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I: Prologue: Why Use CCG for NLP?



Prologue: The Long Tall and the Uncanny Valley
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Ignoring the long tail can engender the uncanny:



In the Uncanny Valley

e TREC 2005:
Q77.6 Name opponents who Foreman defeated.

Q77.7 Name opponents who defeated Foreman.

e A QA Program (Kor 2005):

Opponents who

Foreman defeated:

George Foreman
Joe Frazier

Ken Norton
Sonny

Archie Moore

Opponents who

defeated Foreman:

George Foreman
Joe Frazier

Ken Norton
Sonny

Archie Moore




The Problem

e The contribution of certain constructions to determiniggtem acceptability
IS disproportionate to their low frequency.

e This is bad news.

Machine learning is very bad at acquiring systems for whinportant
iInformation is in rare events.



The Darkling Plain

If the distribution of event types really is a power law curtfeen there is no
other sideo the Uncanny Valley.
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e We shall see that, for certain categories of parser errot inalf the error rate
IS due to unseen grammatical event types (such as lexiage:€£ntand up to
half is due to unseen model tokens for seen types (such asnurdd

dependencies).
e So the long tail is already hurting us badly.
e What to do?



What To Do

e The distribution of grammatical event types 't a true power law, because

there is a finite number of them, defined generatively, ultelyaby a
universal semantics.

¢ In principle, we can enumerate the types.

But there arenore constructions than you can shake a stiqiGaidberg
1995)

e Induce them from labeled data. (Or get linguists to enunediagm).

¢ |f we knew what that semantics was, we might be able to solwartadel
problem as well.

But none of the existing logicist semantic formalisms wdl @MacCartney
and Manning 2007).



How To Do It

e \We need a readily extensible, construction-based grammar.
e |t must be robustly and efficiently parsable with wide cogera

e |t must be transparent to a “natural” semantics, suppodheap inference.



lI: Combinatory Categorial Grammar
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Categorial Grammar

e Categorial Grammar replaces PS rules by lexical categandggeneral
combinatory rulesl{exicalization):

(1) — NP /P
VP V NP
— {p d finds ...}

e Categories:
(2) proved :=(S\NP)/NP
(3) think :=(S\NP)/S

11



Categorial Grammar

e Categorial Grammar replaces PS rules by lexical categories and general
combinatory rulesl{exicalization):

(1) — NP /P
VP V NP
— {p d finds ...}

e Categorieswith semantic intepretations
(2) proved :=(S\NP)/NP: prove
(3) think :=(S\NP)/S: think
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Applicative Derivation

e Functional Application

XY Y Y X\.,Y
X ~ TX <
e (4) Marcel proved completeness
NP (S\NP)/NP NP
S\NP ]
S
(5) 1 think Marcel proved completeness
NP (S\NP)/S NP (S\NP)/NP NP
S\NP ]
S
>
S\NP
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Applicative Derivation

e Functional Application with semantic intepretations
X/ Y f Y:ig Y:g X\ Y:f

X:f) =~ X:if(g
e (4) Marcel proved completeness
NP: marcel (S\NP)/NP: prové NP:completeness
S\NP: Ay.provécompletenesyg -
S: provécompletenesmarcel )
(5) | think Marcel proved completeness

NP:i" (S\NP)/S:think NP:marcel (S\NP)/NP:prove NP:completeness

S\NP: Ay.provécompletenesg ]

S: provécompletenesmarcel
>

S\NP: think (proveécompletenessarcel)

!
|

S: think (provécompletenesmarcel)
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Combinatory Categorial Grammar (CCG)

e Combinatory Rules:

XY Y Y X\.,Y
X ~ X <
XLY Y/Z Y\ Z X\ Y
>B <B
X/Z X\ Z
X/XY Y\XZ Y/XZ X\XY
>B <B
X\, Z X/.Z
e All arguments are type-raised via the lexicon:
X >T X <T

T/(T\X) T\(T/X)
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Combinatory Categorial Grammar (CCG)

e Combinatory Ruleswith semantic intepretations
X/ Y:f Y:ig Y:ig X\, Y:f

X:f(g) ~ X:f(9g)
XYt Y/Z:9 Y\Z:g X\)Y:f

X[Z A2t 92) ~° X\Z:Aazflgz) P

NASRERATTEL Y/[Z:g X\ Y:f
X\ZAzi(g2) ~oF X[ZAzfeD) o

<

e All arguments are type-raised via the lexicon:

X X T X X T
T/M\X)AFF(x) 0 TNT/X) AT (%)

e We omit a further family of rules based on the combinaor
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Slash Typing

e The features, ¢, x were introduced by Baldridge 2002 following Hepple
(1987)

e They form a lattice
<>/\X
Figure 1. CCG type hierarchy for slash features (Baldridge l&ruijff 2003).

e - type written as bare slash eg/[3 means any rule can apply
e o type e.g.a0/f3 means any rule except can apply.
e x type e.g.a/ 3 means any rule exceptcan apply.

e xtype e.g.a0/[3 means no rule exceptcan apply.
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Combinatory Derivation

(6) Marcel proved completeness
NP (S\NP) /NP NP
S/(S\NP) o S\(S/NP) <!
S/NP -P
S <
(7) Marcel proved completeness
NP (S\NP) /NP NP
S/(SWNPJ | (SINP)\((S\NP)/NP)
S\NP )

>
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Combinatory Derivation

(6) Marcel proved completeness
NP : marcel (S\NP)/NP: provée NP : completeness
T T
S/(S\NP) : Af .f marcel S\(S/NP) : A\p.p Completen<eés
>B

S/NP: Ax.provéx marcel

S: prové completenesmarcel

(7)  Marcel proved completeness
NP:marcel (S\NP)/NP:prové NP:completeness
>T <T
S/(S\NP) (S\NP)\((S\NP)/NP)
: Mf.f marcel : Ap.p completeness

S\NP: Ay.provécompletenesg

>
S: provécompletenesmarcel

e Type-raising is simply grammaticabse as in Latin/Japanese.

e We need to schematize/TT\NP), T\(T/NP)
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Linguistic Predictions: Unbounded “Movement”

e The combination of type-raising and composition allowsw#ion to project
lexical function-argument relations onto “unbounded” stoactions such as
relative clauses and coordinate structures, without foamsational rules:

(8) a man who I think you like  arrived
(S/(S\NP)/N N (N\N)/(S/NP) S/(S\NP) (S\NP)éBS S (S\NP) (S\NP)/EBP S\NP
S/S NP
S/NP -B
N\N ]
N <
S/(S\NP)
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Predictions: English Intonation

e A minimal pair of contexts and contours:

(9) Q: | know who proved soundness. But who provaMPLETENESS
A:. (MarckeL) (provedCOMPLETENESS.

H*L L+H*  LH%

(10) Q: | know which result MarceREDICTED But which result did Mar-
cel PROVE?
A:. (MARcel PROVED)( COMPLETENESS.

L+H* LH% H* LL%
e Crossing contexts and responses yields complete incatearen

@ Prosodic Phrases CCG constituents.
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Predictions: Argument-Cluster Coordination

e The following construction is predicted on arguments of syatry.

(11) give ateacher an apple and a policeman a flower
DTV TWDTV VATV (X\ X)X TWVADTV VATV
VP\DTV VP\DTV
(VP\DTV)\ (VP\DTV)
VP\DTV

<

<

VP

—where VP = S\NP; TV = (S\NP) /NP; DTV = ((S\NP)/NP) /NP, and X
IS a variable over any category up to some low bounded valency

e A variant like the following cannot occur in an SVO languaite IEnglish:

(12) *A policeman a flower and give a teacher an apple.
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Syntax = Type-Raising and Composition

e CCGs combination of type-raising and composition yieldsddly context
sensitive” permuting and rebracketing calculus closehetlito the needs of
natural grammar.

e The argument cluster coordination construction (11) is»xam®le of a
universal tendency for “deletion under coordination” tegect basic word
order: in all languages, if arguments are on the left of thib Yleen argument
clusters coordinate on the left, if arguments are to thet mflthe verb then
argument clusters coordinate to the right of the verb (RS9

(13) SVO:*SO and SVO SVO and SO
VSO: *SO and VSO VSO and SO
SQOV: SO and SQV *S0OV and SO
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These Things are Out There in the Treebank

e Full Object Relatives ( 570 in WSJ treebank)

e Reduced Object Relatives ( 1070 in WSJ treebank)

e Argument Cluster Coordination ( 230 in WSJ treebank):

(S (NP-SBJ It)
(VP (MD could)
(VP (VP (\myRed{VB} cost)

(\myRed{NP-1} taxpayers)
(\myRed{NP-2} $ 15 million))

(CC and)

(VP (\myRed{NP=1} BPC residents)
(\myRed{NP=2}$ 1 million)))))

e It could cost taxpayers 15 million and BPC residents 1 million
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These Things are Out There (contd.)

e Parasitic Gaps (at least 6 in WSJ treebank):

(S (NP-SBJ Hong Kong’s uneasy relationship with China)
(VP (MD will)
(VP (VP (VB constrain)
(NP (\myRed{-NONE- *RNR*-1})))
(PRN (: --)
(IN though)
(VP (RB not)
(VB inhibit)
(NP (\myRed{-NONE- *RNR*-1})))
(: --))
(\myRed{NP-1} long-term economic growth))))

e Hong Kong’s uneasy relationship with China will constrainthough not inhibit_,
long-term growth.
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CCG is “Nearly Context-Free”

e CCG and TAG are provably weakly equivalent to Linear Inde(sgdmmar
(LIG) Vijay-Shanker and Weir (1994).

e Hence they are not merely “Mildly Context Sensitive” (Jo$888), but rather
“Nearly Context Free,” or “Type D" in the Extended Chomsky Hierarchy.

Language Type Automaton Rule-types Exemplar
Type O0: RE Universal Turing Machine a—[3
Type 1. CS Linear Bound Automaton (LBA) @AY — @a|) P@"o"c") (?)
| Nested Stack Automaton(NSA) Agiy | — @By 1 WCii... & a2"
LCFRS (MCS) ith-order NPDA Al),..0..] = By, 1. W a'b"c"...nm"
“Type 1.9" LI Nested PDA (NPDA) Ay — OBy, U ap"c
Type 2: CF Push-Down Automaton (PDA) A— O a"pb"

Type 3: FS  Finite-state Automaton (FSA) A— {a B gh
a
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A Trans-Context Free Natural Language

e CCG can capture unboundedly crossed dependencies in Dudichusich
German (examples from Shieber 1985):

.. das mer em Hans es huus haelfed aastrii
... that we.NOM Hans.DAT the house.ACC helped paint

. das mer d’'chind em Hans es huus loend haelfe aas:
... that we.NOM the children.ACC Hans.DAT the house. ACC let help paint

‘... that we let the children help Hans paint the house.’

‘... that we helped Hans paint the house.’
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A Trans-Context Free Natural Language

(14) das  mer em Hans es huus alted aastriiche

that we-NOM Hans-DAT the house-ACC helped paint
NPhom NPl NPl ((StsUB\NProm)\NPyar) VP VP\NPxacc

>B

((S+SUB\NPnom)\NPdat)\NPacc
>
(&SUB\NPnom)\NPdat
>
S-FSUB\NPnom
>
SisuB

“that we helped Hans paint the house”
e The following is correctly also allowed:

(15) Das mer em Hansalfed es huus aastriiche.

The corresponding word order dgsallowedin the related Dutch construction.
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A Trans-Context Free Natural Language

(15) das  mer tchind em Hans es huus ond ralfe aastriiche
that we-NOM the childrer-rACC Hans-DAT the house-ACC let help paint
NPlom NPhec NPjay NPie  ((Srsus\NProm)\NPacc)/ VP (VP\NPyar) [ VP VP\NPyc
B%

(((SsuB\NPnom) \NPacc) \NPga() / VP

( ((S+SUB\N I:)nom) \N Pacc)\N I:)dat) \N Pacc
((StsuB\NProm) \NPacc) \NPgyq i
(S+-suB\NProm) \NPacc
Ssus\NPnom

>

>By

>

>

S-FSUB

“that we let the children help Hans paint the house”
e Again, other word orders are correctly allowed.
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On So-called “Spurious” Ambiguity

e Examples like (10), and (11), embody the claim that fragméké “Marcel
proved”, and “a policeman a flower”, ao®nstituentscomparable to “proved
completeness”.

o If “Marcel proved” can be constituent in right node raisitiggn it can be a
constituent of a canonical transitive sentence.

e Even such simple sentences dezivationally ambiguous

S . prove’completeness’marcel’ S . prove’completeness’marcel’
a. Marcel proved completeness b. Marcel proved completeness

29



On So-called “Spurious” Ambiguity (Contd.)

More complex sentences are multiplely ambiguous:
S A SIA SIA

o SN

. Frankie thinks that Anna married  Manny. b. Frankie thinks that Anna married  Mannyc. Frankie thinks that Anna married

This has been referred to (misleadingly) as “Spurious” @uity, since all the
derivations have the same interpretatfon

Interestingly, so called “spurious” constituents includestleft prefixes.
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Parsing in the Face of “Spurious Ambiguity”

e All grammars exhibit derivational ambiguity—even CFG.

e Any grammar that captures coordination at all will have shenederivational
ambiguity as CCG.

e Use standard table-driven parsing methods such as CKY,paitked charts,
either:

— checking identity ounderlying representation of table entries (Steedman
2000), rather than identity of derivation, or:

— parsing normal-form derivations (Eisner 1996)
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CCG is Nearly Context-Free (contd.)

¢ It has polynomial parsing complexity (Vijay-Shanker andifAI©90)

e Hence it has nice “Divide and Conquer” algorithms, like Clavid Dynamic
Programming.

e For real-life sized examples like parsing the newspapeh slgorithms must
be statistically optimized.
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lIl: Wide-Coverage Parsing with CCG

33



Human and Computational NLP

e No handwritten grammar ever has the coverage that is neededd the daily
newspaper.

e Language is syntactically highly ambiguous and it is hardit the best
parse. Quite ordinary sentences of the kind you read everyaddinely turn
out to have hundreds and on occasion thousands of parses,matistly
semantically wildly implausible ones.

e High ambiguity and long sentences break exhaustive parsers
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For Example:

e “In a general way such speculation is epistemologicallgvaht, as
suggesting how organisms maturing and evolving in the gaygnvironment
we know might conceivably end up discoursing of abstracectisjas we do.”

(Quine 1960:123).

e —YVields the following (from Abney 1996), among many otherrocs:

2N e - L
In a general way RC epistemologically releyant PP . organisms maturing and e\‘/olving we  know S
i i in thé physical envirmnment

such speculation is as suggesting how NP VP

might AP Ptcpl objects as we do

coneivably end up discoursing of abstract

35



The Anatomy of a Parser

e Every parser can be identified by three elements:

— A GrammarnRegular, Context Free, Linear Indexed, etc.) and an
associated automaton (Finite state, Push-Down, Nestdd Pown, etc.);

— A searchAlgorithm characterized as left-to-right (etc.), bottom-up (etc.),
and the associated working memories (etc.);

— An Oracle to resolve ambiguity.

e The oracle can be used in two ways, either to actively linetgharch space,
or in the case of an “all paths” parser, to rank the results.

¢ |In wide coverage parsing, we mostly have to use it in the fonvesy.

36



Competence and Performance

e Linguists (Chomsky 195fassin), have always insisted on the
methodological independence of “Competence” (the gramhadringuists
study) and “Performance” (the mechanisms of language use).

e This makes sense: there are many more parsers than thenaamagrs.

e Nevertheless, Competence and Performance must have é\as\a&single
package, for what evolutionary edge does a parser withotdramar have, or
a grammar without a parser?

Any theory that does not allow a one-to-one relation betwbergrammatical
and derivational constituency has some explaining to do.
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Human Sentence Processing

“Garden path” sentences are sentences which are gramimaticavhich
naive subjects fail to parse.

Example (16a) is a garden path sentence, because the amdigoad “sent”
IS analysed as a tensed verb:

(16) a. # The doctor sent for the patient died.
b. The flowers sent for the patient died.

However (16b) is not a garden path.
So garden path effects are sensitive to world knowledgedB&970).

They are even sensitive to referential context: (Altmana Steedman 1988)
showed that (simplifying somewhat) if a context is estdi@dcs with two
doctors, one of whom was sent for a patient, then the gardéngbi@ct is
reversed.
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The Architecture of the Human Sentence Processor

e This requires a “cascade” architecture:

The situation

Yes?! y Yes!/No!

Parsing Model

Yes?l | Yes!/No!

Syntax

Yes?T i Yes!/No!

Speech Recognition

Th{ floweF sent for the patient die
docto

39



Grammar and Incrementality

e Most left prefix substrings of sentences are typable cammstis in CCGfor
which alternative analyses can be compared using the garsnalel

e The fact that (17a,b) involve the nonstandard constituéné [doctor sent
for]s/np, meanghat constituent is also available for (17c,d)

(17) a. The patient that [the doctor sent fgi]p died.

b. [The doctor sent fognp and [The nurse attendegljr the patient who had com-
plained of a pain.

c. #[The doctor sent for] S/NP

{ (S/(S\NP))/N N (N\N)/NP

} [the patientyp dieds np-

#S/NP

[the patientyp dieds np-
(S/(S\NP))/N N (N\N)/NP }

d. [The flowers sent forf

e (18) a. #[The doctor sent for the patient] dieds np-
b. [The flowers sent for the patient died
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The Strict Competence Hypothesis

e Since the spurious constitutent [#The flowers senkjQH is available in the
chart, so that its low probability in comparison with the Ipabilities of the
unreduced components can be detected (according to sorae="bfjmerit”
(Charniaket al. 1998) discounting the future), the garden path in (16b) is
avoided, even under the following very strong assumptiauathe parser:

— The Strict Competence Hypothesis: the parser only buildsires that
are licensed by the Competence Grammar as typaistituents

e This is an attractive hypothesis, because it allows the &bemze Grammar
and the Performance Parser/Generator to evolve as a pag&afevith
parsing completely transparent to grammar, as in standatdri-up
algorithms.

e Butis such a simple parser possible? We need to look at saahéfes
parsing programs.
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Wide Coverage Parsing: the State of the Art

Early attempts to model parse probability by attaching ploltties to rules of
CFG performed poorly.

Great progress as measured by the ParsEval measure has &ageiyn
combining statistical models of headword dependencids Gt
grammar-based parsing (Collins 1997; Charniak 2000; MsK&dget al.
2006)

However, the ParsEval measure is very forgiving. Such psusgve until now
been based on highly overgenerating context-free covgmnagmars.
Analyses depart in important respects from interpretatslectires.

In particular, they fall to represent the long-range “desgimantic
dependencies that are involved in relative and coordinatstcuctions, as iA
companythat the Wall Street Journal says expedtshave revenue @#10M,
andYou can buyand sel all items and servicgson this easy to use site
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Head-dependencies as Oracle

Head-dependency-Based Statistical Parser Optimizatowksiecause it
approximates an oracle using real-world knowledge

In fact, the knowledge- and context- based psychologi@tlermay be much
more like a probabilistic relational model augmented webaciative
epistemological tools such as typologies and thesauri asaceated with a
dynamic context model than like traditional logicist sernamand inferential
systems.

Many context-free processing techniques generalize ttntiidly context
sensitive” grammars.

The “nearly context free” grammars such as LTAG and CCG—¢lastl
expressive generalization of CFG known—have been treatédd(1999),
Hockenmaler and Steedman (2002a), and Clark and Currad)200
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Nearly Context-Free Grammar

e Such Grammars capture the deep dependencies associatembuoitiination
and long range dependency.

e Both phenomena are frequent in corpora, and are expliamhptated in the
Penn WSJ corpus.

e Standard treebank grammars ignore this information andd&apture these
phenomena entirely.

Zipf’s law says using it won’t give us much better overall rgrms. (aropund

3% of sentences in WSJ include long-range object depeneermit LRoDs
are only a small proportion of the dependencies in thoseesens.)

e Butthere is a big difference between getting a perfect evalebeson a
sentence including an object relative clause and intany et
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Supervised CCG Induction by Machine

e Extract a CCG lexicon from the Penn Treebank: HockenmaidiSiaed-
man (2002a), Hockenmaier (2003) (cf. Buszkowski and Pef0;1%ia 1999).

The Treebank Mark constituents: Assign categories The lexicon
- heads
- complements
- adjuncts

; > W P > ..
/ \ / \ / \ IBM = NP
NP VP NP(C) VP(H NP S\\NP bought :=  (S\NP)/NP
| /N | /N | VRN Lotus := NP
IBM VLT,D |\||P IBM VBI|:)(H) I\llP(C) IBM (S\ITIP)/NP r\||P
bought Lotus bought Lotus bought Lotus

e This trades lexical types (500 against 48) for rules (aro80@0 instantiated
binary combinatory rule types against around 12000 PS yples) with
standard Treebank grammars.

The trees in the CCG-bank are CCG derivations, and in caseélgument

Cluster Coordination and Relativisation they depart raltifdrom Penn
Treebank structures.
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Supervised CCG Induction: Full Algorithm

e foreach tree T:
preprocessTree(T) ;
preprocessArgumentCluster(T) ;
determineConstituentType (T);
makeBinary(T) ;
percolateTraces(T) ;
assignCategories(T);
treatArgumentClusters(T) ;
cutTracesAndUnaryRules(T) ;

e The resulting treebank is somewhat cleaner and more censisind is
offered for use in inducing grammars in other expressivenfdisms. It was
released in June 2005 by the Linguistic Data Consoriith documentation
and can be searched using t-grep.
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Statistical Models for Wide-Coverage Parsers

e There are two kinds of statistical models:

— Generativanodels directly represent tipgobabilities of the rules of the
grammay such as the probability of the wosatbeing transitive, or of it
taking a nounphrase headed by the wintgégeras object.

— Discriminativemodels compute probability for whole parses as a function
of the product of a number aefeighted featuredike a Perceptron. These
features typically include those of generative models clamtbe anything.

e Both have been applied to CCG parsing
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Generative Models (Hockenmaier)

A problem: standard generative models for the local dependencies
characteristic of CFGs do not immediately generalize tadleatrant
dependenciegenerated by these more expressive grammars (Abney 1997).

The generative model of Hockenmaier and Steedman 2002 nowdiels
probability for Collins-style local dependencies (altbut canrecoverlong
range dependencies).

It uses “Normal-form modeling”, where the derivations migdieare those In
which type-raising and composition are only used when tlzene alternative.

Hockenmaier (2003) showed that a sound full generative ms@ds possible
for mildly context sensitive grammars as it is for CFG.

Log Linear models offer another solution (Clark and Curr@02, 2004, and
see below)
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Hockenmaier 2002/2003: Overall Dependency Recovery

e Hockenmaier and Steedman (2002b)

Parseval Surface dependencigs
Model LexCat | LP LR BP BR | PHS )

Baseline || 87.7 728 724 783 77.9 81.1 84.3
HWDep || 92.0 81.6 819 855 859 84.0 90.1

e Collins (1999) reports 90.9% for unlabeléd“surface” dependencies.

e CCG benefits greatly from word-word dependencies
(in contrast to Gildea (2001)’s observations for Collinsotiel 1)

e This parser is available on the project webpage.
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Recovery of Long Range Dependencies
Hockenmaier (2003)

e Extraction:

— Dependencies involvingubject relative pronoun
(NP\NP)/(S[dcl]\NP): 98.5%LP, 95.4%LR99.6%UP, 98.2%UR)

— Lexical cat. forembedded subject extractionSteedman '96)
((S[dcl]\NP)/NP)/(S[dcl \NP): 100.0%P, 83.3%R

— Dependencies involvingbject relative pronoun (including ES)
(NP\NP)/(S[dcl]/NP): 66.7%LP, 58.3%LKR76.2%UP, 58.3%UR)

e Coordination:
— VP coordination (coordination &|[.]\NP): 67.3%P, 67.0%R
— Right-node-raising (coordination ¢5[.]\NP)/NP): 73.1%P, 79.2%R

e A direct comparison with Johnson (2002) postprocessindnatets not
Immediately possible.
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Log-Linear Conditional CCG Parsing Models

Featuresfj encode evidence indicating good/bad parses
(19) p(d|S) = ﬁezm fi(d,9

Use standard Maximum Entropy techniques to train a FSM “dagger”
Clark (2002) to assign CCG categories,ltitagging (n~ 3) at over 98%
accuracy(Clark and Curran 2003, 2004).

Clark and Curran use a conditional log-linear model such agiMum
Entropy ofeither:

— The derived structure or parse yield;

— All derivations;

— All derivations with Eisner Normal Form constraints.
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Conditional CCG Parsing Models (Contd.)

e Discriminative estimation via the limited-memory BFGSa@ilighm is used to
set feature weights

e Estimation is computationally expensive, particularly ‘fall derivations”:
— Beowulf cluster allows complete Penn Treebank to be useddtmation.

— The fact that the supertagger is very accurate makes thsslpes
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Overall Dependency Recovery

LP LR UP UR cat
Clark et al. 2002 819 818 90.1 899 90.3
Hockenmaier 2003 84.3 84.6 91.8 922 92.2
Clark and Curran 2004 | 86.6 86.3 925 92.1 93.6
Hockenmaiergog 83.1 835 911 915 0915
C&C (P0Y) 84.8 845 914 91.0 925

Table 1. Dependency evaluation on Section 00 of the Penrbdnde

e To maintain comparability to Collins, Hockenmaier (2008) dot use a
Supertagger, and was forced to use beam-search. With at&gger
front-end, the Generative model might well do as well as tbg-Linear
model. We have yet to try this experiment.
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Log-Linear Overall Dependency Recovery

The C&C parser hastate-of-the-art dependency recovery
The C&C parser isery fast(x~ 30 sentences per second)

The speed comes from highly accurate supertagwinigh is used in an
aggressivéBest-First increasingimode (Clark and Curran 2004), and
behaves as an “almost parser” (Bangalore and Joshi 1999

Clark and Curran 2006 show that CCG all-paths almost-pansith
supertagger-assigned categories loses only 1.3% depgnrossovery
F-score against parsing with a full dependency model

C&C has been ported to the TREC QA task (Cleatlkal. 2004) using a
hand-supertagged question corpus, and applied to théreatdiQA task
(Boset al. 2004), using automatically built logical forms.
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Recovering Deep or Semantic Dependencies

A\

Clarket al. (2004)

respect and confidence which most  Americans previously had
NN T

lexicalitem category slot headf_arg
which (NPANPy,)/(Sdcll,/NPy) 2 had
which (NP\NPy,)/(Sdcll,/NPy) 1 confidence
which (NP\NPy,)/(Sdcl,/NPy) 1 respect
had (Sdcl]jag\NP;) /NP;) 2 confidence
had (Sdclhag\NP;) /NP;) 2 respect
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Full Object Relatives in Section 00
e 431 sentences in WSJ 2-21, 20 sentences (24 object dep@&sjanc

Section 00.1. commonwealth Edison now faces an additional court-ediefundon its summerwinter
rate differential collectionthatthe lllinois Appellate Court hasstimatecat DOLLARS.
2. Mrs. Hills said many of the 28ountries thasheplacedunder varying degrees of scrutiny have made
genuine progress on this touchy issue.

v/ 3. It's the petulant complaint of an impudéehiterican whonSonyhostedfor a year while he was on a Luce
Fellowship in Tokyo — to the regret of both parties.

V/ 4. It said theman whomit did notname had been found to have the disease after hospital tests.
5. Democratic Lt. Gov. Douglas Wilder opened his gubernaktattle with Republican Marshall Coleman
with an abortionrcommerciaproduced by Frank Grednat analysts of every political persuasiagreewas a
tour de force.
6. Against a shot of Monticello superimposed on an Americag, fan announcer talks about the strong
tradition of freedom and individual libertyhat Virginians havenurturedfor generations.

v/ 7. Interviews with analysts and business people in the Wigest that Japanese capital may produce the
economiccooperation thaGoutheast Asian politicians hapersuedn fits and starts for decades.
8. Another was Nancy Yeargin, who came to Greenville in 1985 of the energyandambitions that
reformers wanted teeward
9. Mostly, she says, she wanted to preventdmageto self-esteenthat her low-ability students woulduffer
from doing badly on the test.

v/ 10. Mrs. Ward says that when the cheating was discoveredyahted to avoid the morale-damaging public
disclosure that trial wouldbring.

v/ 11. In CAT sections where students’ knowledge of two-lett@rsonant sounds is tested, the authors noted that
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Scoring High concentrated on the sasweinds thathe testdoes— to the exclusion of othesounds thatifth
graders shoul&now

v/ 12. Interpublic Group said its television programmigerations- whichit expandeackarlier this year — agreed
to supply more than 4,000 hours of original programming ssféurope in 1990.
13. Interpublic is providing the programming in return falvartisingtime, whichit saidwill be valued at more
than DOLLARS in 1990 and DOLLARS in 1991.

v/ 14. Mr. Sherwood speculated that tleeway thatSea Containersasmeans that Temple would have to
substantially increase their bid if they’re going to top us.

v/ 15. The Japanese companies bankroll many small U.S. coegaith promising products or ideas, frequently
putting their money behingdrojects thattommercial banks wontbuch

v/ 16. In investing on the basis of future transactions, a réikngperformed by merchant banks, trading
companies can cut through tlegjam thatsmall-company owners oftédacewith their local commercial banks.
17. A high-balanceustomer thabankspine for, she didn’t give much thought to the rates she was receiving,
nor to the fees she was paying.

v/ 18. The events of April through June damagedrdspeciandconfidence whicimost Americans previously
hadfor the leaders of China.

v/ 19. He described the situation as an escpowblem a timingissue whichhe saidwas rapidly rectified, with no
losses to customers.

v/ 20. But Rep. Marge Roukema (R., N.J.) instead praised theséi®acceptance of a new youth training wage, a
subminimum tha&OP administrations hawsoughtfor many years.

Cases of object extraction from a relative clause in 00; #teeted object, relative
pronoun and verb are in italics; sentences marked wifhaae cases where the parser
correctly recovers all object dependencies
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Clark et al. (2004): Full Object Relatives

e 24 cases of extracted object in Section 00 associated widtotelative
pronoun categoryNP,\NP,) /(S dcl] /NPy)

e 15/24 (62.5%) recovered with all dependencies correc(1575%)
precision)

— That is, with both noun attachment and_pgbnoun-verb dependency
correct—comparable to 58.3%/67% labelled recall/pready
Hockenmaier 2003 and significantly better than Cletrial. (2002) 42%
recall

— 1 sentence (1) failed to parse at all (necessary categosefar verb
estimatedunseen in 2-21).

— 5 were incorrect because wrong category assigned to relatanoun, of
which: in two (5, 9) this was only because again the necessdggory
for a seen verb was unseen in 2-21, and one (17) was incoeeatibe the
POS tagger used for back-off labeled the entirely unsedamineprrectly

— 3 incorrect only because relative clause attached to thagwoun
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Clark et al. (2004). Free Relatives

o 14/17 (82%) recall 14/15 (93%) precision for the single dejsncy.

e Better performance on long-range dependencies can betexpeith more
features such as regular expressions for Max Ent to work on.

e Other varieties of deep dependency (Control, subjectivestreduced
relatives) discussed in Hockenmaier (2003); Clairial. (2002, 2004).

e |t looks as though about half the errors arise because theplexs too small,
and about half because the head-dependency model is too weak

1M words of treebank is nothing like enough data
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Experiments with Porting the Parser

As with all treebank grammars, almost any practical appbcainvolves
porting the parser to a different grammar and model.

For example, in ongoing experiments with open domain goestnswering,
we would like to use the parser for parsing the questions.

However, all treebank grammars including this one do appsll badly on
the TREC question database, because WSJ contains almas¢cio d
guestions, and none at all of some common patterns.

Hand-labelling data for retraining is usually not possible

However, semi-automatically hand-supertagging a fewdhad sentences
and retraining the supertagger with those included is qurdietical.

We did the 1,17MWhatqguestions from TREC in a week
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Porting to Questions: Results

e 171 Whatquestion development set. 1000 for training (and testsiggu
tenfold cross-validation), average length 8.6 words.

e Since the gold standard question data is only labelled ttetres of Iexical
category we can only evaluate to that level.

e However, supertagger accuracy and sentence accuracyatewery highly
with dependency and category recall by the parser, and we lweneed
around 97% per word and 60% per sentence for the original Vé8dnmance

MODEL 1caT SENT | 1.5cats &NT

AcCcC Acc /word AcCcC

¢ CCGbank 72.0 1.8 84.8 11.1
Qs 92.3 66.7 96.6 80.7
Qs+CCGbank| 93.1 61.4 98.1 86.5

Table 2: Accuracy of Supertagger on Development set QueBtada
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Porting to Questions: Results

Supertagging/ CAT SENT WHAT
parsing method Acc Acc Acc

Increasing av. cats 94.6 81.8 91.2
® Decreasingav. cats | 89.7 65.3 80.0
Increasing cats (rand)| 93.4  79.4 88.2
Decreasing cats (rand) 64.0 9.4 21.2
Baseline 68.5 0.0 60.6

Table 3:Category accuracy of parser on dev question data

e For theWhatobject questions, per word/sentence accuracies were 90%0/7
suggesting that they are harder than the average question.

e Object dependency recall by the parser for these questians@0%%0.
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IV: Work In Progress
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Work in Progress: Building Interpretations

The interpretation of the combinatory rules as type raising composition
guarantees “surface compositionality” weiny compositional semantic
representation.

This in turn means that the process of interpretation bagaian be built into
the categories and combinatory rules, and can be done itigydaoa
derivation, as in (4)

To make such a semantics wide-coverage involves specifysemantics or a
morphological stem-based semantic schema for the 400-930 frequent
category types (Hockenmaiet al. 2004, Bos et al. 2004)

Generalize non-terminal categories containing unseedsvor

We use first order logics such as FOPL or DRT, using the lamhftaiktis as a
“glue language”.
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Bos et al. 2004

From 1953 to 1955 , 9.8 billion Kent cigarettes with the filters were

sold , the company said .

(| company(x1) |A| say(x2)

| single(x1l) | | agent(x2,x1)

e | | theme(x2,x3)
| proposition(x3)
I e
I | x4 | | x5 | | x6 x7 x8 |
Il x3: |-————————— I et | === I
| (| card(x4)=billion |;(| filter(x5) |A| with(x4,x5) 1)
| | 9.8(x4) | | plural(x5) | | sell(x6)
| | kent(x4) O | | patient(x6,x4) |
[ | cigarette(x4) | | 1953(xT7) |
| | plural(x4) | | single(x7) |
| | ___ | | 1955(x8) |
| | single(x8) |
| | to(x7,x8) |
| | from(x6,x7) |
| | event(x6) |
| | ___ [
| event(x2)
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The Poverty of Logicism

e Parsing with C&C 2004, and feeding such logical forms to advatof FOL

theorem provers, Bos and Markert (2005) attained quite prghision of
76% on the 2nd PASCAL RTE Challenge Problems.

However, recall was only 4%, due to the overwhelming seaosftiscof FOL
theorem proving.

e MacCartney and Manning (2007) argue that entailment musbb®uted

much more directly, from the surface form of sentences,anfthe strings
themselves.
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Work In Progress: Polarity

e [t is well-known that explicit and implicihegationsystematically switches
the “upward” or “downward direction of entailment of sentes with respect

to ontology-based inference:

(20) Egon walks ~ Egon moves
¥ Egon walks quickly

Egon doesn’t wallk Egon doesn’t walk quickly
¥ Egon doesn’t move

e Sanchez Valencia (1991) and Dowty (1994) point out thatmiglean be
computed surface-compositionally using CG.
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Polarity and Directional Entailment

e (21) doesnt:= (S’\NP)/(S};s\NP) : Ap.ep

e o stands for the polarity of the syntactic/semantic envirenthande stands
for —o, its inverse.

e Crucially, this category inverts the polarity of the preatie alone.
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Polarity and Directional Entailment

o (22) Enoch doesh walk
Enoch™ := doesrt® ;= walk® 1=
S/(S\NPY) (S\NP)/(Sh\NP) Sy \NP
: Ap.p +enoch : APAX.®p oX : owalk

doesrft°walk® := S*\NP: owalli’

Enoch"doestt™walk™ := S' : —Walk’+enoct’1>
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Work in Progress: Building Interpretations

e Quantifier scope alternation appears at first glamzi¢o be surface
compositional in the CCG sense, and is currently assignexsbimymand-based
default.

e Rather than generalizing the notion of surface derivatiarfuther
type-changing rules, we propose translating existerdisisnderspecified
Skolem terms, integrating specification with derivatioraas'anytime”
operation (Steedman 2000).

e Dynamic phenomena such as anaphora (notably including xeias yet
covered at all.
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V: Interim Conclusion
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Where do we Go from Here?

This performance is still bad by human standards.

The main obstacle is that 1M words of annotated training gatat nearly
enough,
There are lots of words that never occur at all in the TreeBatraI.
— This is a problem that the supertagger can help with. (Intfaefront-end
supertagger is already crucial to performance.)

But a worse problem is words thaaivebeen seen, buttot with the necessary
category

The only answer to this problem is to generalize the grammaditlhe model,
using
— Active learning over unreliable parser output from unlaokedliata, or

— High precision low recall methods over web-scale amountiatd.
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Moral

e You can have the linguistic expressivity that is needed tbaterpretable
structureandparse efficiently with wide coverage—with an automatically
Induced CCG lexicon and a statistical head-dependency imode
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Appendix: Child Language Aquisition
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Child and Computer Language Development

e The child’s problem is similar to the problem of inducing adbank grammatr,
but a little harder.

— They haveunordered logical formaot language-specific ordered
derivation trees.

— So they have to work owrhich word(s) go with which element(s) of
logical form, as well as the directionality of the syntactic categonesich
are otherwise universally determined by the semantic tpbdse latter).
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Child and Computer Language Development

e Children do not seem to have to deal with a greater amountof g#ran the
Penn WSJ treebank has (McWhinnie 2005).

— But they may need to deal withtuations which support a number of
logical forms

— And they need to be able to recover from temporargng lexical
assignments

— And they need to be able to handiéical ambiguity
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Computational Accounts

e Siskind (1995, 1996), Villavicencio (2002), and Zettlerabgnd Collins
(2005) offer computational models of this process.

e Both theories make strong assumptions about the assacatiwords with
elements of logical form.

e Both make strong assumptions about universally availagtametrically
specified rule- or category- types, the latter in the form tff@e hierarchy

e Both deal with noise and homonymy probabilistically.
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Computational Accounts: Zettlemoyer and Collins

e Zettlemoyer and Collins’ algorithm (UAI 2005) allovesy contiguous
substringof the sentence to be a lexical item. For a given logical fdhma,
learner has to search the cross-product of the substringsetof the string
with the set of pairs of legal categories with elements ofsiestructure
powerset of the logical form for categories that yield conabory derivations
that yield the correct logical form.

e Learning is via a log-linear model using lexical entriesl{pms features and
gradient descent on their weights, iterating over sucees®ntences of a
corpus of sentence-logical form pairs.

e \We can improve on this by

— Directly generating the parses that UG supports for theesmat-meaning
pair.

— Building a full parsing model (necessary if we are to scale).
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Zettlemoyer and Collins (Contd.)

The algorithm as presented in 2005 learns only a very smtkera
unambiguous fragment of English, hand-labeled with unguentified
database queries as logical forms, and an English specréatory of
possible syntactic category types in lieu of Universal Graan

CCG almost-parsing is why Zettlemoyer and Collins do so wrlparser
Induction for a small not very ambiguous corpus without hgva parser
model at all.

However, Siskind’s and Villavicencio’s results alreadl ts that the
algorithm should work with multiple candidate logical fosm

Similarly, their results suggest that a universal set oégaty types can be
used without overwhelming the learner.
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Zettlemoyer and Collins (Contd.)

e All of these models depend on availability to the learnertadrs sentences
paired with logical forms, since complexity is determingdaocross-product
of powersets both of which are exponential in sentence engt

e A number of techniques are available to make search effimehtdinguse of
a head-dependency parsing model
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The Generative Model

e We will assume thaP(D,1,S) is a generative model for an (exhaustive)
parser, rather than the discriminative model of Zettlemn@teal.

e One advantage of generative models besides their closenesspetence

grammar is that we can invert the parsing model to define thlkeagimlity of an
utterance given a meaning.

However, another difference between the child and stanweethank

grammar-induction programs is that the child learns gramnm@aementally
utterance-by-utterance.

Recomputing the model over the entire corpus so far, as eaglsantence is

encountered, is not only psychologically absurd, but caiapanally
exponential.
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Example

The child thinks:morédod
The Adult says: “More doggies!”

Given the string “more dogs” paired with the logical fomorédogs, and a
mapping from semantic types onto syntactic type &P, S\NP etc., the
child can use the universBIT -based combinatory rules of CCG to generate

— all possible syntactic derivations, pairing
— all possible decompositions of the logical form with

— all possible word candidates

Learning a language is just learning its lexicon and a pgrmsiodel.
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The Derivations

e CCG permits just three derivations for the new utteranceré/ipggies” , as
follows:

(23) a. MORE DOGGIES !
NP/N : more%(e,t)je) N : dog%e,t)
NP: morédogs

b. MORE DOGGIES !
N : dogsiejt) NP\N : more‘((e’o’e)
NP: morédogs

c. MORE DOGGIES'!
NP: morédogs
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The Child’s First Lexicon

e (24) The child’s lexical candidates:
more:= NP /N : more’

((e)t).e)
N : dog%ejt)
doggies:= NP\N : moré((et) o
N : dogs /(e,t)

more doggies:NP: (moredogs)e

e A statistical model for these hypotheses can be learned) @asinncremental
variant of the semi-supervised inside-outside (EM) alponi (Pereira and
Schabes 1992; Neal and Hinton 1999). We begin with a simglrfiedel,

representing probabilities as expected frequencies,dbéne the model we
actually use.
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Learning the Model for English

e |n order to obtain an incremental algorithm, we represeattindel as a
vector of expected frequencies for each producppdefined as

(25) fexp(p) — ZSESZiel P(”S) ZdeD P(d\s, i).coum(p, d)’

where P(d|s,i) = zdsédP)(d)

The primary requirement for such a model is that learnedrmédion about

seen events in a derivation should influence the probagsldssigned to
unseen events.

e Thus, if the language only consists of sentences of the févioré X”, and
the hundredth sentence is “More erasers”, where “erasgia’previously
unseen word, this sentence should not only make the leaiiide anore
certain that “more” is a determiner meaninmpre.

¢ |t should also make them pretty sure that “erasers” is a nandnota
determiner meaningiore.
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Two Estimators for Expected Frequency

e \We define two estimators fdexp

o Fex[x is the expected frequency based on the present sentendeeand t
possibilities of universal grammar alone. For simplicitg will assume the
latter to be uniformly distributed, so that (25) reducedw following, where
ID| is the number of derivations:

— ZdE Coun(pad)
(26) fexp(p) = <=2 D

e Fexpy for a given interpretation i for sentensas defined as follows, where
IS the model estimated so far.

(27) feXIZM (p) — Ziel P(I ‘S) ZdED P(d‘S, i).counl(p, d)
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The Algorithm

e The model can be learned using the following incrementadwaof the

semi-supervised inside-outside (EM) algorithm (Perema Schabes 1992,
Neal and Hinton 1999).

e Every new sentencg, provides a seb, of derivations parallel to (23), which
defines the following:

a. A (possibly empty) set of previously unseen productionslved in some
derivation inD;j, including those involving novel lexical entries, that mus
be added to the model with cumulatifexptemporarily initialized to zero.

b. (E-step): The set of all productions including those iwlpse cumulative
fexpmust be multiplied byn— 1, incremented b¥exp:, and divided byn.

- : fexpy —fexpe - :
c. (M-step):A further increment of - (which may be negative) to the

cumulativefexpfor all productions involved in some derivationi. |.e.,
replace the earlier estimate basedfexx.
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The Algorithm

e Step b defines new values for the conditional probabilitoegte rules in
guestion, defining an intermediate model for calculatirgdlposteriori
probabillities in step c.

e The further update c to the model defines the expected fretpsefor the
next cycle. The lexical probabilities for the relevant werd the lexicon
given the new sentence can then be calculated using the modelefinition
(25), whereP(d|l,S) is the product of the probabilities of the productions it
iInvolves.

e (28) P(d|l,S) = Mped P(plparend [ ex(pcd P(@ O[W)

This IS Just a probabilistic context-free grammar pars€2Ki). We actually
use a head-dependency model (Collins 2003)
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Normalizing Probabilities of Derivations

e The possibility of lexicalizing more than one element of kbgical form in a
single word means that the alternative derivations for glsifogical form
such as those in (23) for our running example and the firsesert“More
doggies” may be of different lengths.

e Since generative models of the kind outlined above, basd¢deoproducts of
probabilities of rules, assign undue weight to short déioves, we must

normalize the probabilities of Iexical productions oves tomplexity of their
logical forms.

Thus, the probability?(¢.o|p) of the lexical productions in (28) is

(29) P(9.0|H) = [MmcuP(®,alm)

e For example, the probability of derivation (23c) is not adhibut is the
conditional probability of “more dogs” givemorédogs times that of “more

dogs” givenmoré, times that of “more dogs” givedogs—that is,  x 3 x 3.
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Probabilities of the Derivations

e Thus on the basis of the intermediate valXPUHE the relative
conditional probabilitie$(D|l,S) of the three derivations (23) are as follows:

(30) aP(All,S = P(rO|START x P(1lNP : fa)) x
Piex(more NP/N|mOre) x Piex(doggiesN|dogs) = 2:03x0.5-02
b P(BI,S) = P(O|START x P@2INP : fa)) x
P QoggiesNP\NITOR) x Pi(moren dogs) — 23802

c P(C[I,S) = P(rO|START x Piex(more doggiesNP/more) x
1x0.3x0.3x0.3
NI CIES)

Piex(more doggiedNP|dogs) =
2 P(AllL,S) =P(B|I,S) = P(C|I,S) = 0.3
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Child’s First Parsing Model (Simplified)

e This means that the initial model can be calculated as faiow

(31) Rule fexp(n— 1) {-eXIN_LHEXE oy ()
r0. START— NP: fa 0 1.0 1.0
rl1.NP:fa— NP/N:f N:a 0 0.3 0.3
r2.NP:fa—N:a NP\N:f 0 0.3 0.3
I1. NP/N : moré — more 0 03 0.3
12. NP\N : moré — doggies 0 (B 0.3
13. N : dogs — doggies 0 (B 0.3
14. N : dog¢ — more 0 03 0.3
5. NP: morédog¢ — more doggies 0 a 0.3

91



The Child’s First Lexicon

e Thus, we have the following updated probabilistic lexicon:

(32) @ o, fexp Piex(0, M|®) Pex(@[L)
more:= NP/N : more’((e,t),e) 0.3 0.3 0.3
N : dogs, 03 03 0.3
doggies:= NP\N : morQ(e,t)je) 0.3 0.3 0.3
N : dogs ’(e,t) 0.3 0.3 0.3

more doggies:™P: (morédogd)e 0.3 0.3 0.3
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Early Overgeneration

e Since the word counts and conditional probabilities for feicand “doggies”
with them meaningnore‘((e’t%e) are all equal at this stage, the child may well
make errors of overgeneration, using some approximatidddggies” to
mean “more”.

e However, even on the basis of this very underspecified lexittee child will
not overgenerate “*doggies more”.

e Moreover, further observations, with further updates &mftrency counts, will
rapidly lower the estimated conditional probability of theurious hypotheses
concerning categories and substrings in comparison todiveat ones,
Indicated in bold type, as follows:
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The Child’'s Second Sentence

e Let us suppose that the second utterance the child hearsoe“tbokies”.
There are again three derivations parallel to (23). Thedatain derive a new
parsing model by adding new rules, updating expected frezjas for all
rules in the new set of derivations, and recalculating agyast expected
frequencies as described:
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Prior Probabilities for the Three Possible Derivations

e On the basis of the intermediate valdd&EIXE the |ength-weighted
relative conditional probabilitieB(d|l,S) of the three derivations for “More
cookies” parallel to (23) are as follows:

(33) a P(A|l,S) = P(rO|START x P(r1|NP : fa)) x Piex(more NP/N|more) x

Piex(cookiesN|cookie$) = 1:0x0- 3?5" |3§)0 16 _ .42

b P(BJI,S) = P(rO|START x P(r2|NP: fa)) x Pjex(cookiesNP\N|moré) x
Plex(More N|cookie) = 1x0:3x0.16x0.16 _ (j 3

>4 P[5
c P(C[I,S) = P(rO[START X Pjex(more cookiedNP|moré) x
Piex(more cookiedNP|cookie$) = 12 3X0<g‘}68>30 29 — 35

@ P(Al,S) # P(BI,S) # P(C|I,S) # 0.3
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The Child’s 2nd Parsing Model (Simplified)

e (34) Rule fexp(n— 1) (D=L HEXE oy ()
r0. START— NP: fa 1.0 1.0 1.0
rl.NP:fa— NP/N:f N:a 0.3 0.3 0.34
r2.NP:fa—N:a NP\N:f 0.3 0.3 0.25
I1. NP/N : moré — more 03 0.3 0.34
12. NP\N : moré — doggies 08! 0.16 0.16
3. N : dog¢ — doggies B 0.16 016
14. N : dogé — more 03 0.16 0.16
5. NP: morédogd) — more doggies a 0.16 0.16
16. NP : morecookie§ — more cookies 0 a6 0.17
17. NP\N : moré€ — cookies 0 016 011
r8. N(cookieg : cookies — cookies 0 016 0.24
19. N(more) : cookie$ — more 0 016 0.11

96



The Child’'s Second Lexicon

e Thus, we have the following updated probabilistic lexicon:

(35) ¢ o,u fexex(n) P(0, 1 @) P(glo, )
more;:= NP /N : more’(<e e 0-34 0.57895 0.57895
N : dogd,, 016 026318 0.5
N : cookies, 011  0.15789 (B
doggies:=  NP\N:more . 0.16 0.5  0.385
N dogs (g 0.16 0.5  0.50
cookies:=  NP\N:moré,, o, 0.11 03 015789
N : cookies {, 0.24 0.6 0.6
more doggies:NP: (morddogd)e  0.16 0.3 0.3
more cookies: NP : (morécookie$)e 0.17 03 0.3
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The Child’'s Second Lexicon

Notice that the expected frequencies in this table are nt¢ tfue same as

those that would be obtained by recomputigg over the entire corpus, as in
standard batch EM.

e Nevertheless, at this point, the child is exponentiallg ldeely to generate
“doggie” when she means “more”.

e Experimental sampling by elicitation of child utterancesidg such
exponential extinction may well give the appearance obalhone setting of
parameters like NEG-placement goia-drop claimed by Thornton and Tesan
(2006).

e This effect is related to the “winner-take-all” effect obged in Steels’ 2004
game-based account of the very similar process of estaidishshared
vocabulary among agents who have no preexisting language.
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An Aside: A Statistically Sound Model

e We actually need a generative model that explicitly stdtegorobabilities of
the productions that are used in producii$l, D).

— We model the probability of the syntactic derivatiB(D|ST ART) using
the PCFG type productions described before.

— Each derivation gives a set of syntactic components

o Kwiatkowski and Steedman (2009)
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An Aside: A Statistically Sound Model

e \We can now approximate the conditional probability of thecasated
semantics as:

_ P()\|6X‘O-i7/\> ~ %P()\Iex‘/\) *t(TO'a-[)\>
— tIs a binary function that checks that the types of the syntaksemantics
are compatible.

— A 'Iis a model of the semantics available to the system. We bhealexical
probability up as follows:

— P(AiexIN) = Macere, PAiex|Ac) X P(Ac|A)
— TheP(Ajex|Ac) terms allows us to penalise complex semantics that appear
In the lexicon.

— TheP(A¢|A\) terms allow us to penalise rare semantics.
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An Aside: A Statistically Sound Model

The probability of(S1,D) is calculated as:

P((S1,D)|STARTA) = P(D|START) x I_l P(@|oi,Ai)P(Ai|oj, \)

The grammar must model the production probabilii¢p| parent)
The lexicon must modd?(Ajex|Ac), P(Ac|AN), P(@|o,A)

Incremental updates are made to these probability distoibs by calculating
likelihoods given each new sentence (as before) and usigg<®=arule to
update the posterior belief, which is then stored.

In order to make this simple, the grammar rules are modekaagua Dirichlet
prior and the lexical probabilities are modelled using Enhiet Processes.

— In both cases the likelihood is conjugate to the prior, sauth@ates are
easy to perform
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Later Development

e This effect is also all that is needed to explain the phename “syntactic

bootstrapping” (Gleitman (1990)), where at a later stagaevkelopment, the
child can learn lexical entries for words for which the cepending concept
IS not salient, or is even entirely lacking to the child.

¢ |n this connection it is important that the expected freaqyeof the
non-English rule r2 is already dropping in comparison to r1l.
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Discussion

e Syntax is learned on the basis of preexisting semanticgre&ations afforded
by the situation of adult utterance, using a statistical ehogter a universal
set of grammatical possibilities.

e The existence of the model itself helps the child to rapidiglare a correct
grammar even in the face of competing ambiguous semantecsraao,
without requiring the (empirically questionable) subsetqple.

e The fact that the onset of syntactically productive languagthe end of the
Piagetian sensory-motor develomental phase is acconmgphpian explosion
of advances in qualitatively different “operational” caiiyre abilities suggests
that the availability of the statistical model has a feedtaftect, allowing
“Syntactic bootstrapping” of concepts to which the childubnot otherwise
gain access.
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Parameters and Triggers Unnecessary

e The theory presented here somewhat resembles the progdsadar 1998 as
developed in Sakas and Fodor (2001) and Niyogi (2006) initgahe
acquisition of grammar as in some sense parsing with a wsaver
“supergrammar”. As in that proposal, both parameters agders are simply
properties of the language-specific grammar itself—inrtbase, rules over
iIndependently learned parts of speech, in present terxisaleategories.

e Rather than learning rules in an all or none fashion on theslmds
unambiguous sentences that admit of only one analysis rédsemt theory
adjusts probabilities in a model of all elements of the graanfar which
there is positive evidence fail processable utterances.

104



Against “Parameter Setting”
e In this respect, it resembles the proposal of Yang (2002yvéver it differs in
eliminating explicit parameters.

¢ |f the parameters are implicit in the rules or categoriesrigelves, and you
can learn the rules or categories directly, why should thiel ¢br a truly
Minimal theory) bother with parameters at all?

e For the child, all-or-none parameter-setting is countedpctive, as it will
make it hard to learn the many languages which have incemisettings of
parameters across lexical types and exceptional lexmalst as in German
and Dutch head finality.

e Or consider English expressions like the following:
(36) Doggies galore!
“Galore” IS the only phrase-final determiner in E. (stoleonfrIrish).
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