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Abstract

This work reimplements a recent semantic bootstrapping child language ac-
quisition (CLA) model, which was originally designed for English, and trains
it to learn a new language: Hebrew. The model learns from pairs of utter-
ances and logical forms as meaning representations, and acquires both syntax
and word meanings simultaneously. The results show that the model mostly
transfers to Hebrew, but that a number of factors, including the richer mor-
phology in Hebrew, makes the learning slower and less robust. This suggests
that a clear direction for future work is to enable the model to leverage the
similarities between different word forms.

1. Introduction

This paper concerns computational models of CLA, which seek to un-
derstand the process of language acquisition by programming a computer
to emulate the learning undergone by the child. When presented with data
from a given language, such an algorithm should learn a degree of proficiency
in that language. The fact that any child, when exposed to appropriate
data, can learn any language establishes a strong connection between acqui-
sition and language variation: whatever varies between languages must be
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specified by the data and must be learnable. It also makes it an essential
requirement of a convincing CLA model that it be capable of learning any
language. Here, we reimplement a recent computational CLA model (Abend
et al., 2017), which is based on combinatory categorial grammar (Steedman,
2001) and semantic bootstrapping (Pinker, 1979), and is trained with an
expectation-maximization style algorithm. This model is a suitable choice
for understanding the acquisition process because of its cognitive plausibility.
The dominant paradigm of large language models requires too much training
data to be plausible models of how humans acquire language. Even on the
small end of the scale they generally train on several orders of magnitude
more tokens than a human sees in their entire life. Some have sought to bet-
ter approximate human learning by learning from a more modest 10-100M
tokens (Warstadt et al., 2023). However, such models still generally make a
number of implausible design choices, such as multi-epoch training, batched
parameter updates, and arbitrary text tokenization, and they do not, as we
do, ensure that the training examples are presented in the order they appear
to the child. Abend et al. (2017) in contrast is grounded in a well-developed
theoretical model of semantic bootstrapping, and trains on each example
only once, individually, in the order they appear to the child.

We test this model on two languages: English, on which it was originally
tested, and Hebrew. The data we use is comprised of real child-directed
utterances, taken from the CHILDES corpus (MacWhinney, 1998), coupled
with a recent method for converting universal dependency annotations to
logical forms (Szubert et al., 2024).

Firstly, we replicate the findings of Abend et al. (2017), and show that
this model is successful in learning the important features of English syntax
and semantics. We focus in the present paper on word order learning, and
learning the meaning and syntactic categories of individual words. The re-
sults show that, after training, the model, correctly, strongly favours SVO
order, predicts the right semantics for commonly appearing words and the
right syntactic category for most. Then we apply the same training and
testing procedure to the Hebrew corpus. There, the model learns word order
and word meaning with a reasonably high accuracy. Its accuracy on syn-
tactic categories is somewhat lower than that on English. We then discuss
the difference in acquisition performance with respect to the linguistic differ-
ences between the two languages, and outline future extensions to the model
that can more completely handle the learning of Hebrew without compromis-
ing the learning of English. Together these results demonstrate the model



in question is broadly successful in transferring between multiple languages,
and support the argument that, in general for computational CLA models, it
is important and instructive to evaluate on more than just a single language.
The code for training and evaluation will be released on publication.

2. Method

2.1. Theoretical Underpinnings

Our model deals with syntax and semantics learning only. It assumes
the child either has already learned to segment the speech stream and detect
potential word boundaries, as evidenced in even young prelinguistic infants
(Mattys et al., 1999), or is jointly learning phonotactics and morphology with
syntax, as in the model of Goldberg and Elhadad (2013). At that point, the
child must learn to combine atomic units (words) to produce a meaning rep-
resentation that depends on (a) the meaning of the constituent words and
(b) the manner in which they combine. Initially, for such a child, both are
unknown. Theoretically, our approach to this problem falls under Semantic
Bootstrapping Theory, (Pinker, 1979; Grimshaw, 1981; Brown, 1973; Bow-
erman, 1973; Schlesinger, 1971), which operates as follows: When a child
hears an utterance “Bambi is home”, we assume that, from a combination
of perceptual context and background and innate knowledge, it can approx-
imately identify the meaning of the entire utterance as some object in some
state: home(bambi). The task is then to figure out which words correspond
to which parts of the meaning representation, and the language-specific prin-
ciples by which they combine. As well as the correct interpretation, where
English subjects precede VPs, others are also possible, e.g. “Bambi” means
home(-), “is home” means bambi and subjects follow VPs. The original im-
plementation of our model (Abend et al., 2017) designed a language learner
that bootstraps learning of both (a) and (b) simultaneously.

2.2. Combinatory Categorial Grammar.

Combinatory categorial grammar (CCG) (Steedman, 2001) is a suitable
theoretical framework for learning of this sort, because of its tight coupling
of syntax and semantics. For each combination of syntactic categories,
CCG provides a precise description of a corresponding semantic combina-
tion, bambi + Az.home(x) — home(bambi). A full example is given for the
two CHILDES (MacWhinney, 1998) corpora that we apply our model to:
Adam (English), in Figure 1, and Hagar (Hebrew) in Figure 2.
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you lost a shoe

NP (S\NP)/NP NP/N N
syou :Ax Ay.dostyx i Ax.ax : shoe

NP
. a shoe
>
S\NP
: Ay.lost y (a shoe)
S

: lost you (a shoe)

Figure 1: Example of a CCG derivation for a simple sentence from the Adam (English)
corpus.

hu xotek ec

NP  (S\NP)/NP NP

chu :Ax A y.xatak yx :ec— BARE
S\NP g

s \y.xatak y ec — BARE

S
: zatak hu ec — BARFE

Figure 2: Example of a CCG derivation for a simple sentence from the Hagar (Hebrew)
corpus. The sentence translates to English as “he’s cutting wood”, literally “he cut-pres-p
wood”.

Typically, CCG parsing is discussed in terms of combining constituents
via combinatory rules to derive a root. For example, the last step of the
derivation in Figure 1 uses the Backward Application Rule: Y, X\Y — X.
Our learning model, when interpreting a sentence-meaning pair, runs these
combinators in reverse, that is, it proceeds by successively splitting a root
into smaller chunks until they can be aligned with word spans. We will thus
often speak of CCG ‘splits’, by which we mean the CCG combinators run in
reverse. The net effect is that our model considers all possible ways to split
up the sentence and the meaning representation so that the semantic units
best correspond to the language units.

2.3. Probabilistic Model

This section describes the details of our new implementation of the se-
mantic bootstrapping CCG-based model of Abend et al. (2017).



For syntax and semantics learning, the three relevant aspects of each data
point are the string of words in the utterance x, the meaning representation
m, and the parse tree t. The former two are given by the data, but the
parse tree is unobserved, and so treated as a latent variable. We assume
that the data is drawn from some joint distribution P(z,m,t), and we fit an
approximation to this via several univariate conditional distributions. The
conditional distributions are in the generative direction, i.e., together they
produce a probability for the word string given the meaning representation.
We make the Markovian assumption that the probability of splitting a node
depends only on the syntactic category of that node, not on the rest of the
tree or on the words or meaning. This means the parse tree can be modelled
with a distribution of the form p;((s1,s2)|s), where s1, s5 and s are CCG
syntactic categories. Note that the tuple (s1, s2) is ordered. This distribution
also allows the possibility that s is a leaf node, the probability of which is
expressed as p;(leaf|s).

We make similar Markovian assumptions on the relationship between
syntactic category and meaning, and between meaning and word, so the
distribution relating word x and meaning representation m has the form
pw(z|m), and similarly for the distribution relating syntactic category s to
meaning representation m. Following Abend et al. (2017), we add a sec-
ond layer of prediction in the form of a shell logical form e, between the
syntactic category and the logical form. The shell logical form replaces all
non-variable terms with a placeholder marked for the function of the place-
holder, e.g. verb, entity, determiner. The function is inferred from the
CHILDES part-of-speech tag given in the method of Szubert et al. (2024).
For example the logical form \y.lost y (a shoe) from Figure 1 has shell logical
form Ay.vconst y (detconst nconst), because the CHILDES tags for lost, a
and shoe are ‘v, ‘det:art’ and ‘n’, respectively. See appendix for full list of
conversions from CHILDES tags. This allows the model to share representa-
tion power for the structure of the logical form across different examples that
may have different values for the constants. It is also used for the measure of
word-order preference, described in Section 3.2. Thus, p(m|s) is decomposed
as py(mle) and pp(e|s). In py(els), we ignore slash direction in s, so that e.g.
conditioning on S\NP gives exactly the same distribution as conditioning on
S/NP.

Each of these distributions is modelled as a Dirichlet process, to which
Bayesian updates are applied at each data point. Taking p,, as an example,



the form of the posterior is then

n(x,m) + oH (x|m)
n(m) + o

puw(x|m) = : (1)
where n(z, m) is the number of times x and m have been observed together in
the past, n(m) is the number of times m has been observed in the past, and
H(x) is a pre-defined base distribution. An analogous definition holds for p;,
pr and p;. The alpha parameter is set to 1 for all distributions, corresponding
to a uniform Dirichlet prior across simplices. During training, we set o = 10
in p; to encourage exploration of different syntactic structures, and o = 0.25
in p, to produce more confident predicted word meanings, which we find
helps stabilize syntax learning.

2.4. Training Algorithm

The parameter updates described in Section 2.3 require tracking the oc-
currences on which two different elements co-occur. For example, in p,,, the
probability of predicting the logical form Ax.\y.lost x y to be realized as the
word ‘lost” depends on the number of times that logical form and word were
observed together during training. Because we do not observe parse trees di-
rectly, we instead employ an expectation-maximization algorithm, as follows.
When the model observes a single data point X, consisting of an utterance
as a string and a corresponding logical form, it uses its current parameter
values ) to estimate a distribution over all possible parses that connect the
two. The probability assigned to a parse tree T" and the data point X is the
following product

p(X> T‘e(t)) = Hpt(sb 52|3,) Hpt(leaﬂs)ph(es’8>pl(ms’es)pw(xs|ms) ) (2)

where s’ ranges over all non-leaf nodes in T', s; and s, are the children of
s', s ranges over all leaf nodes in T, and e,, m, and x, are, respectively, the
shell logical form, the logical form, and the word aligned to s in T. As we
observe X, we are interested in the conditional probability of a given parse
tree

(t)
oy pX,T|0W)
) = s (X T ¥

where 7T is the set of all allowable parses of X. For each parse tree, the
co-occurrences that it gives rise to are recorded in proportion to the parse
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tree’s probability. Combining the standard expectation maximization (EM)
update rule with the Bayesian update for the Dirichlet process, then, for
each parameter # that tracks the co-occurrence of two elements a and b, the
update rule is given by

g+l — g | ETNP(TlXﬂ(t))[éT(a? b)],

where 07(a, b) is an indicator function that is 1 if a and b co-occur in T and
0 otherwise.

The set T of allowable parse trees is the set of all valid CCG parse trees
that have the observed logical form (LF) as root, the words in the observed
utterance as leaves, and that have congruent syntactic and semantic types.!

This constraint is based on the assumption that the child knows the
semantic type of a LF (or fragment thereof on some internal parse node).
We approximate this knowledge using the part of speech (POS) tags as in
the LF. The learner uses a mapping (shown in Appendix B) from these
tags to semantic types. The tags were included in the original CHILDES
transcription of the utterances, and maintained in the conversion procedure
of Szubert et al. (2024), which generated our LFs. For example, the tag
‘n:prop’, indicating a proper noun, gets the semantic category e. In the case
of ambiguous tags, such as the ‘v’ tag, which does not distinguish between
transitive (<e,<e,t>>) and intransitive (<e, ¢t>) verbs, we associate the node
with a set of semantic types, and count it as permissible if its LF is congruent
with any of these types. This use of CHILDES tags is as a proxy for semantic
types of constants in the LF. The learner does not use them to infer part of
speech. The full mapping from tags to types is given in Appendix B.

Type-raising (Steedman, 2001) introduces extra lambda variables into
the LF, therefore, if a node has been type-raised, we count the slashes of the
canonical non-type-raised version of its LF.

Adjectives are handled with the special ‘hasproperty’ predicate, which is
given semantic category <<<e,t>,<e,t>>,<e,t>>, and requires exactly
two lambda binders, and nouns are allowed to have no lambda binders and
still be counted as permissable.

Additionally, we require the semantic category to be congruent with the
CCG category, for each node. CCG’s tight coupling of syntax and semantics
provides a straightforward mapping from syntactic to semantic categories. In

'We use ‘semantic/syntactic type’ and ‘semantic/syntactic category’ interchangeably.
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particular, the CCG atomic categories S and N P correspond to the Montago-
vian ¢t and e respectively, and the slashes in non-atomic categories correspond
to functions between types. For example, the CCG category S\N P/N P has
the semantic type <e, <e,t>>. See Steedman (2001) for further details. If,
when expanding a parse tree, any node violates these constraints, then that
branch of search is terminated.

These constraints are an extension over the original model of Abend et al.
(2017) They speed up training significantly. We do not have runtime figures
for Abend et al., but based on our experiments, we find the speed-up to be
at least 30x. They also make training more robust by removing the noise of
updates from inconsistent parse trees. We believe this is the reason for our
improved robustness to noise in the LFs, as described in Section 3.4.

The computation of all allowable parse trees can be performed efficiently
by caching the probability of each subtree.

2.5. Worked Example

Here we present a worked example on a single training point. Recall that
each training example consists of an utterance and corresponding logical
form, and the learner considers the set T of all compatible parses, i.e. all
parses with the observed LF as root, the observed utterance as leaves and
that obeys the constraints described in Section 2.3. We describe the training
updates for a single, correct parse for the example “you lost a pencil”, as
shown in Figure 3. For the purposes of this example, we show the exhaustive
computation for every node in the tree. In practice the probabilities for upper
nodes can be cached giving a large increase in efficiency.

The prediction of the tree proceeds from the root. First, the learner
predicts a possible root category, here S with probability 0.388.

Next, it selects a possible split of the root syntactic category S, here the
selected split is into NP and S\NP.

Then, for the left child node, it predicts the probability for a split into
two daughter syntactic categories, or alternatively that this node is a leaf.
Here, the prediction is that the node is a leaf, with probability 0.738. Then
it predicts probabilities for a shell logical form given the syntactic category
(‘entity’ with probability 0.66), a logical form given this shell LF (you with
probability 0.327) and word (or span of words) given this LF (“you” with
probability 0.912).

Meanwhile, for the right child of the root, it predicts, with probability
0.549, a split into further categories of S\NP/NP and NP.
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Then for the left child of this node, it makes the equivalent predictions
it made for the far left node, predicting a split or leaf given the syntac-
tic category (‘leaf” with probability 0.989), then of shell LF given syntactic
category (Az.A\y.vconst x y with probability 0.961), of LF given shell LF
(Az.Ay.losepqst © y with probability 0.012) and word span given LF (“lost”
with probability 0.862).

For the right child of this node, the right-most NP in Figure 3, it predicts
a split into NP/N and N, with probability 0.261.

For the NP /N daughter, it predicts ‘leaf’ with probability 0.994, then a
shell LF given syntactic category (Az.quant x with probability 0.999), of LF
given shell LF (Azx.\y.det : art|a; x with probability 0.486) and word span
given LF (“a” with probability 0.95).

Finally for the N daughter node it predicts ‘leat’” with probability 0.994,
noun with probability 1.0 (note these figures are rounded to three places),
n|pencil with probability 0.015, and “pencil” with probability 0.973.

At this point, the semantic types of each node can be inferred. The
rightmost n|pencil node, in virtue of its n CHILDES pos tag, is inferred to
have semantic type <e,t>. The Az. det:art|a x node to its left has type
<<e,t>,e>. The parent of these two nodes then gets type <e>. Meanwhile
the Az.\y.v|lose,qs @ y has two allowable types based on the v, tag, <e,t>
and <e, <e,t>>. Only the latter is compatible with it having two lambda
binders, so the former is discarded. Together with its sibling <e> node, this
gives its parent type <e,t>. Finally, together with its sibling, which is the
leftmost leaf that has the tag ‘pro:per’ and so gets the semantic type <e>,
these give the parent, which is the root node, type <t>. For all of these
nodes, the semantic type is compatible with number of lambda binders and
the CCG category, therefore the tree is used for training.

The total probability for this tree and leaves given the root LF is then
computed by multiplying all the above probabilities:

0.388 x 0.738 x .66 x .327 x .912 x .549 x .961 x .012 x .862x%
x.261 x .994 x .999 x .486 x .95 x .994, x1.0 x .015 x .973 = 5.281e — 7.

Given that we observe the leaves, we condition on this event by diving
by the sum of the probabilities of all elements of 7. Here, that sum turns
out to be 5.888¢ — 7, so the conditional probability for the tree in Figure 3 is

5.281le — 7

FRR8e ~ 0.896.
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ROOT— 0.388 S

/255
NP S\
0.738 /549\
S\NP/ NP
0.989 2
0.66
NP/ N

0-961 0.994 0.994
0.999 1.0
entity AX.Ay.vconst y X }\x.qulant X nolun
0.3|2? 0.0|12 0.4|86 0.0:15
pro:pelzr|you Ax.hy.v“osle—past VX )\x.det:lart|a X n|pénci|
0.9|12 0.8|62 0.*|_=35 0.9|73
ycluu Iolst ila per|'|ci|

Figure 3: One of the parses considered by the learner for this example. Lambdas are
written L and variables are numbers O, ... ,.

Thus, in the Dirichlet processes that are used to make all model predic-
tions, we update the counts of the co-occurrences in this tree by 0.896. An
example of a co-occurrence in this tree is of the LF youyre.per With the word
span “you”. This is shown in the bottom left of Figure 3. The number of
‘times’ Youyro:per has been observed to co-occurr with “you” is increased by
0.896.

This same procedure is repeated for every element of 7. In practice, for

the corpora we use, this is generally 50 — 100 trees.

3. Results

3.1. Datasets

In addition to the straightforward SVO examples in Figures 1 and 2, the
LF's can express more complex syntactic features such as modals, negation,
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utterance ‘ LF

they 're in the drawer upstairs (upstairs (in (the drawer) they))
penguins can’t fly (—can (fly penguing)
what are you giving them for dinner ? | Awh.for dinner (giving you wh them)
get a kleenex and wipe your mouth | get _ (a kleenex)&wipe _ (your mouth)

Table 1: Examples of more complex LFs that appear in our datasets.

prepositional phrases, and relative clauses. Table 1 shows some more complex
examples. Further detailed examples can be found in Szubert et al. (2024),
as well as full details of the process by which they were produced, and the
rationale behind the various design choices involved in this production.

We post-process this data to exclude words that serve only as discourse
markers and do not appear in the LFs or receive the CHILDES part-of-
speech tag ‘co’, meaning ‘communicator’, which includes most instances of
words like ‘so’, ‘well” and the child’s name. This results in 19314 tokens and
5320 utterances for Adam (English) and 6187 tokens and 3295 utterances for
Hagar (Hebrew). As each data point contains exactly one utterance (as well
as the corresponding LF), these are also the numbers of data points in each
dataset.

3.2. Word Order

Following the procedure of Abend et al. (2017), we measure the acquisi-
tion of grammar and lexicon by examining the model’s implicit word order
parameters as a proxy. The degree to which the model favours each of the
six possible word orders is determined by (a) the probability it assigns to
the two CCG splits that are necessary to parse a simple transitive sentence
under that order, and (b) the probability it assigns to the respective order
in which the subject and object combine with the verb under that order. We
assume that the verb-medial orders, SVO and OVS, must combine with the
object first, so the six different possibilities are measured as follows:

11



p(SOV) =
pe((NP, S\NP)|S)p; (NP, S\NP\NP)|S\NP)pp,(Az.\y.vconst y z|(S\NP\NP))

p(SVO) =
pe((NP, S\NP)|S)p;((S\NP/NP, NP)|(S\NP))pp,(Ax.\y.vconst y z|(S\NP/NP))

p(VSO) :=
p((S/NP, NP)|S)p((S/NP/NP, NP)|S/NP)pp, (Ax.\y.vconst x y|(S/NP/NP))

p(OSV) :=
pe((NP, S\NP)|S)p;((NP, S\NP\NP)|S\NP)pp, (Ax.Ay.vconst x y|(S\NP\NP))

p(OVS) =
p((S/NP, NP)|S)p;((NP, S/NP\NP)|(S/NP))pp(Ax.\y.vconst y z|S/NP \NP)

p(VOS) =
p((S/NP, NP)|S)p:((S/NP/NP, NP)|S/NP)pp(Ax.Ay.vconst y x|(S/NP/NP)) .

So, for example, the probability of SOV is product of the probability of split-
ting an S into NP and S\ N P, the probability of further splitting the result-
ing S\NP into NP and S\NP\N P, and the probability of this S\ NP\N P
node having a logical form that takes two arguments and places the first in
the object position and the second in subject position. (We use the conven-
tion that the argument immediately to the right of the verb is the subject.)
The third term is what distinguishes p(SOV) from p(OSV).

Figures 4 and 5 take the relative values of these six scores, by normalizing
so they sum to 1, and show how the above measure of word order preference
changes over the course of training, for Adam (English) and Hagar (Hebrew)
respectively. In both cases, the model succeeds in learning the correct SVO
order, but this is faster and more extreme in Adam (English). In Hagar
(Hebrew), the learning curve also appears somewhat step-shaped, with the
SVO probability jumping up at a number of points, rather than increasing
smoothly.

We hypothesize that, when learning an ordered category for an unknown
word such as a transitive verb, the majority of early learning takes place in
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Word Order Probs Adam
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Figure 4: Evolution, over the course of training, of the learner’s preference for each of the
six possible word orders on Adam (English). It learns rapidly and confidently to favour

SVO.

13



Word Order Probs Hagar
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Figure 5: Evolution, over the course of training, of the learner’s preference for each of the
six possible word orders on Hagar (Hebrew). It learns SVO confidently, but more gradually
than on Adam (English), and there are visible jumps where the learner encountered data
points that were key for syntax learning.
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. total num. percentage Zipf

dataset num. critical examples word repeats | new words | coefficient
Adam (English) 391 13744 7.99 1.436
Hagar (Hebrew) 14 3880 21.94 1.566

Table 2: Comparison of the diversity of words forms between the two datasets.

a small number of critical examples in which the phenomenon in question is
clearly attested, and the child has already learned all the other words. In
this case, we should therefore expect a noticeable rise in the probability of
the correct order (SVO) on data points which (a) include a transitive mean-
ing representation, (b) have no complicating features such as prepositional
phrases, adverbials, reduplication or repetition, and (c) contain only words
that the child has already encountered on previous data points. Tracking
the number of such points, we find that there are 391 for Adam and 14 for
Hagar. In Figure 7, we plot learning over just the first 365 points of Adam, as
that also gives exactly 14 critical examples. Comparing Figure 5 (full Hagar
dataset) and Figure 7 (first 365 data points of Adam), which both contain
the same number of critical examples, we see that they both produce roughly
the same shaped learning curves.

The apparent difference in the number of critical examples between Adam
and Hagar is explained in part by the fact that the richer morphology leads to
more diverse word forms and hence fewer examples when all words have been
previously seen. This is measured explicitly, in various ways, in Table 2. As
well as the count of critical examples, it shows (column 2) the total number
of times any word repeats (column 2), the percentage of all words in all
utterances that have not been seen before (column 3), and the Zipf coefficient
(column 4).? For all four measures, we can see that Hagar (Hebrew) has more
unseen words. Figure 6 evinces the same property graphically, by plotting
the number of unique tokens (types) encountered as a function of the total

2The Zipfian distribution, which intuitively expresses that a small number of words
account for the majority of word occurrences, with a long sparse tail of rare words, has
been observed to well-model many corpora, including child-directed speech (CDS) (Lavi-
Rotbain and Arnon, 2023). Formally, the occurrence frequency of the nth most common
word is of the form f, = ﬁ, where a and b are corpus-specific parameters, with a
indicating the degree of sparsity and b determining the y-intercept. The Zipf coefficient

we report is the a-parameter after fitting a function of this form to predict f, from n.
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Figure 6: The number of unique types encountered throughout training. Hagar encounters
more types for the same number of tokens, consistent with a greater diversity of word forms.

number of tokens encountered. That is, the plot passes through point (z,y) if
and only if, after having seen exactly x tokens, the model has seen exactly y
unique tokens. The steeper rise for Hagar (Hebrew) shows that it encounters
more unseen word forms.

As well as the greater diversity of word forms, the less smooth learning
curve for Hagar (Hebrew) in Figure 5 is also an artefact of the fact that
we have chosen, following Abend et al. (2017), to report the measurement of
SVO described in Section 3.2 as a proxy for degree of learning of the grammar
as a whole. Although Hebrew is classified as an SVO language, like English,
this proxy gives a misleading impression of the course of learning

Firstly, in English, adjective predication (“that’s dangerous”) and state-
ments of membership (“he’s a man”) and identity (“that’s Daddy”) use a
copula, providing evidence for SVO structure. The LFs for these sentences
are ‘hasproperty(that,dangerous)’, ‘equals(that, (a man))’ and ‘equals(that,
Daddy)’, respectively, so the model can easily learn that two meaning repre-
sentations for ‘is” are ‘lambda x.lambda y.hasproperty y x’ ‘lambda x.lambda
y.equals y x’. Hebrew, on the other hand, expresses these meanings without
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copulae. For example: “ at mecunenet”literally “you sick”, or “ze cnon-
14”7, meaning “this is a small radish”-literally “this small-radish”. Copular
sentences are highly frequent in both corpora.

Relatedly, many examples in the Hagar corpus are one- or two-word ut-
terances, 73.9% vs 15.2% for Adam and, of course, sentences of fewer than
3 words cannot exhibit full SVO structure. The most common utterance in
Hagar is “nakon”, meaning “right/correct”, which alone accounts for 10.2%
of utterances. Finally, Adam is a larger dataset: 5320 vs 3295 data points.

We stress that these differences are not evidence for Hebrew being more
difficult to learn in general than English. They mean only that the specific
feature of SVO order that we are using as a proxy for overall learning is
more strongly attested in English than Hebrew, as the two languages are
represented in our datasets of Adam and Hagar. This is consistent with
the idea Hebrew is, compared with languages such as English, less strongly
committed to SVO structure Doron (2000).

3.3. Word Meaning and Syntactic Category

Going beyond this emergent favouring of SVO word order, what we are
ultimately interested in learning is the lexicon, which relates words to pairs
of syntactic categories and meaning representations. To evaluate this, we
measure the model’s prediction for logical form and syntactic category. For
each dataset, we select the 50 most common words, and annotate them with
a ground-truth logical form and syntactic category. The full CCG lexicon
could contain many possibilities for each word, but we restrict to those that
are attested in our corpora. See appendix for full list.

We then extract a predicted logical form m’ for each word x as follows:

P P
m' =argmax P(m|r) = argmax W = argmax P(z|m)P(m) ~
m m €T m
~ argmax py (2lm)py (m) = argmax py(z, m) (4)

where the last quantity is determined by a Dirichlet process and so can be
approximated by the observed number of times that w and m co-occur (recall
this is in fact the sum of the expected values of their co-occurrence across all
data points).

Similarly, we extract a predicted syntactic category for each word as
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Figure 7: Zoomed in version of the first 365 data points in Adam (English), which contains
the same number of critical examples as the full Hagar (Hebrew) dataset. The overall shape
is similar to that of Hagar (Hebrew).
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Corpus ‘ meaning correct ‘ syntactic category correct ‘ both correct

Adam (English) 100% 76% 76%
Hagar (Hebrew) 100% 46% 34%

Table 3: Accuracy of the learned word meanings and syntactic categories on the fifty most
common words, with respect to the manually annotated ground truth.

follows:
P
s’ =argmax P(s|r) = argmax (x}|)s() ) (5) = argmax P(z|s)P(s) =
s s x s
—argmax » > P(z,m,e[s)P(s) = Y > pu(@m)pi(m|h)pu(e|s)psyn(s)

(5)

and again, the last quantity can be computed straightforwardly, this time as
a product of terms from each of the model‘s Dirichlet processes.

Table 3 reports the percentage of points for which the predicted meaning
representation, as per (4) and the predicted syntactic category, as per (5)
agree with the manually annotated ground truth. For both datasets, the
model achieves 100% on the meaning representation, meaning it pairs every
word with the correct logical form. The syntactic category accuracy is lower,
76% for Adam (English) and 46% for Hagar (Hebrew)3. This reflects the fact
that the process of extracting the syntactic category is more involved than
that for meaning. The reason the model can predict the correct meaning but
the wrong syntactic category is that it first predicts a distribution over the
former, and then uses this distribution to predict the latter, as in (5). If the
model’s prediction goes wrong at the second stage, then the meaning will be
correctly predicted but the syntactic category will not.*

3Note that the accuracy for both can be lower than that for syntactic category, even
with 100% meaning accuracy. This is because it is possible for the model to get both
syntactic category and meaning right, but not get the pair right, for example, if it predicts
‘NP: A\z.run 2’, then it is mixing up the syntactic category for run (noun) with the meaning
representation for run (verb).

4In future work we plan to evaluate the course of learning more fully as the acquisition
as a grammar and parsing model, incrementally training on weeks 1,...,n and testing on
week n + 1, using precision and recall of meaning representations as a measure, following
Kwiatkowski et al. (2012).
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3.4. Distractor Settings

To test the robustness of word-order learning to noise, we follow Abend
et al. and consider a setting in which an utterance is paired not with a single
logical form representing its meaning, but with multiple logical forms, only
one of which represents its true meaning. The learner is then free to consider
any of these LFs as the meaning of the utterance. Formally, what this means
is that parse trees are computed for each of these LFs, and all of them are
placed in the set 7. Then, when calculating the Bayesian posterior, as per
(3), the denominator is larger, so the probability on any given tree is smaller,
as compared to the no-distractor setting.

This makes learning more difficult, and simulates the fact that there
may be some uncertainty for the child as to the meaning a given utterance
represents. When there is a single tree that the model is very confident
in, then the probability from this tree dominates anyway, and overall there
is little effect from the distractor trees. However, when there is no such
single confident interpretation, the distractor trees significantly reduce the
probability on the trees from the correct LF, including the correct tree, and
so dilute the learning effect.

The other, distractor, logical forms are taken from the utterances im-
mediately following and preceding the given utterance. Specifically, the n
distractor setting takes the |n/2| previous examples and the [n/2] following
examples.

For example, in Adam, data points 226-228 are as follows:

Data point 226: “you blow it”"—blow you it

Data point 227: “you can blow”—can (blow you)

Data point 228: “you do it"—do you it

Thus, in the two distractor setting, when training on data point 227, we
include the parse trees from all three of these LFs. In this case, one possible
interpretation takes the LF from data point 226-blow(you,it)—and interprets
“you” as meaning pro:per|you, “can” as meaning pro:per|it, “blow” as mean-
ing Az. A\y.v|blow y z, and the sentence as being in SOV order. However,
by this stage in training, the model has already learnt to place very little
probability on the splits required for SOV, in particular splitting S\NP as
NP + S\NP\NP, so this incorrect interpretation has a small probability and
doesn’t affect training much.

As shown in Figure 8, for Adam (English), the learner is still capable of
learning the correct SVO order in all distractor settings. This is an improve-
ment upon the version in Abend et al. (2017), where dealing with distractor
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Figure 8: Word-order learning in Adam (English) with different numbers of distractor
logical forms. More distractors slightly slows down learning, but the model still succeeds
in confidently learning SVO.
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Figure 9: Word-order learning in Hagar (Hebrew) with two distractor logical forms. This
prevents the learner from settling on SVO order, which does not rise to high probability
and is only very marginally favoured over two of the other five orders.

settings required the introduction of an extra ‘learning rate’ parameter, that
had to be set to different values for different numbers of distractors. In Ap-
pendix Appendix E, we present results for higher numbers of distractors,
and show that, on Adam, the learner can handle up to 12 before performance
starts to substantially degrade.

For Hagar (Hebrew), however, as shown in Figure 9, the model is not
yet able to handle the distractor settings and fails to learn SVO. This fits
with the picture, outlined above, that word-order is learnt correctly on Hagar
(Hebrew), though currently not with as much confidence or robustness as on
Adam (English).

Table 4 shows the performance in the distractor settings in terms of word
meaning and syntactic category accuracy, as presented in Section 3.3. For
both corpora, the accuracy drops as the number of distractors increases.
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Corpus meaning correct | syntactic category correct | both correct

Adam (English) 100% 76% 76%

0 distractors

Adam (English) 92% 62% 56%

2 distractors

Adam (English)

4 distractors 88% 42% %

Adam (English) 78Y% 32% 28%
6 distractors

Hagar (Hebrew) 100% 46% 34%
0 distractors

Hagar (Hebrew) 36% 36% 36%

2 distractors

Table 4: Extension of Table 3: word meaning and syntactic category accuracy in distractor
settings.

Notably, the difference between the two corpora is much less striking than
for word order learning: Adam (English) with six distractors is comparable
to Hagar (Hebrew) with two distractors for word meaning and syntactic
category learning, but, as seen by comparing Figures 8 and 9, it is much
more successful at the presented measure of word order learning. This again
suggests that the difference between Figures 8 and 9 is largely a result of
SVO order (as it is measured here and in Abend et al. (2017)) being especially
strongly attested in English, rather than the learner failing to acquire Hebrew
in general.

4. Discussion

Our approach differs theoretically from other recent approaches to lan-
guage acquisition. Ambridge (2020) argues that language acquisition can
be understood purely based on the recall of all past occasions on which an
utterance was used. This is claimed to adequately account for a range of
linguistic phenomena without recourse to syntactic or semantic abstractions.
Our model, on the other hand, uses abstractions in the form of lexical en-
tries for words, and combinatory CCG rules. Chater and Christiansen (2018)
treat language acquisition as the learning of a perceptuo-motor skill. One
point of emphasis for Chater and Christiansen (2018) is the fact that much
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relevant information to language learning is forgotten quickly, necessitating
that learning occurs rapidly and in real-time (in this sense, the polar oppo-
site of Ambridge (2020)). Another point of emphasis is the social context
in which the child hears the utterance. We account for the first point by
training on each example only once, one at a time, in the order they appear
to the child. Pragmatic context is not currently represented in our input to
the learner.

We also differ from these works in that ours is not purely theoretical but
is based on a working model. An earlier work, Regier (2005) proposes a
programmable model whose framework is similar to the theoretical account
of Ambridge (2020). The data consists of utterances paired with manually
created binary strings, where each bit indicates the presence or absence of
a syntactic feature. Yang et al. (2002) proposes a probabilistic language ac-
quisition model that assumes that the child begins with access to all possible
grammars, which can be specified by a finite set of parameters, i.e. the prin-
ciples and parameters framework (Chomsky, 1981; Hyams, 1986). It then
learns to place more weight on those grammars that successfully parse ob-
served sentences. This differs from our model, which acquires a statisical
model of language-specific syntax, lexicon and logical form simultaneously
by semantic bootstrapping from utterance meaning representations.

In the realm of word learning from speech, Résénen and Khorrami (2019)
presents a model for early word learning from real multimodal data, testing
on English only.

Some neural bilingual CLA models have been proposed, which mostly
focus on word-meaning learning, and do not attempt the more difficult task
of learning from complete sentences. Li and Xu (2022) provide a summary
of recent neural models for the related task of learning two languages simul-
taneously. The present study is, to our knowledge, the first cross-language
evaluation of a computational semantic-bootstrapping model of how a child
acquires language syntax and semantics.

As evidenced by our results, taking a model originally designed in the
context of one language, and testing it on another, can reveal shortcomings
which were obscured by the peculiarities of the first language. The main in-
stance of this is the failure of the model to recognize similarities between word
forms, which showed up in the learning of syntactic categories for individual
words. There is a significantly lower accuracy in predicting Hebrew syntactic
categories than English, though the predictions are still often correct. Fur-
ther analysis reveals the lower accuracy to be largely due to Hebrew*s richer
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morphology producing a greater diversity of word forms. The model does not
recognize these different forms as bearing any similarity, and instead, must
learn each independently. This means it encounters fewer utterances where
it already knows all word meanings and on the basis of which it can learn
syntactic structure.

Testing on a second language also shows which aspects of the model
are robust. In our case, the learning of word meanings transfers with high
accuracy. Given that it was originally designed when only English data was
available, and originally tested on only English data, this is a significant
strength of the model. The learning of word order lies somewhere between
the very successful learning of word meaning, and the less accurate learning
of word syntactic category. The model does still confidently learn the correct
SVO dominant order, but it is less robust to noise in the logical forms, and
has a more jagged learning curve, and lower final confidence in SVO. This
lower performance is noteworthy, but not insurmountable. Although Hebrew
morphology is more complex than English, it has been shown to be learnable,
by e.g. Goldberg and Elhadad (2013).

Hebrew is a suitable language to use as a first comparison to English,
because the two have many, but not all, features in common.

5. Limitations

One limitation of our learner is that it does not model anything below
the token level, the tokens being taken from the data of Szubert et al. (2024),
which in turn took them from the CHILDES parses. The issue highlighted
above of the sparsity of word forms suggests a future extension to allow it to
guess a meaning for new words if they are similar in form to familiar words.
This requires it to learn some internal structure to these tokens in virtue
of which they can be similar or dissimilar to one another. One way to do
this would be by explicitly adding morphology, and allowing the parse tree
to extend not to word boundaries but to morpheme boundaries. Another
option would be to add a neural word predictor. A character-level language
model could be used to produce vectors for each word that depend on their
structure, which could then be fed into a multi-layer perception. Different
inflected forms of the same root should then have a similar word vector
and so a similar predicted meaning. Note, this approach does not mean
a replacement of anything that is currently in the model, it would model
only morphology, not syntax or semantics. It may require more data but
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potentially be more robust to the variety of inflected forms. Either of these
additions could be learned independently of the model described here or in
conjunction.

This need for the learner to discern a similarity between different inflected
forms is obscured by the very sparse morphology in English. Different the-
matic roles for the same word or nominal phrase are not distinguished by
morphological case as they are in Hebrew, so the model does not need to
treat them as separate lexical entries. This further highlights the value of
testing computational CLA models on multiple languages, and future work
includes testing on further languages in addition to English and Hebrew.

Another limitation concerns our method of evaluating our model. Mea-
suring the relative preference for different word orders allows comparison with
Abend et al. (2017), but could give a misleading result in certain contexts
where the correct analysis is a non-standard word order, e.g. in topicaliza-
tion. In future, we hope to adopt a richer and more diverse evaluation suite,
including measuring the fraction of test utterances with the correct inferred
root LF and parse tree.

Thirdly, a more thorough evaluation of our learner involves testing on a
more diverse set of languages, with larger and more comparable corpora. In
contrast to the two corpora we use here, which differ in the number of tokens
and utterances. It would also be interesting to compare different corpora for
different children within the same language.

6. Conclusion

This paper reimplemented a recent computational model for child lan-
guage acquisition, based on semantic bootstrapping, which learns from real
transcribed child-directed utterances paired with annotated logical forms as
meaning representations. We replicated the original results from this model
on English, and performed the same evaluation on Hebrew. The results show
that the ability of the model generally transfers well to a new language, but
its learning on Hebrew is slower and less robust than on English. Further
analysis reveals this, not surprisingly, to be due in large part to the richer
morphology in Hebrew producing a more diverse set of word forms. Future
work includes the extension of the model to detect and leverage similarities
between word forms, application to other languages, and testing on corpora
with equal numbers of utterances and tokens.
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Appendix A. Conversion from CHILDES POS Tags to Shell LF
Terms

As described in Section 2.3, we use the CHILDES part of speech tags,
which are included in the logical forms of Szubert et al. (2024), to choose
the marking on the constant in the shell logical form. Table A.5 gives full
correspondence. In the main text in Section 3.2, we indicated the marking
with the first letter of the right column, e.g. ‘verb’ gives ‘vconst’.

Appendix B. Mapping from CHILDES POS Tags to Montagovian
Semantic Types

Table B.6 shows how we infer the Montagovian semantic type from the
CHILDES POS tags that are available in our LFs. Some are defined schemat-
ically, the avoid overly long expressions. For example, the category for con-
junctions (conj) and coordinations (coord) are use the variable X to stand
for any other semantic category. The reason the mapping from tags to se-
mantic types is many-to-one is that this allows learning to be shared across
categories. For example, if the model learns that the general category ‘det’
precedes nouns, it knows that this is true for all types of determiners, whereas
if we distinguish between ‘det:art’, ‘det:poss’, ‘det:num’ etc., then it has to
learn this separately for each.

Appendix C. Zipf Plots for Adam (English) and Hagar (Hebrew)

Section 3.2 reported the Zipf coefficient for the Adam (English) and Hagar
(Hebrew) corpora. Here, Figure C.10 plots the word frequency against rank,
both as observed in the data and as predicted by the fit Zipf function.
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Table A.5: Our mapping from CHILDES part of speech tags of terms in the logical form
to the marking on the constant in the corresponding shell logical form.

CHILDES TAG

const marking in shell LF

adj

adv
adv:int
adv:tem
aux

conj
coord
cop

det
det:art
det:dem
det:int
det:num
det:poss
mod
mod:aux
n

n:pt
n:gerund
n:let
n:prop
neg

prep
pro:dem
pro:indef
pro:int
pro:obj
pro:per
pro:poss
pro:refl
pro:sub
qn

v

adj
adv
adv
adv
aux
connect
connect
cop
quant
quant
quant
quant
quant
quant
raise
quant
noun
noun
entity
entity
entity
neg
prep
entity
entity
WH
entity
entity
quant
entity
entity
quant
verb
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Table B.6: Our mapping from CHILDES part of speech tags of terms in the logical form
to Montagovian semantic types.

CHILDES TAG

const marking in shell LF

adj

adv
adv:int
adv:tem
aux

conj
coord
cop

det
det:art
det:dem
det:int
det:num
det:poss
mod
mod:aux
n

n:pt
n:gerund
n:let
n:prop
neg
prep
pro:dem
pro:indef
pro:int
pro:obj
pro:per
pro:poss
pro:refl
pro:sub
qn

v

<<et>,<et>>
not considered

not considered

not considered

not considered
<X, <X, X>>

<X, [<X,X>>
handled separately
<<et>,e>
<<et>,e>
<<et>,e>
<<et>,e>
<<et>,e>
<<et>,e>
<<<et>,<et>> <et>>
<<et>.e>

<e,t>

<e,t>

e

e

e

<<e,<et>> <e,<et>>>, <<et>,<et>> tt
prep

® ® @& D O

<e,t>

e

e

<e,t>

<e,<e,t>>, <et>
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Appendix D. Logical Form and Semantic Category Accuracy by
Word

Here we our ground truth annotation, and the learners’ predictions, for
each of the fifty most common words. The accuracy scores reported in Table
3 refer to the fraction of these words for which the prediction agrees with the
the ground trtuh annotation.

Appendiz D.1. Manually Annotated Lexicon for Fifty Most Common Words

This section shows the ground-truth logical form meaning representa-
tion and CCG syntactic category for the fifty most common words in each
dataset. As described in Section 3.3, these are used to evaluate the learner’s
ability to acquire the correct lexicon. Note, the LFs that appeared in the
main paper were abbreviated for clarity. Here, we write the full LF, includ-
ing the CHILDES part of speech tag. The full lexical entry is of the form
<LF> || <syntactic-category>. Where a word has two common meanings,
we include two different lexical entries, separated with a comma.

Adam

'11: x. y.mod|~will (x y) || S\\NP/(S\\NP)

're: x. y.vl|hasproperty y x || S\\NP/NP, x. y.vlequals y x || S\\NP/NP

's: x. y.vlequals y x || S\\NP/NP, x. y.v|hasproperty y x || S\\NP/NP
Adam:n:propladam || NP

I:pro:subli || NP

a: x.det:artla x || NP/N

an: x.det:artla x || NP/N

another: x.qnl|another x || NP/N

are: x. y.vlequals x y || S\\NP/NP, x. y.vl|hasproperty y x || S\\NP/NP
break: x. y.vlbreak y x || S\\NP/NP

can: x. y.mod|can (x y) || S\\NP/(S\\NP), x. y.modlcan (x y) || S/NP/(S\\NP)
d: x. y.modldo (x y) || S\\NP/(S\\NP), x. y.modldo (x y) || S/NP/(S\\NP)
did: x. y.modldo-past (x y) || S/NP, x. y.modl|do-past (x y) || S/NP/(S\\NP)
do: x. y.vldo y x || S\\NP/NP, x. y.modldo (x y) || S/NP/(S\\NP)

does: x. y.mod|do-3s (y x) || S\\NP/(S\\NP), x. y.mod|do-3s (x y) || S/NP/(S\\NP)
dropped: x. y.vl|drop-past y x || S\\NP/NP

have: x. y.vlhave y x || S\\NP/NP

he:pro:sublhe || NP

his: =x.det:possl|his x || NP/N,pro:poss|his || NP

hurt: x. y.vl|hurt-zero y x || S\\NP/NP

in: x. y.preplin (y x) || S\\NP\\(S\\NP)/NP, x.preplin x || S/S

is: x. y.vlequals x y || S\\NP/NP, x. y.vl|hasproperty y x || S\\NP/NP
it:pro:per|it || NP
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like: x. y.vllike y x || S\\NP/NP

lost: x. y.v|lose-past y x || S\\NP/NP

may: x. y.modlmay (x y) || S\\NP/(S\\NP)

missed: x.v|miss-past x || S\\NP, x. y.v|miss-past y x || S\\NP/NP
my: x.det:possimy x || NP/N

name:n|name || N

need: x. y.vlneed y x || S\\NP/NP

no: x.qnlno x || NP/N

not: x. y.not (x y) || S\\NP/(S\\NP)\(S\\NP/(S\\NP))
on: x.preplon x || S\\NP\\(S\\NP)/NP
one:pro:indef|one || NP

pencil:n|pencil || N

say: x. y.vlsay y x || S\\NP/NP

see: x. y.vlsee y x || S\\NP/NP

shall: x. y.modl|shall (x y) || S\\NP/(S\\NP)

some: x.qn|some x || NP/N

that:pro:dem|that || NP, x.pro:det|that x || NP/N
the: x.det:art|the x || NP/N

they:pro:sublthey || NP

this:pro:dem|this || NP, x.pro:det|this x || NP/N
those:pro:dem|those || NP, x.pro:det|those x || NP/N
was: x. y.vlequals x y || S\\NP/NP, x. y.vlhasproperty y x || S\\NP/NP
we:pro:sublwe || NP

what:pro:int |WHAT || Swhq/Sq/NP,pro:int|WHAT || NP
who:pro:int|WHO || Swhq/Sq/NP,pro:int|WHO || NP
you:pro:per|you || NP

your: x.det:poss|your x || NP/N

Hagar

nakon:adv|nakon || S

ze: x.v|hasproperty pro:dem|ze x || NP

at:pro:per| at || NP

ken:advlken || S

ha: x.detlha x || NP/N

hu :pro:perlhu || NP

lo: x. y.not (x y) [l S\\NP/(S\\NP)\(S\\NP/(S\\NP))

b i:v|ba you || S

roca: x. y.vlraca y x || S\\NP/NP
ani:pro:per| ani || NP

aba :n:propl| @ba || NP
gxi:vllagax you || S

od: x.qn| od x || NP/N
taIm:adjltaim || S

roa: x.vlraa x || S\\NP

tistaklI:v|histakeél you || S
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le: x.preplle x || S\\NP

hi :pro:perlhi || NP

gamarnu:v|gamar you || S
hem:pro:per|hem || NP

nafal: x.v|nafal x || S\\NP
texapsi:v|xipés you || S
kaxol:adjlkaxol || S

zo t:pro:dem|zot || NP

lehitra ot:vl|hitraa you || S
tir1:vlrad you || S

betuxa: x.v|hasproperty x adjlbat@ax || S\\NP
qar:adjlqgar || S

Ima :n:prop| Ima || NP

oger:adjl oqer || S

halak: x.vlhalak x || S\\NP
glida:n|glida || N,nlglida-BARE || NP
xam:adjlxam || S

eyn:v| eyn you || S\\NP

boké: x.v|baka x || S\\NP
yalda:n|y&led || N,n|yéled-BARE || NP
gvina:n|gvina || N,n|gvina-BARE || NP
tisperi:v|safar you || S
tarnegol:n|tarnegdl || N,n|tarnegdl-BARE || NP
yes: x.vlyed x || S\\NP

aval: x. y.v|hasproperty x y || S\\NP/NP
or:n| or-BARE || NP

ricpa:n|ricpa || N,nlricpa-BARE || NP
yéled:adjly&led || N/N

al: x.prepl al x || S\\NP

adom:adjl adom || S

tagidi:v|higid you || S

tasiri:v|8ar you || S

cahov:adjlcahov || S

Salom:n|8aldm || N

,n|8alom-BARE || NP

Appendixz D.2. Model Predictions

Tables D.7 and D.8 show the model predictions for Adam (English) and Hagar (He-
brew) respectively. In the interests of readability, we show only those words for which
the predictions are not correct, either for the LF or for the syntactic category. For those
words which are correctly predicted for both, the model predictions can be read off the
ground-truth annotations, as provided in Section Appendix D.1.
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pred LF pred syncat LF correct syncat correct

il Az Ay.mod| will (z y) NP True False
can Az.Ay.Q (mod|can (z y)) NP True False
d Az Ay.Q (mod|do (x y)) NP True False
did Az.Ay.Q (mod|do-past (z y)) S\NP True False
does Az Ay.Q (mod|do-3s (y x)) NP True False
in Az.prep|in NP/N True False
like Az Ay.v|like y x NP True False
may Az Ay.mod|may (z y) NP True False
missed Az.v|miss-past x NP True False
not Az.Ay.not (z y) S\NP/NP True False
on Az.preplon z S\NP True False
shall  Az.A\y.Q (mod|shall (z y)) NP True False

Table D.7: List of all incorrect model LF and syntactic category predictions for English.

Appendix E. Plots of Higher Numbers of Distractors

In Section 3.4, we following Abend et al. (2017) in reporting the trend of word-order
learning in settings with 2, 4 and 6 distractor settings for English (for us, this is the Adam
corpus, for Abend et al., this was the Eve corpus. For Hagar (Hebrew), we reported just 2
distractors, because already this was too much for the model to learn word order effectively,
for the reasons discussed in Section 3.4. Here, we report high number of distractors for
Adam: 8, 10 and 12, which shows further robustness to noise in the LFs when learning
English word order. For 8 and 10 distractors, SVO is still learnt confidently and relatively
smoothly. For 12 distractors, it takes much longer before SVO starts to dominate, but
by the end, the learner has still quite firmly acquired SVO. Note that the differences in
relative probability between the six orders are more significant towards the end of training,
because by that time that model has seen more data and so it would take more data again
for it to change its mind. Formally, the denominators in the Dirichlet processes have
become large. Therefore, the spike of SVO at the end is more significant than the spike
of OSV at the beginning.

Appendix F. Plots vs Number of Tokens

Because the average number of tokens differs between the two corpora, one may also
want to consider how learning develops as a function of the number of tokens seen rather
than the number of utterances. This is shown in Figure F.12.
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pred LF pred syncat LF correct syncat correct

nakon adv|nakon NP/N True False
ken adv|ken NP/N True False
lo Az Ay.not (x y) NP True False
bo i vlba you NP True False
roca Az Ay.Q (vlraca y x) Sq\NP True False
qxi v|lagax you NP True False
ta Im adj|ta 1m NP True False
10 & Ar.Q (viraa x) Sq\NP True False
tistakll  v|histakel you NP True False
gamarnu  Q (v|gamar you) NP True False
nafal Az.Q (v|nafal x) Sq\NP True False
texapsi  v|xipés you NP True False
kaxol adj|kaxol NP True False
lehitra 6t  v|hitra a you NP True False
tir T v|ra a you NP True False
betuxa Az.Q (v|hasproperty x adj|batuax) Sq\NP True False
gar adj|gar NP True False
oqer adj| oger NP True False
ghda n|glda NP True True
xam adj|xam S/S True False
boke Az.Q (v|baka x) Sq\NP True False
yalda n|yeled NP True True
gvina Q (n|gvina) NP True True
tispert v|safar you NP True False
tarnegol  n|tarnegol NP True True
aval Az.\y.v|hasproperty = y NP True False
ricpa n|ricpa NP True True
yeled adj|yeled NP True False
adom adj| adom NP True False
tagidi v|higid you NP True False
tasiri v|8ar you NP True False
cahov adj|cahov NP True False
salom n|salom NP True True

Table D.8: List of all incorrect model LF and syntactic category predictions for English.
Again note that, as we evaluate here, the model can get both LF and syntactic category
correct individually but still get the overall prediction wrong if the two do not match.
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Figure E.11: Word-order learning in Adam (English) with higher numbers of distractor
logical forms.



Word Order Probs Adam vs Num Tokens

1.0
— S50V
PJI/’—'-/_—L‘- — SVO
— V50
0.8 | Vos
asv
é\ — OVS
5 0.6
1+
=]
2
o
g
5 0.4 4
m
T
x
0.2 A
| ——
0.0 —
T T T T T T T T
0 2500 5000 7500 10000 12500 15000 17500
Num Training Points
Word Order Probs Hagar vs Num Tokens
1.0 4
0.8
ey
2 0.6
=]
2
o
g
= 0.4 1
m
T
o
0.2
0.0 A

T T T T T
0 2000 4000 6000 8000 10000
Num Training Points

Figure F.12: Plot of the relative probability of the six word orders as a function of the
number of tokens the model as seen during training.

40



