
http://www.inf.ed.ac.uk/~stark

Resource Guarantees and PCC
50 ways* to say it with a proof

Ian Stark

Laboratory for Foundations of Computer Science
School of Informatics

The University of Edinburgh

IT-University of Copenhagen
3 October 2007

*Note: Contents may vary

Ian Stark (LFCS Edinburgh) Resource Guarantees and PCC ITU Copenhagen 2007-10-03

Typed Java

We know that:

● Well-typed programs don’t go wrong

● All Java programs are strictly typed

So we deduce that:

● No Java program will go wrong

Even better, Java is typed both at source and bytecode level, so
we can conclude this twice over.

Sadly, life is not so simple. Typing in Java and Java bytecode is a
good thing, but not the end of the story; and Proof-Carrying Code
is one means to add to its effectiveness.

Ian Stark (LFCS Edinburgh) Resource Guarantees and PCC ITU Copenhagen 2007-10-03

Talk Overview

Mobile Resource Guarantees

● PCC for guaranteed bounds on time and heap space
● Certified code runs on standard Java virtual machine
● Certifying compiler infers resource types for a high-level ML-

like source language
● Guarantees are proofs in a resource-aware bytecode logic

Varieties of Proof-Carrying Code

● Configurations for code producers and consumers
● Resource policy language
● Probabilistically checkable proofs
● e-Science and the Grid

Ian Stark (LFCS Edinburgh) Resource Guarantees and PCC ITU Copenhagen 2007-10-03

Mobile Resource Guarantees (MRG)

MRG: A 3-year research collaboration between Edinburgh and
Munich, funded by the European Commission as a “Future and
Emerging Technology” in global computing.

The aim was to implement a proof-carrying code framework for
Java bytecode providing guarantees of resource usage.

Successfully completed, with follow-on UK and EU projects.

Java bytecode: Standardised and portable virtual machine.

Resource guarantees: Practically useful and more tractable than
verifying full correctness.

Ian Stark (LFCS Edinburgh) Resource Guarantees and PCC ITU Copenhagen 2007-10-03

MRG Framework

Java
classfile

Java
classfile

Resource
policy

Guarantee
certificate

Guarantee
certificate

JVM

OK?

Source
program

Resource
types

Code producer Code consumer

Certifying
compiler

Proof
checker

Network

Ian Stark (LFCS Edinburgh) Resource Guarantees and PCC ITU Copenhagen 2007-10-03

Camelot

ML-like source language with:

● Explicit heap cell manipulation Cons(h,t)@d

● Freelist annotations (x,xs)@_

● Hooks to use Java objects and libraries obj#meth x y

Compiles to Java bytecode, executes on a standard JVM.

type intlist = !Nil | Cons of int * intlist

let rev l acc = match l with
Nil => acc

| Cons(h,t)@d => rev t (Cons(h,acc)@d)

let reverse l = rev l Nil

type intlist = !Nil | Cons of int * intlist

let rev l acc = match l with
Nil => acc

| Cons(h,t)@d => rev t (Cons(h,acc)@d)

let reverse l = rev l Nil

[Mackenzie/Wolverson ‘04]

Ian Stark (LFCS Edinburgh) Resource Guarantees and PCC ITU Copenhagen 2007-10-03

Space Types

Type system to describe heap cell usage:

[Hofmann/Jost POPL ‘03]

● Input and output heap sizes related to argument and result
data sizes respectively: gives composability.

● Includes user-defined datatypes.
● Types inferred via a separate linear constraint solver.

let insert e l =
match l with [] -> e::[]

| (h::t)@_ -> if h >= e then e::(h::t)
else h::(insert e t)

let sort l =
match l with [] -> [] | h::t -> insert h (sort t)

let insert e l =
match l with [] -> e::[]

| (h::t)@_ -> if h >= e then e::(h::t)
else h::(insert e t)

let sort l =
match l with [] -> [] | h::t -> insert h (sort t)

insert: 1, list(0) -> list(0), 0
sort : 0, list(1) -> list(0), 0

insert: 1, list(0) -> list(0), 0
sort : 0, list(1) -> list(0), 0

Ian Stark (LFCS Edinburgh) Resource Guarantees and PCC ITU Copenhagen 2007-10-03

Grail

Highly structured form of Java bytecode.

● Functional view, target for Camelot compiler.
● Imperative view as static single assigment.
● Views are equivalent, including resource usage.
● Binary format is executable .class files, with tools to

interconvert with functional presentation.

Tight constraints on control flow and stack use greatly simplify
reasoning about bytecode.

[Beringer/Mackenzie/S. ‘03]

fun loop(int n, int a) =
let val a = mul a n // Multiply into

val n = sub n 1 // accumulator,
in // decrement and

test(n,a) // test again.
end

fun loop(int n, int a) =
let val a = mul a n // Multiply into

val n = sub n 1 // accumulator,
in // decrement and

test(n,a) // test again.
end

Ian Stark (LFCS Edinburgh) Resource Guarantees and PCC ITU Copenhagen 2007-10-03

Bytecode Logic

Logic of assertions about Grail code fragments

● Syntax-directed derivation rules for G ⊳ e : P
● Sound and complete for Grail operational semantics
● Isabelle implementation (shallow embedding)
● Resource aware: heap size, stack depth, instructions,…
● Applies to complete recursive object-oriented programs
● Partial correctness — with separate logic for termination

[Aspinall/Beringer/Hofmann
/Loidl/Momigliano ’04]

G ⊳ e : PAssertions:

⊨ e:P iff ∀E,h,h',v,e . E ⊢ h,e⇓h',v,r ⇒ P(E,h,h',v,r)Validity:

P : Env ✕ Heap ✕ Heap ✕ Value ✕ Resource ➙ BoolPredicates:

Ian Stark (LFCS Edinburgh) Resource Guarantees and PCC ITU Copenhagen 2007-10-03

Resource Algebras

Resource algebra = Partially ordered monoid (R, 0, +, ≤) with
constants Rint, Rgetf, Rif,… for all Grail operations

Current implementation measures heap space, instructions,
jumps, method invocations and maximum call depth.

Other possibilities: stack size, specific method invocation, safety
flags, system calls, even a complete instruction trace.

[Aspinall/Beringer/
Momigliano ’06]

Grail operational semantics and bytecode logic refer to an element
r ∈ Resource from an arbitrary resource algebra:

E ⊢ h,e⇓h',v,r G ⊳ e : P : … ✕ Resource ➙ BoolE ⊢ h,e⇓h',v,r G ⊳ e : P : … ✕ Resource ➙ Bool

Ian Stark (LFCS Edinburgh) Resource Guarantees and PCC ITU Copenhagen 2007-10-03

Automated Certification

Encode Camelot resource typing

[Momigliano/Shkaravska/
Beringer/Hofmann ’04]

as a bytecode logic expression

Form〚 U,n,Γ ▶ A,m 〛expands to a predicate describing a freelist
on the heap of the necessary size.

These predicates form a derived logic: all typing rules give valid
deductions in the derived logic.

So resource typings compile to resource logic proofs – in fact, to
tactics that execute these proofs in Isabelle.

It is these tactics that are parcelled up with bytecode.

n, Γ ⊢ e : A, m

G ⊳ e :〚 U,n,Γ  ▶ A,m 〛
(U is a set of variables
for checking linearity)

Ian Stark (LFCS Edinburgh) Resource Guarantees and PCC ITU Copenhagen 2007-10-03

MRG Framework

Java
classfile

Java
classfile

Resource
policy

Bytecode
logic proof

Bytecode
logic proof

JVM

OK?

Camelot
source

Space
types

Code producer Code consumer

Certifying
compiler

Proof
checker

Network

Ian Stark (LFCS Edinburgh) Resource Guarantees and PCC ITU Copenhagen 2007-10-03

Demonstration

Departmental phonebook application

Buzzword profile:

● J2ME – Java 2 Micro Edition
● CLDC – Connected Limited Device

Configuration
● MIDP – Mobile Interactive Device Profile

i.e. it runs on a cellphone, smartphone or PDA

http://homepages.ed.ac.uk/stark/db.jad
http://projects.tcs.ifi.lmu.de/mrg/pcc4/index.php

Ian Stark (LFCS Edinburgh) Resource Guarantees and PCC ITU Copenhagen 2007-10-03

PCC configurations

The simplest arrangement for proof-carrying code is this:

Code
producer

Code
consumerCode

+ proof

Ian Stark (LFCS Edinburgh) Resource Guarantees and PCC ITU Copenhagen 2007-10-03

PCC configurations

In the MRG demonstration, there was a third party controlling the
interaction:

Code
producer

Code
consumer

User

Code

+ proof

Ian Stark (LFCS Edinburgh) Resource Guarantees and PCC ITU Copenhagen 2007-10-03

PCC configurations

Once code has been independently checked, it might be signed
and sent on to the user:

Code
producer

Code
checker

User

Code

+ proof

Signed code

Ian Stark (LFCS Edinburgh) Resource Guarantees and PCC ITU Copenhagen 2007-10-03

PCC configurations

Mobius – Mobility, Ubiquity and Security: EC project on PCC
for Java on small devices, such as mobile phone midlets.

Application
provider

Network
operator

Mobile devices, cellphones, …

Code

Signed code

Resource use (memory, cpu, network) is a significant issue.

Network operators currently test and sign code variations for every
different kind of handset. (This is quite boring to do)

Ian Stark (LFCS Edinburgh) Resource Guarantees and PCC ITU Copenhagen 2007-10-03

PCC configurations

Application providers and network operators already have a trust
relationship, which PCC can strengthen:

Application
provider

Network
operator

Mobile devices, cellphones, …

Code

Signed code

Private source code: PCC supports validation without source
release, which is essential in practice.

+ proof

Ian Stark (LFCS Edinburgh) Resource Guarantees and PCC ITU Copenhagen 2007-10-03

PCC configurations

The chain may be longer, with developers who in turn use
libraries, and all parties seeking guarantees of safety:

Application
provider

Network
operator

Mobile devices, cellphones, …

Application
developer

Certified
libraries

Code

+ proof
Signed code

Code

Ian Stark (LFCS Edinburgh) Resource Guarantees and PCC ITU Copenhagen 2007-10-03

PCC configurations

In general we can distinguish between:

Code

+ proof Signed
code

Code

+ proof
Retail PCC

Wholesale PCC

Ian Stark (LFCS Edinburgh) Resource Guarantees and PCC ITU Copenhagen 2007-10-03

Policies

Using proofs of resource safety demands some flexibility:

● Programs are not simply correct/incorrect: this depends on
the resources available

● Different target devices have different resource profiles

We address this by identifying

● A guaranteed resource policy R of actual code behaviour
● A target resource policy T of what the client will accept

The certificate checker must confirm

1. ⊳ P : R The program does indeed meet its guarantee
2. R ≼T The guarantee ensures the target

We have a language for policies to suit both (1) and (2).

[Aspinall/Mackenzie '06]

Ian Stark (LFCS Edinburgh) Resource Guarantees and PCC ITU Copenhagen 2007-10-03

Sample Resource Policies

Implementation builds on the Java security policy framework:

For positive integer inputs m and n, the method call calc(m,n) requires at
most 2n bytes of heap space
permission SpaceGuarantee "calc(int m,int n)" "2*n"

For positive integer inputs m and n, the method call calc(m,n) requires at
most 2n bytes of heap space
permission SpaceGuarantee "calc(int m,int n)" "2*n"

For all positive integer inputs m < 3 and n < 4, executing calc(m,n) must
take no more than 500 instructions
permission ClockTarget "calc(int m,int n)" "500,m<=3,n<=4"

For all positive integer inputs m < 3 and n < 4, executing calc(m,n) must
take no more than 500 instructions
permission ClockTarget "calc(int m,int n)" "500,m<=3,n<=4"

For positive integer input n, method C.k(n) takes no more than 4n+3d
instructions, where D.rand(n) takes d instructions.
permission ClockGuarantee "C.k(int n)"

"4*n + 3*(ClockGuarantee D.rand(n))"

For positive integer input n, method C.k(n) takes no more than 4n+3d
instructions, where D.rand(n) takes d instructions.
permission ClockGuarantee "C.k(int n)"

"4*n + 3*(ClockGuarantee D.rand(n))"

Policies may use +, *, ^, log, min, max (all non-decreasing)

Ian Stark (LFCS Edinburgh) Resource Guarantees and PCC ITU Copenhagen 2007-10-03

Using Resource Policies

The prototype implementation builds on the existing Java security
framework:

● Permissions, policies, and policy configuration files;
● Java ‘agents’ offer a route to enforce resource policies at

class loading time.

Policy comparison is very fast, thus:

● Code might carry multiple guarantees for different targets or
different kinds of resource; and

● Code consumers could mix and match (dependent)
guarantees from separate certified components to meet a
given target policy.

Ian Stark (LFCS Edinburgh) Resource Guarantees and PCC ITU Copenhagen 2007-10-03

Tactic-carrying Code

For proof validation, there is in general a trade-off between size of
data sent and computation required by the verifier on the client.

In MRG we send Isabelle tactics, which guide (re)generation of
proof by the verifier. (15 lines of tactic ~ 34k lines of proof)

In the extreme: There exists a proof of size k; find it. (Checking
decidable but slow)

Classically faster checking needs more data; with a lower time
bound that the verifier must at least traverse the whole proof.

This is not however the whole story...

Ian Stark (LFCS Edinburgh) Resource Guarantees and PCC ITU Copenhagen 2007-10-03

Probabilistically Checkable Proofs

How to check a proof, probably:

1. Producer converts proof p to transparent form p'.
2. Verifier inspects some (randomly chosen) bits of p'.
3. If p valid, check succeeds; if not, fixed chance of failure.
4. Rinse and repeat to reach desired confidence.

Sizes: |p'| = O(|p|log|p|); fraction checked is logarithmic; but can
be fixed, as small as 3 bits.

Refinement: Don't send p', instead use data commitment protocol
at a cost of log|p'| per bit inspected.

Good news: (asymptotically) less computation for verifier and less
data sent.

Bad news: Large constants, lots of work for the producer.

Ian Stark (LFCS Edinburgh) Resource Guarantees and PCC ITU Copenhagen 2007-10-03

Probabilistically Checkable Proofs

Standard LFKN protocol applies to proving a claim that:

for a particular polynomial f() and value a.

We want to prove a claim like:

There is a derivation of resource typing m ⊢ e : n.

The answer is to arithmetise: from the derivation graph structure
construct a low-degree polynomial f in which the sum above is
zero iff such a graph exists, i.e. iff there is a well-formed resource
typing derivation.

[Klin '05]

∑∑
∈∈

=
Hx

n
Hx n

a,...,xxf...)(1
1

Ian Stark (LFCS Edinburgh) Resource Guarantees and PCC ITU Copenhagen 2007-10-03

PCP for PCC

Klin implemented probabilistic proof-carrying code for a tiny
language with types expressing heap space use.

PPCC was feasible but computationally expensive: >30min to
build the 10G transparent proof for a 256-node derivation (and this
must be done for each interactive protocol run).

Viable for PCC if:

● Substantial asymmetry between producer and consumer
● Computation + storage sufficiently faster/cheaper than

communication
● Proofs are large (much larger than code)

Moore's law suggests that we need only wait long enough.

[Klin '05]

Ian Stark (LFCS Edinburgh) Resource Guarantees and PCC ITU Copenhagen 2007-10-03

Grids and e-Science

There are (at least) two varieties of “Grid” with opportunities for
proof-carrying code:

● Computational grids: remote access to banks of standard
machines. Booking and job control.

(LHC grid, EGEE)

● Data grids: very large databases open to many remote users
running complex code.

(SkyServer, AstroGrid, Virtual Mouse Atlas)

ReQueST: Resource Quantification for e-Science Technologies

Project at Edinburgh to work on PCC for the grid.

Ian Stark (LFCS Edinburgh) Resource Guarantees and PCC ITU Copenhagen 2007-10-03

Running Code on a Data Grid

Running code closer to the data is faster, but requires more trust.

Some computations may only be feasible as database stored
procedures, called from within queries themselves.

Users sends a series
of remote queries

User runs application on
machine close to data

User sends script to be
run by database engine

Ian Stark (LFCS Edinburgh) Resource Guarantees and PCC ITU Copenhagen 2007-10-03

Grid PCC

Example datagrids:

Astronomy

● UK AstroGrid virtual observatory; Sloan Digital Sky Survey
(SDSS)

● Novel indexing methods (e.g. trixels) and libraries (algebras of
regions) driven by spherical geometry

Biology

● Edinburgh Mouse Atlas (emap). This has a well established
relationships with remote users (not PCC but CCP), and is
seeking to move this to a web service.

Ian Stark (LFCS Edinburgh) Resource Guarantees and PCC ITU Copenhagen 2007-10-03

SQL Stored Procedures

Most databases now support some form of stored procedures:

● Originally just C++, but now increasing support of Java

● Conventionally restricted to database builders, for security,
but would be useful for all users

● Query optimizers already use assertions about stored
procedures (e.g. commutativity, cost) claimed by the
programmer

PCC certification could make stored procedures more flexible and
widely available to datagrid users.

Ian Stark (LFCS Edinburgh) Resource Guarantees and PCC ITU Copenhagen 2007-10-03

Review

MRG framework

● High level language; space type inference
● Grail: analysis-friendly Java bytecode
● Resource-sensitive bytecode logic; resource algebras
● Proof tactic scripts for certificates

Varieties of Proof-Carrying Code

● Retail vs. Wholesale PCC
● Resource Policies
● Probabilistically Checkable Proofs
● Digital Evidence
● Certified Verifiers
● Grid PCC

Ian Stark (LFCS Edinburgh) Resource Guarantees and PCC ITU Copenhagen 2007-10-03

Conclusion

Even with a restricted domain like proofs of resource use, we
discover that PCC can be applied at many points in software
development and delivery, and in many ways, to many ends.

Each of these adds assurance that programs will not go wrong in
some way, which tells us that:

Proofs are the new types

Ian Stark (LFCS Edinburgh) Resource Guarantees and PCC ITU Copenhagen 2007-10-03

Projects

MRG: Mobile Resource Guarantees

Edinburgh, LMU Munich
European Commission project IST-2001-33149

Mobius: Mobility, Ubiquity and Security

INRIA, Zurich, Nijmegen, Munich, Edinburgh, Tallinn,
Chalmers, London, Dublin, Warsaw, Madrid, Darmstadt;
France Telecom, Trusted Logic, SAP
European Commission project IST-15905

ReQueST: Resource Quantification for e-Science Technologies

Edinburgh
UK EPSRC e-Science Programme

Ian Stark (LFCS Edinburgh) Resource Guarantees and PCC ITU Copenhagen 2007-10-03

References

Aspinall, Gilmore, Hofmann, Sannella and
Stark. Mobile Resource Guarantees for
Smart Devices. In Proc. CASSIS 2004,
LNCS 3362. Springer-Verlag.

MacKenzie and Wolverson. Camelot and
Grail: resource-aware functional
programming on the JVM. In Trends in
Functional Programming. Intellect, 2004

Hofmann and Jost. Static prediction of
heap space usage for first-order
functional programs. In Proc. POPL 2003.
ACM Press.

Beringer, MacKenzie and Stark. Grail: a
Functional Form for Imperative Mobile
Code. In Foundations of Global Computing
2003, ENTCS 85.1. Elsevier.

Klin. Probabilistically Checkable Proofs
for Mobile Resource Guarantees. 2005.

Aspinall, Beringer, Hofmann, Loidl and
Momigliano. A Program Logic for
Resource Verification. In Proc. TPHOLs
2004, LNCS 3223. Springer-Verlag.

Beringer, Hofmann, Momigliano,
Shkaravska. Automatic Certification of
Heap Consumption. In Proc. LPAR 2004,
LNCS 3452. Springer-Verlag.

Aspinall, MacKenzie. Mobile Resource
Guarantees and Policies. In Proc.
CASSIS 2005, LNCS 3956. Springer-
Verlag.

Atkey, MacKenzie et al. ReQueST:
Resource Quantification for e-Science
Technologies. In Proc. PCC 2006.

Barthe, Beringer et al. Mobius: Mobility,
Ubiquity, Security. In Trustworthy Global
Computing 2006, LNCS. Springer-Verlag.

