
Thimble — Threads for MLj

Ian Stark

Laboratory for Foundations of Computer Science
Division of Informatics
University of Edinburgh

Ian.Stark@ed.ac.uk

Abstract. Thimble is a concurrency library for MLj, the open source ML-to-Java bytecode com-
piler. Thimble allows MLj programs to run multiple concurrent threads that safely communicate
through typed channels, without having to reach down for the underlying Java synchronize, wait
and notify actions. In addition Thimble events provide efficient multiway synchronization, so that
a thread can choose between inputs from several different channels without the need for busy wait-
ing. Both channels and events are first-class values, and Thimble provides a range of operations
for users to roll their own varieties while maintaining data integrity in a multithreaded environ-
ment. Thimble itself is written entirely in MLj, building these high-level features on to the basic
concurrency facilities guaranteed by any Java virtual machine.
This paper presents the Thimble library; some examples of how it can be used; a review of its
implementation; and a comparison with related systems like Concurrent ML, Concurrent Haskell
and indeed Java itself.

1 Introduction

The reasons for the current popularity of Java are many and varied, but they include its exten-
sive standard libraries and easy portability. The MLj compiler aims to bring these advantages
directly into Standard ML, by compiling functional programs into Java bytecodes. Of course in
doing so it complements Java’s features with the strengths of ML: polymorphism, type inference,
first class functions, and so on.

Thimble is a library for MLj that does the same for concurrency. All Java virtual machines
support threads, monitors and semaphores according to a fixed specification, independent of
the underlying architecture. This provides the raw material for concurrent execution: Thimble
then lifts it to a collection of safe high-level operations in the style of process algebra.

The resulting channels and events are familiar from Concurrent ML and the like [12]. Where
Thimble differs from previous systems is that it does not itself contain any code for context
switching or thread scheduling. All this is delegated to the Java virtual machine (the JVM). As
ever, following a standard cuts both ways: we get portable multithreaded code for comparatively
little effort; but the actual details of concurrent execution are out of our control. This seems to
be a trade-off well worth making, especially as it allows Thimble to concentrate on concurrent
programming at the language rather than the machine level.

In particular, the JVM specification is intentionally loose in several areas. This is good for
building efficient virtual machines on a variety of systems, but programmers then face some
uncertainty if they want to write safe, portable code. Thimble can factor out this uncertainty.
For example, in Java threads communicate by shared memory, and if the programmer forgets a
lock then data may be corrupted. Under Thimble, ML threads communicate over typed channels
with no need for locks — when you have the data, it’s yours.

1.1 Plain MLj

Figure 1 shows a complete MLj “Hello World” program. This compiles into just under 3K of
bytecode; notice that Java itself is completely bypassed. The only remaining hint of an object is

structure HelloWorld :> sig val main : string option array option -> unit end =
struct

fun main args = print "Hello World\n"

end

To compile this program under MLj, place in the file HelloWorld.sml and type make HelloWorld at
the MLj command line. To execute, type run. The MLj compiler is available from http://www.dcs.ed.
ac.uk/home/mlj/. This site carries executable binaries for Linux, Solaris and Windows, together with
complete source code ready for compilation onto other systems as required.

Fig. 1. A minimal stand-alone MLj program.

in the type of main: any JVM pointer can be NULL, so the command-line arguments are passed
as a (possibly null) array of (possibly null) strings.

1.2 Threads

MLj programs can dynamically create any number of concurrently executing threads, where the
precise degree of concurrency depends on the Java virtual machine where the code is eventually
run. In particular this may involve free pre-emptive thread switching: Thimble remains safe
whatever.

As an example, the program of Figure 2 spins off two threads, which each present their own
greeting. The order in which the messages are printed is arbitrary, and may vary from one run
to another. Within the program a pair of functions greeterA and B take a thread identifier t

(*---
greeterA : thread -> unit thread : (thread -> unit) -> thread gen
greeterB : thread -> unit new : ’a gen -> ’a

---*)
open Thread Generator

fun main args = let fun greeterA t = print "Hello from thread A\n"
fun greeterB t = print "Hello from thread B\n"

in
new (thread greeterA); new (thread greeterB);
()

end

Fig. 2. Multithreaded MLj.

and then execute some code. This identifier is needed for certain control operations: its real role
here is as something to abstract over to delay evaluation. The function thread wraps up the
desired computation and gives a thread generator. Finally, applying new to this actually forks
off a separate thread of execution to do the work.

Unsurprisingly, the Thread structure also contains a variety of other functions for manipu-
lating threads, such as raising or lowering priorities. The Generator structure however needs
a little more explanation. Several notions in Thimble are generative, in that we can request a
succession of “fresh” instances. The two most obvious are threads and channels: when we ask
for two fresh channels, we expect them to be distinct, but behave identically in all respects. For

a formal analysis of generativity, see Stark [14]. To highlight this property we introduce the type
’a gen for something that generates fresh ’a’s. The operation new then triggers a generator to
do its thing. Of course inside an ’a gen is just a function of type (unit->’a), but by marking
it as a generator we make some informal claims for it; principally that each application will
terminate, and produce a fresh item.

1.3 Channels

Where the threads of Figure 2 lead independent lives, Figure 3 adds communication, with one
thread passing a message to the other over a channel. The Channel structure provides the type
constructor ’a chan for channels that carry values of type ’a. This is matched by a generator
chan : (’a chan) gen that creates fresh channels of every type on demand.

Execution of the program runs like this: new chan creates a fresh channel c for carrying
strings; a sender and receiver thread are declared and started up; the first sends a greeting
on c; the second collects it and prints it out. The get operation blocks until a value is ready;
there is also a non-blocking poll : ’a chan -> ’a option.

(*---
chan : ’a chan gen sender : thread -> unit write : ’a chan -> ’a -> unit

c : string chan receiver : thread -> unit get : ’a chan -> ’a
---*)

open Thread Channel Generator

fun main args = let val c = new chan
fun sender t = write c "Hello World\n"
fun receiver t = print (get c)

in
new (thread sender); new (thread receiver);
()

end

Fig. 3. Communication between threads.

Thimble channels are by default asynchronous: once a message is sent, the sending thread
may continue without waiting for collection. All messages will get through without duplication,
but there are no guarantees about their order of arrival. Other kinds of channel are also available.

AckChannel.ackChan : (’a chan) gen

Padding.paddedChan : (’a chan) gen

Pacing.pacedChan : (’a chan) gen

The first of these, acknowledged channels, capture synchronous communication: the sender can-
not proceed until the receiver has collected the message. The other two are useful for matching
processes working at different rates. A padded channel guarantees not to lose values, but may
duplicate them; reading from a padded channel always succeeds at once. A paced channel on
the other hand will never duplicate, but will drop values if supply outstrips demand (compare
the skip channels of Concurrent Haskell [11, §3.3]).

All of these create values of the standard ’a chan type, and there are facilities for the user
to create their own kinds of channel by tying together a sink and a source.

As well as channels, it is possible to use shared memory for communication in Thimble, but
care is required. Ordinary ML references are fine within a single thread of control, but with
multiple threads they become less useful for two reasons:

– A write in one thread followed by a read in another may retrieve an incomplete value, due
to caching of memory updates by the JVM.

– There is no way to atomically modify the value in a reference cell.

Thimble provides safe references of type ’a sref to solve the first problem, and dynamic
references of type ’a dref for the second.

1.4 Events

The get action on a channel stops a thread as it waits for just one thing to happen. Thimble
also offers events which allow a thread to specify some more complex set of conditions that it
awaits. The merge function in Figure 4 uses a choice event to repeatedly gather data from two
input channels onto one output channel. One input carries integers, the other floating-point
values, and both are transformed into strings before being sent on.

(*---
ini : int chan out : string chan read : ’a chan -> (’a->’b) -> ’b event
inr : real chan choose : ’a event list -> ’a

---*)
open Channel Event

fun merge ini inr out =
let val s = choose [read ini (fn i => "Integer: " ˆ Int.toString i),

read inr (fn r => "Float: " ˆ Real.toString r)]
in

write out (s ˆ "\n");
merge ini inr out

end

Fig. 4. Choosing between alternatives.

The structure Event introduces the event type constructor: if e is a value of type ’a event
then execute e will cause a thread to block until the chosen event happens, whereupon a value
of type ’a is returned. The nonblocking attempt e will return immediately, with a value only if
one is available. As with threads, we separate the specification of an event from its enactment.

signature Event =
sig type event val map : (’a -> ’b) -> ’a event -> ’b event

val choice : ’a event * ’a event -> ’a event
val never : ’a event val abort : (unit -> unit) -> ’a event -> ’a event
val immediate : ’a -> ’a event (* ...plus a few others. *)

end

Fig. 5. Creating and combining events.

Figure 5 lists a selection of operations for constructing and combining events. The never
event never happens; while immediate v is always ready to return value v. Function Event.map

turns an ’a event into a ’b event by specifying a postprocessing function (’a->’b). The
compound event choice e e’ waits for whichever of e and e’ happens first. Within a compound
event, abort a e will call a() precisely when e is not chosen. This is useful, for example, when
encoding a complex protocol as an event: an abort wrapper can roll back partial commitment.

In the program of Figure 4, basic events are provided by read; this pulls a value off a channel
and applies a specified function to it. The choose function then waits for the first event of a
given list; this is a derived operation in the Event structure.

fun choose es = let val e = foldr choice never es
in

execute e
end

Having postprocessing rolled into the read operation helps to match up the result types of
different events.

1.5 Pipe of Eratosthenes

The program epipe in Figure 6 is a larger example of the Thimble library in use. This calculates
prime numbers using a variant on the familiar sieve of Eratosthenes. The numbers from 2 to
200 are passed down a pipeline composed of several filters, each removing multiples of a given
prime. Every filter is a separate thread, and the pipe grows at its tail end as new primes are
found. At the same time the head of the pipe shortens as filters finish their work. The net effect
is that although the primes are always successfully identified, in order, every run of the program
creates a different and varying number of interacting threads.

With just one processor, a pipeline like this may be useful because it can offer greater
throughput of data; it cannot actually calculate any more quickly. However, the Java virtual
machine is designed to take advantage of multiple-processor systems too, and this would allow
the same program to run proportionately faster. Linking the threads with channels means that
Thimble has already taken care of all the necessary synchronization and shared-memory issues.

2 How it is done

The specification of the Java virtual machine is essentially a portable machine code, with
implementations on a very wide range of real machines. As well as MLj there are JVM compilers
for other languages, including Java (obviously), Scheme [2] and Ada [15]. It is quite a high-level
machine code though: the JVM knows about objects, classes, and a sizeable standard library.

Every JVM can run multiple concurrent threads through the java.lang.Thread class. De-
pending on the implementation these may range from simple coroutines to truly simultaneous
threads on multiple processors. This variation is reflected in the specification, which describes a
rather loosely-coupled model of threads and shared memory [8, Chap. 8]. For example, updates
to memory cells may be seen in a different order from different threads.

To manage synchronization, every JVM object carries both a lock and a semaphore. Any
section of code can be marked as a monitor, so that a thread must wait to acquire the cor-
responding lock before entering it. Such a monitor can manage a shared resource through its
semaphore: any number of threads can wait on this, and when the resource becomes free a
notify action will wake up one of them.

In the Java language, these features are brought through exactly as they stand. For Thimble,
we use them as a foundation and then aim a little higher.

open Thread Channel Event Generator

(* Head thread dispatches the numbers 2, 3, ... along a channel. *)
fun raw v limit out = (write out (SOME v); if v>=limit then (write out NONE;

print "\nAll sent\n")
else raw (v+1) limit out)

(* Middle threads filter numbers divisible by v. *)
fun mid v inn out = let val x = get inn

in
case x of SOME w => (if (w mod v) = 0 then () else (write out x);

mid v inn out)
| NONE => write out x

end

(* Final thread prints out primes and adds filters to the chain. *)
fun processed inn = let val x = get inn

val c = new chan : int option chan
in

case x of SOME v => (print ((Int.toString v) ˆ " ");
new (thread (fn t=> mid v inn c));
processed c)

| NONE => ()
end

(* Main program starts up a head thread to feed in the numbers, then becomes
the tail of the chain itself. *)

fun main args =
let val c = new chan : int option chan
in

new (thread (fn t=> raw 2 200 c));
processed c

end

Fig. 6. The Pipe of Eratosthenes: calculating prime numbers with a chain of collaborating threads.

signature Thread =
sig type thread val thread : (thread -> unit) -> thread Generator.gen

val getComputation : thread -> (thread -> unit) val join : thread -> unit
val currentThread : unit -> thread val sleep : Time.time -> unit
val setPriority : thread -> int -> unit (* ...and many others. *)

end

signature Lock = sig type lock val lock : lock Generator.gen
val run : lock -> (unit->unit) -> unit

end

signature Flag = sig type flag val flag : flag Generator.gen
val test : flag -> bool val wait : flag -> unit
val set : flag -> unit val test’n’set : flag -> bool

end

Fig. 7. Threads, locks and flags.

2.1 Threads, locks and flags

Just three structures in the Thimble library define classes directly: one for each of the concur-
rency features mentioned above. Values from the Thread, Lock, and Flag structures are shown
in Figure 7. A Thimble thread is a proper subclass of java.lang.Thread, with an added field
of type (thread->unit) that holds the computation a thread will execute. In Java it is rather
hard to represent such a computation abstractly, as the necessary mechanism for closures —
inner classes — is a late addition to the language. In ML, of course, first-class functions are
just the thing. We also add one or two other refinements, such as a handler to make sure that
exceptions never fall off the end of a thread unnoticed.

Thimble locks prevent interference between concurrent threads: any given lock can be held
by at most one thread at a time. The Lock structure provides a generator for fresh locks, and
a run operation. This takes a lock and a computation as arguments; it then waits to acquire
the lock before carrying out the computation. This corresponds loosely to the synchronized
method specifier in the Java language; although again ML’s first-class functions add flexibility
by letting us build the desired computation at run time.

A flag in Thimble is a one-shot semaphore. Any number of threads can wait on a flag, and
they are then blocked until some other thread raises it. The operation test checks the status
of a flag, set raises it, while test’n’set atomically does both.

These locks and flags are weaker than traditional monitors and semaphores — there is, for
example, no reset operation for flags. However, they are sufficient as a basis for the higher-level
events and channels to follow.

2.2 Events

The underlying type of a Thimble event is rather complex:

datatype ’a event = Event of flag -> unit -> (unit->’a) option .

Each of the three function spaces has a role to play. From left to right, they mark the points
where an event prepares for something to happen; clears up afterwards; and presents its result.
Matching this, the execute operation from the Event structure proceeds as follows.

– It creates a new flag and passes it to the event. This enables the event, and returns a
completion function of type unit -> (unit->’a) option.

– It waits for someone to raise the flag.
– It calls the completion function. This clears up the aftermath of the event, and returns a

possible result computation, of type (unit->’a) option.
– Finally, it calls the result computation to obtain an actual result.

The non-blocking attempt operation raises the flag itself, and then calls the completion function
immediately. If the event has not yet happened then the result computation is simply NONE.

Each of the event constructors of Figure 5 then fits into this profile. The event immediate
v raises the flag as soon as it has it; while never just throws it away. Event.map composes a
function onto the result computation of an event, while abort adds code into the completion
function. The choice combinator takes two events and relays their actions appropriately: each
gets the flag, and on completion at most one should return a non-empty result computation.

The formulation of events in Thimble has to balance the desire for a powerful mechanism
with what is possible on a general Java virtual machine. Without having direct control of the
thread scheduler, there is only so much we can do. One aim is to make events low-maintenance:
ours do not need separate worker threads, busy waiting, nor any logic for backing off from
conflict.

2.3 Channels

The Channel structure in Thimble has two distinct faces. It both provides the general interface
for using typed channels, and also an implementation of the default channel type. The interface
part is fairly straightforward: a channel is a pair of a source and a sink ; in turn an ’a source is
really an ’a event that can be exercised repeatedly to fetch successive values from the channel;
while an ’a sink is a function of type (’a->unit) that dispatches them. Conversely, given any
values of these types you can build your own variety of ’a chan.

Implementation of asynchronous channels uses the flags and locks described above. First the
enhanced reference types sref and dref are defined using locks; a channel is then represented
by a list stored in a dref. If the channel has values to be collected, then this is a list of them. If
the channel is empty, then it is a list of readers interested in what comes next. An ’a reader
is in turn a (flag * (’a option) sref) pair: the flag belongs to the event waiting on the
channel, and the sref is a place to put a value when it arrives.

The operations of reading and writing to a channel manage this list in appropriate ways.
Some care is required: for example, a reader may have lost interest in a value by the time it
arrives, because some competing event raised the flag first. Thus the write function actually
scans the whole list of readers to find which, if any, still have their flags unset. Nevertheless the
implementation has reasonably low overheads: all computation is done using the thread of the
caller, and there is no busy waiting.

3 Pick your own

With the groundwork in place, this section explains briefly how custom channels can be built
to order.

Section 1.3 mentions acknowledged channels, generated by ackChan : (’a chan) gen.
These are implemented with an asynchronous channel carrying values of type (’a * unit
chan). To write, the sender creates a fresh unit chan and sends it along with the value. The
recipient picks off the ’a value and passes a () as acknowledgement back down the unit chan
to where the sender is waiting.

At first sight this approach seems rather profligate with channels: why not use a single reverse
channel for confirmation messages? Unfortunately that would cause complications when there is
more than one sender, and each must receive their own acknowledgement. For any protocol, the
method of using a new channels to ensure that one message depends on another is a powerful
technique for avoiding confusion. The standard FTP scheme for file transfer, for example, creates
a separate internet connection for each file sent, even though it could just send it back down the
same channel the request arrived. Taking this to an extreme, the πI calculus of Sangiorgi sends
only fresh channels, and no data; despite this, it can encode most process calculi operations [13].

The generator paddedChan creates a channel that provides values as fast as a reader asks,
duplicating them if necessary. To do so it augments a standard channel c : ’a chan with two
others, pad : ’a chan and empty : unit chan. These extra channels obey an invariant, in
that between them they always carry precisely one value; either the most recent value seen, on
pad, or a token () on empty when no values have been sent at all. Writing to the channel c is
as usual. Reading involves the following more complex event.

choice (read c (fn x => (choose [read pad ignore, read empty ignore];
write pad x; x)),

read pad (fn x => (write pad x; x)))

This chooses between two possibilities. First, if there is a value available on the main channel
then this is the one we want; the value stored on either the pad or empty channels is removed,
the new value stashed on pad, and then returned to the caller. If, on the other hand, there is
nothing immediately on c then we look to the pad for the most recent value seen, and return
that instead. Although it is not essential to the semantics, we do in some sense use the least
padding required, as the choice operator gives priority to its first argument.

The pacedChan channel generator uses only two channels, content : ’a chan and empty
: unit chan. Between them they hold at most one value at any time. To read we take an ’a
from content and return a () to empty; to write we take from whichever is full and write to
content. The net result is that unread values are silently dropped from the channel, at a rate
to suit the reader.

All three of these examples are coded in the Thimble library at a high level: no Java exten-
sions, no locks or flags, just channels and events. They are then bundled as sinks and sources
to match the standard ’a chan interface.

Note that we have avoided creating surplus threads, using the resources of calling processes
to do all the work. This is not vital, but reflects the fact that for the moment, JVM implemen-
tations cannot create fresh threads quite as cheaply as calling a method.

4 Comparison with related systems

There are several other systems that implement a process-algebra style of concurrency over
a sequential functional language: Concurrent ML, Facile and Concurrent Haskell are perhaps
the best known [12, 6, 11]; [1] give references to some others. Clearly Thimble draws heavily on
these for its basic design, and from systems like CCS, the π-calculus and the join calculus for its
foundations [9, 10, 5]. To some extent then, Thimble serves simply as a demonstration of how
our understanding of this area is maturing: no radically new problems have been uncovered in
the development of the library so far. There is more than this though: with maturity comes
understanding; so for example it was known from the start what features could and could not
be efficiently provided, given the resources of Java’s underlying concurrency model.

The most significant feature of Thimble is what it doesn’t do: all of the above systems have to
do their own scheduling and basic synchronization. We don’t, and by using the existing resources
of the Java virtual machine we lay down a clear division between high-level language support for
concurrent programming, and the raw materials necessary for concurrent execution. We believe
that this is a sensible and meaningful separation of concerns, especially in the context of future
heterogeneous distributed systems. The development of the UniForM toolkit over Concurrent
Haskell has something of this divide, though not so sharply cut [7].

The other language which deserves comparison is Java itself. As mentioned earlier, Java
brings through directly the concurrency features of the JVM. While programming with monitors
and semaphores alone is quite possible, it does require a certain discipline from the programmer.
In the absence of this, a general approach is to mark all methods as synchronized until problems
go away, then take them off if a program runs too slowly or deadlocks. We hope that by getting
these details right within Thimble, user-level programming would be freed from at least some
of this.

A closer comparator for Thimble would be with a Java library for channels and events.
Unfortunately this kind of general data handling library suffers badly from the constraints
of the Java type system: without parametric polymorphism, all channels would have to carry
objects, with explicit cast operations and run-time type checks at each end.

5 Future directions

An immediate goal is to integrate Thimble more closely with some of the standard Java libraries;
in particular forging a link between channels and Java streams. This would then provide easy
access to the file system and the wider internet through the standard java.net library.

In the reverse direction, the Thimble combinators for events and channels could be exported
back into Java. As noted above, this would involve some loss of value, as Java does not have
parameterised types1. Its extension GJ does though, and it could make full use of ’a event
and ’a chan. (GJ would stand for “Generic Java”, except that the J-word is trademarked [3].)

More ambitiously, we look to Thimble supporting distributed and even mobile MLj code.
The Thimble combinators are all “distribution ready” in that they can safely be implemented
for simultaneous threads on remote machines, without changing their semantics: essentially this
follows from the existing loose specification of the JVM and the decision not to allow mixed
choice. For storage and transmission of objects between machines, the Java libraries support
serialization of objects into byte strings, and these apply as well to MLj types as Java classes.
One problem is to standardise ML data representation: at the moment the MLj optimiser
enthusiastically reformats datatypes to fit each program, and this must be reined in a little if
one program is to talk to another.

In all of these, the JVM and its standard libraries fix the basic ingredients: what MLj and
Thimble can add is a level of abstraction that supports robust and intuitive programming.

Acknowledgements

Although Thimble is in written in pure MLj, it did provide a stress test for some of the more
exotic parts of the compiler and its interaction with the JVM. I am most grateful to the MLj
team of Nick Benton, Andrew Kennedy and George Russell for their support and forbearance
in managing my numerous queries and bug reports.

References
1. D. Berry, R. Milner, and D. N. Turner. A semantics for ML concurrency primitives. In Conference Record

of POPL ’92. ACM Press, 1992.
2. P. Bothner. Kawa - compiling dynamic languages to the Java VM. In Proceedings of the USENIX 1998

Annual Technical Conference, 1998. See also http://sourceware.cygnus.com/kawa/.
3. G. Bracha, M. Odersky, D. Stoutamire, and P. Wadler. Making the future safe for the past: Adding genericity

to the Java programming language. In Proceedings of OOPSLA ’98. ACM Press, 1998. See also http:
//www.cs.bell-labs.com/˜wadler/pizza/gj/.

4. Conference Record of POPL ’96. ACM Press, 1996.
5. C. Fournet and G. Gonthier. The reflexive CHAM and the join-calculus. In POPL ’96 [4].
6. A. Giacalone, P. Mishra, and S. Prasad. Facile: A symmetric integration of concurrent and functional

programming. International Journal of Parallel Programming, 18(2):121–160, April 1989.
7. E. W. Karlsen. The UniForM concurrency toolkit and its extensions to Concurrent Haskell. In Proceedings

of the 1997 Glasgow Workshop on Functional Programming, September 1997.
8. T. Lindholm and F. Yellin. The Java Virtual Machine Specification. Addison Wesley, second edition, April

1999. Online edition at http://java.sun.com/docs/books/vmspec/.
9. R. Milner. Communication and Concurrency. Prentice Hall, 1989.

10. R. Milner. Communicating and Mobile Systems: The Pi-Calculus. Cambridge University Press, May 1999.
11. S. Peyton Jones, A. Gordon, and S. Finne. Concurrent Haskell. In POPL ’96 [4].
12. J. H. Reppy. CML: A higher-order concurrent language. In Proceedings of PLDI ’91. ACM Press, June 1991.
13. D. Sangiorgi. π-calculus, internal mobility and agent-passing calculi. Theoretical Computer Science, 167(1–

2):235–274, 1996.
14. I. Stark. Names and Higher-Order Functions. PhD thesis, University of Cambridge, December 1994.
15. S. T. Taft. Programming the internet in Ada 95. In Reliable Software Technologies - Ada Europe ’96, Lecture

Notes in Computer Science 1088. Springer-Verlag, 1996. See also http://www.appletmagic.com/.

1 Parameterised types are consistently in the top five requested language extensions on Sun’s Java bug parade,
so there is hope yet.

