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Introduction

� Combinatory Categorial Grammar (CCG, Steedman 2000b) is a “mildly
context-sensitive” grammar formalism.

� That is, it is in a class that can plausibly be claimed to be just expressive
enough to capture human language including phenomena like coordination
and long range dependency.

� Both are frequent in corpora.

� Most treebank grammars fail to capture these phenomena entirely.

� Many context-free processing techniques generalize to the mildly context
sensitive class.

� Making the generalization will give us:more constrainedandless under-
and over-generalizingparsers;better models; andsemantically
interpretable outputs.
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Combinatory Categorial Grammar

(1) S ! NP VP

VP ! TV NP

TV ! fproved; finds; : : :g
(2) proved := (SnNP)=NP

(3) The functional application rules

a. X=Y Y ) X (>)

b. Y XnY ) X (<)
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A Derivation

(4) a. Marcel proved completeness

NP (SnNP)=NP NP

>

SnNP

<

S

b.
V NP

VP

Marcel proved completeness

S

NP
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Semantics

(5) proved :=(SnNP3s)=NP : λx:λy:prove0xy

(6) Functional application

a. X=Y : f Y : a ) X : fa (>)

b. Y : a XnY : f ) X : fa (<)

(7) Marcel proved completeness

NP3sf : marcel0 (SnNP3s)=NP : λx:λy:prove0xy NP: completeness0
>

SnNP3s : λy:prove0completeness0y

<

S: prove0completeness0marcel0
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Notation: Left-Associativity Convention over Logical Forms

(8) a. (prove0completeness0)marcel0 b. ’ ’ marcel ’prove completeness

� A nonordered form of the traditional VP is reflected at the level of

propositional logical form.

� Such logical forms therefore preserve traditional c-command.
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Coordination

(9) Simplified coordination rule(<Φ>)

X CONJ X0 ) X00

(10) Marcel conjectured and proved completeness

NP (SnNP)=NP CONJ (SnNP)=NP NP

<Φ>

(SnNP)=NP

>

SnNP

<
S
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Composition

(11) Forward composition(>B)
X=Y : f Y=Z : g )B X=Z : λx: f (gx)

(12) Marcel conjectured and might prove completeness

NP (SnNP)=NP CONJ (SnNP)=VP VP=NP NP
: marcel0 : conjecture0 : and0 : might0 : prove0 : completeness0

>B

(SnNP)=NP
: λx:λy:might0(prove0x)y

<Φ>

(SnNP)=NP
: λx:λy:and0(might0(prove0x)y)(conjecture0xy)

>

SnNP
: λy:and0(might0(prove0completeness0)y)(conjecture0completeness0y)

<

S: and0(might0(prove0completeness0)marcel0)(conjecture0completeness0marcel0)
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Type-Raising

(13) Forward type-raising(>T)
NP : a )T T=(TnNP) : λf :fa

(14) Marcel proved and I disproved completeness

NP (SnNP)=NP CONJ NP (SnNP)=NP NP

>T >T
S=(SnNP) S=(SnNP)

>B >B
S=NP S=NP

<Φ>

S=NP

>

S

� Type raising is restricted to primitive argument categories, NP, PP etc., and

over primitive functors like verbs, resembling the traditional notion ofcase.
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Many Linguistic Predictions—For Example:

� The following construction is predicted on arguments of symmetry.

(15) give a teacher an apple and a policeman a flower

<T <T <T <T
DTV TVnDTV VPnTV CONJ TVnDTV VPnTV

<B <B
VPnDTV VPnDTV

<Φ>

VPnDTV

<

VP

� DTV = (VP=NP)=NP TV= VP=NP

� In accord with observations of Ross (1970) concerning the relation of “verb
gapping” and word order, CCG examples like the following cannot occur in
an SVO language like English:

(16) *A policeman a flower and give a teacher an apple.
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Similar Argument Clusters are Prefixes In Dutch/German

(17) dat Jan Cecilia Henk de nijlpaarden zag helpen voeren

T=(TnNP1) T=(TnNP2) T=(TnNP3) T=(TnNP4) (((S+SUBnNP1)nNP2)nNP3)nNP4

>B
T=((TnNP1)nNP2)

>B
T=(((TnNP1)nNP2)nNP3)

>B
T=((((TnNP1)nNP2)nNP3)nNP4)

>

S+SUB
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On So-called “Spurious” Ambiguity

� Examples like (14), (15), and (17) embody the claim that fragments like

“Marcel proved”, “a policeman a flower”, and “Jan Cecilia Henk de

nijlpaarden” areconstituents, comparable to “proved completeness”.

� If “Marcel proved” can be constituent in right node raising, then it can be a

constituent of a canonical transitive sentence.

� Even such simple sentences arederivationally ambiguous:
S : prove’completeness’marcel’

a.  Marcel  proved   completeness                               b.  Marcel  proved  completeness

S : prove’completeness’marcel’
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On So-called “Spurious” Ambiguity (Contd.)

� More complex sentences are multiplely ambiguous:
S: Λ S: Λ S: Λ

Noam thinks that Marcel proved completeness.      ...        Noam thinks that Marcel proved completeness    ...     Noam thinks that Marcel proved completeness

� This has been referred to (misleadingly) as “Spurious” ambiguity, since all the

derivations have the same interpretationΛ.

� Interestingly, so called “spurious” constituents include mostleft prefixes.
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How to Parse with a Grammar that Has “Spurious Ambiguity”

� All grammars exhibit derivational ambiguity—even CFG.

� Any grammar that captures coordination at all will have thesamederivational

ambiguity as CCG.

� Use standard table-driven parsing methods such as CKY, checking identity of

underlying representation of table entries, rather than derivation: Karttunen

(1989); Komagata (1997, 1999); Hockenmaieret al. (2002).

� Vijay-Shanker and Weir 1994 show how to make this worst-case polynomial,

although for realistic grammars exponential parsers seem to be average-case

cubic (see Komagata 1999 for English and Japanese).
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How to Induce a CCG

� Extract a CCG lexicon from the Penn Treebank: Hockenmaier and Steedman

(2002a)

S\NP

Acquiring a Lexicon

John John 

NP

VBZ

S

VP

NP

(H)

(C)

(H) (C)

loves Mary

(H)

The Treebank

NP

loves Mary

NP

S

John 

The lexicon

(S\NP)/NP

loves:    (S\NP)/NP

Mary:    NP

John:    NP

Assign categories

S

VBZ NP

Mark constituents:

loves Mary

NP VP

- heads
- complements
- adjuncts

� This trades lexical types (1200 against 48) for rules (3000 instantiations of
combinatory rules against 12000) with standard Treebank grammars.

15



How to Statistically Optimize the Parser

� Use standard Maximum Entropy techniques to train a FSM “supertagger”

Clark (2002),multitagging at over 98% accuracy

� Theneither:

– Parse using the Komagata technique, building and modelingdeepor

semantic dependency structures: Clarket al. (2002).

– or use Normal-form parsing (Wittenburg and Wall (1991)), building and

modeling Collins-stylesurfacedependencies : Hockenmaier and

Steedman (2002b).
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A Problem

� Standard generative models for the local dependencies characteristic of CFGs

do not immediately generalize to thereentrant dependenciesgenerated by

these more expressive grammars (Abney 1997—see Johnson lecture in this

series).

� The model of Clark et al. 2002 is, technically, unsound. The generative model

of Hockenmaier et al. only models local dependencies.

� Log Linear models offer one (rather desperate) kind of solution, but have

known disadvantages for e.g. language modeling.

� We conjecture that a sound full generative model is as possible for mildly

context sensitive grammars as it is for CFG (Hockenmaier, in preparation).
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Performance on Overall Dependency Recovery

� Hockenmaier and Steedman (2002b)

Parseval Surface dependencies

Model LexCat LP LR BP BR hPHSi hi

Baseline 87.7 72.8 72.4 78.3 77.9 81.1 84.3

HWDep 92.0 81.6 81.9 85.5 85.9 84.0 90.1

� Collins (1999) reports 90.9% for “surface” dependencies.

� CCG benefits greatly from word-word dependencies.
(in contrast to Gildea (2001)’s observations for Collins’ Model 1)

� Compare on Clarket al. (2002)’s (different) “deep” dependencies:

LP LR UP UR

Clark et al. ’02 81.9% 81.8% 89.1% 90.1%

Hockenmaier 83.7% 84.2% 90.5% 91.1%
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Deep Dependencies: Clarket al. (2002)

respect  and  confidence     which     most      Americans    previously           had

lexical item category slot headof arg

which (NPXnNPX,1)=(S[dcl]2= c f NPX) 2 had

which (NPXnNPX,1)=(S[dcl]2= c f NPX) 1 confidence

which (NPXnNPX,1)=(S[dcl]2=NPX) 1 respect

had (S[dcl]hadnNP1)=NP2) 2 confidence

had (S[dcl]hadnNP1)=NP2) 2 respect
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Performance on Full Object Relatives: Clarket al. (2002)

� 24 cases of extracted objects in Section 00 associated with object relative

pronoun category(NPXnNPX)=(S[dcl]=NPX)

� 10 (41.7%) recovered with all dependencies correct

– so both noun attachment and relpronoun-verb dependency correct

– 10 incorrect because wrong category assigned to relative pronoun

� complementizerthat has a high prior probability

– 3 incorrect only because relative clause attached to the wrong noun

– 1 incorrect only because wrong category assigned to predicate

� Much better performance can be expected with a better model.

� Other varieties of deep dependency discussed in Clarket al. (2002).
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Hockenmaier and Steedman (2002b)

� Extraction:

– Lexical cat. forsubject relative pronoun

(NPnNP)=(S[dcl ]nNP): 97.1%P, 94.3%R

– Lexical cat. forembedded subject extraction(Steedman ’96)

((S[dcl ]nNP)=NP)=(S[dcl ]nNP): 100.0%P, 83.3%R

– Lexical cat. forobject relative pronoun

(NPnNP)=(S[dcl ]=NP): 84.2%P, 76.2%R

� Coordination:

– VP coordination (coordination ofS[:]nNP): 67.3%P, 67.0%R

– Right-node-raising (coordination of(S[:]nNP)=NP): 73.1%P, 79.2%R
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CCG Parsers as Language Models

� Standard technique/baseline is Trigram modeling.

� Strict left-to-right parsing interpolated with trigram model does better: Chelba
and Jelinek (1998); Roark (2001).

� Immediate-Head parser modeling alone does even better, even with a
non-left-to-right algorithm: Charniak (2001).

� CCG type-raising treats head and complement asdual: In some sense, it
makesall constructions head first.

� Hence most left prefixes are constituents, even in Dutch/German/Japanese.

� While any grammar can in principle be mapped onto a prefix grammar and a
corresponding generative model, CCG makes this trivial: the grammaris a
prefix grammar and probabilities for prefix dependency structures can be
derived from the standard dependency model.
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CCG Parsers as Language Models

� For example, in Dutch the prefixdat Cecilia een hond een knok . . .(“that
Cecilia a dog a bone. . . ”) has a categoryS=(((SnNP)nNP)nNP).

� The type of this constituents tells you how toinvert the dependency model to
obtain a left-to-right prediction.

� It predicts a ditransitive verbgroup and tells you all you need to know to
estimate its Arg Max from verbs of that class. (For example, the “give” stem
is going to come out ahead of the “sell” stem.)

� dat een hond een knok Cecilia . . .is going to make a quite different
predictions.

� So are some of the alternative derivations ofdat Cecilia een hond een knok . . .

� CCG similarly offers a direct way to use prosodic information (Steedman
2000a).
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The Need for More Training Data

� Apart from weaknesses in statistical models that can be fixed, the chief

limitation on the CCG parsers (and any parser with a comparably large

category set and/or constrained grammar) isknown words which have not
been seen with the necessary category.

� This is a problem of the amount of training data: a million words is not

enough for effective supervised learning forany grammar (Gildea 2001).

� Either:

– Generalize the lexicon by clustering, or sources like WordNet.

– Used semi supervised techniques to generate labelled dat automatically
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Weakly Supervised Training for Statistical Models

� Charniak showed that running his parser over 30M words of unlabelled data
and retraining slightly improved performance.

� We also know voting among parsers improves performance Hendriks
(1998): 92.09% LP / 90.1% LR.

� Co-training (Blum and Mitchell 1998): bootstrapping from small labeled
corpus using multiple “views” from different parsers with different models
and levels of confidence: Sarkar (2001)

� This is rather like what children do when their partial knowledge of the
language tells them that a new word must be a verb, even though they don’t
yet know the associated concept.

� We are pursuing this for a number of grammars/parsers at the CSLP Summer
Workshop.
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Moral

� You can have your linguistic cake and eat it—with a an automatically induced

lexicon and a statistical model
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