
Observable Properties of Higher Order Functions
that Dynamically Create Local Names,

or: What’s new?

Andrew M. Pitts? and Ian D. B. Stark??

University of Cambridge Computer Laboratory,
Pembroke Street, Cambridge CB2 3QG, England

Abstract. The research reported in this paper is concerned with the prob-
lem of reasoning about properties of higher order functions involving state.
It is motivated by the desire to identify what, if any, are the difficulties
created purely by locality of state, independent of other properties such as
side-effects, exceptional termination and non-termination due to recursion.
We consider a simple language (equivalent to a fragment of Standard ML) of
typed, higher order functions that can dynamically create fresh names; names
are created with local scope, can be tested for equality and can be passed
around via function application, but that is all. Despite the extreme simplic-
ity of the language and its operational semantics, the observable properties
of such functions are shown to be very subtle. A notion of ‘logical relation’ is
introduced which incorporates a version of representation independence for
local names. We show how to use it to establish observational equivalences.
The method is shown to be complete (and decidable) for expressions of first
order types, but incomplete at higher types.

1 Introduction

Programming languages combining higher order features with the manipulation of
local state present severe problems for the traditional techniques of programming
language semantics and logics of programs. For denotational semantics, the prob-
lems manifest themselves as a lack of abstraction in existing semantic models: some
expressions that are observationally equivalent (i.e. that can be interchanged in any
program without affecting its behaviour when executed) are assigned different de-
notations in the model. For operational semantics, the problems manifest them-
selves partly in the fact that simple techniques for analyzing observational equiva-
lence in the case of purely functional languages (such as Milner’s ‘Context Lemma’
[8], or more generally, notions of applicative bisimulation [1]) break down in the
presence of state-based features. Furthermore, operationally based approaches to
properties of programs are often inconveniently intensional, e.g. the familiar congru-
ence properties of equational logic fail to hold. (See [6, Sect. 5(A)], for example.)
These problems have been intensively studied for the case of local variables in block-
structured, Algol-like languages and to a lesser extent for the case of languages

? Supported by UK SERC grant GR/G53279 and CEC ESPRIT project CLICS-II
?? Supported by UK SERC studentship 91307943 and CEC SCIENCE project PL910296



involving the dynamic creation of mutable locations (such as ML-style references).
See [17, 2, 7, 3, 18, 12, 13, 6, 4]. Our interest in this subject stems primarily from a
desire to improve and deepen the techniques which are available for reasoning about
program behaviour in the ‘impure’ functional language Standard ML [9].

Our motivation here is to try to identify what, if any, are the difficulties cre-
ated purely by locality of state, independent of other properties such as side-effects,
exceptional termination and non-termination due to recursion. Accordingly we con-
sider higher order functions which can dynamically create fresh names of things,
but which ignore completely what kind of thing (references, exceptions, etc.) is be-
ing named. Names are created with local scope, can be tested for equality, and are
passed around via function application, but that is all. Because of this limited frame-
work, there is some hope of obtaining definitive results—fully abstract models and
complete proof techniques. As the vehicle for this study we formulate an extension
of the call-by-value, simply typed lambda calculus, called the nu-calculus and intro-
duced in Sect. 2. In ML terms, it contains higher order functions over ground types
bool and unit ref—the latter being the type of dynamically created references to
the unique element of type unit. This acts as a type of ‘names’ because only one
thing can be (and is) stored in such a reference, so that its only characteristic is its
name. We have purposely excluded recursion from the nu-calculus and as a result
any closed expression evaluates to an essentially unique canonical form. Indeed, the
nu-calculus appears at first sight to be an extremely simple system. On closer in-
spection, we find that nu-calculus expressions can exhibit very subtle behaviour with
respect to an appropriate notion of observational equivalence. Thus our first contri-
bution is somewhat in the spirit of Meyer and Seiber [7]: we observe that even for this
extremely simple case of local state there are observationally equivalent expressions
which traditional denotational techniques will fail to identify (Example 4).

In Sect. 3 we introduce a notion of ‘logical relation’ for the nu-calculus incorpo-
rating a version of representation independence for local names. Our technique is a
syntactic version of the relationally parametric semantics of O’Hearn and Tennent
[13]. There are also interesting similarities with Plotkin and Abadi’s parametricity
schema for existential types [16, Theorem 7]. We use our version of logical rela-
tions to establish the termination properties of the nu-calculus (Theorem 12) and to
provide a useful notion of ‘applicative’ equivalence between nu-calculus expressions
which implies observational equivalence (Theorem 14). Although the two notions of
equivalence differ at higher order types (Example 6), they coincide for expressions of
first order types (Theorem 22) and are decidable there (Corollary 23). The proof of
this occupies Sect. 4 and is surprisingly hard work: although applicative equivalence
provides a compositional explanation of (observational equivalence classes of) first
order functions, even these can have complicated behaviour (see Example 1).

Note. This paper is an expanded version of the operationally-based results an-
nounced in [14]. That reference also contains an outline of our approach to the
denotational semantics of the nu-calculus.



2 The nu-calculus

Syntactically, the nu-calculus is a kind of simply typed lambda calculus. The types,
σ, are built up from a ground type o of booleans and a ground type ν of names, by
forming function types, σ→σ′. Expressions take the form

M ::= x variable
| n name
| true | false truth values
| if M then M else M conditional
| M = M equality of names
| νn . M local name declaration
| λx : σ . M function abstraction
| MM function application

where x ∈ Var, an infinite set whose elements are called variables, and n ∈ Nme, an
infinite set (disjoint from Var) whose elements are called names. Function abstraction
is a variable-binding construct (occurrences of x in M are bound in λx : σ . M),
whereas local name declaration is a name-binding construct (occurrences of n in M
are bound in νn . M). We write Var(M) and Nme(M) for the finite subsets of Var
and Nme consisting of the free variables and the free names in an expression M . We
denote by M [M ′/x] (respectively M [M ′/n]) the result of substituting an expression
M ′ for all free occurrences of x (respectively n) in M , renaming bound variables and
bound names if necessary, to avoid variable and name capture.

Note. Henceforward, we implicitly identify expressions that differ up to α-conversion
of bound variables and bound names. Thus when we refer to an expression M we
really mean an α-equivalence class of expressions, referred to via one of its represen-
tatives M .

Expressions will be assigned types via typing assertions of the form

s, Γ `M : σ

where s is a finite subset of Nme, Γ is a finite function from variables to types, σ is a
type, and M is an expression (more precisely, an α-equivalence class of expressions)
satisfying Nme(M) ⊆ s and Var(M) ⊆ dom(Γ ) (the domain of definition of Γ ). The
rules generating the valid typing assertions are given in Table 1. In these rules s⊕{n}
indicates the finite set of names obtained from s by adjoining n 6∈ s; and Γ ⊕ [x : σ]
denotes the finite function obtained by extending Γ by mapping x 6∈ dom(Γ ) to σ.
Clearly, if s, Γ ` M : σ holds, then σ is uniquely determined by s, Γ and M . We
write

Expσ(s)
def
= {M | s, ∅ `M : σ}

for the set of closed nu-calculus expression of type σ with free names in the set s.
The subset

Canσ(s) ⊆ Expσ(s)



Table 1. Rules for assigning types in the nu-calculus

(x ∈ dom(Γ ))
s, Γ ` x : Γ (x)

(n ∈ s)
s, Γ ` n : ν

(b = true, false)
s, Γ ` b : o

s, Γ ` B : o s, Γ `M : σ s, Γ `M ′ : σ

s, Γ ` if B then M else M ′ : σ

s,Γ ` N : ν s, Γ ` N ′ : ν

s, Γ ` (N = N ′) : o

s⊕ {n}, Γ `M : σ

s, Γ ` νn . M : σ

s, Γ ⊕ [x : σ] `M : σ′

s, Γ ` λx : σ . M : σ→σ′

s, Γ ` F : σ→σ′ s, Γ `M : σ

s,Γ ` FM : σ′

of canonical nu-calculus expressions of type σ with free names in the set s consists
of those closed expressions which are either names (in s), or the booleans constants
true and false, or function abstractions.

We give the operational semantics of the nu-calculus in terms of an inductively
defined evaluation relation which matches the computational behaviour of equivalent
ML expressions. The ML equivalent of the expression νn . M is

let n=ref() inM end

(using the ML type unit ref for the type of names). In other words the effect of
evaluating νn . M should be to create a fresh name n and then use it in evaluating
M . In the definition of ML [9] environments are used to bind identifiers (variables)
to addresses (names), whereas here we have chosen to simplify the form of the eval-
uation relation by using ‘extended’ expressions containing names explicitly. It would
be possible to simplify the syntax of the nu-calculus even further by identifying the
syntactic category of names with that of variables of type ν. We choose not to do
so because names and variables have different semantic properties. For example,
the operational semantics we give commutes with arbitrary substitutions on vari-
ables, but only with restricted forms of substitutions on names (viz. essentially just
permutations of names): see Remark 2.

An appropriate notion of state for this simple language is just a finite subset
of Nme, indicating the names which have been created so far. So we will use an
evaluation relation of the form

s `M ⇓σ (s′)C (1)

where s and s′ are disjoint finite sets of names, M ∈ Expσ(s) and C ∈ Canσ(s⊕ s′).

Note. Throughout this paper, we write s⊕ s′ to indicate the union of two sets s and
s′ that are disjoint.

The intended meaning of (1) is: ‘in state s, expression M evaluates to canonical
form C creating fresh, local names s′ in the process’. The rules for generating the
relation are given in Table 2. In rule (EQ) we use the notation δnn′ , where

δnn′
def
=

{
true if n = n′

false if n 6= n′ .



It is important to note that the rules in Table 2 refer to the collection of judgements
as in (1) that are well-formed, i.e. satisfy the conditions mentioned above. For ex-
ample, in rule (LOCAL) the well-formedness of the hypothesis and the conclusion
entail that n is not an element of either s or s1.

Table 2. Rules for evaluating nu-calculus expressions

(CAN)
s ` C ⇓σ C

(COND1)
s ` B ⇓o (s1)true s⊕ s1 `M ⇓σ (s2)C

s ` if B then M else M ′ ⇓σ (s1 ⊕ s2)C

(COND2)
s ` B ⇓o (s1)false s⊕ s1 `M ′ ⇓σ (s2)C′

s ` if B then M else M ′ ⇓σ (s1 ⊕ s2)C′

(EQ)
s ` N ⇓ν (s1)n s⊕ s1 ` N ′ ⇓ν (s2)n′

s ` (N = N ′) ⇓o (s1 ⊕ s2)δnn′

(LOCAL)
s⊕ {n} `M ⇓σ (s1)C

s ` νn . M ⇓σ ({n} ⊕ s1)C

(APP)

s ` F ⇓σ→σ′ (s1)λx : σ . M ′ s⊕ s1 `M ⇓σ (s2)C

s⊕ s1 ⊕ s2 `M ′[C/x] ⇓σ′ (s3)C′

s ` FM ⇓σ′ (s1 ⊕ s2 ⊕ s3)C′

It is easy to see that evaluation is deterministic up to renaming created names,
in the following sense:

Lemma 1. If s ` M ⇓σ (s1)C and s ` M ⇓σ (s2)C′, then there is a bijection
R : s1 ↔ s2 so that C′ is α-convertible with the expression C[n′/n | (n, n′) ∈ R].

Remark 2 (States are affine linear). The initial state s in the evaluation (1) has
the structural properties of an affine linear logic context, in the sense that derived
rules of weakening and exchange are valid, but a rule of contraction is not. (Compare



the use made of affine linear logic by O’Hearn in [11].) Thus

(WEAK)
s `M ⇓σ (s1)C

s⊕ {n} `M ⇓σ (s1)C

(EXCH)
s⊕ {n} ⊕ {n′} `M ⇓σ (s1)C

s⊕ {n′} ⊕ {n} `M ⇓σ (s1)C

are correct derived rules (the second trivially so, because we are using states that
are sets rather than lists), but

(CONTR)
s⊕ {n} ⊕ {n′} `M ⇓σ (s1)C

s⊕ {n′′} `M [n′′/n, n′′/n′] ⇓σ (s1)C[n′′/n, n′′/n′]

is not a correct derived rule — as can be seen, for example, by taking s and s1 to
be ∅, σ to be o, M to be n = n′ and C to be false.

More generally, given a function f : s→ s′ and letting M [f ] denote the substi-
tuted expression M [f(n)/n | n ∈ s], we have that the rule (SUBST) below is a
correct derived rule provided that f is an injective function.

(SUBST)
s `M ⇓σ (s1)C

s′ `M [f ] ⇓σ (s1)C[f ]

Remark 3 (Sequentiality condition). The evaluation rules in Table 2 follow the
state convention of Standard ML [9, p. 50], i.e. order of evaluation is from left to
right, with state accumulating sequentially. We have formulated the operational
semantics of the nu-calculus in this way to emphasize that it is (equivalent to) a
fragment of ML. However, because we are dealing with state that can be created
but cannot be mutated, some of this sequentiality is spurious. Table 3 gives ‘de-
sequentialized’ versions of rules (COND1), (COND2), (EQ), and (APP). We claim
that using these rules instead of the corresponding rules in Table 2 does not affect
the collection of instances of evaluation that are derivable. This claim follows from
the fact that a converse of the weakening rule (WEAK) is derivable:

(STREN)
s⊕ s′ `M ⇓σ (s1)C

(Nme(M) ⊆ s and Nme(C) ⊆ s⊕ s1) .
s `M ⇓σ (s1)C

The evaluation relation (1) can be used to define a Morris-style contextual equiv-
alence between nu-calculus expressions: two expressions are equivalent if they can
be interchanged in any program without affecting the observable result of evaluating
it. Here we will take a ‘program’ to be a closed expression of type o, and the pos-
sible observable results of evaluating a program to be the booleans true and false,
disregarding any local names that are created in the process of evaluation. (It would
not change the notion of observational equivalence given below if we also allowed
programs to be of type ν and observable results to include pre-existing names.) In
the following definition, as usual the ‘context’ B[−] is an expression in which some
subexpressions have been replaced by a place-holder, −; and then B[M ] denotes the
result of filling the place-holder with an expression M .



Table 3. ‘De-sequentialized’ evaluation rules

(COND1′)
s ` B ⇓o (s1)true s `M ⇓σ (s2)C

s ` if B then M else M ′ ⇓σ (s1 ⊕ s2)C

(COND2′)
s ` B ⇓o (s1)false s `M ′ ⇓σ (s2)C′

s ` if B then M else M ′ ⇓σ (s1 ⊕ s2)C′

(EQ′)
s ` N ⇓ν (s1)n s ` N ′ ⇓ν (s2)n′

s ` (N = N ′) ⇓o (s1 ⊕ s2)δnn′

(APP′)

s ` F ⇓σ→σ′ (s1)λx : σ . M ′ s `M ⇓σ (s2)C

s⊕ s1 ⊕ s2 `M ′[C/x] ⇓σ′ (s3)C′

s ` FM ⇓σ′ (s1 ⊕ s2 ⊕ s3)C′

Definition 4 (Observational equivalence). Given M1,M2 ∈ Expσ(s), we write

s `M1 ≈σ M2

to mean that for all B[−] and all b ∈ {true, false},

∃s1(s ` B[M1] ⇓o (s1)b)⇔ ∃s2(s ` B[M2] ⇓o (s2)b) .

In this case we say that M1 and M2 are observationally equivalent.

The following result shows that one need only consider contexts that immediately
evaluate their arguments in order to establish observational equivalence. It is the
analogue of Theorem (ciu) in [4].

Lemma 5. s `M1 ≈σ M2 if and only if for all b ∈ {true, false} and all λx : σ . B ∈
Canσ→ o(s)

∃s1(s ` (λx : σ . B)M1 ⇓o (s1)b)⇔ ∃s2(s ` (λx : σ . B)M2 ⇓o (s2)b) .

The following instances of observational equivalence are easily established using the
lemma.

Corollary 6. 1. If M ∈ Expσ(s) and n 6∈ s, then s ` νn . M ≈σ M .
2. If M ∈ Expσ(s⊕ {n} ⊕ {n′}), then s ` νn . νn′ . M ≈σ νn′ . νn . M .
3. If s `M ⇓σ (s′)C, then s `M ≈σ νs′ . C. Here νs′ . C stands for νn1 . . . νnk .

C if s′ = {n1, . . . , nk} for some k > 0, and stands for C if s′ = ∅. (By part 2, up
to observational equivalence, it does not matter which order we enumerate the
elements of s′ in νs′ . C.)

4. If s, [x : σ] `M : σ′ and C ∈ Canσ(s), then s ` (λx : σ . M)C ≈σ′ M [C/x].



In the next section we will show that evaluation of nu-calculus expressions always
terminates (Theorem 12). It follows from this and the above corollary that, up to
observational equivalence, the only closed expressions of type o are true and false
and the only closed expression of type ν not involving any free names is

new
def
= νn . n .

However, at higher types things become more complicated. The following example
gives infinitely many expressions of type ν→ ν which are mutually observationally
inequivalent.

Example 1. For each p ≥ 1, consider the nu-calculus expression of type ν→ ν which
first creates p + 1 local names n0, . . . , np and then acts as the function cyclically
permuting these names and mapping any other name to n0:

Fp
def
= νn0 . . . νnp . λx : ν . if x = n0 then n1 else

if x = n1 then n2 else

· · ·
if x = np then n0 else n0 .

Then ∅ ` Fp 6≈ν→ νFp′ whenever p 6= p′, because

Bq
def
= λf : ν→ ν . νn . (f (q+2)(n) = f(n))

has the property that for all q ∈ {1, . . . , p}, ∅ ` BqFp ⇓o ({n0, . . . , np, n})true if and
only if q = p. (In Bq, f

(q+2) indicates f iterated q + 2 times.)

Example 2. Here is a simple example to illustrate the fact that local name declaration
and function abstraction in general do not commute up to observational equivalence.
The expressions

M
def
= νn . λx : ν . n and N

def
= λx : ν . νn . n

are not observationally equivalent, becauseB
def
= λf : ν→ ν . (fnew = fnew) has the

property that ∅ ` BM ⇓o ({n, n1, n2})true whereas ∅ ` BN ⇓o ({n, n1, n2})false.

Example 3. The rule (APP) in Table 2 embodies a form of strict, or ‘call-by-value’,
application. Part 4 of Corollary 6 shows that the appropriate restricted form of beta-
conversion (Plotkin’s βv [15]) holds up to observational equivalence. Although there
is no non-termination in our simple language, the general form of beta-conversion
fails for the nu-calculus, because of the dynamics of name creation. For example, the
beta redex (λx : ν . x = x)new is not observationally equivalent to the corresponding
reduct new = new since

∅ ` (λx : ν . x = x)new ⇓o ({n1})true

∅ ` (new = new) ⇓o ({n1, n2})false .



For the simple functional language PCF, Milner’s context lemma [8] shows that
observational equivalence may be established by testing just with applicative con-
texts, i.e. those of the form [−]C1C2 . . . Ck. Not surprisingly, this fails in the nu-
calculus. For example, the expressions Fp in Example 1 are in fact indistinguishable
by such applicative contexts, even though they can be distinguished by more com-
plicated contexts (like Bq([−])) which carry out ‘anonymous’ manipulation of the
private names n0, . . . , np. It would seem that the properties of higher order functions
which create and pass around private names can be quite subtle. Two contrasting
examples of observational equivalence, more subtle than those in Corollary 6, are
given below. The first one illustrates the fact that local names are always distinct
from externally supplied names; the second illustrates the fact that any two local
names are indiscernible by externally supplied boolean tests. (This second equiva-
lence is quite delicate—it certainly would not hold in languages where evaluation of
functions can have side-effects on mutable state.) The methods developed in the next
section suffice to prove (2), but not (3). At the moment, the only method known to
us for establishing this second equivalence is denotational, i.e. via a specific model
of the nu-calculus: see [14, Sect. 4].

Example 4.

∅ ` νn . λx : ν . (x = n) ≈ν→ o λx : ν . false (2)

∅ ` νn . νn′ . λf : ν→ o . (fn = fn′) ≈(ν→ o)→ o λf : ν→ o . true . (3)

In (3), the boolean equality test fn = fn′ is an abbreviation for

if fn then (if fn′ then true else false) else (if fn′ then false else true) .

3 Representation independence for local names

This section develops a notion of (binary) logical relation for the nu-calculus and
shows how to use it to establish instances of observational equivalence between nu-
calculus expressions.

Given finite subsets s1, s2 ⊆ Nme of names, we write R : s1 
 s2 to indicate that
R is (the graph of) a partial bijection from s1 to s2. In other words, R ⊆ s1 × s2

satisfies

m1 R m2 ∧ n1 R n2 ⇒ (m1 = n1⇔m2 = n2) . (4)

(We use infix notation for binary relations.) Note that R ⊕ R′ is a partial bijection
s1 ⊕ s′1 
 s2 ⊕ s′2 when R : s1 
 s2 and R′ : s′1 
 s′2 are disjoint partial bijections.
The identity partial bijection, Is : s
 s, is given by:

n1 Is n2 ⇔ n1 = n2 . (5)

The domain and codomain of definition of a partial bijection R : s1 
 s2 will be
denoted

dom(R)
def
= {n1 ∈ s1 | ∃n2 ∈ s2 . n1 R n2} (6)

cod(R)
def
= {n2 ∈ s2 | ∃n1 ∈ s1 . n1 R n2} . (7)



Thus R is a bijection just in case dom(R) = s1 and cod(R) = s2, in which case we
write R : s1 ↔ s2.

Definition 7 (Logical relations). For each type σ we define a family of binary
relations between canonical expressions

(Rσ ⊆ Canσ(s1)× Canσ(s2) | R : s1 
 s2)

by induction on the structure of σ as in (9), (10) and (11) below; clause (11) makes
use of associated relations between expressions, Rσ ⊆ Expσ(s1)× Expσ(s2) defined
by (8).

M1 Rσ M2 ⇔ ∃R′ : s′1 
 s′2, C1 ∈ Canσ(s1 ⊕ s′1), C2 ∈ Canσ(s2 ⊕ s′2) . (8)

s1 `M1 ⇓σ (s′1)C1 ∧ s2 `M2 ⇓σ (s′2)C2 ∧C1 (R ⊕R′)σ C2

b1 Ro b2 ⇔ b1 = b2 (9)

n1 Rν n2 ⇔ n1 R n2 (10)

λx : σ . M1 Rσ→σ′ λx : σ . M2⇔ (11)

∀R′ : s′1 
 s′2, C1 ∈ Canσ(s1 ⊕ s′1), C2 ∈ Canσ(s2 ⊕ s′2) .

C1 (R ⊕R′)σ C2⇒M1[C1/x] (R⊕R′)σ′ M2[C2/x] .

(It is implicit in (8) and (11) that each s′i is required to be disjoint from si.)

The family (Rσ | σ) is a form of binary ‘logical relation’ for nu-calculus expres-
sions. Since we choose in (9) to take the logical relation to be the identity at the
ground type o, the whole family is determined by what we take at the other ground
type ν. We wish related expressions to be mapped to related expressions by any
nu-calculus function, and we have to impose the restriction (4) on the relation R to
ensure this property holds for the function testing equality of names. The following
proposition expresses this fundamental property of our notion of logical relation.

Proposition 8 (Fundamental property of logical relations). Suppose

[x1 : σ1, . . . , xk : σk] `M : σ .

Then for all R : s1 
 s2, Ci ∈ Canσi(s1) and Di ∈ Canσi(s2) (i = 1, . . . , k), one
has (

k∧
i=1

Ci Rσi Di

)
⇒M [C1/x1, . . . , Ck/xk] Rσ M [D1/x1, . . . , Dk/xk] .

Proof. The proof proceeds by induction on the derivation of the typing assertion
[x1 : σ1, . . . , xk : σk] ` M : σ, and makes use of (the only if part of) the following
lemma, which is itself proved by induction on the structure of the type σ. We omit
the details. ut



Lemma 9. Given R : s1 
 s2 and R′ : s′1 
 s′2 with si and s′i disjoint (for i = 1, 2),
then for all types σ and all canonical expressions Ci ∈ Canσ(si) (i = 1, 2), C1 Rσ C2

if and only if C1 (R⊕R′)σ C2.
Similarly, for all Mi ∈ Expσ(si), M1 Rσ M2 if and only if M1 (R⊕R′)σ M2.

Remark. The main interest in Definition 7 lies in clause (8) where the relation Rσ
on expressions is defined in terms of the relation Rσ on canonical expressions. This
clause embodies a form of ‘representation independence’ for the dynamically created
local names. (Cf. Plotkin and Abadi’s parametricity schema for existential types [16,
Theorem 7].) One might have expected to see not (8), but rather

M1 Rσ M2 ⇔ (∀s′1, C1 ∈ Canσ(s1 ⊕ s′1) . s1 `M1 ⇓σ (s′1)C1⇒ (12)

∃s′2, R′ : s′1 
 s′2, C2 ∈ Canσ(s2 ⊕ s′2) .

s2 `M2 ⇓σ (s′2)C2 ∧ C1 (R⊕R′)σ C2)

∧
(∀s′2, C2 ∈ Canσ(s2 ⊕ s′2) . s2 `M2 ⇓σ (s′2)C2⇒
∃s′1, R′ : s′1 
 s′2, C1 ∈ Canσ(s1 ⊕ s′1) .

s1 `M1 ⇓σ (s′1)C1 ∧ C1 (R⊕R′)σ C2)

This deals appropriately with the possibility of non-termination. However, the simple
language we are considering here has the property (Theorem 12) that all expressions
converge to canonical forms which are essentially unique (by Lemma 1), in which
case (12) is equivalent to the simpler form (8).

Clause (11) of Definition 7 is a syntactic version of O’Hearn and Tennent’s ap-
proach to relational parametricity in [13]. It also exhibits the characteristic feature of
‘logical relations’, in that two functions are defined to be related if they send related
arguments to related results. To be more in keeping with the definition of applica-
tive bisimulation in [1], one might consider an alternative definition in which two
functions are related when they give related results for all arguments. For pure func-
tional languages, such as the lazy lambda calculus, one expects the two approaches
to be equivalent, and to equal observational equivalence: see [1, 5]. Here, the notion
of ‘applicative equivalence’ we define below using Definition 7 is contained in, but
not equal to observational equivalence; and we believe that replacing clause (11) by
a ‘related if related on all arguments’ version (which we will not formulate precisely
here) results in an even weaker notion of equivalence.

We will need to use Proposition 8 in the more general form given in the corollary
below. Its statement makes use of the following notation for renaming expressions
along the bijection R : dom(R)↔ cod(R) obtained from a partial bijection R : s1 

s2 by restricting it to its domain of definition (cf. definitions (6) and (7)).

Definition 10. Given a partial bijection R : s1 
 s2, for any nu-calculus expres-
sion M , let M [R] denote the result of simultaneously substituting for each name in
dom(R) the corresponding name in cod(R):

M [R]
def
= M [n′/n | n R n′] .



Corollary 11. Suppose s1, [x1 : σ1, . . . , xk : σk] ` M : σ, that R : s1 ↔ s2 is a
bijection and that R′ : s′1 
 s′2 is a partial bijection disjoint from R. Then for all
Ci ∈ Canσi(s1 ⊕ s′1) and Di ∈ Canσi(s2 ⊕ s′2) (i = 1, . . . , k) one has(

k∧
i=1

Ci (R⊕R′)σi Di

)
⇒

M [C1/x1, . . . , Ck/xk] (R⊕R′)σ M [R][D1/x1, . . . , Dk/xk] .

Proof. Apply Proposition 8 to

[y1 : ν, . . . , y` : ν, x1 : σ1, . . . , xk : σk] `M [yj/nj | 1 ≤ j ≤ `] : σ

where s = {n1, . . . , n`}. ut

Theorem 12 (Termination). For all closed expressions M , of type σ and with free
names in the set s say, there is some set of names s′ (disjoint from s) and some
canonical expression C ∈ Canσ(s⊕ s′) such that s `M ⇓σ (s′)C.

Proof. The k = 0 case of Corollary 11 implies that M (Is)σ M for all M ∈ Expσ(s).
Termination follows from this, given the definition of Rσ in (8). ut

We now show how the fundamental property of our notion of logical relation
embodied in Proposition 8 can be used to establish observational equivalences.

Definition 13 (Applicative equivalence). We say that two expressionsM1,M2 ∈
Expσ(s) are applicatively equivalent if M1 (Is)σ M2, where Is : s
 s is the identity
partial bijection on s defined in (5).

Theorem 14. Applicative equivalence implies observational equivalence.

Proof. Suppose M1 (Is)σ M2. We employ Lemma 5 to see that s ` M1 ≈σ M2. By
(8) there is some R′ : s′1 
 s′2, and C1, C2 with s ` Mi ⇓σ (s′i)Ci (i = 1, 2) and
C1 (Is ⊕R′)σ C2. Then for any λx : σ . B ∈ Canσ→ o(s), applying Corollary 11 with
R = Is we get B[C1/x] (Is ⊕R′)o B[C2/x]. Hence by (8) again, there is some R′′ :
s′′1 
 s′′2 and b1, b2 with s⊕ s′i ` B[Ci/x] ⇓o (s′′i )bi (i = 1, 2) and b1 (Is ⊕R′ ⊕R′′)o
b2, i.e. with b1 = b2 (by (9)). Applying the rules in Table 2, we deduce that s ` (λx :
σ . B)Mi ⇓o (s′i ⊕ s′′i )bi with b1 = b2. Thus Lemma 5 and the deterministic nature
of the evaluation relation (Lemma 1) imply that M1 ≈σ M2. ut

Example 5. Theorem 14 provides quite a powerful method for establishing some ob-
servational equivalences, since the relation (Is)σ is much easier to deal with than ≈σ.
For example, the observational equivalence (2) can be established by this method.
For with

C1
def
= λx : ν . (x = n) and C2

def
= λx : ν . false

it is not hard to see that C1 (I∅ ⊕R)ν→ o C2 where R : {n} 
 ∅ is necessarily the
empty partial bijection; hence νn . C1 (I∅)ν→ o C2, as required.



However, not every observational equivalence can be established via Theorem 14,
as the following example shows. Thus applicative equivalence is in general a strictly
weaker relation than observational equivalence. Nevertheless, as we shall see below
(Theorem 22), the converse of Theorem 14 does hold when σ is a first order type,
i.e. of the form σk→σk−1→· · ·→σ0 with each σi either ν or o.

Example 6. The pair of second order expressions in (3) are observationally equivalent
(this can be established via the denotational methods sketched in [14, Sect. 4]),
but they are not related by (I∅)(ν→ o)→ o. For the only possible partial bijection
R : {n, n′} 
 ∅ is R = ∅; but λf : ν→ o . (fn = fn′) and λf : ν→ o . true are
not related by (I∅ ⊕ R)(ν→ o)→ o, because for the canonical expressions C1 and C2

defined in Example 5, C1 (I∅ ⊕R)ν→ o C2, whereas it is not the case that (fn =
fn′)[C1/f ] (I∅ ⊕R)o true[C2/f ].

4 Observational relations

To investigate further the relationship between observational and applicative equiva-
lence, we introduce the following generalization of the notion of observational equiv-
alence which we will see satisfies all the defining properties of applicative equivalence
in Definition 7 except (11).

Definition 15. Given a partial bijection R : s1 
 s2 and expressionsMi ∈ Expσ(si)
(i = 1, 2), we write

M1R
obs
σ M2

to mean that for all τ ∈ {o, ν} and all λx : σ . P ∈ Canσ→ τ (dom(R))

(λx : σ . P )M1 Rτ (λx : σ . P [R])M2 .

In this case we say that M1 and M2 are observationally R-related. Note that be-
cause τ is a ground type, the relation Rτ , defined using (8), (9) and (10), takes a
particularly simple form:

– For all Bi ∈ Expo(si), B1 Ro B2 if and only if there is some b ∈ {true, false} so
that for each i = 1, 2 si ` Bi ⇓o (s′i)b for some s′i.

– For all Ni ∈ Expν(si), N1 Rν N2 if and only if for each i = 1, 2 si ` Ni ⇓ν (s′i)ni
for some s′i and some ni ∈ si ⊕ s′i satisfying

n1 R n2 or (n1 ∈ s′1 and n2 ∈ s′2) .

The following proposition substantiates the claim that observational relations
generalize the notion of observational equivalence.

Proposition 16. Observational equivalence coincides with being observationally Is-
related. In other words, for any M1,M2 ∈ Expσ(s)

s `M1 ≈σ M2 ⇔M1(Is)
obs
σ M2 .



Proof. Comparing Definition 15 with the characterization of observational equiv-
alence in Lemma 5, it suffices to show that when s ` M1 ≈σ M2 then (λx :
σ . P )M1 (Is)ν (λx : σ . P )M2, for any λx : σ . P ∈ Canσ→ ν(s). Certainly
s ` M1 ≈σ M2 implies s ` (λx : σ . P )M1 ≈ν (λx : σ . P )M2. So in fact it suffices
to show for any N1, N2 ∈ Expν(s) that

s ` N1 ≈ν N2 ⇒ N1 (Is)ν N2 . (13)

To proof (13), first use Theorem 12 to find si and ni such that s ` Ni ⇓ν (si)ni.
For any n ∈ s one thus has s ` (λx : ν . x = n)Ni ⇓ν (si)bi, where bi = true if and
only if n = ni. Since s ` N1 ≈ν N2, b1 = b2; hence either n1 = n2 ∈ s, or n1 ∈ s1

and n2 ∈ s2. Thus N1 (Is)ν N2, as required. ut

Lemma 17. For any partial bijection R : s1 
 s2 and any Mi ∈ Expσ(si) (i = 1, 2)

M1 Rσ M2 ⇒M1R
obs
σ M2 . (14)

Moreover, when σ ∈ {o, ν} the reverse implication holds.

Proof. The implication (14) follows immediately from Corollary 11. To see that the
second part of the lemma holds, note that in case σ ∈ {o, ν}, if M1R

obs
σ M2 then

in Definition 15 we can take P to be x to conclude that (λx : σ . x)M1 Rσ (λx :
σ . x)M2 and hence that M1 Rσ M2 (since Mi and (λx : σ . x)Mi have the same
behaviour under evaluation). ut

Lemma 18. For any R : s1 
 s2, Mi ∈ Expσ(si) (i = 1, 2) and λx : σ . N ∈
Canσ→ ν(dom(R)), suppose

si `Mi ⇓σ (s′i)Ci (i = 1, 2)

s1 ⊕ s′1 ` N [C1/x] ⇓ν (s′′1 )n1

s2 ⊕ s′2 ` N [R][C2/x] ⇓ν (s′′2)n2 .

If M1R
obs
σ M2, then n1 ∈ s′′1 if and only if n2 ∈ s′′2 .

Proof. Consider the boolean expression

B
def
= (λx : σ . N)x = (λx : σ . N)x .

For each i = 1, 2 let s′′′i be a fresh set of names in bijection with s′′i , via Ri : s′′i ↔ s′′′i
say. Then

s1 ` (λx : σ . B)M1 ⇓o (s′1 ⊕ s′′1 ⊕ s′′′1 )b1

s2 ` (λx : σ . B[R])M2 ⇓o (s′2 ⊕ s′′2 ⊕ s′′′2 )b2

where bi = false if and only if ni 6= ni[Ri], i.e. if and only if ni ∈ s′′i . If M1R
obs
σ M2

then we must have b1 = b2, from which the result follows. ut



The following proposition expresses a key property of observational relations
which is a precise analogue of the characteristic clause (8) in the definition of logical
relation that we have been using. It shows why partial bijections between states
(sets of names) play a prominent role in studying observational properties of the
nu-calculus, since they can be used to explain observational equivalence (i.e. being
observationally Is-related, by Proposition 16) between general expressions in terms
of observational relations between canonical expressions. The proof of the proposition
is quite intricate and we give it in some detail.

Proposition 19. For any partial bijection R : s1 
 s2 and any Mi ∈ Expσ(si)
(i = 1, 2)

M1R
obs
σ M2 ⇔ ∃R′ : s′1 
 s′2, C1 ∈ Canσ(s1 ⊕ s′1), C2 ∈ Canσ(s2 ⊕ s′2) . (15)

s1 `M1 ⇓σ (s′1)C1 ∧ s2 `M2 ⇓σ (s′2)C2 ∧ C1(R ⊕R′)obs
σ C2 .

Proof. Suppose that M1R
obs
σ M2. By Theorem 12, si ` Mi ⇓σ (s′i)Ci for some Ci ∈

Canσ(si ⊕ s′i) (i = 1, 2). We begin by constructing a suitable partial bijection R′ :
s′1 
 s′2.

Let R′ consist of those pairs of names (n, n′) ∈ s′1 × s′2 for which there is some
λx : σ . N ∈ Canσ→ ν(dom(R)) with

s1 ⊕ s′1 ` (λx : σ . N)C1 ⇓ν (s′′1 )n (16)

s2 ⊕ s′2 ` (λx : σ . N [R])C2 ⇓ν (s′′2 )n′ . (17)

To see that R′ is a partial bijection, suppose n R′ n′, witnessed by a canonical
expression λx : σ . N satisfying (16) and (17), and suppose also m R′ m′, witnessed
by some λx : σ . M . Applying the test λx : σ . (N = M) ∈ Canσ→ o(dom(R)) to
M1R

obs
σ M2, we have (λx : σ . (N = M))M1 Ro (λx : σ . (N = M)[R])M2; from this

it follows that n = m if and only if n′ = m′. Thus R′ is indeed a partial bijection.
Next we show that C1(R ⊕R′)obs

σ C2. Given any λx : σ . P ∈ Canσ→ τ (dom(R⊕
R′)) with τ ∈ {o, ν}, we have to show that (λx : σ . P )C1 (R⊕R′)τ (λx : σ .
P [R ⊕ R′])C2. Enumerate R′ as {(ni, n′i) | 1 ≤ i ≤ k} for some k ≥ 0, and for each
i let λx : σ . Ni ∈ Canσ→ ν(dom(R)) witness that ni R

′ n′i (as in (16) and (17)).
Consider

P ′
def
= (λy1 : ν . · · ·λyk : ν . P [yi/ni | 1 ≤ i ≤ k])N1 · · ·Nk

Suppose that

s1 ⊕ s′1 ` (λx : σ . P )C1 ⇓τ (s′′1 )D1 (18)

s2 ⊕ s′2 ` (λx : σ . P [R⊕R′])C2 ⇓τ (s′′2)D2 . (19)

Then by construction of P ′, we also have

s1 ` (λx : σ . P ′)M1 ⇓τ (s′1 ⊕ s⊕ s′′1)D1 (20)

s2 ` (λx : σ . P ′[R])M2 ⇓τ (s′2 ⊕ s′ ⊕ s′′2)D2 (21)

for some s and s′. Since λx : σ . P ′ ∈ Canσ→ τ (dom(R)) and M1R
obs
σ M2, we have

(λx : σ . P ′)M1 Rτ (λx : σ . P ′[R])M2. Hence by (20) and (21),

D1 (R⊕ S)τ D2 (22)



for some S : s′1 ⊕ s ⊕ s′′1 
 s′2 ⊕ s′ ⊕ s′′2 . We consider the cases τ = o and τ = ν
separately.

When τ = o, (22) immediately gives D1 = D2, and hence by (18) and (19),
(λx : σ . P )C1 (R⊕R′)o (λx : σ . P [R⊕R′])C2, as required.

When τ = ν, (22) implies either D1 R D2, orD1 ∈ s′1⊕s⊕s′′1 and D2 ∈ s′2⊕s⊕s′′2 .
But in this second case, by Lemma 18

(D1 ∈ s′1 and D2 ∈ s′2) or (D1 ∈ s⊕ s′′1 and D2 ∈ s′ ⊕ s′′2) .

By definition of R′, if Di ∈ s′i (i = 1, 2), then D1 R
′ D2. So when τ = ν we have

D1 R ⊕R′ D2 or (D1 ∈ s⊕ s′′1 and D2 ∈ s′ ⊕ s′′2 )

and hence by (18) and (19), (λx : σ . P )C1 (R⊕R′)ν (λx : σ . P [R ⊕ R′])C2, as
required.

This completes the proof of the implication ⇒ in (15). The proof of the reverse
implication is quite straightforward and we omit it. ut

Combining Proposition 19 with Lemma 17, we have that Robs
σ satisfies the defin-

ing clauses (8)–(10) of Rσ and Rσ in Definition 7. It cannot also satisfy clause (11)
for function types, since then Robs

σ and Rσ would coincide for all σ, and hence (by
Proposition 16) observational equivalence would coincide with applicative equiva-
lence; but by Example 6 we know that in general this is not the case. However, for
function types σ→σ′ with σ ∈ {o, ν} we can simplify clause (11) as in Proposi-
tion 21 below. To establish this proposition we need the following property of the
relations Rσ under relabelling along a bijection; it is easily established by induction
on the structure of σ, using the derived rule (SUBST) from Remark 2.

Lemma 20. Suppose given a partial bijection R : s1 
 s2, and bijections R1 : s1 ↔
s′1 and R2 : s2 ↔ s′2. Then for all Mi ∈ Expσ(si) (i = 1, 2)

M1 Rσ M2⇔M1[R1] (R2 ◦R ◦R−1
1 )σ M2[R2]

where R2 ◦ R ◦ R−1
1 is the composed relation {(n′1, n′2) | ∃(n1, n2) ∈ R . (ni, n

′
i) ∈

Ri(i = 1, 2)}.

Proposition 21. Suppose given R : s1 
 s2 and Ci ∈ Canσ→σ′(si) (i = 1, 2).

1. When σ = o, C1 Ro→σ′ C2 if and only if for all b ∈ {true, false}, C1b Rσ′ C2b.
2. When σ = ν, C1 Rν→σ′ C2 if and only if

(a) for all (n1, n2) ∈ R, C1n1 Rσ′ C2n2, and
(b) C1n (R⊕ I{n})σ′ C2n
where n is some name not in s1 ∪ s2.

Proof. The ‘only if’ direction of each statement follows almost immediately from
definition (11). For the ‘if’ direction, suppose given R′ : s1 
 s′2 and Di ∈ Canσ(si⊕
s′i) (i = 1, 2) with

D1 (R⊕ R′)σ D2 . (23)

It suffices to show that
C1D1 (R⊕R′)σ′ C2D2 . (24)



In case σ = o, (23) implies D1 = D2 ∈ {true, false}, hence C1D1 Rσ′ C2D2 holds
by hypothesis, and therefore so does (24), by Lemma 9.

In case σ = ν, (23) implies either (D1, D2) ∈ R or (D1, D2) ∈ R′. The first
possibility yields (24) much as in the case σ = o. In the second case, we can express
R′ as R1 ⊕ R2 where R1 = {(D1, D2)} and R2 = R′ \ {(D1, D2)}. Then Lemma 20
and the assumption that C1n (R⊕ I{n})σ′ C2n implies C1D1 (R ⊕R1)σ′ C2D2;
hence by Lemma 9, (24) holds since R′ = R1 ⊕R2. ut

Theorem 22. Observational equivalence coincides with applicative equivalence for
expressions of first order types. In other words, if σ is of the form σk→σk−1→· · ·→σ0

with each σi either ν or o, then for all M1,M2 ∈ Expσ(s)

s `M1 ≈σ M2⇔M1 (Is)σ M2 .

Proof. By Theorem 14 and Proposition 16, it suffices to prove for first order σ, and
any R : s1 
 s2 and Mi ∈ Expσ(si), that

M1R
obs
σ M2⇒M1 Rσ M2 .

We do this by induction on the structure of σ. The base cases σ = o, ν are covered by
the last part of Lemma 17. For the induction step we have to show that the property
holds of τ→σ (τ ∈ {o, ν}) when it does of σ. For this, by Propositions 19 and 21 it
suffices to check that Robs

τ→σ satisfies the analogue of the ‘only if’ part of the latter
proposition. In other words it suffices to check that if C1R

obs
τ→σC2, then

– when τ = o, C1b Rσ C2b for all b ∈ {true, false}; and
– when τ = ν

• for all (n1, n2) ∈ R, C1n1 Rσ C2n2, and
• C1n (R⊕ I{n})σ C2n

where n is any name not in s1 ∪ s2.

We indicate the proof of the last of these properties (the others being straight-
forward to establish). So suppose C1R

obs
ν→σC2 and n 6∈ s1 ∪ s2. Given any τ ∈ {o, ν}

and any λx : σ . P ∈ Canσ→ τ (dom(R ⊕ I{n})), we have to show

(λx : σ . P )(C1n) (R⊕ I{n})τ (λx : σ . P )(C2n) . (25)

Consider

P ′
def
= νn . (λx : σ . P )(fn)

Since λf : ν→σ . P ′ ∈ Can(ν→σ)→ τ (dom(R)), we have

(λf : ν→σ . P ′)C1 Rτ (λf : ν→σ . P ′)C2 . (26)

So if

s1 ⊕ {n} ` (λx : σ . P )(C1n) ⇓τ (s′1)D1

s2 ⊕ {n} ` (λx : σ . P [R⊕ I{n}])(C2n) ⇓τ (s′2)D2



then by definition of P ′, (26) implies D1 (R ⊕R′)τ D2 for some R′ : {n} ⊕ s′1 

{n} ⊕ s′2. In case τ = o this immediately gives D1 = D2 and hence that (25) holds,
as required. In case τ = ν, it suffices to show that

D1 = n⇔D2 = n . (27)

For then D1 (R⊕ I{n} ⊕R′′)τ D2 for some R′′ (namely R′′ = R′ \ {(n, n)}) and
hence (25) holds, as required. To see that (27) holds, consider applying the test

λf : ν→σ . νn . ((λx : σ . P )(fn) = n) ∈ Can(ν→σ)→ o(dom(R))

to C1R
obs
τ→σC2. ut

Corollary 23. The relation of observational equivalence between nu-calculus expres-
sions of first order type is decidable.

Proof. By the above theorem, it suffices to check that the relations Rσ are decidable
for first order σ. For this, it is sufficient to establish the decidability of the relations
Rσ (for first order σ) since Theorem 12 ensures that we can calculate s′1 and s′2 in
clause (8), and then there are only finitely R′ for which a decidable property has to
be checked. The decidability of Rσ can be established by induction on the structure
of the first order type σ, the base cases being trivial, and the induction step following
from Proposition 21. ut

5 Conclusion

The nu-calculus combines higher order functions with an extremely simple kind of
dynamically created local state. Our original motivation for introducing and studying
such a computationally simple language was as a vehicle for understanding what, if
any, are the difficulties introduced by pure locality of state when reasoning about
properties of higher order functions. Our expectation that the difficulties would not
be very great has proved to be incorrect, as the results and examples in this paper
show.

On a more positive note, we have developed a useful notion of logical relation
which builds in a version of ‘representation independence’ for local names. We showed
that it can be used to establish observational equivalence between expressions (The-
orem 14). We expect that extensions of this logical relations approach will prove
useful for studying observational equivalence in computationally more interesting
languages (such as a larger fragment of ML with dynamically created references and
exception names).

For the nu-calculus, this method of establishing observational equivalence is in-
complete in general (Example 6), but is complete for expressions of first order type
(Theorem 22). Of course, the fundamental problem is that (canonical) expressions
λx : σ→σ′ . M of function type are not in general determined up to observational
equivalence by their extensional behaviour, i.e. by the function on closed expressions
C 7→M [C/x] that they determine via application. Nevertheless, it may be that ob-
servational equivalence at function types, ≈σ→σ′ , can be explained compositionally



by applying some construction to ≈σ and ≈σ′ . Clearly this compositionality prop-
erty is enjoyed by the notion of applicative equivalence (Definition 13). We leave as
an open question whether observational equivalence also has this property.

This paper has taken an operationally-based approach. Section 4 of [14] outlines
an approach to the denotational semantics of the nu-calculus which builds on work of
Moggi [10] using categorical monads. The monadic approach enforces a distinction
between denotations of values (expressions in canonical form) and denotations of
computations (arbitrary expressions). This is helpful, since it allows us to identify
explicitly and simply what structure is needed in a model to give a static meaning
for the key dynamic aspect of the nu-calculus, viz. the action of computing a new
name. Further details will appear elsewhere.

Acknowledgements We are grateful to Eugenio Moggi, Peter O’Hearn, Allen Stough-
ton and Robert Tennent for making their unpublished work available to us. We have
benefited from many conversations with them on the topic of this paper.



References

1. S. Abramsky. The Lazy Lambda Calculus. In D. Turner (ed.), Research Topics in
Functional Programming (Addison-Wesley, 1990), pp 65–116.

2. H.-J. Boehm. Side-effects and aliasing can have simple axiomatic descriptions, ACM
Trans. Prog. Lang. Syst. 7(1985) 637–655.

3. M. Felleisen and D. P. Friedman. A Syntactic Theory of Sequential State, Theoretical
Computer Science 69(1989) 243–287.

4. F. Honsell, I. A. Mason, S. Smith and C. Talcott. A Variable Typed Logic of Effects.
In Proc. Computer Science Logic 1992, Lecture Notes in Computer Science (Springer-
Verlag, Berlin, 1993), to appear.

5. D. J. Howe. Equality in Lazy Computation Systems. In Proc. 4th Annual Symp. on
Logic in Computer Science, Asilomar, 1989 (IEEE Computer Society Press, Washing-
ton, 1989) pp 198–203.

6. I. A. Mason and C. Talcott. References, local variables and operational reasoning. In
Proc. 7th Annual Symp. on Logic in Computer Science, Santa Cruz, 1992 (IEEE Com-
puter Society Press, Washington, 1992) pp 186–197.

7. A. Meyer and K. Sieber. Towards fully abstract semantics for local variables: prelim-
inary report. In Conf. Record 15th Symp. on Principles of Programming Languages,
San Diego, 1988 (ACM, New York, 1988) pp 191-203.

8. R. Milner. Fully abstract models of typed λ-calculi. Theoretical Computer Science
4(1977) 1–22.

9. R. Milner, M. Tofte and R. Harper. The Definition of Standard ML (MIT Press, 1990).
10. E. Moggi. Notions of Computation and Monads, Information and Computation

93(1991) 55–92.
11. P. W. O’Hearn. A Model for Syntactic Control of Interference, Mathematical Structures

in Computer Science, to appear.
12. P. W. O’Hearn and R. D. Tennent. Semantics of Local Variables. In M. P. Fourman,

P. T. Johnstone and A. M. Pitts (eds), Applications of Categories in Computer Science,
L.M.S. Lecture Note Series 177 (Cambridge University Press, 1992), pp 217–238.

13. P. W. O’Hearn and R. D. Tennent. Relational Parametricity and Local Variables. In
Conf. Record 20th Symp. on Principles of Programming Languages, Charleston, 1993
(ACM, New York, 1993) pp 171–184.

14. A. M. Pitts and I. D. B. Stark. On the Observational Properties of Higher Order Func-
tions that Dynamically Create Local Names (preliminary report). In Proceedings of the
ACM SIGPLAN Workshop on State in Programming Languages, Copenhagen, 1993,
Yale Univ. Dept. Computer Science Tech. Report.

15. G. D. Plotkin. Call-by-name, call-by-value and the lambda calculus. Theoretical com-
puter Science 1(1975) 125–159.

16. G. D. Plotkin and M. Abadi. A Logic for Parametric Polymorphism. In Proceedings of
the Conference on Typed Lambda Calculus and its Applications, Utrecht, 1993, Lecture
Notes in Computer Science Vol. 664 (Springer-Verlag, Berlin, 1993) pp 361-375.

17. J. C. Reynolds. Syntactic Control of Interference. In Conf. Record 5th Symp. on Prin-
ciples of Programming Languages, Tucson, 1978 (ACM, New York, 1978) pp 39–46.

18. R. D. Tennent. Semantic Analysis of Specification Logic, Information and Computation
85(1990) 135–162.

This article was processed using the LaTEX macro package with LLNCS style


