
Reducibility and Strong Normalisation

for the Computational Metalanguage

Ian Stark and Sam Lindley

Laboratory for Foundations of Computer Science
School of Informatics, University of Edinburgh

Tuesday 14 October 2003

http://www.ed.ac.uk/~stark

Overview

We prove strong normalisation for λML, a lambda-calculus with types
that distinguish computations from values. This leads to a general
method to lift notions defined on values up to computations.

Outline of talk:

• Background and motivation: λML, computation types.

• Strong normalisation by translation and some combinatorics

• Strong normalisation by Girard-Tait reducibility.

The challenge for reducibility is to apply this semantic notion to terms
of computation type whether or not we know what counts as a
“computation”.

1

Background

Moggi’s computational metalanguage λML provides a way to
explicitly describe computations with side-effects within a pure typed
lambda-calculus. The central feature is a new type constructor:

For any type A of values there is a type TA of computations
that return an answer in A.

Examples of computational effects include non-termination,
exceptions, I/O, state, nondeterminism and jumps.

2

Types and terms of λML

Types A, B, C ::= 0 | A → B | TA

Terms M,N, P ::= x:A | λx:A.M | MN

| [M] | let x:A ⇐ M in N

Γ ` M : A

Γ ` [M] : TA

Γ ` M : TA Γ, x:A ` N : TB

Γ ` let x:A ⇐ M in N : TB

The type constructor T acts as a categorical strong monad.

3

Some applications of λML

• Denotational semantics: adapt pure models (domains,
categories) uniformly to handle computational effects.

• Haskell: monads for mixing functional and stateful code,
programming interactions with the real world.

• Compilers: MLj and SML.NET use a monadic intermediate
language to carry out type-preserving compilation.

4

Reduction in λML

(λx.M)N −→ M[N/x](β)

λx.Mx −→ M(η)

let x ⇐ [V] in N −→ N[V/x](let β)

let x ⇐ M in [x] −→ M(let η)

(let assoc) let x ⇐ (let y ⇐ M in N) in P

−→ let y ⇐ M in (let x ⇐ N in P) y /∈ fn(P)

Theorem. λML is strongly normalising: no term M ∈ λML has an
infinite reduction sequence M → M1 → · · ·

5

First proof — translation

φ(0) = 0 φ(x) = x

φ(TA) = φ(A) φ(MN) = φ(M)φ(N)

φ(A → B) = φ(A) → φ(B) φ(λx.M) = λx.φ(M)

φ([M]) = φ(M)

φ(let x ⇐ M in N) = (λx.φ(N))φ(M)

Interpret T as the identity type constructor, with no computational
effects.

6

Reductions translated

Standard lambda-calculus reductions are unchanged: β to β, η to η.

φ(let β) (λx.N)M → N[M/x]

φ(let η) (λx.x)M → M

φ(let assoc) (λx.P)((λy.N)M) → (λy.(λx.P)N))M y /∈ fn(P)

This last rule is a strict extension of λβη, although it is admissible and
a known “administrative” reduction from continuation-passing work.

7

Strong normalisation for λβηassoc

The following asymmetric measure decreases under η and (assoc).

s(x) = 1 s(λx.M) = s(M) s(MN) = s(M) + 2s(N)

It may increase under β, so in addition we define
b(M) = (max # β-reductions of M) and use 〈b(M), s(M)〉 ordered
lexicographically.

Lemma. b((λx.P)((λy.N)M)) ≥ b((λy.(λx.P)N)M)

Proof. Explicit matching of β-reduction sequences on the right with
others on the left, with some careful carrying and borrowing.

Thus λβηassocis strongly normalising, hence λMLis also.

8

Second proof — reducibility

Translation works, but only because we happen to have a result for
λβηto hand. What can we do working with λMLdirectly?

For example, Tait’s method for λβη, as presented in [GLT89]:

• Define reducibility of terms, by induction on types.

• Show useful properties of reducibility by induction on types; in
particular that all reducible terms are strongly normalising.

• Show that all terms are reducible, by induction on term structure.

9

Reducibility for λβη

The definition of reducibility is by induction on types:

• A ground term M : 0 is reducible iff M is strongly normalising.

• A product term M : A× B is reducible iff fst(M) and snd(M) are
both reducible.

• A function term M : A → B is reducible iff for all reducible N : A

the application MN : B is reducible.

10

Properties of reducibility

(CR1) If M is reducible then it is strongly normalising.

(CR2) If M is reducible and M → M ′ then M ′ is reducible.

(CR3) If M is neutral (a variable or an application), and for all
M → M ′ we have M ′ reducible, then M is reducible too.

Theorem. All terms are reducible.

Corollary. All terms are strongly normalising.

11

Non-definitions of reducibility at computation types

(Bad 1) Term M of type TA is reducible if for all reducible N of type TB,
the term let x ⇐ M in N is reducible.

Not inductive over types.

(Bad 2) Term M of type TA is reducible if for all strongly normalising N

of type TB, the term let x ⇐ M in N is strongly normalising.

Inductive, but not strong enough.

12

Continuations

• A term abstraction (x)N is a computation term N with a
distinguished free variable x.

• A continuation is a list of term abstractions:

K ::= Id | K ◦ (x)N

• We apply continuations as nested let-sequence:

Id@M = M

(K ◦ (x)N)@M = K@(let x ⇐ M in N)

• Continuations reduce: K → K ′ iff ∀M.K@M → K ′@M.

13

Reducibility at computation types

(Good 1) Term M of type TA is reducible if for all reducible continua-
tions K, the application K@M is strongly normalising.

(Good 2) Continuation K taking terms of type TA is reducible if for
all reducible V of type A, the application K@[V] is strongly
normalising.

Moving from TA to A avoids circularity, and we have a definition
inductive over types. The characterisation is strong enough to follow
through the standard results on reducibility and strong normalisation.

14

General “leap-frog” technique

Given a property QA defined by induction on the structure of type A,
define some further properties as follows:

K > M ⇐⇒ K@M is strongly normalising

Values V ∈ QA

Continuations K ∈ Q>
A ⇐⇒ ∀V ∈ QA . K > [V]

Computations M ∈ Q>>
A ⇐⇒ ∀K ∈ Q>

A . K > M

Take QTA = Q>>
A

This jump over continuations pushes any concept on values A up to
one on computations TA, whether or not we know the nature of T .

15

Summary of results

λβηassoc is strongly normalising, building on the fact that λβη is.

λML is strongly normalising, by translation to λβηassoc.

λML is strongly normalising, by reducibility.

“Leapfrog” allows us to define reducibility for computations without
knowing any specific details of the type constructor T .

16

Some related work

Normalisation in the computational metalanguage:

• Benton, Bierman and de Paiva (1998) give a modal logic
corresponding to λML, with accompanying proof normalisation.

• Filinski (2001) performs normalisation by evaluation for λC,
which is equivalent to a proper subsystem of λML.

Extending reasoning methods from values to computations:

• Pitts and Stark (1998) leapfrog a relation for proving operational
equivalences between functional programs with local state.

• Pitts (2000) leapfrogs over nontermination to define an
operational form of relational parametricity for polymorphic PCF.
Abadi (2000) links that to admissibility in denotational semantics.

17

Intermediate λML

The MLj and SML.NET compilers use a monadic intermediate
language (MIL) to manage the translation from a higher-order
functional language (Standard ML) into an imperative object-oriented
bytecode (JVM / .NET).

Typed SML source code

��
Complex MIL

��
Simplified MIL

����
Verifiable bytecode

MIL is λML extended with
datatypes, exceptions, effects, etc.

This is type-preserving compilation,
carrying types right through
compilation to guide optimisation
and help generate verifiable code.

18

