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I: Prologue: Why Use CCG for NLP?
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Prologue: The Long Tail and the Uncanny Valley

• Zipf’s Law:
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• The Uncanny Valley:
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ng

Frequency Rank

Z Ignoring the long tail can engender the uncanny:
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In the Uncanny Valley

• TREC 2005:

Q77.6 Name opponents who Foreman defeated.

Q77.7 Name opponents who defeated Foreman.

• A QA Program (Kor 2005):

Opponents who

Foreman defeated:

George Foreman

Joe Frazier

Ken Norton

Sonny

Archie Moore

Opponents who

defeated Foreman:

George Foreman

Joe Frazier

Ken Norton

Sonny

Archie Moore
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The Problem

• The contribution of certain constructions to determining system acceptability

is disproportionate to their low frequency.

• This is bad news.

Z Machine learning is very bad at acquiring systems for which important

information is in rare events.
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The Darkling Plain
Z If the distribution of event types really is a power law curve, then there is no

other sideto the Uncanny Valley.

Rank

Li
ki

ng

• We shall see that, for certain categories of parser error, upto half the error rate
is due to unseen grammatical event types (such as lexical entries), and up to
half is due to unseen model tokens for seen types (such as headword
dependencies).

• So the long tail is already hurting us badly.

• What to do?
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What To Do

• The distribution of grammatical event typesisn’t a true power law, because

there is a finite number of them, defined generatively, ultimately by a

universal semantics.

• In principle, we can enumerate the types.

Z But there aremore constructions than you can shake a stick at(Goldberg

1995)

• Induce them from labeled data. (Or get linguists to enumerate them).

• If we knew what that semantics was, we might be able to solve the model

problem as well.

Z But none of the existing logicist semantic formalisms will do (MacCartney

and Manning 2007).
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How To Do It

• We need a readily extensible, construction-based grammar.

• It must be robustly and efficiently parsable with wide coverage

• It must be transparent to a “natural” semantics, supportingcheap inference.

9



II: Combinatory Categorial Grammar
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Categorial Grammar

• Categorial Grammar replaces PS rules by lexical categoriesand general

combinatory rules (Lexicalization):

(1) S → NP VP

VP → TV NP

TV → {proved, finds, . . .}

• Categories:

(2) proved :=(S\NP)/NP

(3) think := (S\NP)/⋄S

11



Categorial Grammar

• Categorial Grammar replaces PS rules by lexical categories and general

combinatory rules (Lexicalization):

(1) S → NP VP

VP → TV NP

TV → {proved, finds, . . .}

• Categorieswith semantic intepretations:

(2) proved :=(S\NP)/NP : prove′

(3) think := (S\NP)/⋄S: think′
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Applicative Derivation

• Functional Application

X/⋆Y Y

X
>

Y X\⋆Y

X
<

• (4) Marcel proved completeness

NP (S\NP)/NP NP
>

S\NP
<

S

(5) I think Marcel proved completeness

NP (S\NP)/⋄S NP (S\NP)/NP NP
>

S\NP
<

S
>

S\NP
<

S
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Applicative Derivation

• Functional Application with semantic intepretations:

X/⋆Y : f Y : g

X : f (g)
>

Y : g X\⋆Y : f

X : f (g)
<

• (4) Marcel proved completeness

NP : marcel′ (S\NP)/NP : prove′ NP : completeness′
>

S\NP : λy.prove′completeness′y
<

S: prove′completeness′marcel′

(5) I think Marcel proved completeness

NP : i′ (S\NP)/⋄S: think′ NP : marcel′ (S\NP)/NP : prove′ NP : completeness′
>

S\NP : λy.prove′completeness′y
<

S: prove′completeness′marcel′
>

S\NP : think′(prove′completeness′marcel′)
<

S: think′(prove′completeness′marcel′)i′
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Combinatory Categorial Grammar (CCG)

• Combinatory Rules:

X/⋆Y Y

X
>

Y X\⋆Y

X
<

X/⋄Y Y/⋄Z

X/⋄Z
>B

Y\⋄Z X\⋄Y
X\⋄Z

<B

X/×Y Y\×Z

X\×Z
>B×

Y/×Z X\×Y

X/×Z
<B×

• All arguments are type-raised via the lexicon:

X
T/(T\X)

>T X
T\(T/X)

<T
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Combinatory Categorial Grammar (CCG)

• Combinatory Ruleswith semantic intepretations:

X/⋆Y : f Y : g

X : f (g)
>

Y : g X\⋆Y : f

X : f (g)
<

X/⋄Y : f Y/⋄Z : g

X/⋄Z : λz. f (g(z))
>B

Y\⋄Z : g X\⋄Y : f

X\⋄Z : λz. f (g(z))
<B

X/×Y : f Y\×Z : g

X\×Z : λz. f (g(z))
>B×

Y/×Z : g X\×Y : f

X/×Z : λz. f (g(z))
<B×

• All arguments are type-raised via the lexicon:

X : x
T/(T\X) : λ f . f (x)

>T X : x
T\(T/X) : λ f . f (x)

<T

• We omit a further family of rules based on the combinatorS
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Slash Typing

• The features⋆,⋄,× were introduced by Baldridge 2002 following Hepple
(1987)

• They form a lattice
⋆

⋄ ×

.

Figure 1: CCG type hierarchy for slash features (Baldridge and Kruijff 2003).

• · type written as bare slash e.g.α/β means any rule can apply

• ⋄ type e.g.α/⋄β means any rule except× can apply.

• × type e.g.α/×β means any rule except⋄ can apply.

• ⋆ type e.g.α/⋆β means no rule except⋆ can apply.
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Combinatory Derivation

(6) Marcel proved completeness

NP (S\NP)/NP NP
>T <T

S/(S\NP) S\(S/NP)
>B

S/NP
<

S

(7) Marcel proved completeness

NP (S\NP)/NP NP
>T <T

S/(S\NP) (S\NP)\((S\NP)/NP)

<
S\NP

>
S
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Combinatory Derivation

(6) Marcel proved completeness

NP : marcel′ (S\NP)/NP : prove′ NP : completeness′
>T <T

S/(S\NP) : λf .f marcel′ S\(S/NP) : λp.p completeness′
>B

S/NP : λx.prove′x marcel′
<

S: prove′completeness′marcel′

(7) Marcel proved completeness

NP : marcel′ (S\NP)/NP : prove′ NP : completeness′
>T <T

S/(S\NP) (S\NP)\((S\NP)/NP)
: λf .f marcel′ : λp.p completeness′

<
S\NP : λy.prove′completeness′y

>
S: prove′completeness′marcel′

• Type-raising is simply grammaticalcase, as in Latin/Japanese.

• We need to schematize T/(T\NP), T\(T/NP)
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Linguistic Predictions: Unbounded “Movement”

• The combination of type-raising and composition allows derivation to project

lexical function-argument relations onto “unbounded” constructions such as

relative clauses and coordinate structures, without transformational rules:

(8) a man who I think you like arrived

(S/(S\NP))/N N (N\N)/(S/NP) S/(S\NP) (S\NP)/⋄S S/(S\NP) (S\NP)/NP S\NP
>B >B

S/⋄S S/NP
>B

S/NP
>

N\N
<

N
>

S/(S\NP)
>

S
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Predictions: English Intonation

• A minimal pair of contexts and contours:

(9) Q: I know who proved soundness. But who provedCOMPLETENESS?

A: (MarCEL) (provedCOMPLETENESS).

H*L L+H* LH%

(10) Q: I know which result MarcelPREDICTED. But which result did Mar-

cel PROVE?

A: (M ARcel PROVED ) ( COMPLETENESS).

L+H* LH% H* LL%

• Crossing contexts and responses yields complete incoherence.

Z Prosodic Phrases⊂ CCG constituents.
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Predictions: Argument-Cluster Coordination

• The following construction is predicted on arguments of symmetry.

(11) give a teacher an apple and a policeman a flower
<T <T <T <T

DTV TV\DTV VP\TV (X\⋆X)/⋆X TV\DTV VP\TV
<B <B

VP\DTV VP\DTV
>

(VP\DTV)\⋆(VP\DTV)
<

VP\DTV
<

VP

—where VP= S\NP; TV = (S\NP)/NP; DTV = ((S\NP)/NP)/NP, and X

is a variable over any category up to some low bounded valency.

• A variant like the following cannot occur in an SVO language like English:

(12) *A policeman a flower and give a teacher an apple.
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Syntax = Type-Raising and Composition

• CCGs combination of type-raising and composition yields a “mildly context

sensitive” permuting and rebracketing calculus closely tuned to the needs of

natural grammar.

• The argument cluster coordination construction (11) is an example of a

universal tendency for “deletion under coordination” to respect basic word

order: in all languages, if arguments are on the left of the verb then argument

clusters coordinate on the left, if arguments are to the right of the verb then

argument clusters coordinate to the right of the verb (Ross 1970):

(13) SVO: *SO and SVO SVO and SO

VSO: *SO and VSO VSO and SO

SOV: SO and SOV *SOV and SO
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These Things are Out There in the Treebank

• Full Object Relatives ( 570 in WSJ treebank)

• Reduced Object Relatives ( 1070 in WSJ treebank)

• Argument Cluster Coordination ( 230 in WSJ treebank):

(S (NP-SBJ It)

(VP (MD could)

(VP (VP (\myRed{VB} cost)

(\myRed{NP-1} taxpayers)

(\myRed{NP-2} $ 15 million))

(CC and)

(VP (\myRed{NP=1} BPC residents)

(\myRed{NP=2}$ 1 million)))))

• It could cost taxpayers 15 million and BPC residents 1 million
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These Things are Out There (contd.)

• Parasitic Gaps (at least 6 in WSJ treebank):

(S (NP-SBJ Hong Kong’s uneasy relationship with China)

(VP (MD will)

(VP (VP (VB constrain)

(NP (\myRed{-NONE- *RNR*-1})))

(PRN (: --)

(IN though)

(VP (RB not)

(VB inhibit)

(NP (\myRed{-NONE- *RNR*-1})))

(: --))

(\myRed{NP-1} long-term economic growth))))

• Hong Kong’s uneasy relationship with China will constrain, though not inhibit ,

long-term growth.
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CCG is “Nearly Context-Free”

• CCG and TAG are provably weakly equivalent to Linear IndexedGrammar
(LIG) Vijay-Shanker and Weir (1994).

• Hence they are not merely “Mildly Context Sensitive” (Joshi1988), but rather
“Nearly Context Free,” or “Type 1.9̇” in the Extended Chomsky Hierarchy.

Language Type Automaton Rule-types Exemplar

Type 0: RE Universal Turing Machine α → β

Type 1: CS Linear Bound Automaton (LBA) φAψ → φαψ P (anbncn) (?)

I Nested Stack Automaton(NSA) A[(i),...] → φB[(i),...]ψC[(i),...]ξ a2n

LCFRS (MCS) ith-order NPDA A[[(i),...]...] → φB[[(i),...]...]ψ anbncn . . .mn

“Type 1.9̇”: LI Nested PDA (NPDA) A[(i),...] → φB[(i),...]ψ anbncn

Type 2: CF Push-Down Automaton (PDA) A→ α anbn

Type 3: FS Finite-state Automaton (FSA) A→
{

a B

a
an
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A Trans-Context Free Natural Language

• CCG can capture unboundedly crossed dependencies in Dutch and Zurich

German (examples from Shieber 1985):

... das        mer         em Hans             es huus        haelfed  aastriiche

  ... that   we.NOM   Hans.DAT  the house.ACC   helped       paint  

‘... that  we helped Hans paint the house.’

...  das        mer            d’chind                  em Hans          es huus        loend   haelfe  aastriiche       

... that   we.NOM  the children.ACC   Hans.DAT   the house.ACC      let      help       paint  

‘... that we let the children help Hans paint the house.’
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A Trans-Context Free Natural Language

(14) das mer em Hans es huus hälfed aastriiche
that we−NOM Hans−DAT the house−ACC helped paint

NP↑
nom NP↑

dat NP↑
acc ((S+SUB\NPnom)\NPdat)/×VP VP\NPacc

>B×
((S+SUB\NPnom)\NPdat)\NPacc

>
(S+SUB\NPnom)\NPdat

>
S+SUB\NPnom

>
S+SUB

“that we helped Hans paint the house”

• The following is correctly also allowed:

(15) Das mer em Hans hälfed es huus aastriiche.

Z The corresponding word order isdisallowedin the related Dutch construction.
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A Trans-Context Free Natural Language

(15) das mer d′chind em Hans es huus lönd ḧalfe aastriiche
that we−NOM the children−ACC Hans−DAT the house−ACC let help paint

NP↑
nom NP↑

acc NP↑
dat NP↑

acc ((S+SUB\NPnom)\NPacc)/×VP (VP\NPdat)/×VP VP\NPacc

>B2×
(((S+SUB\NPnom)\NPacc)\NPdat)/×VP

>B×
(((S+SUB\NPnom)\NPacc)\NPdat)\NPacc

>
((S+SUB\NPnom)\NPacc)\NPdat

>
(S+SUB\NPnom)\NPacc

>
S+SUB\NPnom

>
S+SUB

“that we let the children help Hans paint the house”

• Again, other word orders are correctly allowed.
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On So-called “Spurious” Ambiguity

• Examples like (10), and (11), embody the claim that fragments like “Marcel

proved”, and “a policeman a flower”, areconstituents, comparable to “proved

completeness”.

• If “Marcel proved” can be constituent in right node raising,then it can be a

constituent of a canonical transitive sentence.

• Even such simple sentences arederivationally ambiguous:
S : prove’completeness’marcel’

a.  Marcel  proved   completeness                               b.  Marcel  proved  completeness

S : prove’completeness’marcel’
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On So-called “Spurious” Ambiguity (Contd.)

• More complex sentences are multiplely ambiguous:
S: Λ S: ΛS: Λ

Frankie thinks that Anna married      Manny. Frankie thinks that Anna married      Manny. Frankie thinks that Anna married      Manny.a. b. c.

• This has been referred to (misleadingly) as “Spurious” ambiguity, since all the

derivations have the same interpretationΛ.

• Interestingly, so called “spurious” constituents includemostleft prefixes.
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Parsing in the Face of “Spurious Ambiguity”

• All grammars exhibit derivational ambiguity—even CFG.

• Any grammar that captures coordination at all will have thesamederivational

ambiguity as CCG.

• Use standard table-driven parsing methods such as CKY, withpacked charts,

either:

– checking identity ofunderlying representation of table entries (Steedman

2000), rather than identity of derivation, or:

– parsing normal-form derivations (Eisner 1996)
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CCG is Nearly Context-Free (contd.)

• It has polynomial parsing complexity (Vijay-Shanker and Weir 1990)

• Hence it has nice “Divide and Conquer” algorithms, like CKY,and Dynamic

Programming.

• For real-life sized examples like parsing the newspaper, such algorithms must

be statistically optimized.
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III: Wide-Coverage Parsing with CCG
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Human and Computational NLP

• No handwritten grammar ever has the coverage that is needed to read the daily

newspaper.

• Language is syntactically highly ambiguous and it is hard topick the best

parse. Quite ordinary sentences of the kind you read every day routinely turn

out to have hundreds and on occasion thousands of parses, albeit mostly

semantically wildly implausible ones.

• High ambiguity and long sentences break exhaustive parsers.
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For Example:

• “In a general way such speculation is epistemologically relevant, as

suggesting how organisms maturing and evolving in the physical environment

we know might conceivably end up discoursing of abstract objects as we do.”

(Quine 1960:123).

• —yields the following (from Abney 1996), among many other horrors:

In a general way  RC            epistemologically relevant  PP           organisms maturing and evolving     we     know                                                S

S

PP AP Absolute VP

in the physical envirmnment

NP 

such speculation is                                   as suggesting how

coneivably end up   discoursing of abstract

might       AP                  Ptcpl                 objects as we do

NP                                                      VP
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The Anatomy of a Parser

• Every parser can be identified by three elements:

– A Grammar(Regular, Context Free, Linear Indexed, etc.) and an

associated automaton (Finite state, Push-Down, Nested Push-Down, etc.);

– A searchAlgorithm characterized as left-to-right (etc.), bottom-up (etc.),

and the associated working memories (etc.);

– An Oracle, to resolve ambiguity.

• The oracle can be used in two ways, either to actively limit the search space,

or in the case of an “all paths” parser, to rank the results.

• In wide coverage parsing, we mostly have to use it in the former way.
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Competence and Performance

• Linguists (Chomsky 1957,passim), have always insisted on the

methodological independence of “Competence” (the grammarthat linguists

study) and “Performance” (the mechanisms of language use).

• This makes sense: there are many more parsers than there are grammars.

• Nevertheless, Competence and Performance must have evolved as a single

package, for what evolutionary edge does a parser without a grammar have, or

a grammar without a parser?

Z Any theory that does not allow a one-to-one relation betweenthe grammatical

and derivational constituency has some explaining to do.
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Human Sentence Processing

• “Garden path” sentences are sentences which are grammatical, but which

naive subjects fail to parse.

• Example (16a) is a garden path sentence, because the ambiguous word “sent”

is analysed as a tensed verb:

(16) a. # The doctor sent for the patient died.

b. The flowers sent for the patient died.

• However (16b) is not a garden path.

• So garden path effects are sensitive to world knowledge (Bever 1970).

• They are even sensitive to referential context: (Altmann and Steedman 1988)

showed that (simplifying somewhat) if a context is established with two

doctors, one of whom was sent for a patient, then the garden path effect is

reversed.
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The Architecture of the Human Sentence Processor

• This requires a “cascade” architecture:

Yes? Yes!/No!

Yes? Yes!/No!

Yes? Yes!/No!

{The  flowers  sent for the patient died}doctor

Syntax

.

Speech Recognition

Parsing Model

The situation
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Grammar and Incrementality

• Most left prefix substrings of sentences are typable constituents in CCG, for

which alternative analyses can be compared using the parsing model

• The fact that (17a,b) involve the nonstandard constituent [The doctor sent

for]S/NP, meansthat constituent is also available for (17c,d)

(17) a. The patient that [the doctor sent for]S/NP died.

b. [The doctor sent for]S/NP and [The nurse attended]S/NP the patient who had com-

plained of a pain.

c. #[The doctor sent for]{

S/NP

(S/(S\NP))/N N (N\N)/NP

} [the patient]NP diedS\NP.

d. [The flowers sent for]{
#S/NP

(S/(S\NP))/N N (N\N)/NP

} [the patient]NP diedS\NP.

• (18) a. #[The doctor sent for the patient]
S

diedS\NP.

b. [The flowers sent for the patient diedS.
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The Strict Competence Hypothesis

• Since the spurious constitutent [#The flowers sent for]S/NP is available in the

chart, so that its low probability in comparison with the probabilities of the

unreduced components can be detected (according to some “figure of merit”

(Charniaket al.1998) discounting the future), the garden path in (16b) is

avoided, even under the following very strong assumption about the parser:

– The Strict Competence Hypothesis: the parser only builds structures that

are licensed by the Competence Grammar as typableconstituents.

• This is an attractive hypothesis, because it allows the Competence Grammar

and the Performance Parser/Generator to evolve as a packagedeal, with

parsing completely transparent to grammar, as in standard bottom-up

algorithms.

• But is such a simple parser possible? We need to look at some real-life

parsing programs.
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Wide Coverage Parsing: the State of the Art

• Early attempts to model parse probability by attaching probabilities to rules of

CFG performed poorly.

• Great progress as measured by the ParsEval measure has been made by

combining statistical models of headword dependencies with CF

grammar-based parsing (Collins 1997; Charniak 2000; McCloskeyet al.

2006)

• However, the ParsEval measure is very forgiving. Such parsers have until now

been based on highly overgenerating context-free coveringgrammars.

Analyses depart in important respects from interpretable structures.

• In particular, they fail to represent the long-range “deep”semantic

dependencies that are involved in relative and coordinate constructions, as inA

companyi thati the Wall Street Journal says expectsi to have revenue of$10M,

andYou can buyi and selli all itemsi and servicesi on this easy to use site.
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Head-dependencies as Oracle

• Head-dependency-Based Statistical Parser Optimization worksbecause it

approximates an oracle using real-world knowledge.

• In fact, the knowledge- and context- based psychological oracle may be much

more like a probabilistic relational model augmented with associative

epistemological tools such as typologies and thesauri and associated with a

dynamic context model than like traditional logicist semantics and inferential

systems.

• Many context-free processing techniques generalize to the“mildly context

sensitive” grammars.

• The “nearly context free” grammars such as LTAG and CCG—the least

expressive generalization of CFG known—have been treated by Xia (1999),

Hockenmaier and Steedman (2002a), and Clark and Curran (2004).
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Nearly Context-Free Grammar

• Such Grammars capture the deep dependencies associated with coordination

and long range dependency.

• Both phenomena are frequent in corpora, and are explicitly annotated in the

Penn WSJ corpus.

• Standard treebank grammars ignore this information and fail to capture these

phenomena entirely.

Z Zipf’s law says using it won’t give us much better overall numbers. (aropund

3% of sentences in WSJ include long-range object dependencies, but LRoDs

are only a small proportion of the dependencies in those sentences.)

• But there is a big difference between getting a perfect eval-b score on a

sentence including an object relative clause and interpreting it!

44



Supervised CCG Induction by Machine

• Extract a CCG lexicon from the Penn Treebank: Hockenmaier and Steed-
man (2002a), Hockenmaier (2003) (cf. Buszkowski and Penn 1990; Xia 1999).

Mark constituents:
− heads
− complements
− adjuncts

Assign categories The lexiconThe Treebank

S

NP VP

NP

NP

S

VP

NP

(H)

(C)

(H) (C)

(H)

NP

S

NP S\NP

(S\NP)/NPIBM 

bought Lotus

IBM 

bought Lotus

IBM 

bought Lotus

VBDVBD

 IBM  :=    NP
bought  :=    (S\NP)/NP

Lotus  :=    NP

• This trades lexical types (500 against 48) for rules (around3000 instantiated
binary combinatory rule types against around 12000 PS rule types) with
standard Treebank grammars.

Z The trees in the CCG-bank are CCG derivations, and in cases like Argument

Cluster Coordination and Relativisation they depart radically from Penn
Treebank structures.
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Supervised CCG Induction: Full Algorithm

• foreach tree T:

preprocessTree(T);

preprocessArgumentCluster(T);

determineConstituentType(T);

makeBinary(T);

percolateTraces(T);

assignCategories(T);

treatArgumentClusters(T);

cutTracesAndUnaryRules(T);

• The resulting treebank is somewhat cleaner and more consistent, and is

offered for use in inducing grammars in other expressive formalisms. It was

released in June 2005 by the Linguistic Data Consortiumwith documentation

and can be searched using t-grep.
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Statistical Models for Wide-Coverage Parsers

• There are two kinds of statistical models:

– Generativemodels directly represent theprobabilities of the rules of the

grammar, such as the probability of the wordeatbeing transitive, or of it

taking a nounphrase headed by the wordintegeras object.

– Discriminativemodels compute probability for whole parses as a function

of the product of a number ofweighted features, like a Perceptron. These

features typically include those of generative models, butcan be anything.

• Both have been applied to CCG parsing
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Generative Models (Hockenmaier)

• A problem:standard generative models for the local dependencies

characteristic of CFGs do not immediately generalize to thereentrant
dependenciesgenerated by these more expressive grammars (Abney 1997).

• The generative model of Hockenmaier and Steedman 2002b onlymodels

probability for Collins-style local dependencies (although it canrecoverlong

range dependencies).

• It uses “Normal-form modeling”, where the derivations modeled are those in

which type-raising and composition are only used when thereis no alternative.

• Hockenmaier (2003) showed that a sound full generative model is as possible

for mildly context sensitive grammars as it is for CFG.

• Log Linear models offer another solution (Clark and Curran 2003, 2004, and

see below)
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Hockenmaier 2002/2003: Overall Dependency Recovery

• Hockenmaier and Steedman (2002b)

Parseval Surface dependencies

Model LexCat LP LR BP BR 〈PHS〉 〈〉
Baseline 87.7 72.8 72.4 78.3 77.9 81.1 84.3

HWDep 92.0 81.6 81.9 85.5 85.9 84.0 90.1

• Collins (1999) reports 90.9% for unlabeled〈〉 “surface” dependencies.

• CCG benefits greatly from word-word dependencies.
(in contrast to Gildea (2001)’s observations for Collins’ Model 1)

• This parser is available on the project webpage.
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Recovery of Long Range Dependencies

Hockenmaier (2003)

• Extraction:

– Dependencies involvingsubject relative pronoun
(NP\NP)/(S[dcl ]\NP): 98.5%LP, 95.4%LR(99.6%UP, 98.2%UR)

– Lexical cat. forembedded subject extraction(Steedman ’96)
((S[dcl ]\NP)/NP)/(S[dcl ]\NP): 100.0%P, 83.3%R

– Dependencies involvingobject relative pronoun (including ES)
(NP\NP)/(S[dcl ]/NP): 66.7%LP, 58.3%LR(76.2%UP, 58.3%UR)

• Coordination:

– VP coordination (coordination ofS[.]\NP): 67.3%P, 67.0%R

– Right-node-raising (coordination of(S[.]\NP)/NP): 73.1%P, 79.2%R

• A direct comparison with Johnson (2002) postprocessing method is not
immediately possible.
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Log-Linear Conditional CCG Parsing Models

• Featuresfi encode evidence indicating good/bad parses

• (19) p(d|S) = 1
Z(S)e

∑i λi fi (d,S)

• Use standard Maximum Entropy techniques to train a FSM “supertagger”

Clark (2002) to assign CCG categories,multitagging (n≈ 3) at over 98%
accuracy(Clark and Curran 2003, 2004).

• Clark and Curran use a conditional log-linear model such as Maximum

Entropy ofeither:

– The derived structure or parse yield;

– All derivations;

– All derivations with Eisner Normal Form constraints.
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Conditional CCG Parsing Models (Contd.)

• Discriminative estimation via the limited-memory BFGS algorithm is used to

set feature weights

• Estimation is computationally expensive, particularly for “all derivations”:

– Beowulf cluster allows complete Penn Treebank to be used forestimation.

– The fact that the supertagger is very accurate makes this possible.
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Overall Dependency Recovery

LP LR UP UR cat

Clark et al. 2002 81.9 81.8 90.1 89.9 90.3

Hockenmaier 2003 84.3 84.6 91.8 92.2 92.2

Clark and Curran 2004 86.6 86.3 92.5 92.1 93.6

Hockenmaier (POS) 83.1 83.5 91.1 91.5 91.5

C&C ( POS) 84.8 84.5 91.4 91.0 92.5

Table 1: Dependency evaluation on Section 00 of the Penn Treebank

• To maintain comparability to Collins, Hockenmaier (2003) did not use a
Supertagger, and was forced to use beam-search. With a Supertagger
front-end, the Generative model might well do as well as the Log-Linear
model. We have yet to try this experiment.
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Log-Linear Overall Dependency Recovery

• The C&C parser hasstate-of-the-art dependency recovery.

• The C&C parser isvery fast(≈ 30 sentences per second)

• The speed comes from highly accurate supertaggingwhich is used in an

aggressive“Best-First increasing”mode (Clark and Curran 2004), and

behaves as an “almost parser” (Bangalore and Joshi 1999

• Clark and Curran 2006 show that CCG all-paths almost-parsing with

supertagger-assigned categories loses only 1.3% dependency-recovery

F-score against parsing with a full dependency model

• C&C has been ported to the TREC QA task (Clarket al.2004) using a

hand-supertagged question corpus, and applied to the entailment QA task

(Boset al.2004), using automatically built logical forms.
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Recovering Deep or Semantic Dependencies

Clark et al. (2004)

respect  and  confidence     which     most      Americans    previously           had

lexical item category slot headof arg

which (NPX\NPX,1)/(S[dcl]2/NPX) 2 had

which (NPX\NPX,1)/(S[dcl]2/NPX) 1 confidence

which (NPX\NPX,1)/(S[dcl]2/NPX) 1 respect

had (S[dcl]had\NP1)/NP2) 2 confidence

had (S[dcl]had\NP1)/NP2) 2 respect
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Full Object Relatives in Section 00
• 431 sentences in WSJ 2-21, 20 sentences (24 object dependencies) in

Section 00.1. Commonwealth Edison now faces an additional court-orderedrefundon its summerwinter
rate differential collectionsthat the Illinois Appellate Court hasestimatedat DOLLARS.
2. Mrs. Hills said many of the 25countries thatsheplacedunder varying degrees of scrutiny have made
genuine progress on this touchy issue.√
3. It’s the petulant complaint of an impudentAmerican whomSonyhostedfor a year while he was on a Luce
Fellowship in Tokyo – to the regret of both parties.√
4. It said theman, whomit did not name, had been found to have the disease after hospital tests.
5. Democratic Lt. Gov. Douglas Wilder opened his gubernatorial battle with Republican Marshall Coleman
with an abortioncommercialproduced by Frank Greerthat analysts of every political persuasionagreewas a
tour de force.
6. Against a shot of Monticello superimposed on an American flag, an announcer talks about the strong
tradition of freedom and individual libertythat Virginians havenurturedfor generations.√
7. Interviews with analysts and business people in the U.S. suggest that Japanese capital may produce the
economiccooperation thatSoutheast Asian politicians havepursuedin fits and starts for decades.
8. Another was Nancy Yeargin, who came to Greenville in 1985,full of the energyandambitions that
reformers wanted toreward.
9. Mostly, she says, she wanted to prevent thedamageto self-esteemthat her low-ability students wouldsuffer
from doing badly on the test.√
10. Mrs. Ward says that when the cheating was discovered, shewanted to avoid the morale-damaging public
disclosure thata trial wouldbring.√
11. In CAT sections where students’ knowledge of two-letterconsonant sounds is tested, the authors noted that
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Scoring High concentrated on the samesounds thatthe testdoes– to the exclusion of othersounds thatfifth
graders shouldknow.√
12. Interpublic Group said its television programmingoperations– which it expandedearlier this year – agreed
to supply more than 4,000 hours of original programming across Europe in 1990.
13. Interpublic is providing the programming in return for advertisingtime, which it saidwill be valued at more
than DOLLARS in 1990 and DOLLARS in 1991.√
14. Mr. Sherwood speculated that theleeway thatSea Containershasmeans that Temple would have to
substantially increase their bid if they’re going to top us.√
15. The Japanese companies bankroll many small U.S. companies with promising products or ideas, frequently
putting their money behindprojects thatcommercial banks won’ttouch.√
16. In investing on the basis of future transactions, a role often performed by merchant banks, trading
companies can cut through thelogjam thatsmall-company owners oftenfacewith their local commercial banks.
17. A high-balancecustomer thatbankspine for, she didn’t give much thought to the rates she was receiving,
nor to the fees she was paying.√
18. The events of April through June damaged therespectandconfidence whichmost Americans previously
had for the leaders of China.√
19. He described the situation as an escrowproblem, a timingissue, whichhesaidwas rapidly rectified, with no
losses to customers.√
20. But Rep. Marge Roukema (R., N.J.) instead praised the House’s acceptance of a new youth training wage, a
subminimum thatGOP administrations havesoughtfor many years.

Cases of object extraction from a relative clause in 00; the extracted object, relative
pronoun and verb are in italics; sentences marked with a

√
are cases where the parser

correctly recovers all object dependencies
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Clark et al. (2004): Full Object Relatives

• 24 cases of extracted object in Section 00 associated with object relative
pronoun category(NPX\NPX)/(S[dcl]/NPX)

• 15/24 (62.5%) recovered with all dependencies correct (15/20 (75%)
precision)

– That is, with both noun attachment and relpronoun-verb dependency
correct—comparable to 58.3%/67% labelled recall/precision by
Hockenmaier 2003 and significantly better than Clarket al. (2002) 42%
recall

– 1 sentence (1) failed to parse at all (necessary category forseen verb
estimatedunseen in 2-21).

– 5 were incorrect because wrong category assigned to relative pronoun, of
which: in two (5, 9) this was only because again the necessarycategory
for a seen verb was unseen in 2-21, and one (17) was incorrect because the
POS tagger used for back-off labeled the entirely unseen verb incorrectly

– 3 incorrect only because relative clause attached to the wrong noun
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Clark et al. (2004): Free Relatives

• 14/17 (82%) recall 14/15 (93%) precision for the single dependency.

• Better performance on long-range dependencies can be expected with more

features such as regular expressions for Max Ent to work on.

• Other varieties of deep dependency (Control, subject relatives, reduced

relatives) discussed in Hockenmaier (2003); Clarket al. (2002, 2004).

• It looks as though about half the errors arise because the lexicon is too small,

and about half because the head-dependency model is too weak.

Z 1M words of treebank is nothing like enough data
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Experiments with Porting the Parser

• As with all treebank grammars, almost any practical application involves

porting the parser to a different grammar and model.

• For example, in ongoing experiments with open domain question answering,

we would like to use the parser for parsing the questions.

• However, all treebank grammars including this one do appallingly badly on

the TREC question database, because WSJ contains almost no direct

questions, and none at all of some common patterns.

• Hand-labelling data for retraining is usually not possible.

• However, semi-automatically hand-supertagging a few thousand sentences

and retraining the supertagger with those included is quitepractical.

• We did the 1,171Whatquestions from TREC in a week
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Porting to Questions: Results

• 171What-question development set. 1000 for training (and testing using
tenfold cross-validation), average length 8.6 words.

• Since the gold standard question data is only labelled to thelevel of lexical
category we can only evaluate to that level.

• However, supertagger accuracy and sentence accuracy correlate very highly
with dependency and category recall by the parser, and we know we need
around 97% per word and 60% per sentence for the original WSJ performance

•

MODEL 1 CAT SENT 1.5 cats SENT

ACC ACC /word ACC

CCGbank 72.0 1.8 84.8 11.1

Qs 92.3 66.7 96.6 80.7

Qs+CCGbank 93.1 61.4 98.1 86.5

Table 2: Accuracy of Supertagger on Development set Question Data
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Porting to Questions: Results

•

Supertagging/ CAT SENT WHAT

parsing method ACC ACC ACC

Increasing av. cats 94.6 81.8 91.2

Decreasing av. cats 89.7 65.3 80.0

Increasing cats (rand) 93.4 79.4 88.2

Decreasing cats (rand) 64.0 9.4 21.2

Baseline 68.5 0.0 60.6

Table 3:Category accuracy of parser on dev question data

• For theWhatobject questions, per word/sentence accuracies were 90%/71%,
suggesting that they are harder than the average question.

• Object dependency recall by the parser for these questions was 78%.
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IV: Work in Progress
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Work in Progress: Building Interpretations

• The interpretation of the combinatory rules as type raisingand composition

guarantees “surface compositionality” withanycompositional semantic

representation.

• This in turn means that the process of interpretation building can be built into

the categories and combinatory rules, and can be done in parallel to

derivation, as in (4)

• To make such a semantics wide-coverage involves specifyinga semantics or a

morphological stem-based semantic schema for the 400-500 most frequent

category types (Hockenmaieret al.2004; Bos et al. 2004)

• Generalize non-terminal categories containing unseen words.

• We use first order logics such as FOPL or DRT, using the lambda calculus as a

“glue language”.

64



Bos et al. 2004
From 1953 to 1955 , 9.8 billion Kent cigarettes with the filters were

sold , the company said .

_____________ _________________________________________________________________

| x1 | | x2 x3 |

|-------------| |-----------------------------------------------------------------|

(| company(x1) |A| say(x2) |)

| single(x1) | | agent(x2,x1) |

|_____________| | theme(x2,x3) |

| proposition(x3) |

| __________________ ____________ ________________ |

| | x4 | | x5 | | x6 x7 x8 | |

| x3: |------------------| |------------| |----------------| |

| (| card(x4)=billion |;(| filter(x5) |A| with(x4,x5) |)) |

| | 9.8(x4) | | plural(x5) | | sell(x6) | |

| | kent(x4) | |____________| | patient(x6,x4) | |

| | cigarette(x4) | | 1953(x7) | |

| | plural(x4) | | single(x7) | |

| |__________________| | 1955(x8) | |

| | single(x8) | |

| | to(x7,x8) | |

| | from(x6,x7) | |

| | event(x6) | |

| |________________| |

| event(x2) |

|_________________________________________________________________|
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The Poverty of Logicism

• Parsing with C&C 2004, and feeding such logical forms to a battery of FOL

theorem provers, Bos and Markert (2005) attained quite highprecision of

76% on the 2nd PASCAL RTE Challenge Problems.

Z However, recall was only 4%, due to the overwhelming search costs of FOL

theorem proving.

• MacCartney and Manning (2007) argue that entailment must becomputed

much more directly, from the surface form of sentences, or from the strings

themselves.
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Work in Progress: Polarity

• It is well-known that explicit and implicitnegationsystematically switches

the “upward” or “downward direction of entailment of sentences with respect

to ontology-based inference:

(20) Egon walks ⊢ Egon moves

0 Egon walks quickly

Egon doesn’t walk⊢ Egon doesn’t walk quickly

0 Egon doesn’t move

• Sanchez Valencia (1991) and Dowty (1994) point out that polarity can be

computed surface-compositionally using CG.
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Polarity and Directional Entailment

• (21) doesn’t◦ := (S◦\NP)/(S•inf \NP) : λp.•p

• ◦ stands for the polarity of the syntactic/semantic environment, and• stands

for −◦, its inverse.

• Crucially, this category inverts the polarity of the predicate alone.
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Polarity and Directional Entailment

• (22) Enoch doesn′t walk

Enoch+ := doesn′t◦ := walk◦ :=
S◦/(S◦\NP+) (S◦\NP)/(S•inf \NP) S◦inf \NP
: λp.p +enoch′ : λpλx.•p ◦x : ◦walk′

>
doesn′t◦walk• := S◦\NP : •walk′

>
Enoch+doesn′t+walk− := S+ : −walk′+enoch′
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Work in Progress: Building Interpretations

• Quantifier scope alternation appears at first glancenot to be surface

compositional in the CCG sense, and is currently assigned bycommand-based

default.

• Rather than generalizing the notion of surface derivation via further

type-changing rules, we propose translating existentialsas underspecified

Skolem terms, integrating specification with derivation asan “anytime”

operation (Steedman 2000).

• Dynamic phenomena such as anaphora (notably including tense) not yet

covered at all.
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V: Interim Conclusion
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Where do we Go from Here?

• This performance is still bad by human standards.

• The main obstacle is that 1M words of annotated training datais not nearly

enough,

• There are lots of words that never occur at all in the TreeBankat all.

– This is a problem that the supertagger can help with. (In factthe front-end

supertagger is already crucial to performance.)

• But a worse problem is words thathavebeen seen, butnot with the necessary

category.

• The only answer to this problem is to generalize the grammar and the model,

using

– Active learning over unreliable parser output from unlabeled data, or

– High precision low recall methods over web-scale amounts ofdata.
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Moral

• You can have the linguistic expressivity that is needed to build interpretable

structureandparse efficiently with wide coverage—with an automatically

induced CCG lexicon and a statistical head-dependency model
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Appendix: Child Language Aquisition
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Child and Computer Language Development

• The child’s problem is similar to the problem of inducing a treebank grammar,

but a little harder.

– They haveunordered logical forms, not language-specific ordered

derivation trees.

– So they have to work outwhich word(s) go with which element(s) of

logical form, as well as the directionality of the syntactic categories (which

are otherwise universally determined by the semantic typesof the latter).
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Child and Computer Language Development

• Children do not seem to have to deal with a greater amount of error than the

Penn WSJ treebank has (McWhinnie 2005).

– But they may need to deal withsituations which support a number of

logical forms.

– And they need to be able to recover from temporarywrong lexical

assignments.

– And they need to be able to handlelexical ambiguity.
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Computational Accounts

• Siskind (1995, 1996), Villavicencio (2002), and Zettlemoyer and Collins

(2005) offer computational models of this process.

• Both theories make strong assumptions about the association of words with

elements of logical form.

• Both make strong assumptions about universally available parametrically

specified rule- or category- types, the latter in the form of atype hierarchy

• Both deal with noise and homonymy probabilistically.
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Computational Accounts: Zettlemoyer and Collins

• Zettlemoyer and Collins’ algorithm (UAI 2005) allowsany contiguous

substringof the sentence to be a lexical item. For a given logical form,the

learner has to search the cross-product of the substring powerset of the string

with the set of pairs of legal categories with elements of thesubstructure

powerset of the logical form for categories that yield combinatory derivations

that yield the correct logical form.

• Learning is via a log-linear model using lexical entries (only) as features and

gradient descent on their weights, iterating over successive sentences of a

corpus of sentence-logical form pairs.

• We can improve on this by

– Directly generating the parses that UG supports for the sentence-meaning

pair.

– Building a full parsing model (necessary if we are to scale).
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Zettlemoyer and Collins (Contd.)

• The algorithm as presented in 2005 learns only a very small rather

unambiguous fragment of English, hand-labeled with uniquely identified

database queries as logical forms, and an English specific inventory of

possible syntactic category types in lieu of Universal Grammar.

• CCG almost-parsing is why Zettlemoyer and Collins do so wellon parser

induction for a small not very ambiguous corpus without having a parser

model at all.

• However, Siskind’s and Villavicencio’s results already tell us that the

algorithm should work with multiple candidate logical forms.

• Similarly, their results suggest that a universal set of category types can be

used without overwhelming the learner.
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Zettlemoyer and Collins (Contd.)

• All of these models depend on availability to the learner of short sentences

paired with logical forms, since complexity is determined by a cross-product

of powersets both of which are exponential in sentence length.

• A number of techniques are available to make search efficientincludinguse of

a head-dependency parsing model.
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The Generative Model

• We will assume thatP(D, I ,S) is a generative model for an (exhaustive)

parser, rather than the discriminative model of Zettlemoyer et al..

• One advantage of generative models besides their closenessto competence

grammar is that we can invert the parsing model to define the probability of an

utterance given a meaning.

Z However, another difference between the child and standardtreebank

grammar-induction programs is that the child learns grammar incrementally,

utterance-by-utterance.

Z Recomputing the model over the entire corpus so far, as each new sentence is

encountered, is not only psychologically absurd, but computationally

exponential.
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Example

• The child thinks:more′dog′

• The Adult says: “More doggies!”

• Given the string “more dogs” paired with the logical formmore′dogs′, and a

mapping from semantic types onto syntactic type likeS, NP, S\NPetc., the

child can use the universalBT-based combinatory rules of CCG to generate

– all possible syntactic derivations, pairing

– all possible decompositions of the logical form with

– all possible word candidates

• Learning a language is just learning its lexicon and a parsing model.
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The Derivations

• CCG permits just three derivations for the new utterance “More doggies” , as

follows:

(23) a. MORE DOGGIES !

NP/N : more′((e,t),e) N : dogs′(e,t)
>

NP : more′dogs′e

b. MORE DOGGIES !

N : dogs′(e,t) NP\N : more′((e,t),e)
<

NP : more′dogs′e

c. MORE DOGGIES !

NP : more′dogs′e
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The Child’s First Lexicon

• (24) The child’s lexical candidates:

more:= NP/N : more ′
((e,t),e)

N : dogs′(e,t)
doggies:= NP\N : more′((e,t),e)

N : dogs ′
(e,t)

more doggies:=NP : (more′dogs′)e

• A statistical model for these hypotheses can be learned using an incremental

variant of the semi-supervised inside-outside (EM) algorithm (Pereira and

Schabes 1992; Neal and Hinton 1999). We begin with a simplified model,

representing probabilities as expected frequencies, thendefine the model we

actually use.
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Learning the Model for English

• In order to obtain an incremental algorithm, we represent the model as a
vector of expected frequencies for each productionp, defined as

(25) fexp(p) = ∑s∈S∑i∈I P(i|s)∑d∈D P(d|s, i).count(p,d),

where P(d|s, i) = P(d)
∑d∈D P(d)

Z The primary requirement for such a model is that learned information about

seen events in a derivation should influence the probabilities assigned to
unseen events.

• Thus, if the language only consists of sentences of the form “More X”, and
the hundredth sentence is “More erasers”, where “erasers” is a previously
unseen word, this sentence should not only make the learner alittle more
certain that “more” is a determiner meaningmore′.

• It should also make them pretty sure that “erasers” is a noun,andnota
determiner meaningmore′.
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Two Estimators for Expected Frequency

• We define two estimators forfexp.

• FexpE is the expected frequency based on the present sentence and the

possibilities of universal grammar alone. For simplicity we will assume the

latter to be uniformly distributed, so that (25) reduces to the following, where

|D| is the number of derivations:

(26) fexpE(p) = ∑d∈D count(p,d)
|D|

• FexpM for a given interpretation i for sentences is defined as follows, whereP

is the model estimated so far.

(27) fexpM(p) = ∑i∈I P(i|s)∑d∈D P(d|s, i).count(p,d)
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The Algorithm

• The model can be learned using the following incremental variant of the

semi-supervised inside-outside (EM) algorithm (Pereira and Schabes 1992;

Neal and Hinton 1999).

• Every new sentencesn provides a setDn of derivations parallel to (23), which

defines the following:

a. A (possibly empty) set of previously unseen productions involved in some

derivation inDi , including those involving novel lexical entries, that must

be added to the model with cumulativefexptemporarily initialized to zero.

b. (E-step): The set of all productions including those in a,whose cumulative

fexpmust be multiplied byn−1, incremented byfexpE, and divided byn.

c. (M-step):A further increment offexpM−fexpE
n (which may be negative) to the

cumulativefexpfor all productions involved in some derivation inDi . I.e.,

replace the earlier estimate based onf expE.
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The Algorithm

• Step b defines new values for the conditional probabilities for the rules in

question, defining an intermediate model for calculating the a posteriori

probabilities in step c.

• The further update c to the model defines the expected frequencies for the

next cycle. The lexical probabilities for the relevant words in the lexicon

given the new sentence can then be calculated using the modeland definition

(25), whereP(d|I ,S) is the product of the probabilities of the productions it

involves.

• (28) P(d|I ,S) = ∏p∈d P(p|parent)∏LEX(p)∈d P(φ,σ|µ)

Z This is just a probabilistic context-free grammar parser (PCFG). We actually

use a head-dependency model (Collins 2003)
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Normalizing Probabilities of Derivations

• The possibility of lexicalizing more than one element of thelogical form in a
single word means that the alternative derivations for a single logical form
such as those in (23) for our running example and the first sentence “More
doggies” may be of different lengths.

• Since generative models of the kind outlined above, based onthe products of
probabilities of rules, assign undue weight to short derivations, we must
normalize the probabilities of lexical productions over the complexity of their
logical forms.

Z Thus, the probabilityP(φ.σ|µ) of the lexical productions in (28) is

(29) P(φ.σ|µ) = ∏m⊂µP(φ,σ|m)

• For example, the probability of derivation (23c) is not a third, but is the
conditional probability of “more dogs” givenmore′dogs′ times that of “more
dogs” givenmore′, times that of “more dogs” givendogs′—that is,1

3 × 1
3 × 1

3.

89



Probabilities of the Derivations

• Thus on the basis of the intermediate value(0)fexp(0)+fexpE
1 , the relative

conditional probabilitiesP(D|I ,S) of the three derivations (23) are as follows:

(30) a P(A|I ,S) = P(r0|START) × P(r1|NP : fa)) ×
Plex(more,NP/N|more′)×Plex(doggies,N|dogs′) = 1×0.3̇×0.3̇×0.3̇

∑d P(d|I ,S)

b P(B|I ,S) = P(r0|START) × P(r2|NP : fa)) ×
Plex(doggies,NP\N|more′)×Plex(more,N|dogs′) = 1×0.3̇×0.3̇×0.3̇

∑d P(d|I ,S)

c P(C|I ,S) = P(r0|START) × Plex(more doggies,NP|more′) ×
Plex(more doggies,NP|dogs′) = 1×0.3̇×0. ˙3×0.3̇

∑d P(d|I ,S)

Z P(A|I ,S) = P(B|I ,S) = P(C|I ,S) = 0.3̇
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Child’s First Parsing Model (Simplified)

• This means that the initial model can be calculated as follows:

(31) Rule fexp(n−1) (n−1)fexp(n−1)+fexpE
n fexp(n)

r0. START→ NP : fa 0 1.0 1.0

r1. NP : fa→ NP/N : f N : a 0 0.3̇ 0.3̇

r2. NP : fa→ N : a NP\N : f 0 0.3̇ 0.3̇

l1. NP/N : more′ → more 0 0.3̇ 0.3̇

l2. NP\N : more′ → doggies 0 0.3̇ 0.3̇

l3. N : dogs′ → doggies 0 0.3̇ 0.3̇

l4. N : dogs′ → more 0 0.3̇ 0.3̇

l5. NP : more′dogs′ → more doggies 0 0.3̇ 0.3̇
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The Child’s First Lexicon

• Thus, we have the following updated probabilistic lexicon:

(32) φ σ,µ fexpPlex(σ,µ|φ) Plex(φ|µ)

more:= NP/N : more ′
((e,t),e) 0.3̇ 0.3̇ 0.3̇

N : dogs′(e,t) 0.3̇ 0.3̇ 0.3̇

doggies:= NP\N : more′((e,t),e) 0.3̇ 0.3̇ 0.3̇

N : dogs ′
(e,t) 0.3̇ 0.3̇ 0.3̇

more doggies:=NP : (more′dogs′)e 0.3̇ 0.3̇ 0.3̇
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Early Overgeneration

• Since the word counts and conditional probabilities for “more” and “doggies”

with them meaningmore′((e,t),e) are all equal at this stage, the child may well

make errors of overgeneration, using some approximation to“doggies” to

mean “more”.

• However, even on the basis of this very underspecified lexicon, the child will

not overgenerate “*doggies more”.

• Moreover, further observations, with further updates to frequency counts, will

rapidly lower the estimated conditional probability of thespurious hypotheses

concerning categories and substrings in comparison to the correct ones,

indicated in bold type, as follows:
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The Child’s Second Sentence

• Let us suppose that the second utterance the child hears is “More cookies”.

There are again three derivations parallel to (23). The child can derive a new

parsing model by adding new rules, updating expected frequencies for all

rules in the new set of derivations, and recalculating a posteriori expected

frequencies as described:
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Prior Probabilities for the Three Possible Derivations

• On the basis of the intermediate value(1)fexp(1)+fexpE
2 ,the length-weighted

relative conditional probabilitiesP(d|I ,S) of the three derivations for “More

cookies” parallel to (23) are as follows:

(33) a P(A|I ,S) = P(r0|START) × P(r1|NP : fa)) × Plex(more,NP/N|more′) ×
Plex(cookies,N|cookies′) = 1.0×0.3̇×0.3̇×0.16̇

∑d P(d|I ,S)
= 0.42

b P(B|I ,S) = P(r0|START)× P(r2|NP : fa))× Plex(cookies,NP\N|more′)×
Plex(more,N|cookies′) = 1×0.3̇×0.1̇6×0.16̇

∑d P(d|I ,S)
= 0.23

c P(C|I ,S) = P(r0|START) × Plex(more cookies,NP|more′) ×
Plex(more cookies,NP|cookies′) = 1×0.3̇×0.016̇×0.25

∑d P(d|I ,S)
= .35

Z P(A|I ,S) 6= P(B|I ,S) 6= P(C|I ,S) 6= 0.3̇
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The Child’s 2nd Parsing Model (Simplified)

• (34) Rule fexp(n−1) (n−1)fexp(n−1)+fexpE
n fexp(n)

r0. START→ NP : fa 1.0 1.0 1.0

r1. NP : fa→ NP/N : f N : a 0.3̇ 0.3̇ 0.34

r2. NP : fa→ N : a NP\N : f 0.3̇ 0.3̇ 0.25

l1. NP/N : more′ → more 0.3̇ 0.3̇ 0.34

l2. NP\N : more′ → doggies 0.3̇ 0.16̇ 0.16̇

l3. N : dogs′ → doggies 0.3̇ 0.1̇6 0.16̇

l4. N : dogs′ → more 0.3̇ 0.16̇ 0.16̇

l5. NP : more′dogs′) → more doggies 0.1̇ 0.16̇ 0.16̇

l6. NP : more′cookies′ → more cookies 0 0.16̇ 0.17

l7. NP\N : more′ → cookies 0 0.16̇ 0.11

r8. N(cookies) : cookies′ → cookies 0 0.16̇ 0.24

l9. N(more) : cookies′ → more 0 0.16̇ 0.11
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The Child’s Second Lexicon

• Thus, we have the following updated probabilistic lexicon:

(35) φ σ,µ fexplex(n) P(σ,µ|φ) P(φ|σ,µ)

more:= NP/N : more ′
((e,t),e) 0.34 0.57895 0.57895

N : dogs′(e,t) 0.16̇ 0.26318 0.5

N : cookies′(e,t) 0.11 0.15789 0.3̇

doggies:= NP\N : more′((e,t),e) 0.16̇ 0.5 0.385

N : dogs ′
(e,t) 0.16̇ 0.5 0.50

cookies:= NP\N : more′((e,t),e) 0.11 0.3̇ 0.15789

N : cookies ′
(e,t) 0.24 0.6̇ 0.6̇

more doggies:=NP : (more′dogs′)e 0.16̇ 0.3̇ 0.3̇

more cookies:=NP : (more′cookies′)e 0.17 0.3̇ 0.3̇
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The Child’s Second Lexicon

Z Notice that the expected frequencies in this table are not quite the same as

those that would be obtained by recomputingfexp over the entire corpus, as in

standard batch EM.

• Nevertheless, at this point, the child is exponentially less likely to generate

“doggie” when she means “more”.

• Experimental sampling by elicitation of child utterances during such

exponential extinction may well give the appearance of all-or-none setting of

parameters like NEG-placement andpro-drop claimed by Thornton and Tesan

(2006).

• This effect is related to the “winner-take-all” effect observed in Steels’ 2004

game-based account of the very similar process of establishing a shared

vocabulary among agents who have no preexisting language.

98



An Aside: A Statistically Sound Model

• We actually need a generative model that explicitly states the probabilities of

the productions that are used in producing〈S, I ,D〉.
– We model the probability of the syntactic derivationP(D|START) using

the PCFG type productions described before.

– Each derivation gives a set of syntactic componentsσ

• Kwiatkowski and Steedman (2009)
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An Aside: A Statistically Sound Model

• We can now approximate the conditional probability of the associated

semantics as:

– P(λlex|σi ,Λ) ≈ 1
ZP(λlex|Λ)∗ t(τσ,τλ)

– t is a binary function that checks that the types of the syntax and semantics

are compatible.

– Λ is a model of the semantics available to the system. We break the lexical

probability up as follows:

– P(λlex|Λ) = ∏λc∈λlex
P(λlex|λc)×P(λc|Λ)

– TheP(λlex|λc) terms allows us to penalise complex semantics that appear

in the lexicon.

– TheP(λc|Λ) terms allow us to penalise rare semantics.
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An Aside: A Statistically Sound Model

• The probability of〈S, I ,D〉 is calculated as:

P(〈S, I ,D〉|START,Λ) = P(D|START)×∏
i

P(φi |σi ,λi)P(λi |σi ,Λ)

• The grammar must model the production probabilitiesP(p|parent)

• The lexicon must modelP(λlex|λc), P(λc|Λ), P(φ|σ,λ)

• Incremental updates are made to these probability distributions by calculating

likelihoods given each new sentence (as before) and using Bayes’s rule to

update the posterior belief, which is then stored.

• In order to make this simple, the grammar rules are modelled using a Dirichlet

prior and the lexical probabilities are modelled using Dirichlet Processes.

– In both cases the likelihood is conjugate to the prior, so theupdates are

easy to perform
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Later Development

• This effect is also all that is needed to explain the phenomenon of “syntactic

bootstrapping” (Gleitman (1990)), where at a later stage ofdevelopment, the

child can learn lexical entries for words for which the corresponding concept

is not salient, or is even entirely lacking to the child.

• In this connection it is important that the expected frequency of the

non-English rule r2 is already dropping in comparison to r1.
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Discussion

• Syntax is learned on the basis of preexisting semantic interpretations afforded

by the situation of adult utterance, using a statistical model over a universal

set of grammatical possibilities.

• The existence of the model itself helps the child to rapidly acquire a correct

grammar even in the face of competing ambiguous semantics and error,

without requiring the (empirically questionable) subset principle.

• The fact that the onset of syntactically productive language at the end of the

Piagetian sensory-motor develomental phase is accompanied by an explosion

of advances in qualitatively different “operational” cognitive abilities suggests

that the availability of the statistical model has a feedback effect, allowing

“Syntactic bootstrapping” of concepts to which the child would not otherwise

gain access.
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Parameters and Triggers Unnecessary

• The theory presented here somewhat resembles the proposal of Fodor 1998 as

developed in Sakas and Fodor (2001) and Niyogi (2006) in treating the

acquisition of grammar as in some sense parsing with a universal

“supergrammar”. As in that proposal, both parameters and triggers are simply

properties of the language-specific grammar itself—in their case, rules over

independently learned parts of speech, in present terms, lexical categories.

• Rather than learning rules in an all or none fashion on the basis of

unambiguous sentences that admit of only one analysis, the present theory

adjusts probabilities in a model of all elements of the grammar for which

there is positive evidence forall processable utterances.
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Against “Parameter Setting”

• In this respect, it resembles the proposal of Yang (2002). However it differs in
eliminating explicit parameters.

• If the parameters are implicit in the rules or categories themselves, and you
can learn the rules or categories directly, why should the child (or a truly
Minimal theory) bother with parameters at all?

• For the child, all-or-none parameter-setting is counterproductive, as it will
make it hard to learn the many languages which have inconsistent settings of
parameters across lexical types and exceptional lexical items, as in German
and Dutch head finality.

• Or consider English expressions like the following:

(36) Doggies galore!

Z “Galore” is the only phrase-final determiner in E. (stolen from Irish).
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