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Abstract

This work develops a probabilistic child language acquisition (CLA) model to
learn a range of linguistic phenonmena, most notably long-range syntactic depen-
dencies of the sort found in object wh-questions, among other constructions. The
model is trained on a corpus of real child-directed speech, where each input string
is paired with a logical form as a meaning representation. It then learns both word
meanings and language-specific syntax simultaneously. After training, the model
can deduce the correct parse tree and word meanings for a given string-meaning
pair, and can infer the meaning if given only the string.

1. Introduction

This paper develops a computational model of CLA, seeking to understand
the process of language acquisition by programming a computer to emulate the
learning undergone by the child. We focus specifically on the learning of syn-
tax and semantics, that is, learning the meaning of individual words, and learning
the language-specific syntax by which they combine to produce a single meaning
for a whole utterance. Unlike other computational approaches to language learn-
ing, such as the dominant paradigm of large language models, which make min-
imal prior assumptions about language structure and attempt to learn everything
from the data, we distinguish between what there is reason to believe is innate vs
learned. In line with semantic bootstrapping theory (Pinker, 1979), we assume
the child possesses a rich system of semantic categories prior to language acqui-
sition, such as actions, individuals and attributes, which are combined in sentence
meanings or logical forms, and, together with the sentence itself, provide the in-
put to ”bootstrapping” the lexical word meanings and syntactic categories of the
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language in question, via a syntactic and semantic derivation induced by the ap-
plication of universal rules of functional application and composition.

The theoretical backbone of our model is provided by Combinatory Catego-
rial Grammar (CCG, Steedman, 2000). combinatory categorial grammar (CCG)
is a strongly lexicalized theory of grammar, in which all details that are language-
specific, such as the linear order of clausal constituents and their mapping to log-
ical form or meaning, is specified in the lexical entry for categories such as verbs.
It is the language-specific lexicon that has to be learned by the child and the com-
puter. The universal CCG rules of syntactic combination or merger are assumed
to be innate, and exhibit tight-coupling of syntax and semantics, with a one-to-one
correspondence between the semantic operations of the logical combinators, and
the syntactic operations of combining grammatical constituents. This facilitates
learning both in a single unified, computational model.

Learning takes place when strings from real child-directed speech taken from
the CHILDES corpus (MacWhinney, 1998) are paired with a corresponding log-
ical form (lf) representing their meanings1 , via semantic annotation such as that
provided by Szubert et al. (2024). Training uses an incremental expectation-
maximization-style algorithm (Neal and Hinton, 1999): the model considers each
possible valid analysis, weighted by its current estimated probability, and then in-
creases the estimated probability on all constituents in that analysis in proportion
to this weight. (So the high probability of previously learned words contributes to
the probability assigned to newly encountered ones.)

The work falls between Universal Grammar (UG)-based approaches that as-
sume expressive theories of grammar drawn from theoretical linguistics (Chom-
sky, 1965, 1981, 1995), and seek to identify constraints, such as Freezing Princi-
ples and Subset Conditions, that will make such grammars learnable from paired
meaning representations and strings (Wexler and Culicover, 1980; Berwick, 1985;
Gibson and Wexler, 1994; Fodor, 1998; Yang, 2002), and Usage-based theories
based on memorization of exemplars of child directed utterance (CDU), with or
without subsequent generalization (Tomasello, 2003; Bybee, 2006; Frank et al.,
2007; Bannard and Matthews, 2008; Ambridge, 2020). In comparison with other
UG-based approaches, CCG is syntactically of low, near-context-free, expressive
power (Vijay-Shanker and Weir, 1994), and is semantically surface-compositional,
requiring no constraints other than the universal rules of grammatical composition
of ordered adjacent elements and a universal inventory of lexical types. Similarly

1This refers to interpretable logical form, rather than Chomskian ’big L’ Logical Form.
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to Usage-based approaches, our learner allows lexicalization of what in terms of
the adult language are multi-word items, including entire CDUs, but also em-
bodies a mechanism for automatically decomposing such items on distributional
grounds.

Chater and Christiansen (2018) characterize language acquisition as the learn-
ing of a perceptuo-motor skill. Chater and Christiansen emphasise that much
information relevant to language learning is forgotten quickly, necessitating that
learning occurs rapidly and in real-time (in this sense, it is the direct opposite of
the radical exemplar theory of Ambridge (2020), and in line with our own incre-
mental approach). Another point they emphasize is the social context in which
the child hears the utterance. We account for the first point by training on each
example only once, one at a time, in the order they appear to the child. Pragmatic
context is not currently represented in our input to the learner, except insofar as it
is implicit in our use of adjacent CDU meanings as distractors from the intended
meaning.

In the area of natural language processing (NLP), on the other hand, much
work is currently focussed on large language models (LLMs), which require too
much training data to be plausible models of how humans acquire language. Typi-
cally the amount is at least several orders of magnitude more tokens than a human
sees in their entire life. Attempts have been made to better learn from a number of
tokens more similar to that required by humans (Warstadt et al., 2023a), but this
is more of an engineering challenge to improve sample efficiency to a level con-
sistent with human exposure to language data, rather than an explicit attempt to
model the learning process of a child. Such models still generally employ multi-
epoch training, batched parameter updates, and arbitrary text tokenization, which
are not plausible features of child language acquisition. Additionally, the datasets
and order of presentation are not constrained to be realistic, whereas in our work,
we use real child-directed speech (CDS), as suggested, for example, by Dupoux
(2018), and present the utterances once only, in exactly the order that they appear
to the child.

Some prior works have aimed to more realistically model child acquisition of
syntax and semantics (Siskind, 1992, 1996a; Mahon et al., 2024; Abend et al.,
2017; Kwiatkowski et al., 2012; Siskind, 1993, 1996b). Ours extends these in
two main respects. Firstly, it widens the set of syntactic constructions that can be
handled to the following: intransitives, transitives, ditransitives, modals, progres-
sives, negations, subject inversion questions and, most importantly, long-range
dependencies of the sort found in object wh-questions such as “whati do you
wanti?”, potentially including extraction from embedding (“whati do you think
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you wanti?”). While the model of Abend et al. (2017) was limited in its capabil-
ity for long-range dependencies, in order to handle them with cross-linguistically
adequate expressive power, we have implemented aspects of CCG that are trans-
context-free. (Technically, CCG is equivalent to a level 2 multiple context-free
grammar (2-MCFG, Seki et al. (1991).) Secondly, our model is able to produce the
entirely correct analysis for sentence-meaning pairs at train time, and even infer
the meaning at test time if given only the string. While Abend et al. (2017) showed
some limited ability to infer meanings from the string alone, our model can do so
with a much higher accuracy. Relatedly, Abend et al. (2017) did not present evi-
dence of fully correct parse trees for unseen strings without corresponding lfs, and
it is not clear which of those meanings that were correctly inferred were the result
of memorization as single-word strings. As discussed in Section 5.2, we observe
that this is common behaviour for our model early in training. In contrast, we
show that our model is able to produce fully correct parse trees for unseen strings,
and therefore can infer corresponding meanings beyond memorization. In Section
4.9, we present several qualitative examples of such inferred trees across a variety
of utterance types.

The novel contributions of this work are as follows:

• modelling the learner‘s ability to parse and interpret novel child-directed
utterance;

• learning a wider variety of syntactic constructions, including object wh-
questions, which contain potentially unbounded long-range dependencies
(LRDs);

• higher accuracy and robustness across the various measures of learning that
we test.

2. Theoretical Underpinnings

Our model deals with syntactic and semantic learning only. It assumes the
child either has already learned to segment the speech stream and detect potential
word boundaries, as evidenced in even young prelinguistic infants (Mattys et al.,
1999), or is jointly learning phonotactics and morphology with syntax, as in the
model of Goldberg and Elhadad (2013). At that point, the child must learn to
combine atomic units (words) to produce a meaning representation that depends
on (a) the meaning of the constituent words and (b) the manner in which they
combine. Initially, for such a child, both are unknown.
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In our framework, this problem manifests in the following way. When a child
hears an string “Bambi is home”, we assume that, from a combination of percep-
tual context and background and innate knowledge, it can approximately identify
the meaning of the entire utterance as some object in some state: home(bambi).
The task is then to figure out which words correspond to which parts of the mean-
ing representation, and the language-specific principles by which they combine.
As well as the correct interpretation, where English subjects precede VPs, oth-
ers are also possible, e.g. “Bambi” means home(·), “is home” means bambi and
subjects follow VPs.

2.1. Semantic and Syntactic Bootstrapping
Semantic bootstrapping (Pinker, 1979; Grimshaw, 1981; Brown, 1973; Bow-

erman, 1973; Schlesinger, 1971) is a theory arising from the observation that chil-
dren understand semantic categories, such as action, object or property, prior to
learning language, and that these categories help the child learn syntactic cate-
gories. For example, Gropen et al. (1991) showed that when children are exposed
to a ditransitive verb that means making something move in a certain way, they ex-
pect the moving thing to be the direct object syntactically, whereas for verbs that
mean making something change its state as a result of something else moving,
they expect the moving thing to be the indirect object. This shows that knowing
the meaning of the words in a sentence can help guide the child to understand the
syntax of that sentence.

Syntactic bootstrapping (Gleitman, 1990), on the other hand, emphasises that
prior syntactic knowledge guides children‘s learning of word meanings (semantic
knowledge). For example, the results of Fisher et al. (1994) suggest that, when
children are presented with a situation that is ambiguous semantically between
two options as to which is the agent, they are able to resolve the ambiguity from
their syntactic knowledge as to which noun phrase is the subject and which the ob-
ject. Specifically, Fisher et al. presented children with scenes in which a ball was
being transferred from an elephant to a rabbit, paired with a sentence containing
the nonce word ‘biffing’, and were then asked which familiar word was closest in
meaning to ‘biffing’. If the paired sentence was “the elephant is biffing the rabbit”,
they selected ‘give’ as closest, but if it was “the rabbit is biffing the elephant”, they
selected ‘receive’ as closest, i.e., they made whatever interpretation of “biffing”
allowed the agent to fall in subject position.

Abend et al. (2017) and Mahon et al. (2024) have shown for simple transi-
tive sentences that syntactic bootstrapping can be seen simply as a later stage of
semantic bootstrapping, at which the syntactic category of all words but one in
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an unseen string have been learned, so that syntax and semantics can be acquired
from a single model.

In this paper, we extend this method to cover a much wider set of syntactic
constructions, including LRDs of the sort found in wh-questions, of the kinds in-
vestigated in CHILDES and other acqusition datasets by Klima and Bellugi (1966)
and Stromswold (1995), among others discussed below.

2.2. Combinatory Categorial Grammar.
We choose CCG (Steedman, 2000) as a theory of grammar suitable for learn-

ing of this sort, because of its tight coupling of syntactic derivation and semantic
composition.

All information that is specific to a given language, such as English, is speci-
fied in CCG in the lexicon, by a syntactic category, such as NP for the proper noun
“Harry”, or S\NP for the intransitive verb “walks”. The latter category identifies
the verb as a function applying to constituents of type NP (such as “Harry”) to
yield a sentence (such as “Harry walks”). The backward or left-leaning slash \ in
the category S\NP further specifies the subject NP argument as having to occur to
the left of the verb in this language.

In the present categorial notation, the convention is that argument-types (such
as NP here) always appear to the right of the slash, so that the syntactic category of
the English transitive verb “sees” is written S\NP/NP, where the forward or right-
leaning slash / means that the object NP is found to the right of the verb in this
language. All function categories are binary or “curried”, and slashes “associate
to the left”, so this category is equivalent to (S\NP)/NP, specifying the object as
the first argument to combine.

Each syntactic category is paired with a logical form (lf) representing its mean-
ing, which in the case of verbs is also a function, specified as a λ -term. For ex-
ample, the full lexical entries for the above categories are the following:

(1) “Harry” := NP : harry
“walks” := S\NP : λy.walksy
“sees” := S\NP/NP : λx.λy.seesxy.

In the case of an SVO language like English, the order of combination of syntac-
tic subject and object arguments of a trasitive verb like “sees” in 1 happens to be
aligned with the (object-first) order of combination of the corresponding semantic
arguments x and y at lf. The latter is assumed to be universal for transitive pred-
icates across all languages. However, other languages are free to align syntactic
and semantic combination differently, as is the case for VSO languages like Scots
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Gaelic, where the subject is the first syntactic argument. Section 4 shows that our
learner allows for this possibility, and considers all possible alignments.

Such categories and their lf meaning representations combine synchronously
via a number of combinatory rules, of which the two most simple are the following
rules that respectively apply rightward- and leftward- looking functions like verbs
to their arguments such as noun-phrases:

(2) The application rules:
a. Forward application

X/Y : f Y : a ⇒ X : f a (>)
b. Backward application

Y : a X\Y : f ⇒ X : f a (<)

These rules allow CCG derivations like the one shown in Figure 1 for the simple
child-directed transitive sentence “You lost a shoe” from the Adam corpus.

The derivation in Figure 1 uses the application rules only. However, the CCG
lexicon also includes “type-raised” categories for NPs, which have the effect of
exchanging the roles of verbs and NPs as functions and arguments. Moreover,
as well as the rules 2 of function application, CCG also includes rules of function
composition, of which the following is the only instance used in the present paper:

(3) The composition rules (B)
a. Forward composition

X/Y : f Y/Z : g ⇒ X/Z : λ z.f (gz) (>B)

Type-raised categories and composition rules allow some extra derivations, as
shown in Figure 2. This derivational ambiguity is harmless, since, as the figure
shows, they yield the same logical form for canonical sentences. However, they
are crucial to the derivation of long-range dependencies, such as those involved in
wh-questions like the one shown in Figure 3, which are not otherwise derivable.

Type-raised categories were not included in previous work related to ours
(Abend et al., 2017; Mahon et al., 2024). In section 4 we will show that their
inclusion, together with that of rules of function composition, allows our model
to learn LRDs of this kind.
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you lost a shoe

NP S\NP/NP NP/N N
: you : λx.λy.lost x y : λx.a x : shoe

>

NP
: a shoe

>
S\NP

: λy.lost (a shoe) y
<

S
: lost (a shoe) you

Figure 1: Example of a CCG derivation for a simple transitive sentence from the Adam (English)
corpus.

you lost a shoe

S/(S\NP) S\NP/NP NP/N N

: λ p.p you : λx.λy.lost x y : λx.a x : shoe
>B >

S/NP NP
λy.lost you y : a shoe

>
S

: lost (a shoe) you

Figure 2: Example of the alternative, type-raise and compose, CCG derivation for the sentence in
Figure 1 from the Adam (English) corpus.

what did you lose
Swhq/(Sq/NP) Sq/VP/NP NP VP/NP

: λ p.p WH : λx.λ p.did (p x) : you : λx.λy.lose x y
>

Sq/VP
: λ p.did (p you)

>B
Sq/NP

: λx.did(lose x you)
>

Swhq
: did(lose WH you)

Figure 3: Example of a CCG derivation of the object-wh question corresponding to Figure 1.
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It will be noticed that the logical forms exemplified in Figures 1 through 3 are,
as a consequence of the process of semi-automatic annotation of the CHILDES
dataset (Szubert et al., 2024), somewhat English-specific in comparison to any-
thing we might imagine to be the form of the universal language of mind to which
child language learners are assumed to have access. This means that if our learner
were faced with the corresponding French strings paired with the same logical
form, it would begin by learning a lot of multiword items, such as “Qu’est-ce
que” with the meaning of “what”, λp.p WH, and “range” with the meaning of
“put away”, λxλy.put away x y. However, the learner would still learn from such
data, and in many cases generalize to a more standard lexicon.

2.3. Long-range Dependencies
LRD constructions, as we use the term here, are those in which a word depends

semantically on a word or set of words that are arbitrarily far away in the sentence,
as in “what did you lose?”. In some grammars (though not in CCG), these are
treated as filler-gap dependencies, related by a discontinuous operator, such as
movement. Figure 3 shows the CCG derivation of an object wh-question from the
Adam corpus. Note the use of the type-raised category on the wh-word ‘what’,
and the composition operator on the second-to-last line.2 The ability to correctly
handle LRDs is essential for accurately modelling real-world language, where
such constructions are common. It is also of theoretical importance because the
mechansim used in CCG to establish such dependencies properly includes that of
context-free grammar in the Chomsky hierarchy (Vijay-Shanker and Weir, 1994),
a property which is known to be necessary to capture natural language in general.
(Chomsky, 1957; Shieber, 1985). In our corpora of child-directed speech, object
wh-questions appear with high frequency, accounting for 21.6% of all utterances,
and including some of the most common strings such as “what do you want?”,
“what are you doing?”, and “what’s that?”.

3. Method

3.1. Probabilistic Model
The probabilistic model is broadly the same as that described in Mahon et al.

(2024). In our framework for syntactic and semantic learning, each example con-

2In wh-questions, such as Figure 3, the wh-word is a second-order type. In the full theory, all
NPs are type-raised to second-order to capture further coordination/relativization phenomena (see
Steedman (2000)), though this is not a part of our model.
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sists of the string of words in the string w, the meaning representation m, and the
parse tree T . The parse tree is always unobserved so it is treated as a latent vari-
able. We fit an approximation to the joint data distribution P(w,m,T ) via several
univariate conditional distributions.

Typically, CCG parsing is discussed in terms of combining constituents via
combinatory rules to derive a root. For example, the last step of the derivation in
Figure 1 uses the Backward Application Rule: Y,X\Y → X . Our learning model,
when interpreting a sentence-meaning pair, runs these combinators in reverse, that
is, it proceeds by successively splitting a root into smaller chunks until they can
be aligned with word spans. We will thus often speak of CCG ‘splits’, by which
we mean the CCG combinators run in reverse. The net effect is that our model
considers all possible ways to split up the sentence and the meaning representation
so that the semantic constituency corresponds to the string elements.

For the parse tree, the fit distribution has the form pt(y|s), where y is either a
pair (s1,s2) of CCG syntactic categories that combine to form s, or else a sym-
bol leaf , indicating that the category should not be split in this parse tree. There
is also a distribution pr(s), that predicts a root category. The distribution relating
word w and meaning representation m has the form pw(w|m), and similarly for the
distribution relating syntactic category s to meaning representation m. Following
Abend et al. (2017), we first predict a shell lf, consisting of semantic types for
all non-variables, and then predict the lf from the shell lf. Thus, the shell lf, e,
for meaning m and category s, allows p(m|s) to be decomposed as pl(m|e) and
ph(e|s). The shell lf replaces all non-variable terms with a placeholder marked for
the function of the placeholder: verb (for which we write ‘vconst’), entity, deter-
miner etc. The function is inferred from the CHILDES part-of-speech tag given
in the method of Szubert et al. (2024). For example the lf λy.lost (ashoe)y from
Figure 1 has shell logical form λy.vconsty(quant noun) This allows the model
to share representation power for the structure of the logical form across differ-
ent examples that may have different values for the constants. See Mahon et al.
(2024) for details.

Each of these distributions is modelled as a Dirichlet process, to which Bayesian
updates are applied at each training example. Taking pw as an example, the form
of the posterior is then

pw(w|m) =
n(w,m)+αH(w|m)

n(m)+α
, (1)

where n(w,m) is the number of times w and m have been observed together in the
past, n(m) is the number of times m has been observed in the past, and H(x) is a
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pre-defined base distribution (see Appendix C). An analogous definition holds for
pl , ph and pt . The alpha parameter is set to 1 for all distributions, corresponding
to a uniform Dirichlet prior across simplices. During training, we set α = 10 in pt
to encourage exploration of different syntactic structures, and α = 0.25 in pw to
produce more confident predicted word meanings, which we find helps stabilize
syntax learning.

The probability assigned to a full analysis, consisting of a parse tree and a
meaning for each leaf node, is the product of the probabilities of all of con-
stituent nodes given their parents. This is a stronger independence assumption
than is made in head-dependency models (Collins, 1997). Our model would fail
to resolve attachment ambiguity such as that between high attachment of “with”-
adjuncts in “I saw a squirrel with a telescope”, and low attachment, as in “I saw
a squirrel with an acorn”. We expect that our model would handle such ambigu-
ities with the future addition of a ”supertagger” (Srinivas and Joshi, 1994; Lewis
and Steedman, 2014; Collins, 1997). This would be a neural model, e.g. a small
encoder-only transformer, which predicts a small set of possible CCG categories
for each word in the current string context. This model is related to two-factor the-
ories of processing advanced in the psycholinguistic literature by Ferreira (2007)
and Kahneman (2011), among others. Based on surrounding context, including
words like ”saw”, ”squirrel”, and ”telescope”, such a model would learn to pre-
dict the category VP\VP/NP for ”with”, in contrast to contexts including ”saw”,
”squirrel” and ”acorn”, which predict N\N/NP, thus resolving the ambiguity.

3.2. Training
The parameter updates described in Section 3.1 require tracking the number

of times two different elements co-occur. For example, in pw, the probability of
predicting the logical form λx.λy.lost xy to be realized as the word ‘lost’ depends
on the number of times that logical form and word were observed together dur-
ing training. Because we do not observe parse trees directly, we instead employ
an expectation-maximization (EM) algorithm, as follows. When, at time t, the
model observes a single training example (w,m), consisting of a string w and a
corresponding logical form m, it uses its current parameter values θ (t) to estimate
a distribution over all possible parses that connect the two. The set of parameters,
θ (t) consists of the occurrence counts in the Dirichlet processes, e.g. the number
of times a leaf meaning such as λx.λy.lost x y occurs with a word such as ‘lost’.
The set of parameters can grow throughout training as new occurrences are ob-
served. The probability assigned to a parse tree T and the training example (w,m)
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is the following product

p(w,m,T |θ (t)) = pr(r)∏
s′

pt(s1,s2|s′)∏
s

pt(leaf|s)ph(es|s)pl(ms|es)pw(ws|ms) ,

(2)

where r is the root category, s′ ranges over all non-leaf nodes in T , s1 and s2
are the children of s′, s ranges over all leaf nodes in T , and es, ms and ws are,
respectively, the shell logical form, the logical form, and the word aligned to s in
T . Probabilities for the leaf-level lfs ms are determined by the root lf m, together
with the shell lfs of each node, es, and the model parameters θ , and the same is
true for ws and w. As (w,m) is something we observe, we are interested in the
conditional probability of a given parse tree

p(T |w,m,θ (t)) =
p(w,m,T |θ (t))

∑T ′∈T p(w,m,T ′|θ (t))
, (3)

where T is the set of all allowable parses of (w,y). For each parse tree, the
co-occurrences that it gives rise to are recorded in proportion to the parse tree’s
probability. Combining the standard EM update rule with the Bayesian update
for the Dirichlet process, then, for each parameter in θi ∈ θ that tracks the co-
occurrence of two elements a and b, the update rule is given by

θ
(t+1)
i = θ

(t)
i +ET∼p(T |w,y,θ (t))[δT (a,b)] ,

where δT (a,b) is an indicator function that is 1 if a and b co-occur in T and 0
otherwise. The relation between the variables T , e, m, w and θ is given in Figure
4.

The set T of allowable parse trees is the set of all valid CCG parse trees that
have the observed lf as root, the words in the observed string as leaves, and that
have congruent syntactic and semantic types.3 We require the semantic category
to be congruent with the CCG category, for each node. CCG’s tight coupling of
syntax and semantics provides a straightforward mapping from syntactic to se-
mantic categories. In particular, the CCG atomic categories S and NP correspond
to the Montagovian t and e respectively, and the slashes in non-atomic categories
correspond to functions between types.4 For example, the CCG transitive verb

3We use ‘semantic/syntactic type’ and ‘semantic/syntactic category’ interchangeably.
4In the full theory, NP is treated as a schema, and type-raised just in time during parsing to an

appropriate form as determined by the context. We pass over this detail here and simply treat NP
as a category that can combine directly with others.
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Figure 4: Graphical model for for our probabilistic model. T is the parse tree, es, ms and ws are
the leaf-level shell lfs, lfs and word, m is the root-level lf, w is the utterance and θx is the subset
of the full set θ of model parameters, consisting of the cooccurence counts in the distribution x, as
described in Section 3.1. Green indicates that a variable is observed, and red indicates unobserved.
These colours are for train time, at test time, m would also be red. The fact that w is observed but
ws is not reflects the fact that the model sees the full utterance, but not where the word boundaries
should be, and similarly with m and ms.

category S\NP/NP has the semantic type <e,<e, t>>. See Steedman (2000)
for further details. If, when expanding a parse tree, any node violates these con-
straints, then that branch of search is terminated.

This constraint is based on the assumption that the child knows the semantic
type of an lf (or fragment thereof on some internal parse node). For example,
in the derivation of ‘you lost a shoe’, from Figure 1, the child knows that the
constituent S\NP: λy.lost (a shoe) y, in the second-to-last row, has semantic type
<e, t>. These constraints speed up training significantly. and make training more
robust by removing the noise of updates from inconsistent parse trees, i.e., those
that are not in T . We believe this is the reason for our improved robustness to
noise in the lfs over Abend et al. (2017), as described in Section 4.7.

The computation of all allowable parse trees can be performed efficiently by
caching the probability of each subtree.

3.3. Worked Example
Here we present a worked example for a single training example. Recall that

each training example consists of a string and corresponding logical form, and
the learner considers the set T of all compatible parses, i.e. all parses with the
observed lf as root, the observed words as leaves and that obeys the constraints de-
scribed in Section 3.1. We describe the training updates for a single, correct parse
for the example “you can’t see the music”, as shown in Figure 5. The prediction
of the tree proceeds from the root. We will detail the predictions made along the
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not (can (see (the music) you))

Figure 5: One of the parses considered by the learner for this example. Given information is in
green , inferred information is in pink . As this is train time, the model sees both the string and

the root lf. Strictly speaking, the model sees only the full utterance rather than individual words
because the boundaries between words are not deterministically given. This is reflected in Figure
4.

left-most branch from the root to the leaf ‘you’, with all other predictions being
made similarly. All predictions are made using the Dirichlet processes described
in Section 3.1.

First, the learner uses the Dirichlet process, pr, to predict a possible root cate-
gory, here S with probability 0.548. Next, it uses the Dirichlet process for syntactic
prediction, pt , to predict a probability for all possible splits of this root syntactic
category S. The split shown here is into NP and S\NP, with probability 0.395.
Then, for the left child node NP, it again uses pt to predict a probability for all
splits into further child syntactic categories, or alternatively that this node is a
leaf. Here, the prediction is that the node is a leaf, which pt gives probability
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0.765. This indicates that a substantial portion of the NP nodes it has observed in
the past have been leaf nodes. The bulk of the remaining probability mass is taken
up by the split into (NP/N, N).

This ends the syntactic stage of prediction, and the role of pt . The task now is
to predict what meaning and word(s) should correspond to this NP leaf node. To
this end, it first uses pl to predict a probability for all possible shell lfs, the one of
which shown here is <e>, with probability 0.75. Again, the bulk of the remaining
0.25 probability mass is taken up by the possibility a bigram of determiner plus
noun, with shell lf quant noun. Interpretations of this sort are discussed in Sec-
tion 5.2. The fact that the input, or conditioning variable, for pl is the syntactic
leaf only, and not any other information from the tree, is the manifestation of the
independence assumption discussed in Section 3.1.

Next, the learner uses pm to predict probabilities for all likely meanings of
the <e>, here you with probability 0.341. This stage of predicting lf given shell
lf generally gives the smallest probability of all predictions on the tree, because
there are many different meanings corresponding to a given semantic type. The
relatively high value of 0.341 reflects the high frequency of you as a meaning in
the dataset.

Finally, pw predicts probabilities for all possible words that could correspond
to the meaning you. The probability of 0.896 thus represents the learner‘s belief,
at this stage in training that the word ‘you’ is a realisation of the meaning you.
The remaining 0.104 is made up of a long tail of other incorrect meanings, arising
from various incorrect interpretations of previous training examples. We observe
that this figure continues to reduce to about 0.05 by the end of training.

The total probability for this tree and leaves given the root lf is then computed
by multiplying all predicted probabilities at all locations on the tree, which gives
∼ 2.736e− 20. Given that we observe the leaves, we condition on this event by
diving by the sum of the probabilities of all elements of T . Here, that sum turns
out to be 7.079e−20, so the conditional probability for the tree in Figure 5 is

2.736e−20
7.079e−7

≈ 0.386 .

Thus, we assume that this tree is ‘observed’ weighted by this probability, and
the counts for the pairings in this tree are updated in the corresponding Dirichlet
processes are updated by 0.386.

This same procedure is repeated for every element of T . In practice, for the
corpora we use, this is generally 50−100 trees.
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3.4. The Learner as a Parsing Model
After training, it is possible for the learner to parse novel strings to infer their

syntax trees and lf. That is, the learner observes only the string, without any
corresponding lf. This differs from train time, where it observes both string and
lf, and only the parse tree is unobserved. Formally, on observing w, we seek
argmaxm,T p(w,m,T |θ f inal), where p(·) is as in (2), and θ f inal are the model pa-
rameters after training. Computing this exactly is intractable, so we approximate
using a combination of beam search and a Cocke-Young-Kasami (CYK) based
chart-parsing algorithm for CCG. First, we marginalise the Dirichlet distributions
pl and ph. This is done as follows, using pl as an example

pl(x) =
∑vsh∈Vsh

pl(x|vsh)∑vm∈Vm cl(vsh,vm)

∑vsh∈Vsh ∑vm∈Vm cl(vsh,vm)
, (4)

where cl(x,y) is the raw count from the Dirichlet process of the occurrence of shell
meaning x with meaning y. The denominator in (4) thus expresses the number of
times any pair of meaning and shell meaning have been observed by the learner.

These marginal distributions then facilitate a beam search to predict a beam of
highest probability lf-category pairs for each word span in the string. Recall that
the learner also considers interpretations in which multiple words form a single
lexical item, so this beam search is run on all contiguous spans in the utterance.
Then we continue the beam search into CYK-based chart parsing to predict a
CCG syntax tree. The full method for beam search of leaf nodes is specified in
Algorithm 1. After this, we run CYK for CCG to predict a parse tree for the entire
utterance.

Note that a typical parsing model is given the meaning and possible categories
of each word, and then learns to select the correct categories from amongst these
possibilities and to form the syntax tree. Our learner, on the other hand, learns the
meaning and categories of the leaves from scratch, as well as learning to form the
syntax tree. Due to CCG’s close coupling of syntax and semantics, the parse tree,
along with a meaning for each leaf, then allows us to compute the meaning for the
entire utterance. This is used as an evaluation method in Section 4.4 below.

4. Results

4.1. Data
The data we use for training and testing is taken from Brown’s 1973 Adam

corpus, containing transcribed child-directed speech in North American English

16



Algorithm 1 Algorithm for parsing unseen utterances to infer the root lf.
Vm← vocabulary of all observed lfs
Vsh← vocabulary of all observed shell-lfs
function SEARCHLEAFSPAN(ws)

B← []
for vm ∈Vm do

p← pw(ws|vm)pm(vm)
append (vm, p) to B

end forB← top 10 entries in B, ranked by p
for (vm, p) ∈ B do

for vt ∈Vt do
p′← pm(vm|vt)
plea f ← pt(leaf|vt)

p← pp′plea f
pt(vt)

pm(vm)

append (vt ,vm, p) to B
end for

end for
B← top 10 entries in B, ranked by p
return B

end function

to a child ranging in age from 2 years 3 months to 3 years 11 months. It consists
of 9314 tokens and 5320 utterances, which amounts only about 2% of the data
used by the child for language acquisition in the relevant period (Gilkerson et al.,
2017). However, the child is simultaneously learning other skills, such as social,
perceptual and motor skills, whereas our model isolates the problem of learning
syntax and word-level semantics.

The utterances are extended with lfs, specifically lambda calculus expressions,
as in Figures 1, 2 and 3. Each training example is then a pair of a string in En-
glish, and a corresponding lf. The lfs are produced using the method of Szubert
et al. (2024), which first forms a universal dependency (UD) parse of the string
and then uses the UDepLambda library https://github.com/sivareddyg/
UDepLambda, to convert these parses into lfs. The UD parses were automatically
checked for correctness using the checker at https://github.com/UniversalDependencies/
tools/. The tokenization is taken from the CHILDES corpora.
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Figure 6: Relative word order probabilities, over the course of training, for each of the six possible
word orders for S, V, and O as reflected by verb category. SVO order is learnt confidently within
the first 500 examples, and rises to 90% by the end of training.

4.2. Word-order Learning
Prior works on similar models to ours (Abend et al., 2017; Mahon et al., 2024),

evaluated the learning of word order by examining the model‘s internal parame-
ters to calculate the prior probability, that is, the probability before observing any
string or lf, of the transitive verb category S\NP/NP. Specifically, this is the
sum of all parse trees that would yield this category, namely the right-branching
derivation consisting of forward application and backward application, as shown
in Figure 1, and the left-branching derivation consisting of forward application
and forward composition, as shown in Figure 2. Figure 6 shows these relative
probability scores over the course of training. Clearly, the prior expectation for
SVO order is learnt rapidly and confidently, which reproduces the results for sim-
ilar models in Abend et al. (2017); Mahon et al. (2024).

4.3. Meaning and Category for Individual Words
We also follow Mahon et al. (2024) and evaluate the learned meanings and

syntactic categories for individual words. Using Bayes‘ rule, we can obtain a
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Figure 7: Learning curves for meanings (lfs) and syntactic categories for the 50 most common
words in the corpus (see Appendix A.1). Both are learnt successfully, with word meaning higher
than word category.

prediction for the meaning and category of a given word. Specifically, the inferred
meaning m′ for a word w is given by

m′ ≈ argmax
m

pw(w|m)pw(m) = argmax
m

pw(w,m) , (5)

where the last quantity is approximated by the observed number of times that w
and m co-occur in the Dirichlet process, which is essentially the numerator in the
DP For example, for the modal word ‘can’, the learner should predict that the
meaning is the “raising to subject” verb λ p.λy.can (p y)5. The predicted category
is calculated analogously and in this case is S\NP/VP. We do this for the 50 most
common words, and manually evaluate whether they are correct (our annotations
are shown in Appendix A.1). Unlike Mahon et al. (2024), who report only a
single figure for accuracy after training, we evaluate this throughout training, to
produce a learning curve, which is shown in Figure 7.

The model learns meanings and categories for these words to a similar degree

5This is the ‘can’ of ability, rather than of possibility.
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to Mahon et al. (2024): 90+% for meaning and ∼ 70% for category. These are
learnt quickly in the first 1000 utterances. The learning of category then plateaus
and fails to learn the final 30% of cases. This is due to the learner not having
a systematic representation of person, tense and number, which leads to it often
confuse the categories S\NP, which is an inflected verb phrase, and VP, which
is an infinitival verb phrase. For example, for the word ‘are’ in the context of
expressing identity, such as ‘those are yours’, meaning equals yours those, it pre-
dicts the category VP/NP, when it should predict S\NP. Recall from Section 3,
that the model predicts the shell lf from the syntactic category, and so, after ap-
plying Bayes‘ rule, the experiments here predict the category from the shell lf,
but currently, the shell lf is the same for inflected and infinitival verbs. This is
discussed further in Section 5.

4.4. Understanding Full Utterances
Going beyond merely showing the relative, general preference for SVO order,

in this work we examine the learner‘s ability to analyze entire utterances correctly.
We do this in two different ways. In the first, called ‘select acc’ below, we present
the model with a single string and a set of 5 lfs, only one of which is correct, and
for each of these lfs, measure the estimated probability of observing the string
paired with that lf. The incorrect lfs are selected from immediately before and
after the utterance as it appears in the corpus, similar to the distractor setting
(discussed in Section 4.7), with n = 4. We mark an example correct if and only
if the probability is highest for the correct lf. In the second, we present only the
string, and the model must infer the lf using the method described in Section 3.4,
which is marked correct only if it exactly matches the true lf. In this setting, the
model may encounter utterances which include words that have not been seen
before in training, i.e. words that are new to the child. In Section 4.8, we show
that the model can learn meanings of novel words from syntactic knowledge alone,
i.e. perform syntactic bootstrapping. However, this test setting presents the model
with the string alone, without the lf, so the model has no access to the meaning
of the novel word and is prevented from making the correct interpretation of the
utterance. One may, therefore, prefer to exclude these utterances from testing.
We present results from both settings, one which includes these utterances with
unseen words, which are all then scored as incorrect, and one in which they are
excluded.

These three different measures of accuracy are computed, throughout the course
of training, on the final 10% of utterances in the corpus, which we use as a held-
out test set. All three show a steady increase, and have not yet plateaued at the
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Figure 8: Ability of the learner to infer the meaning of a novel utterance: ‘select acc’ is the fraction
of time it gives the highest probabilty to the correct lf from a set of candidate lfs; ‘all utterances’
and ‘no unseen words’ are the fraction of utterances for which the model infers the correct lf from
the string alone, measured, respectively, on all utterances in the test set, and all utterances in the
test set that do not have previously unseen words. The model accuracy improves steadily and
reaches a high final level by all three measures.

end of training, suggesting they would continue to improve if given more training
data. The red line, which shows the accuracy on all test items, including those
with unseen words, is of course always lower than the blue line, where these test
items have been removed. The yellow line is generally the highest, reaching 88%
by the end of training, though at least one point during training, it is exceeded by
the accuracy with novel words excluded (blue line).

The test set for the blue line is changing slightly over training, specifically
the number of points being excluded is decreasing as the set of words seen by
the model increases. Therefore we suggest the final point reached by the blue
line (∼ 80%) is more revealing of the ability of the model after training, but the
trajectory of the red line is more revealing of the course of learning.

Note that utterances with unseen words can be, and indeed often are, correct
by the first evaluation method (green line). By the end of training, there are still
53 utterances, out of 476 in the test set, with novel words. The yellow line has a
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Figure 9: Breakdown of inferred meaning accuracy by different construction types, using the ‘all
utterances’ measure. This shows the model is able to infer correct root meanings for a variety
of construction types, and the high average accuracy from Figure 8 is not just the result of a few
construction types.

final error rate of only 11.5%, and gets the correct answer for 27 out of these 53
utterances with novel words. This shows that the model can still make reasonable
interpretations even in the presence of a novel word: if it has some rough idea of
what the meaning for the entire utterance might be, it is still often able to deduce
the correct analysis. This property of the model is examined further in Section
4.8.

4.5. Accuracy by Construction Type
Figure 9 shows the accuracy of the utterance meanings, separated by the con-

struction type of the utterance. This includes all utterances, even those with novel
words. Utterances that exhibit multiple listed features are counted in all the cor-
responding categories. For example, a negated modal like “you can’t see it”, is
counted under ‘modal’ and ’neg’. The measure of accuracy used is the accuracy
of the inferred root lfs when presented with an unseen string, i.e., the red line from
Figure 8. This accuracy increases steadily through training for all utterance types.
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This shows that the high average accuracy from Figure 8 is not restricted to just a
few types of syntactic construction. Rather, our model learns to infer the correct
parse with high accuracy for a variety of syntactic constructions.

The curves in Figure 9 are not inter-comparable, and in particular should not
be taken as indicating order of acquisition, because the groups are quite differ-
ent in size and diversity. For example, transitives (‘trans’, dark blue line) show
the lowest final accuracy, but this reflects the fact that the set of simple transitive
sentences in our data is largest and most diverse of those presented. Similarly,
the fact that wh-questions (‘whq’, magenta line), show one of the highest accu-
racies is largely due to that construction type being less frequent and occupied to
a greater extent by a few commonly occurring examples, such as ‘what are you
doing?’ and ‘what’s that?’. There are still several examples of less common wh-
questions in our test set, and we show the full predicted analyses for some of these
in Section 4.9.

Note that this relationship between low variability and higher accuracy refers
to variability of the test items, and is not counter to the evidence that high input
variability improves language learning in children (Huttenlocher et al. (2010) and
references therein), which refers to variability in the train items. The low variabil-
ity in wh-questions in the dataset means the model is only tested on a small set of
utterances, whereas for transitives, there is a much higher diversity of utterances
it is tested on.

4.6. Accuracy on Whq Words’ Categories
Because the ability to model LRDs of the sort found in object wh-questions is

one of the contributions of our model, we present a further experiment focussing
specifically on the accuracy for whq words. Figure 9 already showed that the
accuracy in inferring root lfs for novel utterances is high for wh questions. How-
ever, as we noted in the preceding section, that result does not necessarily reflect
a high accuracy in the predicted syntactic categories for wh questions, because it
is possible for the model to choose an incorrect or at least non-standard syntac-
tic analysis which nevertheless produces the correct lf. Some examples involving
lexicalization of multi-world expressions are discussed further in Sections 4.9 and
5.2. Here, we show the accuracy for the syntactic category of the wh-word as it
appears in fronted wh-questions in our test set, relative to ground truth categories
that we annotated manually. We do not report separate scores for subject and ob-
ject categories because the nature of the CHILDES data is that there are too few
subject questions for the model to learn them effectively.
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Figure 10: Accuracy of the assigned syntactic categories for whq words in our test set, relative
to ground truth categories that we annotated manually. The red line corresponds to the traintime
setting where the learner sees both the string and the lf, the green line to the testtime setting
where it sees only the string. In both settings, the model is scored as correct whenever its favoured
analysis contains a leaf with the correct whq word, meaning and category, and incorrect otherwise.
The model reaches a high score by both measures, which shows that it is able to correctly assign
syntactic categories to wh words at the leaf level.

The learning curves are shown in Figure 10, for the settings where the lf is
seen (red line) and unseen (green line) settings. For both settings, the accuracy
increases through training and reaches a high accuracy at the end of training
(about 85% with the lf and 70% without). Although we do not distinguish be-
tween subject and object questions, we note that the set of wh-questions in the
dataset consists almost entirely of object questions. This result is broadly consis-
tent with observations of relatively early acquisition of object questions in children
(Stromswold, 1995; De Villiers et al., 1990; Klima and Bellugi, 1966). It shows
that the learner not only learns to infer the correct root lf for long-range dependen-
cies of the sort found in object wh-questions, but also learns to model the syntax
of these utterances by giving the correct syntactic category to the wh-word, and
therefore also to the rest of the sentence.
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4.7. Distractor Settings
Our training setting, as described in Section 3.2, presents the learner with a

single lf for each utterance, i.e., it is told the single correct meaning for the cor-
responding string. In the case of human learning, however, it is more realistic
to assume that the child apprehends several possible meanings when it hears an
string, and does not know, a priori, which of these possible meanings the utterance
expresses. To simulate this uncertainty, we repeat the experiments from Section
4.2 and 4.4 with varying numbers of ‘distractor’ lfs presented alongside the true
lf. The learner is then free to consider any of these lfs as the meaning of the ut-
terance. When there is a single tree that the model is very confident in, then the
probability from this tree dominates anyway, and overall there is little effect from
the distractor trees. However, when there is no such single confident interpreta-
tion, the distractor trees significantly reduce the probability on the trees from the
correct lf, including the correct tree, and add probability, and hence parameter up-
dates, corresponding to the incorrect trees from the distractor lfs. If the learning
trajectory is not stable, the updates from these incorrect trees can derail the model.

In the real child learner, the distractor logical forms presumably originate in
the child’s perception and understanding of the state of the world and the conver-
sation, which our model does not directly represent. In our experiment, we take
as a proxy for such distractors, the logical forms from the utterances immediately
following and preceding the given utterance. Specifically, the n distractor setting
takes the ⌊n/2⌋ previous examples and the ⌈n/2⌉ following examples.

For example, in Adam, training examples 226-228 are as follows:
Data point 226: “you blow it”–blow you it
Data point 227: “you can blow”–can (blow you)
Data point 228: “you do it”–do you it
Thus, in the two distractor setting, when training on training example 227,

we include the parse trees from all three of these lfs. In this case, one possible
interpretation takes the lf from training example 226–blow(you,it) blow it you–
and interprets “you” as meaning you, “can” as meaning it, “blow” as meaning
λx.λy.blow x y, and the sentence as being in SOV order.

As shown in Figure 11, the addition of distractors slows down learning, but
the shape of the trajectories remains unchanged. This robustness represents an im-
provement on the model of Abend et al. (2017), which exhibited some instability
with respect to the number of distractors. Figure 12 shows the same stability for
obtaining the correct meaning representation shown for the zero-distractor case in
Figure 7. Here, the robustness to the distractor lfs is even more striking, showing
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only a very marginal difference even when 8 distractor lfs are added. This sug-
gests that, with more training data, our model would reach the same performance
as for the zero-distractor setting.
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Figure 11: Repeats of experiments for word order of S, V, and O as reflected by transitive category,
and word meaning/category learning, with increasing numbers of distractor lf: 2 in the top row,
4 in the second row, 6 in the third row and 8 in the fourth row. Cf. Figure 6. In this plot, and
throughout the paper, a plot title ending in ‘distN’ indicates that there were N distractors present.
This shows the learning of word order and word meanings and categories is robust to the presence
of distractor meanings during training.
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Figure 12: Repeats of experiments for predicting the correct utterance meaning at test time, with
increasing numbers of distractor lfs: 2 in the top left, 4 in the top right, 6 in the bottom left and 8 in
the bottom right. Cf. Figure 8. In this plot, and throughout the paper, a plot title ending in ‘distN’
indicates that there were N distractors present. This shows that acquiring the ability to infer the
meaning of whole utterances is robust to the presence of distractor meanings during training.
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4.8. One-trial Learning of Nonce Words
In this Section, we test the ability of our model for one-trial learning in a

variety of syntactic contexts, that is, learning the meaning of novel words from a
single exposure.

Abend et al. (2017) showed this in the case of transitive sentences. When
exposed to a transitive sentence containing a nonce word ‘dax’, along with two
possible lfs, one in which ‘dax’ means λx.λy.dax x y, and one in which it means
λx.λy.dax y x, their model then showed a marked rise in its predicted probability
that the meaning λx.λy.dax x y is realized as the word ‘dax’. The most significant
advance in our model over that of Abend et al. is its ability to handle a much
wider set of syntactic constructions, and we now show that this allows our model
to achieve one-trial learning over this wider set.

Figure 13 shows the results of the same one-trial learning test not just for
transitive sentences, but also for other more complex constructions that the child
is exposed to. For each utterance type, the learner is presented two lfs that differ
only in who they designate as the agent of the transitive verb, and only one, the
intuitively correct one, agrees with the SVO verb category S\NP/NP. We follow
Abend et al. in using two unseen names, ‘Jacob’ and ‘Jacky’ as subject and object,
and in running two versions of the experiment, one with four distractor lfs and
one with six. In the wh-question context, the string is “who will Jacob dax?”,
and one lf expresses an object wh-question, while the other expresses a subject
wh-question.

Our learner, after training, is capable of one-trial learning in the context of
all of these constructions. For questions, negations and modals, this measure of
one-trial learning ability rises rapidly within the first 800 training examples. Such
constructions contain some familiar words, namely the wh-word, the modal and
the negation ‘not’, so in this sense they are easier than the transitives, which con-
tain only novel words. For the progressive ‘Jacob is daxing Jacky’, the rise occurs
later, slightly after training example 2000. The only familiar word there is the
copula, which is in general a difficult word for the learner to analyse correctly
because it appears frequently in a variety of different functional roles. The curve
for transitives corresponds to curves presented in Abend et al., and we can see that
ours rise higher and more smoothly.

This ability is the result of the model having enough language-specific syntax
that, even if it encounters a new word, which must, in the first encounter, auto-
matically get a low probability of having the correct meaning, the correct analysis
has sufficiently high probability from the rest of the derivation to ensure the total
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Figure 13: Evolution of the ability to learn from one-trial in the context of actor ambiguity. The
y-axis shows the model‘s estimated probability, after the single exposure, that the word “dax”
is assigned the syntactic type S \NP/NP and the logical form λ x.λ y.dax x y. In this plot, and
throughout the paper, a plot title ending in ‘distN’ indicates that there were N distractors present.
This shows that the model is able to acquire new word meanings from syntactic knowledge alone
for a variety of construction types.

tree probability is still high. This leads to a high update weight for the novel word
being aligned with its correct meaning.

The analysis in the earlier Figure 5 depicts an instance of this, of how already
acquired lexical and syntactic knowledge can facilitate rapid acquisition of a new
lexical item. There, the word “music” has never been observed before, and so the
corresponding nodes of the tree have very low probability. However, by that stage,
the learner is confident in the analysis of the rest of the sentence, so it still gives
high probability to the depicted analysis. This high probability means that the
co-occurrence counts for music and “music” get a large update, leading to a large
increase in the estimated probability that the former is the meaning of the latter.
The difference with the experiments in this section is that the subject and object
are also novel words, so the model must rely entirely on syntactic knowledge to
determine how to relate the words to the components of the lf.

The ability measured in Figure 13 is distinct from that of inferring the correct
meaning for the utterance, as measured in Figure 9. For example, if a verb and
argument have been observed together several times, the learner may interpret
the whole verb phrase as a single lexical item (an example of this is in Figure
16b). This could give the correct meaning for the verb phrase, and hence the
utterance, but, if such an analysis is made by the learner, it may not facilitate one-
trial learning of a novel verb, because there it would not include a leaf node that
contains just the novel verb word. For example, given the string “he is daxing”, it
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could analyze “is daxing” as a single lexical item, at the expense of the analysis in
which “daxing” is a leaf. So, although it might acquire the meaning for this entire
VP in one trial, it would not do the same for the word “daxing” itself.

Conversely, the learner may give the highest probability to an analysis that
gives the incorrect root lf meaning, e.g. by interpreting “is daxing” as a single
item meaning λx.λy.seeprog x y, while also having reasonably high probability
on the correct analysis in which “daxing” is a root that means λx.λy.daxprog x y.
As “daxing” is not a leaf in the first analysis, its meaning distribution does not
get any update, either correct or incorrect. Of the analyses in which it does get
such an update, the correct meaning update may still dominate the probability
mass, resulting in the model placing very high posterior probability on “daxing”
having the correct meaning. In this case, the model would succeed at the one-trial
learning test as measured in Figure 13, but fail at the test of inferring utterance
meaning, as measured in Figure 9.

Figure 9 measures whether the single highest probability parse is correct,
while 13 measures what fraction of the probability mass of the analyses in which
the novel word is a leaf give it the correct meaning. The two measures give differ-
ent, complementary views into the model‘s learning trajectory across construction
types.

4.9. Qualitative Results
Figures 14, 15 and 16 show some examples from the final 10% of utterances,

which we use as a held-out test set. These examples come from presenting the
model with the string only, and having it infer the parse tree and meaning, i.e., in
Figure 8, it corresponds to the red and blue lines, rather than the yellow line.

We select examples that cover a range of the important constructions that our
model is able to handle. Because of our special focus on LRDs, we show three
object wh-questions, one in progressive aspect.

In all of these examples, the learner infers a parse tree that will derive the cor-
rect root meaning. Some, such as the wh-question,“what does that say?”, in Fig-
ure 15b, and the negated polar question in Figure 17a, exhibit the standard, correct
CCG parse trees. Others, such as Figure 14a and 16a, are still textbook-correct,
though non-standard in the sense that they use composition when a purely ap-
plicative derivation is available. For the other two examples, the model interprets
two orthographic words as a single lexical item, e.g. “d you”, in the transcription
of Figure 15a, is interpreted as a single item with category S/VP and meaning
λx.Q (do (x you)). We observe that this often occurs for frequent bigrams. These
examples still all end up with the correct root meaning for the whole utterance,
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so are all counted correct by the measure of Section 4.4. The tendency to lexical-
ize common multi-world expressions is discussed further in Section 5. Note that,
in order to correctly analyze the wh-questions, the model has to select the cor-
rect question-form of the auxiliary “do”, and the correct object-wh category for
the wh-word “what”, rather than the subject-wh category Swhq/VP or the in-situ
category NP.
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not (will (hurt you it))

Q (shall (help you i))

Figure 14: Examples of inferred parse trees for a negated (top) and an interrogative (bottom)
modal utterance from our test set. The lf shown above the trees are those inferred by the parse of
the learner. Given information is in green , inferred information is in pink . As this is test time,
the model sees only the string and must infer the root lf.
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Q (do (need WHAT you))

Q (does (say WHAT that))

Figure 15: Examples of inferred parse trees for two object wh-questions from our test set. In the
full theory, “that” would be raised as S/VP\(S/VP/NP). The lf shown above the trees are those
inferred by the parse of the learner. Given information is in green , inferred information is in

pink .
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pres3s (checkprog (his watch) he)

Q (pres3s (doprog (WHAT ) it))

Figure 16: Example of inferred parse trees for progressives from our test set: one declarative (top)
and one wh-question (bottom). The lf shown above the trees are those inferred by the parse of the
learner. Given information is in green , inferred information is in pink .
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Q (not (see it you))

Q (will (give WHAT he you))

Figure 17: Example of an inferred parse tree for a polar negated question from our test set. Given
information is in green , inferred information is in pink .

36



4.10. Summary of Empirical Improvements over Previous Models
Compared to the two most similar existing models, Abend et al. (2017) and

Mahon et al. (2024), there are three main improvements offered by our model.

1. It can handle a wider variety of syntactic constructions (Sections 4.5 and
4.8), including long-range dependencies as found in object wh-questions
(Section 4.6);

2. It is the first to present evidence of fully correct parses for unseen strings
without corresponding lfs (Section 4.9);

3. It shows higher accuracy in inferring sentence meanings, and greater ro-
bustness to the inclusion of distractor lfs during training (Sections 4.4 and
4.7).

5. Discussion

5.1. Long-range Dependencies
It is clear from both the breakdown of accuracy by construction type, as shown

in Figure 9, and from the qualitative examples in Section 4.9, that the model
largely succeeds in learning the long-range dependencies in object wh-questions.
In fact, in Figure 9, the learning curve for wh-questions (pink line) is, for most of
training, the highest of all construction types. However, this precocity is due to
the fact that there are a couple of frequent wh question utterances, such as “what
are you doing?” and “what‘s that?”, that the model learns to memorize very early,
which accounts for the early jump. By ‘memorize’, we mean that the entire ut-
terance is modelled as a single word, as discussed in detail in Section 5.2. The
subsequent gradual rise of the pink line is then caused by the model learning the
general form of wh-questions and getting more of the long tail correct. By the
end of training, it can correctly analyse the large majority of novel wh-questions,
producing the textbook CCG parse tree as well and meaning, even including some
ditransitives, such as “what will he give you?”, in Figure 17b.

5.2. Lexicalization of Common Ngrams
A common behaviour of our learner is to treat multiple orthographic words

as a single lexical item, e.g. “is it” in Figure 16b. It is important to allow this
interpretation, rather than tell the learner explicitly where the word boundaries
are, because we assume that, while learned phonotactic constraints are able to
identify possible word boundaries, they are not able to determine them exactly,
and so the child, when learning syntax and semantics, must also be considering
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such interpretations. In our data, the possible boundaries are those provided by
the UD tokenizer, as used in Szubert et al. (2024). This amounts to potential
boundaries at all spaces and around clitics.

As our model is entirely probabilistic, there is no hard line between being in or
out of the lexicon: every n-gram that was observed anywhere during training has
some probability of being the word for the corresponding lf, but for most n-grams,
this probability is negligible, and it will never appear in the single maximum a
posteriori (MAP) analysis. In this discussion, we use the term ‘lexicalisation’ to
refer to the case where an ngram appears with significant frequency in the MAP
analysis.

In the extreme case, the learner might ignore all potential boundaries and treat
the entire string as a single word. Indeed, the following simple probabilistic analy-
sis shows that, in our framework, this is the null hypothesis in that, prior to seeing
any training data, it is the favoured analysis of all utterances. The probability of a
parse tree is the product of the probabilities of all of the constituent nodes given
their parents. Prior to seeing any training data, the probability of a category be-
ing a leaf is the same for all categories, and is strictly less than 1 (because some
probability must be reserved for other possible splits of that category). Thus, the
probability of the parse tree is minimized when there is just a single leaf. How-
ever, as training progresses, the model favours larger and larger parse trees and
eventually, in many cases, reaches a stable interpretation comprising the standard
CCG parse tree. The moment when this point is reached is the moment at which
one-trial learning, as in Section 13, becomes possible.

Mostly, these cases correspond to breaking at all word boundaries, but there
are some exceptions. The negation contraction “n’t” is almost always analysed as
a single lexical item together with the auxiliary, as in Figures 14 and 17a, even
though there is a potential word boundary between them. This in fact agrees
with standard linguistic assumptions (Bybee, 2002), and there is strong evidence
that negated auxiliary contractions are single items in adult lexicons, as they can
be inverted, while the un-contracted bigram cannot: don’t you see it vs *do not
you see it. Many common bigrams that are lexicalised by our model agree with
contractions in adult speech, e.g. “d’you” in Figure 15a and “he’s” in Figure 16a6,
but there are also several that do not: “’is it” in Figure 16b and in Figure 17b. For

6Indeed, one could make a case either for or against including a potential boundary for words
that were transcribed as clitics. The reason we do is simply that the universal dependency parser
used by Szubert et al. (2024), and hence the data we use, does so.
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some, such as “that’s right” and “I don’t know”, the MAP analysis remains as a
one-word utterance even at the end of training. This is also consistent with adult
spoken contractions transcribed as “s’right” and “I‘d‘no”.

Discussions of lexicalisation have identified several aspects to the process
(Bauer, 1983), e.g. prosodic lexicalization (the effect on the phonetic realiza-
tion of the segment of the utterance), morphological lexicalisation, (the character-
isation of irregular inflected forms as being lexicalised), semantic lexicalization
(a.k.a. idiomatization (Lipka, 1977)), and the effect of frequency on lexicalisa-
tion (Langacker, 1988; Lieven et al., 2003; Bybee, 2006; Bannard and Matthews,
2008).

Of the possible causes of lexicalisation, the only one that our model responds
to is frequency. If the frequency of an ngram is large enough that the probability
of it being paired with its corresponding meaning is greater than the product of
the probabilities of each its constituents being paired with their corresponding
meanings, then it will be lexicalised, in the sense outlined above. The closest
analogue in human lexicalisation, would be to consider as lexicalised so-called
conventionalised colocations, a.k.a “prefabs” (Erman and Warren, 2000)–that is,
ngrams that are not idiomatic but appear unusually frequently, such as ‘ulterior
motive’. Such a picture has been suggested by Bybee (2006), Erman and Warren
(2000) and Bybee (1985). Note that what counts, at least in the case of our model,
is not the raw occurrence frequency of the ngrams in the corpus, but rather the
frequency of the ngrams in the estimated parse trees. This difference means that
ngrams that cohere with the rest of the sentence into a probable parse tree count
for more than those that do not. These observations may also support a lexical
analysis of processes of cliticization.

The tendency of our model to lexicalise certain ngrams suggests that, from
a probabilistic model of syntax and semantics alone, there is a signal to do so.
However, without the other components such as phonetics, the choice for such
lexicalizations may differ somewhat from those evidenced in humans.

5.3. Modeling Morphology and Phonology
The potential future extensions to include morphology were also discussed in

the model of Mahon et al. (2024), who outlined two possible approaches to in-
cluding morphology: either to extend the CCG parse trees down to the level of
morphemes, or else replace the Dirichlet process for predicting word form given
meaning with a neural model. We explored the former idea in preliminary ex-
periments and found it not to work well. For example, we tried inserting a po-
tential word boundary between the suffix ‘-ing’ and the root, in the idea that it
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model could learn ‘-ing’ had the category VP\(S\NP) (for transitive sentences)
and meaning λ p.λx.prog(p x). However, it always chose to interpret the stem
and the suffix together as a single lexical item. The second idea, of using a neural
predictor of word form, could be more promising, as it may allow the model to
learn some systematic relationship between meaning and word form without hav-
ing to specify something as precise as that the orthographic suffix ‘-ing’ always
indicates progressive aspect. This neural predictor could operate on the IPA tran-
scriptions instead of the orthographic ones , or even on the speech waveform itself,
both of which are available in the CHILDES corpus we use. This would be to take
a position that the syntax-semantics interface can be learnt in part by a symbolic
system (namely, the one we present in the present paper), but that morphology
is more suited to a connectionist model, which is consistent with the success of
finite-state transducers in morphological analysis (Kay, 1987). In Section 3.1,
we noted that such a mechanism is expected to be needed, in the form of the
probabilistic supertagger, for the resolution of lexical ambiguity as the grammar
grow towards adult size, and this would constitute a parallel ”thinking fast” model
component to the symbolic ”thinking slow” symbolic grammar (Kahneman, 2017;
Ferreira, 2007). Stanojević et al. (2023) offer neuropsychological evidence for the
involvement of such a hybrid symbolic-neurocomputational mechanism in human
sentence processing using a fully incremental parsing algorithm combined with
a supertagger. Providing such a morphological analyser will be a necessary first
step in demonstrating the universality of our syntactic learner by applying it to the
similarly annotated Hagar corpus of Hebrew child-directed utterance described by
Szubert et al..

6. Conclusion

This paper presented a computational model for child language acquisition
of syntax and word-level semantics, trained on transcribed child-directed speech
paired with manually annotated logical forms as meaning representations. Our
model works with several orders of magnitude less data than even the most sample-
efficient transformer-based approaches to modelling human-like learning of lan-
guage (Warstadt et al., 2023b). The main advances of our model over previous
similar ones lie in increased robustness and stability in learning, the extension to
a wider range of constructions, and the ability to infer meanings and parse trees
for unseen child-directed utterance from the held-out final sample of the corpus.
We replicated the experiments of previous similar models regarding learning word
order and word meanings, and showed that our model has 80% accuracy on in-
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ferring the meaning of novel utterances. While prior works have demonstrated
some limited ability for one-trial learning of word meanings in simple transitive
sentences, our model learns these word meanings very rapidly and confidently
in a wide variety of construction types. Finally, we discussed the model‘s han-
dling of long-range dependencies, and its tendency to lexicalize common ngrams
and how this might relate to usage-based lexicalization in humans. Despite the
comparatively impoverished nature of our training datasets, the model’s ability
to acquire constructions, including those involving long-range dependencies, and
its tendencies both to lexicalize frequent collocations and later to re-analyse them
compositionally, appear to be broadly consistent with the course of language ac-
quisition in real children.
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Appendix A. Mapping from CHILDES POS Tags to Montagovian Semantic
Types

Table A.1 shows how we infer the Montagovian semantic type from the CHILDES
POS tags that are available in our lfs. Some are defined schematically, the avoid
overly long expressions. For example, the category for conjunctions (conj) and
coordinations (coord), we use the variable X to stand for any other semantic cate-
gory. The reason the mapping from tags to semantic types is many-to-one is that
this allows learning to be shared across categories. For example, if the model
learns that the general category ‘det’ precedes nouns, it knows that this is true for
all types of determiners, whereas if we distinguish between ‘det:art’, ‘det:poss’,
‘det:num’ etc., then it has to learn this separately for each.

Appendix A.1. Manually Annotated Lexicon for Fifty Most Common Words
This section shows the ground-truth logical form meaning representation and

CCG syntactic category for the fifty most common words in each dataset. As
described in Section 4.3, these are used to evaluate the learner’s ability to acquire
the correct lexicon. Note, the lfs that appeared in the main paper were abbreviated
for clarity. Here, we write the full lf, including the CHILDES part of speech tag.
The full lexical entry is of the form 〈lf〉 | | 〈syntactic-category〉
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. Where a word has two common meanings, we include two different lexical
entries, separated with a comma.

’ll:λ x.λ y.mod |˜ will (x y) || S\\NP/(S\\NP)
’re:λ x.λ y.v| hasproperty y x || S\\NP/NP ,

λ x.λ y.v| equals y x || S\\NP/NP
’s:λ x.λ y.v| equals y x || S\\NP/NP ,

λ x.λ y.v| hasproperty y x || S\\NP/NP
Adam:n:prop|adam || NP
I:pro:sub|i || NP
a:λ x.det:art|a x || NP/N
an:λ x.det:art|a x || NP/N
another :λ x.qn| another x || NP/N
are:λ x.λ y.v| equals x y || S\\NP/NP ,

λ x.λ y.v| hasproperty y x || S\\NP/NP
break:λ x.λ y.v|break y x || S\\NP/NP
can:λ x.λ y.mod|can (x y) || S\\NP/(S\\NP),

λ x.λ y.mod|can (x y) || S/NP/(S\\NP)
d:λ x.λ y.mod|do (x y) || S\\NP/(S\\NP),

λ x.λ y.mod|do (x y) || S/NP/(S\\NP)
did:λ x.λ y.mod|do -past (x y) || S/NP ,

λ x.λ y.mod|do -past (x y) || S/NP/(S\\NP)
do:λ x.λ y.v|do y x || S\\NP/NP ,

λ x.λ y.mod|do (x y) || S/NP/(S\\NP)
does:λ x.λ y.mod|do -3s (y x) || S\\NP/(S\\NP),

λ x.λ y.mod|do -3s (x y) || S/NP/(S\\NP)
dropped :λ x.λ y.v|drop -past y x || S\\NP/NP
have:λ x.λ y.v|have y x || S\\NP/NP
he:pro:sub|he || NP
his:λ x.det:poss|his x || NP/N,pro:poss|his || NP
hurt:λ x.λ y.v|hurt -zero y x || S\\NP/NP
in:λ x.λ y.prep|in (y x) || S\\NP \\(S\\NP)/NP ,

λ x.prep|in x || S/S
is:λ x.λ y.v| equals x y || S\\NP/NP ,

λ x.λ y.v| hasproperty y x || S\\NP/NP
it:pro:per|it || NP
like:λ x.λ y.v|like y x || S\\NP/NP
lost:λ x.λ y.v|lose -past y x || S\\NP/NP
may:λ x.λ y.mod|may (x y) || S\\NP/(S\\NP)
missed :λ x.v|miss -past x || S\\NP ,

λ x.λ y.v|miss -past y x || S\\NP/NP
my:λ x.det:poss|my x || NP/N
name:n|name || N
need:λ x.λ y.v|need y x || S\\NP/NP
no:λ x.qn|no x || NP/N
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not:λ x.λ y.not (x y) || S\\NP/(S\\NP )\(S\\NP/(S\\NP))
on:λ x.prep|on x || S\\NP \\(S\\NP)/NP
one:pro:indef|one || NP
pencil :n| pencil || N
say:λ x.λ y.v|say y x || S\\NP/NP
see:λ x.λ y.v|see y x || S\\NP/NP
shall:λ x.λ y.mod|shall (x y) || S\\NP/(S\\NP)
some:λ x.qn|some x || NP/N
that:pro:dem|that || NP ,λ x.pro:det|that x || NP/N
the:λ x.det:art|the x || NP/N
they:pro:sub|they || NP
this:pro:dem|this || NP ,λ x.pro:det|this x || NP/N
those:pro:dem|those || NP ,λ x.pro:det|those x || NP/N
was:λ x.λ y.v| equals x y || S\\NP/NP ,

λ x.λ y.v| hasproperty y x || S\\NP/NP
we:pro:sub|we || NP
what:pro:int|WHAT || Swhq/Sq/NP ,pro:int|WHAT || NP
who:pro:int|WHO || Swhq/Sq/NP ,pro:int|WHO || NP
you:pro:per|you || NP
your:λ x.det:poss|your x || NP/N

Appendix B. Mapping from CHILDES POS Tags to Shell lf Terms

As described in Section 3.1, we use the CHILDES part of speech tags, which are included
in the logical forms of Szubert et al. (2024), to choose the marking on the constant in the shell
logical form. Table B.2 gives full correspondence. In the main text in Section 4.2, we indicated
the marking with the first letter of the right column, e.g. ‘verb’ gives ‘vconst’.

Appendix C. Base Distributions

As described in Section 3.1, each of the components of our model, pr, pt , pe, pl and pw use
a base distribution, which is then updated with the expected observed cooccurrence counts during
training. The base distributions for each of these models are as follows:

• for pr and pt : H(y) = 0.9n, where n is the number of atomic categories in y;

• for pl and pe, H(y) = 0.25n, where n is the number of variables and constants in y;

• for pw, H(y) = 0.72n, where n is the number of letters in y.

These are unnormalised distributions, because they do not sum to 1, though their sum is finite.
In principle, these could be normalised by fixing a vocabulary size, however we simply leave
them unnormlised in our experiments. Normalisation is immaterial for pw anyway, because all
analyses for an observed utterance will have the same number of letters in the leaf node words, so
normalising would just multiply the numerator and the denominator of Equation (3) by the same
factor.
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Table A.1: Our mapping from CHILDES part of speech tags of terms in the logical form to
Montagovian semantic types.

CHILDES TAG const marking in shell lf

adj <<e,t>,<e,t>>
adv not considered
adv:int not considered
adv:tem not considered
aux not considered
conj <X,<X,X>>
coord <X,<X,X>>
cop handled separately
det <<e,t>,e>
det:art <<e,t>,e>
det:dem <<e,t>,e>
det:int <<e,t>,e>
det:num <<e,t>,e>
det:poss <<e,t>,e>
mod <<<e,t>,<e,t>>,<e,t>>
mod:aux <<e,t>,e>
n <e,t>
n:pt <e,t>
n:gerund e
n:let e
n:prop e
neg <<e,<e,t>>,<e,<e,t>>>, <<e,t>,<e,t>>t,t
prep <<e,t>, <e, t>>
pro:dem e
pro:indef e
pro:int e
pro:obj e
pro:per e
pro:poss <e,t>
pro:refl e
pro:sub e
qn <e,t>
v <e,<e,t>>, <e,t>
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Table B.2: Our mapping from CHILDES part of speech tags of terms in the logical form to the
marking on the constant in the corresponding shell logical form.

CHILDES TAG const marking in shell lf

adj adj
adv adv
adv:int adv
adv:tem adv
aux aux
conj connect
coord connect
cop cop
det quant
det:art quant
det:dem quant
det:int quant
det:num quant
det:poss quant
mod raise
mod:aux quant
n noun
n:pt noun
n:gerund entity
n:let entity
n:prop entity
neg neg
prep prep
pro:dem entity
pro:indef entity
pro:int WH
pro:obj entity
pro:per entity
pro:poss quant
pro:refl entity
pro:sub entity
qn quant
v verb
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