n2 ⇐⇒ n1 = n2

s ` λx:σ.M1 ∼can
σ→σ′ λx:σ.M2 ⇐⇒ ∀s′, C ∈ Canσ(s⊕ s′) .

s⊕ s′ `M1[C/x] ∼exp
σ′ M2[C/x]

s `M1 ∼exp
σ M2 ⇐⇒ ∃s1, s2, C1 ∈ Canσ(s⊕ s1), C2 ∈ Canσ(s⊕ s2) .

s ` M1 ⇓σ (s1)C1 & s ` M2 ⇓σ (s2)C2

& s⊕ (s1 ∪ s2) ` C1 ∼can
σ C2.

The intuition behind this definition is as follows.
• Functions are equivalent if they give equivalent results at all possible arguments. This

includes ones that use additional fresh names, hence the use of C ∈ Canσ(s⊕ s′).
• Expressions in general are equivalent if they evaluate to equivalent canonical forms.

The use of (s1 ∪ s2) on the last line means that unused fresh names are discounted
(‘garbage collection’).

It is immediate that ∼exp
σ coincides with ∼can

σ on canonical forms; we write them indiscrim-
inately as ∼σ and call the relation applicative equivalence.2 We can extend the relation to
open expressions: if M1,M2 ∈ Expσ(s,Γ) then we define

s,Γ `M1 ∼σ M2 ⇐⇒ ∀s′, Ci ∈ Canσi(s⊕ s′) i = 1, . . . , n .
s⊕ s′ `M1[ ~C/~x] ∼σ M2[ ~C/~x]

where Γ = {x1 : σ1, . . . , xn : σn}. This says that the open expressions M1 and M2 are
applicative equivalent if replacing their variables by any closed canonical forms, possibly
ones that use some extra names s′, gives applicative equivalent closed expressions M1[ ~C/~x]
and M2[ ~C/~x].

Applicative equivalence is based on similar ‘bisimulation’ relations of Abramsky [2] and
Howe [13] for untyped lambda-calculus, and Gordon [10] for typed lambda-calculus. It is
well behaved and suffices to prove contextual equivalence:
Theorem 3.1. Applicative equivalence is an equivalence relation and a congruence; it there-
fore implies contextual equivalence:

s,Γ ` M1 ∼σ M2 =⇒ s,Γ `M1 ≈σ M2.

2This is a different relation to the applicative equivalence of [28, Def. 13] and [29, Def. 3.4] which (rather
unfortunately) turns out not to be an equivalence at all.
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The proof of the theorem centres on the demonstration that applicative equivalence is
a congruence, i.e. it is preserved by all the rules for forming expressions of the nu-calculus.
It is well known that a direct proof of this fails; the most popular way around is known as
‘Howe’s method’ [13]. Because the nu-calculus is simply typed though, we can instead use
an original and much simpler method that proceeds via an intermediate relation of ‘logical
equivalence’. The details are in [35, §2.7].

Applicative equivalence verifies examples (1)–(4) above, and numerous others: a range
of contextual equivalences familiar from the standard typed lambda-calculus, and all others
that make straightforward use of names. What it cannot capture is the notion of privacy
that lies behind example (6); where equivalence relies on a particular name remaining secret.

To address the distinction between private and public uses of names, we introduce the
idea of a span between name sets. A span R : s1 
 s2 is an injective partial map from s1
to s2; this is equivalent to a pair of injections s1 � R� s2, or a relation such that

(n1, n2) ∈ R & (n′1, n
′
2) ∈ R =⇒ (n1 = n′1)⇔ (n2 = n′2)

for n1, n
′
1 ∈ s1 and n2, n

′
2 ∈ s2. The idea is that for any span R the bijection between

dom(R) ⊆ s1 and cod(R) ⊆ s2 represents matching use of ‘visible’ names, while the remain-
ing elements not in the graph of R are ‘unseen’ names. The identity relation ids : s
 s is
clearly a span; and if R : s1 
 s2 and R′ : s′1 
 s′2 are spans on distinct name sets, then
their disjoint union R ⊕ R′ : s1 ⊕ s′1 
 s2 ⊕ s′2 is also a span. Starting from spans, we now
build up a collection of relations between expressions of higher types.

Definition 3.2. (Logical Relations) If R : s1 
 s2 is a span then we define relations

Rcan
σ ⊆ Canσ(s1)× Canσ(s2)

Rexp
σ ⊆ Expσ(s1)× Expσ(s2)

by induction over the structure of the type σ, according to:

b1 Rcan
o b2 ⇐⇒ b1 = b2

n1 Rcan
ν n2 ⇐⇒ (n1, n2) ∈ R

(λx:σ.M1) Rcan
σ→σ′ (λx:σ.M2) ⇐⇒
∀R′ : s′1 
 s′2, C1 ∈ Canσ(s1 ⊕ s′1), C2 ∈ Canσ(s2 ⊕ s′2) .
C1 (R⊕R′)can

σ C2 =⇒ M1[C1/x] (R⊕R′)exp
σ′ M2[C2/x]

M1 Rexp
σ M2 ⇐⇒
∃R′ : s′1 
 s′2, C1 ∈ Canσ(s1 ⊕ s′1), C2 ∈ Canσ(s2 ⊕ s′2) .
s1 `M1 ⇓σ (s′1)C1 & s2 `M2 ⇓σ (s′2)C2 & C1 (R⊕R′)can

σ C2.

The intuition here differs somewhat from that for applicative equivalence: in general because
we now have spans to consider, and at function types in particular because this is a ‘logical’
rather than an ‘applicative’ relation.

• Functions are related if they take related arguments to related results. This is the
‘logical’ aspect. Dynamic name creation requires that we consider arguments using
fresh names, hence the extra span R′ : s′1 
 s′2.

• Expressions are related if some span can be found between their local names that will
relate their canonical forms.

The operational relations Rcan
σ and Rexp

σ coincide on canonical forms, and we may write
them as Ropn

σ indiscriminately. We can extend the relations to open expressions: for any
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M1 ∈ Expσ(s1,Γ) and M2 ∈ Expσ(s2,Γ) define

Γ `M1 R
opn
σ M2 ⇐⇒ ∀R′ : s′1 
 s′2,

Cij ∈ Canσj(si ⊕ s′i) i = 1, 2 j = 1, . . . , n .
( &n

j=1 . C1j (R ⊕R′)can
σj

C2j )
=⇒ M1[ ~C1/~x] (R ⊕R′)exp

σ M2[ ~C2/~x]

where Γ = {x1 : σ1, . . . , xn : σn}. Again the ‘logical’ form directs this definition: related
open expressions are those that give related closed expressions under every instantiation of
free variables by related canonical forms.

Overall, the intuition is that if Γ `M1 Ropn
σ M2 for some R : s1 
 s2 then the names in

s1 and s2 related by R are public and must be treated similarly by M1 and M2, while those
names not mentioned in R are private and must remain so. When R is the identity relation
id s : s 
 s then all names are public and we can compare logical relations to contextual
equivalence.
Theorem 3.2. For any expressions M1,M2 ∈ Expσ(s,Γ):

Γ `M1 (id s)opn
σ M2 =⇒ s,Γ `M1 ≈σ M2. (7)

If σ is a ground or first-order type of the nu-calculus and Γ is a set of variables of ground
type, then the converse also holds:

s,Γ ` M1 ≈σ M2 =⇒ Γ ` M1 (id s)opn
σ M2. (8)

Implication (7) says that logical relations are a sound method for proving contextual equi-
valence, while implication (8) says that they are also complete to first order.

The first step in the proof of soundness is to show that logical relations are preserved
by all the operations of the nu-calculus. For applicative equivalence this was somewhat
delicate: here the ‘logical’ quality makes it a fairly straightforward rule induction. Moving
from this congruence property to soundness itself requires a mild generalisation of contextual
equivalence to contextual R-relations Rcxt

σ , where in particular (id s)cxt
σ = (≈σ). See [35, §4.1]

for details.
Showing first-order completeness on the other hand is difficult and requires some ingenu-

ity. The proof of implication (8) is set out in [35, §4.2]: its essence is that we must exhibit
enough testing contexts to show that contextual equivalence is at least as discriminating as
the logical relations.

The following proposition collects various useful results about logical relations. The main
proof method is rule induction following the structure of Definition 3.2.
Proposition 3.1.

1. Logical relations are preserved by all the rules for forming expressions of the nu-
calculus.

2. The identity logical relation is reflexive: Γ ` M (id s)σ M . This is the appropriate
Fundamental Theorem for these logical relations.

3. There is a certain transitivity between applicative equivalence and the logical relations:
for any span R : s1 
 s2,

s1,Γ `M1 ∼σ M2 & Γ `M2 R
opn
σ M3 & s2,Γ ` M3 ∼σ M4 =⇒ Γ ` M1 R

opn
σ M4.

4. Logical relations subsume applicative equivalence: whenever we have s,Γ `M1 ∼σ M2
then also Γ `M1 (id s)opn

σ M2.
Thus logical relations can be used to demonstrate contextual equivalence, extending and
significantly improving on applicative equivalence. They are not quite sufficient to handle
all contextual equivalences (see [35, §4.6]), but they are complete up to first-order functions;
in particular they prove every example in Section 2 above, and any others where there is a
clear distinction between private and public use of names.
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4. Equational Reasoning

Applicative equivalence is generally much simpler to demonstrate than contextual equival-
ence, and thus it provides a useful proof technique in itself. However, it is still quite fiddly to
apply, and at higher types it involves checking that functions agree on an infinite collection
of possible arguments. In this section we present an equational logic that is of similar power
but much simpler to use in actual proofs.

Assertions in the logic take the form

s,Γ ` M1 =σ M2

for open expressions M1,M2 ∈ Expσ(s,Γ). Valid assertions are derived inductively using the
rules of Figure 3. To simplify the presentation we use here a notion of non-binding univalent
context U〈−〉, given by

U〈−〉 ::= 〈−〉M | F 〈−〉 | N = 〈−〉 | 〈−〉 = N ′

| if 〈−〉 then M else M ′

| if B then 〈−〉 else M ′ | if B then M else 〈−〉.

Thus M is always an immediate subterm of U〈M〉, though it may not be the first to be
evaluated. This abbreviation appears in the rules for congruence, functions and new names.

The first two sets of rules, for equality and congruence, ensure that we have an equivalence
relation, closed under all the operations of the nu-calculus. The univalent contexts U〈−〉
are simply a convenience; through transitivity we can easily derive familiar congruence rules
like this one for application:

s,Γ ` F1 =σ→σ′ F2 s,Γ `M1 =σ M2

s,Γ ` F1M1 =σ′ F2M2
.

The rules for functions are more delicate as general β and η-equivalences do not hold for a
call-by-value system such as the nu-calculus. Even so, the four rules βv, ηv, βid and βU given
here still allow considerable scope for function manipulation. In particular the βU -rule lifts
U〈−〉 contexts through function application; this is a generalisation of Sabry and Felleisen’s
βlift [33, Fig. 1].

The rules for booleans precisely capture the properties of true and false, including the
fact that they are the only possible values of type o.

The most interesting rules of the logic are those concerned with names and name creation.
Two expressions with a free variable of type ν are equal if they are equal after instantiation
with any existing name, and with a single representative fresh one. Unused names can be
garbage collected, and name abstractions νn.(−) may be moved past each other. They can
also move through contexts U〈−〉, providing that name capture is avoided.

Many of these rules are simplified because evaluation in the nu-calculus always terminates.
For a language with divergence we could follow the same general scheme but with some finer
distinctions: equality s,Γ `M1 =σ M2 should split into three mutually dependent assertions:

order s,Γ `M1 ≤σ M2, convergence s,Γ `M ↓ and divergence s,Γ `M ↑;

while univalent contexts U〈−〉 must be distinguished according to whether or not they
evaluate their hole 〈−〉. A guideline here is Riecke’s proof system for value PCF [32].

Proposition 4.1. This equational theory respects evaluation:

s `M ⇓σ (s′)C =⇒ s `M =σ νs
′.C .
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Equality:

s,Γ `M =σ M

s,Γ ` M1 =σ M2

s,Γ ` M2 =σ M1

s,Γ `M1 =σ M2 s,Γ `M2 =σ M3

s,Γ `M1 =σ M3

Congruence:

s,Γ `M1 =σ M2

s,Γ ` U〈M1〉 =σ′ U〈M2〉
s,Γ⊕ {x : σ} `M1 =σ′ M2

s,Γ ` λx:σ.M1 =σ→σ′ λx:σ.M2

s⊕ {n},Γ ` M1 =σ M2

s,Γ ` νn.M1 =σ νn.M2

Functions:

βv
s,Γ ` (λx:σ.M)C =σ′ M [C/x]

C canonical

ηv
s,Γ ` C =σ→σ′ λx:σ.Cx

C canonical

βid
s,Γ ` (λx:σ.x)M =σ M

βU
s,Γ ` (λx:σ.U〈M〉)M ′ =σ′ U〈(λx:σ.M)M ′〉 (x /∈ fv(U〈−〉))

Booleans:

s,Γ ` (if true then M else M ′) =σ M s,Γ ` (if false then M else M ′) =σ M ′

s,Γ `M1[true/b] =σ M2[true/b] s,Γ `M1[false/b] =σ M2[false/b]
s,Γ⊕ {b : o} ` M1 =σ M2

Names:

s,Γ ` (n = n) =o true
(n ∈ s)

s,Γ ` (n = n′) =o false
(n, n′ ∈ s distinct)

s,Γ `M1[n/x] =σ M2[n/x] each n ∈ s
s⊕ {n′},Γ `M1[n′/x] =σ M2[n′/x] some fresh n′

s,Γ⊕ {x : ν} `M1 =σ M2

New names:

s,Γ `M =σ νn.M
(n /∈ fn(M))

s,Γ ` νn.νn′.M =σ νn′.νn.M

s,Γ ` U〈νn.M〉 =σ νn.U〈M〉
(n /∈ fn(U〈−〉))

Figure 3. Rules for deriving equational assertions.
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Proof:
It is not hard to demonstrate, using the equational theory, that every rule for evaluation
in Figure 2 preserves the property given. Note that the ambiguity in the multiple name
abstraction νs′.C is acceptable because the equational logic allows name abstractions to be
moved past each other.

The corresponding result for the small-step semantics M →σ M ′ is even simpler to prove:
the rules defining → are a proper subset of those for = and so

M →σ M
′ =⇒ s ` M =σ M

′ for all M,M ′ ∈ Expσ(s)

follows immediately.

We now link the equational theory to the operational reasoning methods of Section 3.
Theorem 4.1. (Soundness and Completeness) Equational reasoning can be used to
prove applicative equivalence, and hence also contextual equivalence:

s,Γ ` M1 =σ M2 =⇒ s,Γ `M1 ∼σ M2 (9)
s,Γ ` M1 =σ M2 =⇒ s,Γ `M1 ≈σ M2. (10)

Moreover, it corresponds exactly to applicative equivalence at first-order types, and to con-
textual equivalence at ground types:

s,Γ `M1 ∼σ M2 =⇒ s,Γ `M1 =σ M2 σ first-order, ground Γ (11)
s `M1 ≈σ M2 =⇒ s `M1 =σ M2 σ ∈ {o, ν}. (12)

Proof:
Soundness, implication (9), follows from the fact that every rule of Figure 3 for =σ also holds
for ∼σ. Theorem 3.1 gives us the rules for equality and congruence; every other rule has
to be handled individually by reference to the definition of applicative equivalence. This in
turn involves considering how each expression in a rule may evaluate — which is at least
helped by the fact that the evaluation relation s ` M ⇓σ (s′)C is both syntax-directed and
deterministic. The details are straightforward but long-winded.

From (9) we apply Theorem 3.1, which states that applicative equivalence ∼σ implies
contextual equivalence ≈σ. This immediately gives result (10), that provable equality entails
contextual equivalence.

The completeness results (11) and (12) are a little more involved. For applicative equi-
valence we follow its definition and work by induction over types, separating canonical forms
from general expressions and treating closed expressions before open ones. The order of
proof is as follows.
• Base case: closed canonical forms of ground type.

s ` C1 ∼can
σ C2 =⇒ s ` C1 =σ C2 σ ∈ {o, ν}.

Here C1 and C2 are necessarily the same ground constant: true, false or some name
n ∈ s.
• Extension to general expressions. If for some type σ we have

s ` C1 ∼can
σ C2 =⇒ s ` C1 =σ C2 for all s, C1, C2

then the same result holds for general expressions:

s `M1 ∼exp
σ M2 =⇒ s `M1 =σ M2 for all s,M1,M2.

Proving this uses the definition of ∼exp
σ from ∼can

σ , Proposition 4.1 on evaluation, and
the equational rules for manipulating new names.
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• First-order function types. This is the induction step: assuming the result for ∼exp
σ

we prove it for ∼can
o→σ and ∼can

ν→σ. The crucial observation is that the definition of
applicative equivalence at these function types provides just the hypotheses needed
by the equational rules that introduce free boolean or name variables. For example,
suppose that we have

s ` λb:o.M1 ∼can
o→σ λb:o.M2 .

Expanding the definition of ∼can
o→σ gives

s `M1[true/b] ∼can
σ M2[true/b] & s ` M1[false/b] ∼can

σ M2[false/b]

which by the inductive hypothesis entails

s `M1[true/b] =σ M2[true/b] & s ` M1[false/b] =σ M2[false/b] .

The boolean variable rule supplies

s, {b : o} `M1 =σ M2

and congruence provides

s ` λb:o.M1 =o→σ λb:o.M2

as required. The argument for names, ∼can
ν→σ, is similar.

• Open expressions. This requires induction on the length of the context Γ. As each
variable is of type o or ν, the induction step proceeds exactly as above for first-order
functions, without the need to lambda-abstract at the end.

The final result to show is that equational reasoning is complete for proving contextual
equivalence at ground types. This follows immediately from Proposition 4.1 on evaluation
and the observation that:

• two closed boolean expressions are contextually equivalent if and only if they both
evaluate to true, or both to false; and
• two closed name expressions are contextually equivalent if and only if they both eval-

uate to the same known name, or both compute some fresh name.
These facts are easily established by the construction of some simple testing contexts, and
this completes the proof of Theorem 4.1.

At ground and first-order function types then, equational reasoning is just as powerful
as applicative equivalence. At higher types applicative equivalence is in principle stronger;
but this advantage is an illusion. In fact the only way to demonstrate it is to use some more
sophisticated technique (such as logical relations) to show that expressions with certain
properties can never be written in the nu-calculus. In practice, the equational logic is much
more direct and convenient for reasoning about higher-order functions.

The sample contextual equivalences (1)–(4) from Section 2 are all confirmed immediately
by the equational theory. We expand here on two further examples. First, that full β-
reduction can be applied to functions with univalent bodies:

βone s,Γ ` (λx:σ.U〈x〉)M ≈σ′ U〈M〉, (13)

which we deduce from

s,Γ ` (λx:σ.U〈x〉)M = U〈(λx:σ.x)M〉 by βU
= U〈M〉 by βid and congruence.
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This extends easily to nested U〈−〉 contexts, showing that β-reduction is valid for any
function whose bound variable appears just once.

Furthermore, if a function makes no use of its argument at all, then it need not be
evaluated:

βzero s,Γ ` (λx:σ.M)M ′ ≈σ′ M if x /∈ fv(M). (14)

In a certain sense then the nu-calculus is free of side-effects. To prove this, we use the
univalent context if true then M else 〈−〉, which is certain to ignore the contents of its hole.
Thus:

s,Γ ` (λx:σ.M)M ′ = (λx:σ.if true then M else M)M ′

= if true then M else ((λx:σ.M)M ′) by βU
= M.

Note that both (13) and (14) may include expressions with free variables of any type, and
are truly higher-order: it matters not at all what is the order of the final type σ′.

5. Relational Reasoning
The equational logic presented above is fairly simple, and powerful in that it allows correct
reasoning in the presence of an unusual language feature. However it is unable to distinguish
between private and public names, and thus cannot prove example (6) of Section 2. The
same limitation in the operational technique of applicative equivalence is addressed by a
move to logical relations; in this section we introduce a correspondingly refined scheme for
relational reasoning about the nu-calculus. As with the equational theory, the aim is to
provide all the useful power of operational logical relations in a more accessible form.

Assertions now take the form

Γ `M1 Rσ M2

where R : s1 
 s2 is a span such that M1 ∈ Expσ(s1,Γ) and M2 ∈ Expσ(s2,Γ). As with
operational logical relations, the intuition is that the names in s1 and s2 related by R are
public and must be treated similarly by M1 and M2, while those names not mentioned in R
are private and must remain so.

To write these assertions, we first need an explicit language to describe spans between
sets of names. We build this up using disjoint sum R ⊕ R′ : s1 ⊕ s′1 
 s2 ⊕ s′2 over the
following basic spans:

−→n : ∅
 {n} ←−n : {n}
 ∅
∅ : ∅
 ∅ n1̂n2 : {n1}
 {n2} nonempty.

In particular, we shall use the derived span:

n̂ = n̂n : {n}
 {n} nonempty.

It is clear that this language is enough to express all finite spans. For example, consider the
two three-element name sets {n1, n2, n3} and {n4, n5, n6}. A span between them which we
might draw as

n1 n4

n2 n5

n3 n6

is written as (n1̂n6)⊕ (n2̂n5)⊕←−n3 ⊕−→n4 .
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Equational Reasoning:

s1,Γ `M1 =σ M2 Γ ` M2 Rσ M3 s2,Γ ` M3 =σ M4

Γ ` M1 Rσ M4
(R : s1 
 s2)

Congruence:

Γ ` x Rσ x
(x : σ ∈ Γ)

Γ ` true Ro true

Γ ` F1 Rσ→σ′ F2 Γ ` M1 Rσ M2

Γ ` (F1M1) Rσ′ (F2M2) Γ ` false Ro false

Γ⊕ {x : σ} ` M1 Rσ′ M2

Γ ` (λx:σ.M1) Rσ→σ′ (λx:σ.M2)
Γ ` N1 Rν N2 Γ ` N ′1 Rν N

′
2

Γ ` (N1 = N ′1) Ro (N2 = N ′2)

Γ ` B1 Ro B2 Γ `M1 Rσ M2 Γ `M ′1 Rσ M ′2
Γ ` (if B1 then M1 else M ′1) Rσ (if B2 then M2 else M ′2)

Booleans:

Γ ` (M1[true/b]) Rσ (M2[true/b]) Γ ` (M1[false/b]) Rσ (M2[false/b])
Γ⊕ {b : o} ` M1 Rσ M2

Names:

Γ ` n1 Rν n2
( (n1, n2) ∈ R )

Γ ` (M1[n/x]) (R ⊕ n̂)σ (M2[n/x]) some fresh n
Γ ` (M1[n1/x]) Rσ (M2[n2/x]) each (n1, n2) ∈ R

Γ⊕ {x : ν} `M1 Rσ M2

New names:

Γ `M1 (R ⊕←−n1)σ M2

Γ ` (νn1.M1) Rσ M2

Γ `M1 (R⊕−→n2)σ M2

Γ ` M1 Rσ (νn2.M2)
Γ `M1 (R ⊕ n1̂n2)σ M2

Γ ` (νn1.M1) Rσ (νn2.M2)

Figure 4. Rules for deriving relational assertions.
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Note that the domain and codomain of a span can easily be read off from this representation.
The rules for deriving relational assertions are given in Figure 4. The first of these

integrates equational results into the logic, so that existing equational reasoning can be
reused and we need only consider spans when absolutely necessary. This is followed by
straightforward rules for congruence and booleans. Note that a trace of logical relations
comes through in the congruence rule for application: related functions applied to related
arguments give related results. As usual the most interesting rules are those concerning
names.

To introduce a free variable of type ν requires checking its instantiation with all related
pairs of names, and one representative fresh name. This is a weaker constraint than the
corresponding rule in the equational logic, where every current name had to be considered;
and it is precisely this difference that makes relational reasoning more powerful.

The final three rules handle the name restriction operator νn.(−), and capture the notion
that local names may be private or public. In combination with the equational rules for new
names, they are equivalent to the following general rule:

Γ ` M1 (R⊕ S)σ M2

Γ ` (νs1.M1) Rσ (νs2.M2)
S : s1 
 s2. (15)

Thus in order to show that two expressions (νs1.M1) and (νs2.M2) are related it is enough
to find some span between their local names under which the bodies M1 and M2 are related.
This matches closely the clause for the operational relation Rexp

σ in Definition 3.2.
The search for the right span S here means that relational reasoning demands a little

more creativity than the equational logic. To use the new name rules successfully requires
some insight into how an expression uses its local names; which if any are ever revealed to
a surrounding program.

We now link this relational theory to the operational reasoning methods of Section 3.

Theorem 5.1. (Soundness) Relational reasoning can be used to prove the corresponding
operational relations:

Γ `M1 Rσ M2 =⇒ Γ ` M1 R
opn
σ M2 .

By implication (7) of Theorem 3.2, this can then be used to demonstrate contextual equi-
valence:

Γ `M1 (id s)σ M2 =⇒ s,Γ `M1 ≈σ M2 .

Proof:
We need to show that the operational logical relations Ropn

σ satisfy all the rules of Figure 4.
This is reasonably straightforward, by reference to the various clauses of Definition 3.2; in
particular the congruence rules follow from the ‘logical’ character of Ropn

σ .
The very first rule is a little different: this integrates relational with equational reasoning,

and corresponds to the transitivity result of Proposition 3.1(3) that connects operational lo-
gical relations to applicative equivalence. Applying this here depends in turn on Theorem 4.1,
that provable equality =σ implies applicative equivalence ∼σ.

Theorem 5.2. (Completeness) Relational reasoning corresponds exactly to operational
logical relations up to first-order types:

Γ ` M1 R
opn
σ M2 =⇒ Γ `M1 Rσ M2 σ first-order, ground Γ.

By implication (8) of Theorem 3.2, the same result holds for contextual equivalence:

s,Γ `M1 ≈σ M2 =⇒ Γ `M1 (id s)σ M2 σ first-order, ground Γ.
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Proof:
We follow much the same course as we did in proving the matching Theorem 4.1 for the
equational logic. Guided by Definition 3.2 of logical relations, the proof is by induction on
the size of Γ and the structure of σ; as usual we distinguish canonical forms from general
expressions, and open expressions from closed ones.

• Base case: closed canonical forms of ground type.

b1 R
can
o b2 =⇒ ` b1 Ro b2

n1 R
can
ν n2 =⇒ ` n1 Rν n2

Expanding the definition of Rcan
o and Rcan

ν respectively, the left hand sides assert that
b1 and b2 are the same boolean constant, and that names n1 and n2 are related:
(n1, n2) ∈ R. In both cases the statement on the right is then an axiom of the relational
logic.
• Extension to general expressions. If for some type σ we have

C1 R
can
σ C2 =⇒ ` C1 Rσ C2 for all R,C1, C2

then the same result holds for general expressions:

M1 R
exp
σ M2 =⇒ `M1 Rσ M2 for all R,M1,M2.

To show this, suppose that R : s1 
 s2, so Mi ∈ Expσ(si) for i = 1, 2. Expanding Rexp
σ

on the left we have that for some R′ : s′1 
 s′2:

s1 `M1 ⇓σ (s′1)C1, s2 `M2 ⇓σ (s′2)C2 and C1 (R⊕R′)can
σ C2 .

Applying Proposition 4.1 to the two evaluations we obtain the equational assertions

s1 `M1 =σ (νs′1.C1) and s2 `M2 =σ (νs′2.C2) . (16)

By hypothesis, from C1 (R⊕R′)can
σ C2 we can deduce that ` C1 (R⊕R′)σ C2, and

applying the restriction rule (15) gives

` (νs′1.C1) Rσ (νs′2.C2) . (17)

Taking (16) with (17) and applying the first rule of Figure 4 then proves

`M1 Rσ M2

as required.
• First-order function types. This is the induction step: we assume the result at Rexp

σ

for all R and then prove it for Rcan
o→σ and Rcan

ν→σ . As with applicative equivalence, the
key point is that the definition of logical relations at function types provides exactly
the hypotheses needed for the rules that introduce free boolean or name variables. For
example, suppose that

(λx:ν.M1) Rcan
ν→σ (λx:ν.M2),

i.e. that for all spans R′ : s′1 
 s′2 and names n1 ∈ s1 ⊕ s′1, n2 ∈ s2 ⊕ s′2 we have

(n1, n2) ∈ R⊕R′ =⇒ (M1[n1/x]) (R⊕R′)exp
σ (M2[n2/x]) .

Applying the induction hypothesis gives

(n1, n2) ∈ R ⊕R′ =⇒ ` (M1[n1/x]) (R ⊕R′)σ (M2[n2/x])
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and setting R′ to be the spans ∅ : ∅ 
 ∅ and n̂ : {n} 
 {n} for some fresh n gives
just the hypotheses for the rule of Figure 4 introducing free name variables. Thus we
deduce

{x : ν} `M1 Rσ M2

and by congruence

` (λx:ν.M1) Rν→σ (λx:ν.M2)

as required. The argument for booleans, Ro→σ, is similar.
• Open expressions. Apply induction over the length of the context Γ. Every variable

has ground type so the induction step is justified exactly as for first-order functions
above.

This completes the proof of completeness with respect to operational logical relations. As
indicated, we can extend this to contextual equivalence using the existing result of The-
orem 3.2.

Thus relational reasoning provides a further practical method for reasoning about con-
textual equivalence. Like the equational logic it can be used freely at higher types and for
expressions with free variables. Moreover, because spans capture the distinction between
private and public names, the relational scheme is significantly more powerful than equa-
tional reasoning alone. Indeed it can prove every contextual equivalence between expressions
of first-order type, thanks to the corresponding (hard) result for operational logical relations.
In particular we obtain a demonstration of the final example (6) from Section 2: the crucial
closing steps are

x : ν ` (x = n) (←−n )o false

` (λx:ν.(x = n)) (←−n )ν→o (λx:ν.false)

` (νn.λx:ν.(x = n)) ∅ν→o (λx:ν.false)

from which we deduce

νn.λx:ν.(x = n) ≈ν→o λx:ν.false

as required. The span (←−n ) : {n}
 ∅ used here captures our intuition that the name bound
to n on the left hand side is private, never revealed, and need not be matched in the right
hand expression.

6. Conclusions and Further Work
We have looked at the nu-calculus, a language of names and higher-order functions, designed
to expose the effect of generativity on program behaviour. Building on operational techniques
of applicative equivalence and logical relations, we have derived schemes for equational and
relational reasoning; where a collection of inductive rules allow for straightforward proofs
of contextual equivalence. We have proved that this approach successfully captures the
distinction between private and public names, and is complete up to first-order function
types.

Figure 5 summarises the inclusions between the five equivalences that we have considered.
For general higher types they are all distinct; at first-order function types the three right-
hand equivalences are identified; and at ground types all five are the same. Furthermore, as
explained after the proof of Theorem 4.1, the reasoning schemes of this paper in the bottom
row are in practice just as powerful as the operational methods above them.
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Applicative equivalence ⊆ Logical relations
⊆

Contextual equivalence

Equational reasoning
⊆

⊆ Relational reasoning

⊆

⊆

Equal at first-order types

All identical at ground types {o, ν}

Figure 5. Various equivalences between expressions of the nu-calculus

One direction for future work is to extend the language from names to the dynamic-
ally allocated references of Standard ML, storage cells that allow imperative update and
retrieval. For integer references, appropriate denotational and operational techniques are
already available [35, §5]. These use relations between sets of states to indicate how equival-
ent expressions may make different use of local storage cells. The idea then would be to make
a similar step in the logic, from name relations to these state relations. For example, we
might replace the span R : s1 
 s2 with a more general predicate φ ⊆ Store(s1)× Store(s2)
and construct rules for the relational assertion Γ ` M1 φσ M2.

Recent joint work with Pitts [30] on a language of integer references has extended previous
operational techniques to give logical relations that exactly match contextual equivalence
at all types. The innovation is that we define not only Rcan on canonicals and Rexp on
expressions, but also Rcont on continuations, in a three-way mutually inductive definition.
The completeness of this enhanced relational scheme is exciting; however to make full use of
it we need to distill this extra power into new rules for the relational logic. The aim would
be a scheme of rules that precisely characterise contextual equivalence, while still providing
a practical basis for reasoning and proof.

A number of calculi for concurrent and distributed systems make use of abstract names
to keep track of scope or privacy; it seems likely that the relational logic will adapt to
reasoning about some of these. In fact the standard π-calculus has no function types, so
equational reasoning is appropriate and sufficient [25]; but second and higher-order calculi
like CHOCS [38] and HOπ [34] might benefit from a relational treatment. Other possibilities
are the spi-calculus [1] and the ambient calculus [4], both of which rely explicitly on the
detailed behaviour of names.

Consider for example the spi-calculus, which uses names as a foundation for reasoning
about security protocols. In order to test for authenticity and secrecy one must verify certain
contextual equivalences between processes, using insight into the visibility of cryptographic
keys as represented by local names. This is exactly the territory over which our relational
logic is effective. Thus where the spi-calculus writes {M}n for expression M encrypted under
key n, we might approximately interpret

{M}n by λx:ν.if x = n then M else ()

for some suitable null expression (). This is a function that will reveal M only if presented
with the correct key n. We can then use relational reasoning to derive

s ` {M}n (←−n ⊕−→n )ν→σ {M ′}n
for any expressions M and M ′, and it follows that these two encrypted expressions behave
indistinguishably within any process P which does not know n:

s ` (νn.P [{M}n/x]) id s (νn.P [{M ′}n/x]) if n /∈ fn(P ). (18)
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This confirms the security of the coding, and captures the fact that P cannot decipher {M}n
without knowing n. The span (←−n ⊕−→n ) used here matches Abadi and Gordon’s underpinning
relation, while equation (18) corresponds to Proposition 10 of [1] which is essential to their
proofs of equivalence between processes.

Leaving aside such extensions, there is also the challenge of mechanising the relational
logic within a general automated reasoning system like Isabelle [26] or Coq [3]. For example,
Frost and Mason have already begun to do this for a fragment of VTLoE [7]. In our case the
task is aided by the fact that all our definitions are inductive, and packages to reason about
such constructions are by now fairly common currency among theorem provers. Perhaps
the most demanding aspect would be that the nu-calculus uses name abstraction as well as
lambda abstraction. Reasoning about binding mechanisms like these is still a delicate area
— see [5, 11, 18] for some approaches — and concentrating attention onto pure names may
provide some useful insights. Note that we are not concerned here with an implementation
of the proof that the reasoning system itself is correct (Theorem 5.1); what might benefit
from machine assistance is the demonstration that two particular expressions are ids-related,
and hence contextually equivalent.
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