Noname manuscript No.
(will be inserted by the editor)

Hindi CCGbank: CCG Treebank from the Hindi
Dependency Treebank

Bharat Ram Ambati - Tejaswini Deoskar -
Mark Steedman

Received: date / Accepted: date

Abstract In this paper, we present an approach for automatically creating a Com-
binatory Categorial Grammar (CCG) treebank from a dependency treebank for the
Subject-Object-Verb language Hindi. Rather than a direct conversion from depen-
dency trees to CCG trees, we propose a two stage approach: a language independent
generic algorithm first extracts a CCG lexicon from the dependency treebank. An
exhaustive CCG parser then creates a treebank of CCG derivations. We also discuss
special cases of this generic algorithm to handle linguistic phenomena specific to
Hindi. In doing so we extract different constructions with long-range dependencies
like coordinate constructions and non-projective dependencies resulting from con-
structions like relative clauses, noun elaboration and verbal modifiers.

Keywords Combinatory Categorial Grammar - CCG - Treebank - Hindi - Non-
projective dependencies

1 Introduction

Combinatory Categorial Grammar (CCG) (Steedman,[2000) is an efficiently parseable,
yet linguistically expressive grammar formalism. In addition to predicate-argument

Bharat Ram Ambati
ILCC, School of Informatics, University of Edinburgh, UK
E-mail: bharat.ambati @ed.ac.uk

Tejaswini Deoskar
ILCC, School of Informatics, University of Edinburgh, UK
E-mail: tdeoskar @inf.ed.ac.uk

Mark Steedman
ILCC, School of Informatics, University of Edinburgh, UK
E-mail: steedman@inf.ed.ac.uk

2 Ambati et al.

structure, CCG elegantly captures the unbounded dependencies found in grammat-
ical constructions like relativization, coordination etc. Availability of the English
CCGbank (Hockenmaier and Steedmanl 2007) has enabled the creation of several
robust and accurate wide-coverage CCG parsers for English, both graph-based and
transition-based, that are being used extensively for broad-coverage parsing, and es-
pecially for tasks requiring deep linguistic analysis such as semantic parsing and
question-answering (Hockenmaier and Steedman, 2002; (Clark and Curran, 2007;
Auli and Lopez, 2011; Lewis and Steedman), 2014; |Zhang and Clark, 2011; Xu et al.
2014;|Ambati et al.,|2015). Creation of CCGbanks in other languages, especially lan-
guages typologically far from English is beneficial both for the development of CCG
analyses for linguistic phenomenon in these languages, and also for the development
of deep NLP tools for these languages.

Different grammar formalisms like phrase structure grammar, combinatory cate-
gorial grammar, and dependency grammar have different advantages. But developing
treebanks manually in each formalism is a very expensive and time consuming task.
Automatic conversion of treebanks from one formalism to another significantly re-
duces the manual annotation effort. We develop an algorithm for automatically creat-
ing CCGbanks from dependency treebanks. We apply this approach to automatically
creating a Hindi CCGbank from an existing manually created Hindi dependency tree-
bank (Bhatt et al.,[2009). The approach is applicable for creating CCGbanks for other
languages with existing dependency treebanks, and is especially relevant for other In-
dian languages.

As compared to English, many Indian languages, including Hindi, while basi-
cally verb final, have a freer word-order and are morphologically richer. All of these
characteristics pose challenges to statistical parsers. In the Hindi dependency tree-
bank there are around 20% of dependency trees with at least one non-projective arc
which are problematic for vanilla shift-reduce parsing algorithms like arc-eager and
arc-standard (Nivre et al.,[2007b)). In this work, we show that CCG can capture these
phenomena elegantly, essentially by making such dependencies projective — that is,
covered by the grammar. Our approach can be adapted to extract CCGbanks for other
typologically similar languages with existing dependency treebanks, such as other
Indic languages. The rest of the paper is organized as follows. Section 2] gives a short
introduction to the CCG formalism. Section [3] describes related work regarding the
automatic creation of CCGbanks for English and other languages. A brief summary
of the Hindi dependency treebank is provided in section] In sections [5] and [6] we
first show how we extract a CCG lexicon from the Hindi dependency treebank and
then use it to create a Hindi CCGbank. Details of different long-range dependencies
arising from coordination and other non-projective constructions are presented in sec-
tions [7]and [8] Finally, an analysis of CCG categories and combinators present in the
Hindi CCGbank is provided in section[9} We conclude with possible future directions
in section

Hindi CCGbank: CCG Treebank from the Hindi Dependency Treebank 3

2 Combinatory Categorial Grammar

Combinatory Categorial Grammar (CCG) is a strongly lexicalized grammar formal-
ism, in the sense that all language-specific information including linear order is de-
fined at the level of the lexicon. It is “nearly context-free” in expressive power, in
the sense of being among a group of formalisms for natural language grammars that
are at the lowest level of the language hierarchy above context-free grammar (CFG)
that is known (Joshi et al.| [1991; [Kuhlmann et al.,|2015)). It has a completely type-
transparent interface between syntactic derivation and compositional assembly of the
underlying semantic representation, including predicate-argument structure, quan-
tification and information structure. Because of this semantic transparency, CCG is
widely used in practical applications involving semantic interpretation and inference,
(Bos et al.,|2004; Lewis and Steedman| |2013alb) especially for semantic parsing with
special focus on question answering (Kwiatkowski et al.| 2013; Reddy et al.,[2014).

In the categorial lexicon, words are associated with syntactic categories, such
as S\NP or (S\NP)/NP for English intransitive and transitive verbs. Categories of
the form X\Y or X/Y are functors, which take an argument Y to their left or right
(depending on the direction of the slash) and yield a result X. Every syntactic category
is paired with a semantic interpretation (usually expressed as a A-term).

Like all variants of categorial grammar, CCG uses function application to com-
bine constituents, but it also uses a set of linear order-dependent syntactic combina-
tory rules corresponding semantically to composition (B) and type-raising (T). Type
raising is a non-recursive lexical operation related to (morphological or “structural””)
case. However, for fixed word-order languages without morphological case, Hocken-
maier and Steedman|(2007) advocate the use of unary type-changing rules for reasons
of efficiency, including type-raising rules and additional rules to deal with complex
adjunct categories (e.g (NP\NP) —> S[ng]\NP for ing-VPs that act as noun phrase
modifiers). Examples of CCG combinators are:

Forward Application (>): XY Y = X
Backward Application (<): Y X\Y = X
Forward Composition (> B): XY Y/Z == X/Z
Backward Composition (< B): Y\Z X\Y = X\Z
Forward Crossed Composition (> Bx): X/Y Y\Z = X\Z
Backward Crossed Composition (< Bx): Y/Z X\Y = X/Zz
Forward Type-raising (> T) : X = T/AT\X)
Backward Type-raising (< T) : X = T\(T/X)

3 Related Work

Hockenmaier and Steedman| (2007) developed the first English CCGbank automat-
ically from the Penn Wall Street Journal Phrase Structure Treebank (Marcus et al.
1993)). For each phrase structure tree, they first determine the constituent type of each
node using heuristics adapted from Magerman|(1994) and Collins|(1999), which take
the label of a node and its parent into account. Then the tree is binarized insert-
ing dummy nodes as required into the tree such that all children to the left of the

4 Ambati et al.

head branch off in a right-branching tree, and then all children to the right of the
head branch off in a left-branching tree. Then CCG categories are assigned based
on whether the node is root of the sentence, complement or adjunct of the head. Fi-
nally, headword dependencies which approximate the underlying predicate-argument
structure are obtained.

The English CCGbank (Hockenmaier and Steedman, 2007) is primarily created
from the Penn Phrase Structure Treebank, which doesn’t directly capture interest-
ing linguistic phenomena like predicate-argument structures. Resources like Prop-
Bank (Palmer et al.l 2005) capture predicate-argument structure of the verb. Using
PropBank, [Honnibal and Curran| (2007) improved the complement and adjunct dis-
tinction in the CCGbank. Using information from different resources like PropBank
and NomBank (Meyers et al.,|2004)), Honnibal et al|(2010) created an updated ver-
sion of CCGbank which includes predicate-argument structures for both verbs and
nouns, baseNP brackets, verb-particle constructions, and nominal modifiers. They
also trained a state-of-the-art CCG parser on this new treebank and compared with
the original treebank. Since the updated treebank contains fine-grained details the
performance of the parser was slightly lower than the one trained on the original
version.

Following Hockenmaier and Steedman| (2007), there have been some efforts at
automatically extracting treebanks of CCG derivations for other languages. [Hock-
enmaier] (2006) developed a CCGbank for German from the Tiger treebank (Brants
et al., 2002). The Tiger treebank is based on a framework which has features from
both phrase structure grammar and dependency grammar and results in graphs rather
than trees. First, these graphs are pre-processed and converted to planar trees. Then a
translation step is applied which binarizes the planar tree and extracts the CCG deriva-
tion. Tse and Curran|(2010) use an algorithm similar to [Hockenmaier and Steedman
(2007) to extract a Chinese CCGbank from the Penn Chinese Treebank (Xue et al.,
2005).

There has also been work on extracting CCG lexicons (Cakicil [2005)) and CCG-
banks (Bos et al.|[2009; [Uematsu et al.,[2013},2015) from dependency treebanks. Bos
et al.|(2009) created an Italian CCGbank from the Turin University Treebank (TUT)B
an Italian dependency treebank. They first converted dependency trees into phrase
structure trees and then applying an algorithm similar to|Hockenmaier and Steedman
(2007) extracted the CCG derivations. Using different dependency resources avail-
able for Japanese like the Kyoto corpus (Kawahara et al.,[2002) and the NAIST text
corpus (lida et al., |2007), Uematsu et al.|(2013) developed a CCGbank for Japanese.
They first integrated the dependency resources into phrase structure trees and then
converted them into CCG derivations.

Cakaici| (2005) extracted a CCG lexicon for Turkish. She first made a list of com-
plement and adjunct dependency labels. Traversing the dependency tree, she assigned
CCQG categories to each node based on complement or adjunct information. Following
Cakici| (2005), we first extract a Hindi CCG lexicon from the dependency treebank.
Then we use a CKY parser based on the CCG formalism to automatically obtain a
treebank of CCG derivations from this lexicon, a novel methodology that may be

! http://www.di.unito.it/~tutreeb/

http://www.di.unito.it/~tutreeb/

Hindi CCGbank: CCG Treebank from the Hindi Dependency Treebank 5

applicable to obtaining CCG treebanks in other languages as well. Our algorithm
for extracting the lexicon is similar to |Cakici| (2005), but with pre-processing steps
specific to Hindi. However, where |Cakici| (2005) extracted only a CCG lexicon, we
extended it by developing a novel methodology for creating CCG derivations from
this lexicon. Kumari and Rao| (2015) have successfully applied our method to create
a CCGbank for Telugu, an Indian language, differing from Hindi in belonging to the
Dravidian language family, and being agglutinative, suggesting that our algorithm is
generic enough to be applied to other languages with little effort.

In this paper, we first explain the process of creating a Hindi CCGbank from the
dependency treebank using the approach described in|/Ambati et al.[(2013)). Then we
consider long-range dependencies in coordination constructions and other so called
non-projective constructions and show how they can be handled within the extended
form of syntactic projection afforded by CCG.

4 Hindi Dependency Treebank

In this section, we first give a brief introduction to the Hindi language. Then we
provide details about the Paninian grammatical model used for Hindi dependency
annotation. Following this, we describe the Hindi dependency treebank.

4.1 Hindi Language

Hindi is one of the official languages of the Republic of India, and the 4th largest
language in the world, with over 260 million speakersﬂ Hindi, while basically verb
final, is a freer word-order language. This can be seen in (1), where (1a) shows the
constituents in the default SOV (Subject, Object, Verb) order, and the remaining ex-
amples show some of the word-order variants of (1a)

(1) a. mohan ne raam ko kitaab dii.

Mohan ERG Ram DAT book give-past-fem
“Mohan gave a book to Ram” (S-10-DO-V)

[mohan ne] [kitaab] [raam ko] [dii] (S-DO-10-V)

[raam ko] [mohan ne] [kitaab | [dii] IO-S-DO-V)

[raam ko] [kitaab] [mohan ne] [dii] (I0-DO-S-V)

[kitaab | [mohan ne] [raam ko] [dii] (DO-S-10-V)

[kitaab | [raam ko] [mohan ne | [dii] (DO-IO-S-V)

e

Hindi also has a rich case marking system, although case marking is not obliga-
tory. For example, in (1), while the subject and indirect object are explicitly marked
for the ergative E] (ERG) and dative (DAT) cases, the direct object is unmarked for the
accusative.

2 http://www.ethnologue.com/statistics/size

3 S=Subject; IO=Indirect Object; DO=Direct Object; V=Verb; ERG=Ergative; DAT=Dative

4 Hindi is split-ergative. The ergative marker appears on the subject of a transitive verb with perfect
morphology.

http://www.ethnologue.com/statistics/size

6 Ambati et al.

4.2 Paninian Grammatical Model

Indian Languages (ILs) including Hindi are morphologically rich and have a rela-
tively flexible word-order. For such languages, the syntactic notions of subject and
object are not able to explain the varied linguistic phenomena. In fact, there is a de-
bate in the literature whether the notions ‘subject’ and ‘object’ can at all be defined
for ILs (Mohanan, 1982). Behavioural properties are the only criteria based on which
one can confidently identify grammatical functions in Hindi (Mohanan||1994); it can
be difficult to exploit such properties computationally. Marking semantic properties
such as thematic role as dependency relation is also problematic. Thematic roles are
abstract notions and will require higher semantic features which are difficult to for-
mulate and to extract as well. The Paninian grammatical model (Kiparsky and Staal)
1969; [Shastri, [1973)) provides a level which while being syntactically grounded also
helps in capturing semantics. In this section we briefly discuss the Paninian gram-
matical model for ILs and lay down some basic concepts inherent to this framework.

The Paninian framework considers information as central to the study of lan-
guage. When a writer/speaker uses language to convey some information to the reader/
hearer, he/she codes the information in the language string. Similarly, when a reader/
hearer receives a language string, he/she extracts the information coded in it. The
Paninian grammatical model is primarily concerned with: (a) how the information is
coded and (b) how it can be extracted.

Two levels of representation can be readily understood in language: One, the ac-
tual language string (or sentence), two, what the speaker has in his mind. The latter
can also be called as the meaning. Paninian framework has two other important levels:
karaka level and vibhakti level

--- semantic level (what the speaker
| has in mind)

|
--- karaka level
|
|
--- vibhakti level
|
|

--- surface level (written sentence)

Fig. 1: Levels of representation/analysis in the Paninian model

The surface level is the uttered or written sentence. The vibhakti level is the level
at which there are local word groups together with case endings, preposition or post-
position markers. The vibhakti level abstracts away from many minor (including or-

Hindi CCGbank: CCG Treebank from the Hindi Dependency Treebank 7

thographic and idiosyncratic) differences among languages. Above the vibhakti level
is the ‘karaka’ level. It includes karaka relations, which are syntactico-semantic re-
lations between a predicate and its arguments, and a few additional relations such as
purpose. The topmost level relates to what the speaker has in his mind. This may be
considered to be the ultimate meaning level that the speaker wants to convey. One
can imagine several levels between the karaka and the ultimate level, each containing
more semantic information. Thus, the karaka level is one in a series of levels, but one
which has relationship to semantics on the one hand and syntax on the other. The
levels of representation in the Paninian model are presented in Figure|[T]

At the karaka level, we have karaka relations and verb-verb relations, etc. Karaka
relations are syntactico-semantic relations between the verbs and other related con-
stituents (typically nouns) in a sentence. They capture a certain level of semantics
which is somewhat similar to thematic relations but different from it (Bharati et al.,
1995)). This is the level of semantics that is important syntactically and is reflected
in the surface form of the sentence(s). Begum et al.| (2008b)) have subsequently pro-
posed and developed an annotation scheme for a dependency treebank based on the
Paninian framework. They have extended the original formulation to account for pre-
viously unhandled syntactic phenomenon.

The Paninian approach treats a sentence as a set of modifier-modified relations.
A sentence is supposed to have a primary modifiee which is generally the main verb
of the sentence. The elements modifying the verb participate in the action specified
by the verb. The participant relations with the verb are called karaka. The notion
of karaka will incorporate the ‘local’ semantics of the verb in a sentence, while also
taking cue from the surface level morpho-syntactic information (Vaidya et al.,[2009).
There are six basic karakas, namely;

k1: karta (This is similar to subject or agent): the most independent participant in
the action

k2: karma (roughly the theme or object): the one most desired by the karta

k3: karana (instrument): which is most essential for the action to take place

k4: sampradaan (beneficiary): recipient or beneficiary of the action

k5: apaadaan (source): movement away or separation from a source

k7: adhikarana (location): location of the action in time and space

From the above description, it is easy to see that this analysis is a dependency
based analysis (Kiparsky and Staal, [1969; Shastri, [1973)), with the verb as the root
of the tree along with its argument structure as its children. The labels on the edges
between a child-parent pair show the relationship between them. In addition to the
above six labels many others have been proposed as part of the overall framework
(Begum et al., 2008bj Bharati et al., |2009). Appendix E] shows the most frequent
dependency labels with their English equivalent. In this paper we use English labels
rather than the Paninian.

In the following section, we provide details of the treebank annotated for Hindi
using this Paninian grammatical model.

8 Ambati et al.

4.3 Treebank

In this work, we consider a subset of the Hindi Dependency Treebank (HDT ver-0.5)
released as part of Coling 2012 Shared Task on parsing (Bharati et al., [2012). HDT
is a multi-layered dependency treebank (Bhatt et al., 2009)) annotated with morpho-
syntactic (morphological, part-of-speech and chunk information) and syntactico se-
mantic (dependency) information (Bharati et al., 2006, 2009). POS and chunk in-
formation is annotated following the POS and chunk annotation guidelines (Bharati
et al., 2006). The morphological features have eight mandatory feature attributes for
each node. These features are classified as root, coarse POS category, gender, num-
ber, person, case, post position (for a noun) or tense aspect modality (for a verb) and
suffix. The dependency annotation follows the Paninian grammar scheme described
in section which is known to be well-suited to modern Indian languages. Depen-
dency labels are fine-grained, and mark dependencies that are syntactico-semantic in
nature, such as agent (usually corresponding to subject), patient (object), and time
and place expressions. There are special labels to mark long distance relations like
relative clauses, coordination etc (Bharati et al., 1995, [2009). Figure [2| presents the
dependency tree for an example sentence mohan ne raam ke lie kitaab khariidi (“Mo-
han bought a book for Ram”ﬂ For readability reasons, we will refer to dependency
labels with their English equivalents (e.g., SUBJ, OBJ, PURPOSE, CASE for k1, k2,
rt, lwg__psp respectively). A list of the Hindi dependency labels and their English
equivalents are provided in the Appendix A.

ROOT

PURPOSE

CASE ASE OBJ

N
ROOT mohan ne raam ke_lie kitaab khariidii
Mohan ERG Ram for book buy-past-fem

‘Mohan bought a book for Ram.’

Fig. 2: An example dependency tree for Hindi (ERG = Ergative case).

In this example, the verb khariidii (“bought”) is the root of the sentence. mohan
(“Mohan”) is the subject (SUBJ) of the verb khariidii (“bought”) and kitaab (‘“book”)
is the object (OBJ) of the verb. Since the book is bought for raam (“Ram”), raam is
attached to the verb with PURPOSE dependency label. The post-position markers ne
(Ergative case marker) and ke_lie (equivalent to preposition “for”) are attached to
corresponding nouns with CASE dependency label.

The Hindi dependency treebank contains 12,041 training, 1,233 development and
1,828 testing sentences with an average of 22 words per sentence. Data is provided
in the Shakti Standard Format (Bharati et al.,[2007)) and CoNLL format. The CoNLL
format contains word, lemma, pos-tag, and coarse pos-tag in the WORD, LEMMA,

5 All examples have been taken from the corpus, although in many case they are simplified by the
omission of modifiers and conjunction.

Hindi CCGbank: CCG Treebank from the Hindi Dependency Treebank 9

POS, and CPOS fields respectively and morphological features, and chunk information
in the FEATS columnE] We use CoNLL format for all our experiments.

5 Extracting a CCG Lexicon

In order to assign CCG lexical categories to words in the treebank sentences, we first
make a list of argument and adjunct dependency labels in the treebank. We obtained
this list from the Hindi verb frames which make a distinction between arguments
and adjuncts for different verbs, from Begum et al.|(2008a). For e.g., dependencies
with the label SUBJ and OBJ (corresponding to subject and object respectively) are
considered to be arguments, while labels like PLACE and TIME (corresponding to
place and time expressions) are considered to be adjuncts.

Starting from the root of the dependency tree, we traverse each node. The category
of a node depends on both its parent and children. If the node is an argument of
its parent, we assign the chunk tag of the node (e.g., NP, PP) as its CCG category.
Otherwise, we assign it a category of X|X, where X is the parent’s result category
and | is directionality (\ or /), which depends on the position of the node w.r.t. its
parent. The result category of a node is the category obtained once its argument slots
are saturated. For example, Sy, is the result category for (S;\IVP)\NP. Once we get
the partial category of a node based on the node’s parent information, we traverse
through the children of the node. If a child is an argument, we add that child’s chunk
tag, with appropriate directionality, to the node’s category. If the child is an adjunct,
the category of the node is not effected.

Consider the verb khariidii (“bought”) in the example sentence in Figure 3] Since
it is the root of the sentence which is an argument dependency label, it gets a cate-
gory Sy, from its parent. It has three children mohan (“Mohan”), raam (“Ram”) and
kitaab (“book™). We traverse through each child and update the category of khariidii
as follows. Mohan is subject (“SUBJ”) of khariidii. Since SUBJ is a mandatory argu-
ment, the category of khariidii is updated to S;\NP. The dependency label between
raam and khariidii is PURPOSE which is an adjunct label. So, the category of khari-
idii (“bought”) is not changed due to this child. The third and final child kitaab is an
object (“OBJ”) of the verb, which is an argument label. As a result, the category of
khariidii is updated to (S;\NP)\NP[|

Now we consider again the children of the verb khariidii (“bought”). mohan
(“Mohan”) is an argument of khariidii, and hence NP is the category for this node.
mohan (“Mohan”) has a case marker ne (“ERG”) as a child with the dependency la-
bel CASE. The category of mohan (“Mohan”) is not changed and remains NP. Now
consider the child of mohan (“Mohan”) which is ne (“ERG”). Since NP is the result
category of its parent mohan (“Mohan”) on the left, category of ne (“ERG”) will be
NP\NP[ﬂ Categories of other nodes are assigned similarly.

% http://nextens.uvt.nl/depparse-wiki/DataFormat

7 We return below to the question of case marking and agreement.

8 We treated CASE in this manner for the case of consistency with the dependency treebank and leave
more linguistically sophisticated treatments of CASE for future work (although see section 5.1 for a type-
raising analysis).

http://nextens.uvt.nl/depparse-wiki/DataFormat

10 Ambati et al.

The algorithm is sketched in Figure] and an example of a CCG derivation for
a simple sentence, marked with chunk tags, is shown in Figure [3| NP and S; are
the chunk tags for noun and finite verb chunks respectivelyﬂ Some important special
cases are described in detail in the following subsections.

ROOT

'
ROOT mohan ne raam ke_lie kitaab khariidii
Mohan ERG Ram for book buy-past-fem

[vp mohan ne] [ypraam kelie] [np kitaab] [gy khariidii]
NP NP\NP NP (S;/S;)\NP NP (S \NP)\NP
NP S;/Sy S;\NP)
S¢\NP

< By

Sy
‘Mohan bought a book for Ram.’
Fig. 3: An example dependency tree with its CCG derivation.

ModifyTree(DependencyTree tree);
for (each node in tree):
handlePostPositionMarkers(node);
handleSpecialCases(node);
if (node is an argument of parent):
cat = node.chunkTag;
else:
prescat = parent.resultCategory;
cat = prescat + getDir(node, parent) + prescat;
for(each child of node):
if (child is an argument of node):
cat = cat + getDir(child, node) + child.chunkTag;

Fig. 4: Algorithm for extracting a CCG lexicon from a dependency tree.

The process described above yields a “coarse-grained” lexicon, in which case
is not distinguished. We also created a “fine-grained” lexicon, in which we retain
morphological information in noun categories. For example, consider the noun chunk
raam ne (“Ram ERG”). In the fine-grained lexicon, the CCG categories for raam and
ne are NP and NP[ne]\NP respectively. Morphological information such as ergative
case ‘-ne’ in noun categories is expected to help with determining their dependency
labels, but makes the lexicon more sparse. We therefore extract both a coarse-grained
and a fine-grained lexicon; details of the machine-readable format for both lexicons
is presented in Appendix B.

 VGF is the chunk tag for finite verb chunk in the Hindi dependency treebank. But for the sake of
brevity we use Sy notation here. A list of the Hindi chunk tags are provided in the Appendix A.

Hindi CCGbank: CCG Treebank from the Hindi Dependency Treebank 11

5.1 Morphological Markers

In Hindi, morphological information is encoded in the form of post-positional mark-
ers on nouns, and tense, aspect and modality markers on verbs. A post-positional
marker following a noun plays the role of a case-marker (e.g., raam ne (“Ram ERG”),
here ne is the ergative case marker) and a role similar to an English preposition (e.g.,
mej par (“table on”), here par is the postpositional equivalent of the English preposi-
tion “on”). Post-positional markers on nouns can be simple one word expressions like
ne or par, or multiple words as in raam ke lie (“Ram for”). Complex post position
markers as a whole give information about how the head noun or verb behaves. For
example, ke lie is equivalent to “for” and ke baare me is equivalent to “about”. The
Hindi CCGbank merges complex postpositional markers into single words like ke_lie
so that the entire marker gets a single CCG category.

For the “fine-grained” lexicon, we explored two variants of the lexicon: normal
and type-raised. In the normal version, the ergative case marker like ne bears a cat-
egory NP[ne]\NP, looking for an NP to the left to yield the case-marked category
NP[ne]. In the type-raised version, the category of ne takes an NP to its left and
creates a category which looks for a VP category S¢\NP/[ne].

raam ne

Ram ERG

NP (S/(S;\NP[ne]))\NP
S/(S;\NP[ne])

In this variant, the result category S/S;\INP[ne]) is the full categorial realization
of a Hindi ergative cased NP for which NP[ne] is simply a shorthand.

For an adjunct like raam ke _lie (“for Ram”) in Figure [3| we pass the adjunct in-
formation to the post-position marker ke_lie, with NP as the category for the head
noun phrase, and the category (S;/S;)\NP for the postposition. Adjuncts that mod-
ify adjacent adjuncts are assigned identical categories X/X making use of CCG’s
composition rule and following (Cakici| (2005).

6 CCG Lexicon to Treebank conversion

Phrase structure to CCG conversion algorithms like Hockenmaier and Steedman
(2007) first convert a phrase structure tree into a binary tree. Converting a depen-
dency tree into a binary tree is not possible in the presence of a non-projective arc.
For the same reason, direct conversion to CCG trees is not straight-forward. Around
20% of sentences in the Hindi dependency treebank have at least one non-projective
arc. In a departure from previous approaches, we therefore use a CCG parser to con-
vert the CCG lexicon to a CCG treebank.

Using the algorithm presented in the previous section, we obtained one CCG cat-
egory for every word in a sentence. We then run a non-statistical CKY chart parser
based on the CCG formalisnﬂ which gives CCG derivations based on the lexical
categories. This gives multiple derivations for some sentences. We rank these deriva-
tions using two criteria. The first criterion is correct recovery of the gold dependencies

10 http://openccg.sourceforge.net/

http://openccg.sourceforge.net/

12 Ambati et al.

when the CCG derivation is deterministically mapped back onto a dependency struc-
ture. Derivations which lead to gold dependencies are given higher weight. In the
second criterion, we prefer derivations which yield intra-chunk dependencies (e.g.,
verb and auxiliary) prior to inter-chunk (e.g., verb and its arguments). For exam-
ple, morphological markers (which lead to intra-chunk dependencies) play a crucial
role in identifying correct dependencies. Resolving these dependencies first helps the
parser in better identification of inter-chunk dependencies such as argument structure
of the verb (Ambati, 2011). We thus extract the best derivation for each sentence,
which is then included in the Hindi CCGbank.

6.1 Evaluation

Coverage of the current conversion algorithm, i.e., the number of sentences for which
we got at least one complete derivation using this lexicon is 96%. Disabling crossed
composition reduced the coverage by around 10%, showing the importance of this
rule for a free word-order language with 20% non-projective sentences. The remain-
ing 4% sentences are either cases where there were inconsistent annotations in the
original treebank, or constructions which are currently not handled by our conversion
algorithm.

As a second method of evaluating the converted Hindi CCG treebank, we ob-
tained dependencies from the CCG treebank and evaluated them against the gold-
standard dependencies in the original dependency treebank. We followed the standard
category-indexing procedure of |Clark and Curran| (2007) for this purpose in order to
obtain dependency labels. For example, (S\NP1)\NP- is the indexed version of the
category of (S\NP)\NP, in which the index 1 marks the subject dependency and 2
marks the object dependency. The indices are not used in the CCG grammar itself,
but are important for labeling long-range dependencies in this evaluation.

Following |Clark and Curran| (2007), we manually indexed the CCG categories
which occurred at least 10 times in the treebank data. For the rest of the categories, we
assigned default indices. The Hindi CCGbank, (which covers 96% of the sentences in
the original dependency treebank), correctly captures 99.1% of the dependencies in
the dependency treebank, which is the unlabelled recall. Manually providing indices
for all categories would give 100% recall but we leave manual annotation of indices
for a future version.

In addition, we performed full manual annotation of 165 sentences with their
CCQG derivations and compared them with the derivations extracted using our auto-
matic conversion algorithm. Our conversion algorithm failed to provide a derivation
for two sentences. Out of these two sentences, the original dependency annotation
was wrong for one sentence; correcting the annotation helped the algorithm to handle
this sentence. The remaining sentence is the case of argument cluster coordination
which is not handled in the current version of the Hindi CCGbank. We also extracted
dependencies from these CCG derivations and evaluated with the dependencies in the
dependency treebank. We could capture 99.7% (unlabelled recall) of the dependen-
cies present in the dependency treebank. The rest are the cases of less frequent CCG
categories where the indices were not manually annotated and are incorrect.

Hindi CCGbank: CCG Treebank from the Hindi Dependency Treebank 13

ROOT
COORD

SUBI SUBJ

CASE OB COORD CASE OB

A~ ¥V N\
ROOT raam ne seb khaaya ora shyam ne aam khaaya

raam ne seb khaaya ora shyam ne aam khaaya
Ram ERG apple ate and Shyam ERG mango ate
NP NP\NP NP (S;\NP)\NP (S;\Sf)/S;y NP NP\NP NP (S;\NP)\NP
NP S;\NP NP SANP
Sy - Sy
>
Si\Sy ;
St

‘Ram ate an apple and Shyam ate a mango.’

Fig. 5: Sentential coordination.

7 Coordination Constructions

Coordination is one of the most frequent sources of long distance dependencies in
corpora. Coordination in Hindi can occur between similar components, like noun-
noun coordination and verb-verb coordination, but also between some dissimilar but
compatible components, like adjective-noun coordination. In the Hindi dependency
treebank, there are several instances where an adjectival chunk (JJP) and a noun
chunk (NP) are co-ordinated. All of these are cases where the adjectival chunk has an
elided noun which is not present explicitly. One such example is

saamajik ora sikhsha ke aadhaar par
social and education DAT based on
‘Based on social (status) and education.’

In this example, the coordination is between the adjectival chunk saamajik (“so-
cial”) and the noun chunk sikhsha ke (“‘education”). The adjectival chunk saamajik
“social”) has an elided noun sthithi (“status”). When the noun is explicitly present as
in saamajik sthithi (“social status”) then it is annotated as a noun chunk in the origi-
nal treebank. But when the noun is not present explicitly, as in saamajik (“social”), it
is annotated as an adjectival chunk. One can argue for a different annotation scheme
and annotate such adjectival chunks as noun chunks. But, for now, to handle these
cases, we allowed co-ordination between dissimilar but compatible chunks.

The CCG category of a conjunction is (X\X)/X, where a conjunction looks for a
child of type X to its right and then a child to its left of the same type X to yield a
result of the same type X. Figure [5 gives the dependency tree and CCG derivation
for an example sentence with sentential (S) coordination. In the Hindi CCGbank,
it is the supertagger that identifies the correct instantiation of the type X for the
conjunction

' This treatment constitutes a slight difference from English CCGbank, where coordination is treated
syncategorematically, with conjunction bearing the category conj.

14 Ambati et al.

There are four major types of coordination constructions in Hindi. In this section,
we first describe each type with an example sentence and then explain how CCG
handles them.

Type 1 (Conjunction with two children): The CCG category of the conjunction
is (X\X)/X where X depends on the category of the conjuncts. The example given
below in figure [6] raam ora shyam skool gaye (“Ram and Shyam went to school”),
is the case of noun-phrase (NP) coordination. Conjunct ora (“and”) has two noun
phrases raam (“Ram”) and shyam (“Shyam”) as its children. Hence the category of
ora (“and”) is (NP\NP)/NP. ora (“and”) is first combined with the right child shyam
and then combined with the left child raam leading to a noun phrase, which becomes
the subject argument for the verb gaye (“went”).

ROOT

SUBJ

COORD COORD DES

¥ N
ROOT raam ora shyam skool gaye

raam ora shyam skool gaye
Ram and Shyam school went
NP (NP\NP)/NP NP NP (S;\NP)\NP
NP\NP SANP
NP)
Sy)

‘Ram and Shyam went to school.’

Fig. 6: Type 1 coordination.

Type 2 (Conjunction with more than two children and not separated by commas):
In Hindi, sometimes a conjunction can have more than two children which are not
separated by commas. In such cases, CCG category of the node is type-changed from
X to a category (X\X)/(X\X). Figure [7| shows the dependency tree of an example
sentence raam shyam ora sita skool gaye (“Ram Shyam and Sita went to school”).
In this example, the conjunct ora (“and”) has three children raam (“Ram”), shyam
(“Shyam”) and sita (“Sita”). CCG category of shyam is type-changed from NP to
(NP\NP)/(NP\NP) so that it can combine with ora and then with raam to form an
NP.

Type 3 (Conjunction with more than two children separated by commas): The
example sentence given below in Figure[8] raam , shyam ora sita skool gaye (“Ram,
Shyam and Sita went to school”), is the same as the one presented above in Type 2 cat-
egory. The only difference is that there is a comma between the nouns raam (“Ram”)
and shyam (“Shyam”). The comma gets a CCG category , which is combined with
NP to form an NP. Similar to Type 2, the CCG category of shyam is type-changed
from NP to (NP\NP)/(NP\NP). This allows shyam to combine with ora and then
with raam to form an NP.

Hindi CCGbank: CCG Treebank from the Hindi Dependency Treebank

ROOT

COORD

ROOT raam shyam ora siitaa skool gaye

raam shyam ora siitaa skoola gaye
Ram Syam and Sita school went
NP NP (NP\NP)/NP NP NP (S;\NP)\NP
(NP\NP)/(NP\NP) NP\NP SANP
NP\NP]
NP)
Sy

‘Ram , Syam and Sita went to school.’

Fig. 7: Type 2 coordination.

Unlike other CCGbanks which treat comma as a conjunction, we treat comma as
a punctuation here. In that way, we don’t have to change the dependency tree. If we
treat a comma as a conjunction, then we have to change the dependency tree as well,
where ora (“and”) will have comma and sita as children and comma will have raam
and shyam as children. Also, since comma can be missing as in Type 2, treating the
comma as a punctuation leads to having a single analysis irrespective of whether a

comma is present or not.

ROOT

COORD

SYM COORDN /€0ORD DES
N~ 2 —~ v\

ROOT raam , shyam ora sita skool gaye

raam , shyam ora sita skoola gaye
Ram , Shyam and Sita school went
NP | NP (NP\NP)/NP NP NP (S;\NP)\NP
NP NP\NP SANP
(NP\NP)/(NP\NP)
NP\NP
NP)
S; -

‘Ram , Shyam and Sita went to school.’

Fig. 8: Type 3 coordination.

16 Ambati et al.

ROOT
SUBJ

COORD

CASE OB COOR ASE

2 v

ROOT raam ne seb NULL ora sita ne aam khaaya
Ram ERG apple NULL and Sita ERG mango eat-PAST

raam ne seb ora sita ne aam khaaya
Ram ERG apple and Sita ERG mango eat-PAST
NP NP\NP NP (X\X)/X NP NP\NP NP (S¢\NP)\NP
NP NP
S¢/(Sf\NP) (Sf\NP)/>Tg Sr/(Sf\NP) (Sf\NP)/>Tg
S¢/TV Sy /TV
(S /TVI\(S§/TV)
S¢/TV
s/ . N

‘Ram ate an apple and Sita ate a mango.’

Fig. 9: Type 4 coordination.

Type 4 (Argument cluster coordination): Figure [9] presents an example sentence
for argument cluster coordination, raam ne seb ora sita ne aam khaaya (“Ram ate
an apple and Sita ate a mango”). khaaya (“ate”) is the shared verb for both the co-
ordinates. To handle such constructions, the dependency tree introduces a dummy
“NULL” node which is co-indexed with the main verb khaaya and acts as the verb for
the 1st sentence as shown in the dependency tree in Figure[9] CCG can handle such
constructions without introducing NULL nodes. The subject raam ne is type-raised
from NP to a category which looks for an intransitive verb, Sy /(S ¢\NP). Similarly,
the object seb (“apple”) is type-raised from NP to a category which looks for a tran-
sitive verb, (S;\NP)/ TVE} Now, these two nodes are combined leading to S;/TV
which takes a transitive verb and forms a sentence. Similarly, subject and object ar-
guments of the second sentence, sita ne (“Sita”) and aam (“Mango”) are type-raised
and combined. Now, these type-raised arguments are combined using the conjunction
ora (“and”) which is then combined with the main verb khaaya to form a sentence [

8 “Non-Projective” Constructions

In the tradition of dependency grammar (Hays| [1964), constructions which induce
dependency arcs which cross as in Figure are referred to as “non-projective”,
because they cannot be generated by the core context-free dependency grammar, and
are generally supposed to arise from some separate component of the grammar, such
as transformational rules (Robinson, [1970).

Such dependencies arise in all languages from processes like relativization and
various instances of coordination reduction. To call them “non-projective” is confus-

12 TV is the short form for ((S +\NP)\NP), the transitive verb category.

13 We are not handling argument cluster coordination in the current version of the CCGbank since the
current version doesn’t include unary type-changing rules. We will handle these constructions in the next
version.

Hindi CCGbank: CCG Treebank from the Hindi Dependency Treebank 17

COORD
ROOT SUBJ
SUBJ COM

Sco TIME

ROOT baath yaha hai ki vo kal aayegaa
fact this is that he tomorrow come-FUT-MAD

“The fact is that he will come tomorrow’

Fig. 10: A dependency tree with a “non-projective” dependency.

ing in the present context, since the central claim of CCG is that all dependencies
are projective, in the sense of arising directly from near-context free syntactic projec-
tion. In the dependency parsing literature techniques like swap action (Nivre, 2009)
or pseudo-projective parsing algorithm (Nivre and Nilsson, [2005) are used to handle
these crossing arcs. In case of CCG, we can extract such crossing dependencies us-
ing indexed categories{ﬂ Section provides an example derivation showing how
indexed categories can be used to extract crossing dependencies. In this section, we
present different constructions and/or dependency labels which lead to crossing arcs
in the dependency treebank, and explain how CCG can be made to handle them pro-
jectively.

Because Hindi has a comparatively free word-order, crossing dependencies are
more frequent in the Hindi dependency treebank than in comparable English data.
There are a total of 20% sentences with non-projective arcs in the Hindi dependency
treebank, amounting to 1.1% of total arcs. There is some previous work on analyzing
different non-projective constructions in Hindi and other Indian languages (Mannem
et al.,2009; Bhat and Sharma, 2012). We categorize the non-projective constructions
in the Hindi dependency treebank based on this previous work. Table [1| shows the
distribution of non-projective arcs across different constructions.

Type of Construction Percentage (%)
Clausal Complements 324
Relative Clause Constructions 19.7
Topicalization 15.3
Genitives and Dislocated/Discontinuous Genitives 12.8
Paired Connectives 10.5
Others 9.3

Table 1: Distribution of different non-projective constructions in the treebank.

In the following sections, we discuss different constructions which lead to cross-
ing arcs in the dependency treebank, and explain how CCG can be made to handle
them projectively. In this process, we modified the original dependency tree in two
cases: a) when the original annotation is wrong and b) in the presence of extraposed
clauses. We provide details in the respective sections.

14 See|(Clark and Curran|(2007) for details on how indexed categories are used to extract dependencies.

18 Ambati et al.

8.1 Clausal Complements

Clausal complements of NP forming a complex NP are the cases where clauses elab-
orate on a noun/pronoun. These are annotated with the CCOM dependency label.
For example, in the sentence given below in Figure [TT] baar (“fact”) is the subject
(“SUBJ”) and yaha (“this”) is its noun complement (“SCOM”), which are attached
to the verb. Whereas the clause ki vo kal aayegaa (“that he will come tomorrow”) has
a dependency relation with yaha (“this”’) and is denoted by CCOM dependency label.
32% of crossing arcs in the treebank are due to this construction.

There are two options to handle this case. In the first option we don’t change
the dependency tree. Since ki (“that”) is a subordinate conjunction, its chunk tag is
CCP. As it looks for a clause/sentence to its right, CCG category for ki (“that”) will
be CCP/Sy. This gives yaha (“this”) a CCG category of NP/CCP, since the result
category of its child ki (“that”) is CCP. We can combine yaha (“this”) and hai (“is”)
using Backward Crossing Composition (< By) which can then be combined with ki
(“that”) to establish the crossing dependency. Figure[IT|gives the CCG derivation for
this example.

ROOT
COORD

SUBJ *COM SUBT

ROOT baath yaha hai ki vo kal aayegaa

baath yaha hai ki VO kal aayegaa
fact this is that he tomorrow will-come
NP NP/CCP(sf\NP)\éVPCCP/SfN? St/Sy_ Sy\NP
(S;\NP)jccP SANP
St

CCP -

Sf\NP

Sy

‘The fact is that he will come tomorrow’

Fig. 11: CCOM: CCG Derivation (Original dependency tree).

Another option is to systematically change the dependency trees concerned to
reflect an analysis in terms of extraposition, where ki vo kal aayegaa (‘“that he will
come tomorrow’”’) is syntactically a sentential adjunct, and the complement is only
linked to its head baath (“(the) fact”’) by anaphora at the level of logical form. As
a result, the complementizer ki is assigned the category (S f\s f) /Syg, which will
first combine with the clause to its right vo kal aayegaa, and then with the clause
to its left baat yaha hai, resulting in the derivation shown below in Figure For
the CCGbank conversion, we followed this option and modified the dependency tree

Hindi CCGbank: CCG Treebank from the Hindi Dependency Treebank 19

so that the CCG derivation is consistent with other extraposed constructions [’} We
return to the question of extraposition at a number of points below.

ROOT
COORD

SUB
SUBI SUBT
¥ Ny, v

ROOT baath yaha hai ki vo kal aayegaa

baat yaha hai ki vo kal aayegaa
fact this is that he tomorrow come-FUT-MAD
NP NP (S\NP)\NP (S;\S5)/Sy NP S¢/S¢ S¢\NP
_—< > By
Sf \NP Sf \NP
Sf St
>
Sp\S¢
Sr

‘The fact is that he will come tomorrow’

Fig. 12: CCOM: CCG Derivation (Modified dependency tree).

8.2 Relative Clause Constructions

Relative clauses are the second major type of constructions which lead to crossing
dependency arcs in the original treebank. 20% of such arcs in the data are due to
relative clauses. In the original English CCGbank, relative clauses have the category
type NP\NP, where they combine with a noun phrase on the left to give a resulting
noun phrase. Hindi has relative clauses of the type NP\NP or NP /NP based on the
position of the relative clause with respect to the head noun.

For instance, for the example sentence in Figure[13] the relative clause has NP\NP
as its CCG category, since it is to the right of the head noun. Whereas in Figure[I4] the
category of the relative clause is NP/NP since it is to the left of the head noun. Similar
to English, in Hindi also, we pass down this information to the relative pronoun rather
than the main verb of the relative clause. As a result, the relative pronoun will have a
CCG category of (NP|NP)|X where the directionality depends on the position of the
relative pronoun in the clause and the category X depends on the grammatical role of
the relative pronoun.

Embedded: This is a simple case of relative clause where the relative clause
is to the right of its head noun. [Mahajan| (2000) calls this relative construction as
“Normal” since it is similar to the English relative clause construction. This type of
relative clause doesn’t lead to crossing dependency arcs. Figure|13|gives an example
sentence, vo ladakaa jo khadaa hai raam hai (“The boy who is standing is Ram”)
with its dependency tree and corresponding CCG derivation The relative clause is

15 Tt is easy to re-construct the original dependency with the help of lexical item yaha (“this”). We can
find the parent of ki (“that”) and extract the lexical item yaha (“this”) from its sub-tree. Assigning it as the
parent of ki (“that”) would result in the original dependency tree.

16 In Hindi dependency treebank POF (part-of) dependency label is used to represent part of units such
as conjunct verbs.

20 Ambati et al.

marked within the brackets in the following figure. In this example, the category of
the relative pronoun jo (“who”) is (NP\NP)/(S;\INP) which is similar to English rel-
ative pronouns. The relative pronoun jo (“who”) first combines with the verb phrase
khadaa hai (“is standing”) to form a relative clause with category NP\NP. The rela-
tive clause then combines with its head noun phrase vo ladakaa (“that boy”) which is
then combined with the main verb phrase to form a sentence Sy.

ROOT

DEM

ROOT vo ladakaa jo khadaa hai raam hai

vo ladakaa [%'lo khadaa hai] raam hai
that boy who stand-MAS is Ram is
NP/NP NP (NP\NP)/(S;\NP) S;/S; S\NP NP (S;\NP)\NP
NP SANP SANP
NP\NP !
NP)
St

“The boy who is standing is Ram’

Fig. 13: Embedded Relative Clause.

Correlative: In Hindi, a relative clause can occur to the left of the head noun as
well, which is the most frequent form of the construction. This type of relative clause
also doesn’t lead to crossing dependency arcs. Figure 14| gives the dependency tree
and corresponding CCG derivation for an example sentence, jo ladakaa khadaa hai
vah raam hai (“The boy who is standing is Ram”). In this example, as the relative pro-
noun jo (“who”) occurs as a demonstrative its category is ((NP/NP)/(S;\NP))/NP.
The relative pronoun jo (“who”) combines with its head noun /ladakaa (“boy’”) which
is then combined with the verb phrase leading to the category of relative clause
NP/NP. Since the relative clause is to the left of the head noun, its category is NP/ NP
rather than NP\NP which we saw in the previous embedded relative clause.

Extraposed: Unlike the previous two cases of embedded and correlative con-
structions where the relative clause is next to the head noun, Hindi, like English, has
constructions where the relative clause is not next to its head noun. Figure 5] shows
one such example sentence vah ladakaa raam hai jo khadaa hai (“That boy is Ram
who is standing”). This type of construction lead to a crossing dependency arc. We
can’t extract a CCG derivation with the original dependency. Extraposed dependen-
cies are treated anaphorically in CCG, in the semantics, with the extraposed clause
treated syntactically as a sentential adjunct. So, to handle this construction, we change
the dependency tree slightly. Instead of the relative clause modifying the head noun,
we make it modify the main verb. As a result the relative pronoun will have a CCG
category of (S|S)|X instead of (NP|NP)|X. Changing the dependency tree is linguis-
tically justified to the extent that extraposed dependencies are generally regarded as

Hindi CCGbank: CCG Treebank from the Hindi Dependency Treebank 21

ROOT

SUBJ

DEM PO RELC SCO
2N 2 [

2
ROOT jo ladakaa khadaa hai vah raam hai

[f'lo ladakaa khadaa hai] vah raam hai
who boy stand-MAS is he Ram is
((NP/NP)/(S;\NP))/NP NP S;/S; S\BWP NP NP (S;\NP)\NP
(NP/NP)/(S;\NP) ’ Sf\NP> - S;\NP .
NP/NP]
NP]
St

“The boy who is standing is Ram’

Fig. 14: Correlative Relative Clause.

ROOT RELC

scol o
N I\ N

ROOT vah ladakaa raam hai jo khadaa hai

“That boy is Ram who is standing’

Fig. 15: Extraposed Relative Clause (Example 1): Original dependency tree.

not being purely syntactically mediated. Since this is a case of extraposed/dislocated
relative clause, the category of relative clause is S|S rather than NP|NP. Figure
shows the modified dependency tree with corresponding CCG derivation. The prob-
lematic RELC arc dependent on the noun /ladakaa in Figure|15|is replaced by an arc
with the same label dependent on the main verb in Figure [I6] Note that it is easy to
recover the dependency between the relative clause and its head noun, as the head
noun chunk will have a word whose root is vo (“that”

Figure[I7)presents another example sentence which is similar to Figure[T3] except
that the relative pronoun is not at the starting of the relative clause and it is also not the
mandatory argument of the verb of relative clause. Here, the relative pronoun jaisaa
(“like-what”) is neither at the beginning of the clause nor a mandatory argument. It
is an adverbial modifier (ADV) for the verb kahaa (“said”). As a result, the relative
pronoun jaisaa will have a CCG category (Sy/Sy)/Sy. jaisaa is combined with the
verb kahaa (“said”) using forward crossed composition (B) which leads to a cate-
gory of S /Sy for the relative clause in the end. Similar to the previous example, this
is a case of extraposed relative clause.

17" For example, in ﬁgure CCG derivation gives the dependency between hai (“is”) of relative clause
and hai (“is”) of main clause. As the chunk with vo (“that”) root word (here vaha) is vaha ladakaa (“that
boy”), the head of hai (“is”) as per Hindi dependency guidelines would be ladakaa (‘“boy”).

22 Ambati et al.

ROOT

RELC

SUBJ ST

DEM SCO!

v N\ ¥ /ﬁ
ROOT vah ladakaa raam hai jo khadaa hai

vah ladakaa raam hai jo khadaa hai
that boy raam is who stand-MAS is
NP/NP NP NP (S\NP)\NP (S¢\Sf)/X S;/Sy S§\NP
> ————> By
NP S¢\NP S¢\NP
St S§\Sy
Sy

“That boy is Ram who is standing’

Fig. 16: Extraposed Relative Clause (Example 1): Modified dependency tree.

ROOT

SUBJ

CASE ADV SYm AD

Y v N\ Y 2
ROOT raam ne jaisaa kahaa , maine vaisaa kiyaa

raam ne jaisaa kahaa , maine vaisaa kiyaa
Rgn ERG like-what said . I-ERG like-that did
NP NP\NP (S;/S;)/S; S|\NP S;\Sy NP S;/S; S;\NP
—_—< —< -5 —> By
NP Sy \NP S;\NP
> By
(Sy/S;)\NP Sy
<
Sy/Ss
>
Sf

‘I did exactly what Ram said’

Fig. 17: Extraposed Relative Clause (Example 2).

8.3 Topicalization

The node which is the object/patient of the verb is marked with OBJ dependency la-
bel. Topicalization of the object/patient of the verb is the cause for 11.3 % of crossing
dependency arcs in the treebank.

Figure [I8] presents an example sentence where a crossing arc is created due to a
topicalised object (OBJ) relation. In the example sentence, khaanaa raam khaakar
dukaan gayaa (“Ram after eating food went to the shop”), there are two verbs:
khaakar (“having-eaten”), a non-finite verb and gayaa (“went”), a finite verb. raam
(“Ram”) is the shared subject (SUBJ) of both the verbs. As per Hindi dependency
guidelines, raam cannot have two parents. So it is marked as SUBJ of the main verb
gayaa (“went”). If the subject, raam, was at the start of the sentence then the sentence

Hindi CCGbank: CCG Treebank from the Hindi Dependency Treebank 23

would be raam khaanaa khaakar dukaan gayaa, which is the most frequent construc-
tion. Then it would not have created the crossing arc. Shared subject raam appearing
within non-finite verb phrase khaanaa khaakar (“having eaten food”), although gram-
matical, is not very common in the treebank as compared to the topicalised variant,
which is more frequent.

To handle these types of constructions, we relax the constraint of a node having
multiple parents. raam is subject of both the verbs: khaakar (“having eaten”) and
gayaa (“went”). But due to the tree constraint, the subject raam cannot have two par-
ents. We let the CCG derivation have raam as the subject for both the verbs. As a
result, khaakar will have the CCG category ((Sy/(Sf\NP2))\NP;)\NPE The first
part of the category, (Sy/(Sf\NP3)), captures the information that it is a verbal mod-
ifier which shares an argument with the main verb. khaakar (‘“having-eaten”) first
combines with raam and then with khaanaa (“food”) to form Sy /(S;\NP3). This is
then combined with the VP dukaan gayaa (“went to shop”) resulting in a sentence
St. Note that gayaa and raam are never combined directly in the derivation. But this
dependency is resolved using the indices.

ROOT

v N
ROOT khaanaa raam khaakar dukaan gayaa
khaanaa raam khaakar dukaan gayaa
food Ram having-eaten shop went
NPy NPy ((S¢/(Sf\NP2)\NP1)\NP3 NP3 (S;\NP3)\NPs
<
(St /(S;\NP2))\NP;) S \NP;
Sy /(S f \NP5) N
Sy

‘Ram after eating food went to the shop’

Fig. 18: Topicalization.

8.4 Paired Connectives

Paired connectives such as agar-to (“if-then) are the cause for 10.5% of crossing
dependency arcs in the treebank. These constructions involve VMOD, verbal modi-
fier, dependency label. Any verbal modifier which cannot be categorised as a specific
relation like subject (SUBJ), object (OBJ) etc. is marked by a VMOD relation.
Original Annotation: Figure [I9] presents an example ‘if-then’ construction. In
the original dependency tree for this sentence, agar unhone muh kholaa to wo unhe

18 Indices for categories are not part of the lexicon but indices are used while extracting dependencies
from the CCG derivation.

24 Ambati et al.

maar daalegaa (“If they opened their mouth then he will kill them”™), fo (“then”) is the
ROOT of the sentence. maar (“’kill”) is the child of tho (“then”) with the dependency
relation COORD. agar (“if”) is the child of maar (“kill”) with dependency relation
VMOD and kholaa (“opened”) is the child of agar (“if””) with dependency relation
COORD. VMOD relation between maar (“kill”’) and agar (“if”’) leads to a crossing
dependency arc here.

VMOD

COORD

ROOT agar unhone muh kholaa to wo unhe maar daalegaa
if they mouth opened then he them kill will

‘If they opened their mouth then he will kill them’

Fig. 19: Paired Connectives: Original dependency tree.

Modified Annotation: We modified the dependency tree to handle this con-
struction since the original dependency annotation is wrong. In the modified tree,
to (“then”) is still the ROOT of the sentence. Both the verbs maar (“kill”’) and kholaa
(“opened”) are children of fo (“then”) with a COORD dependency relation. agara
(“if”) is the child of kholaa (“opens’”) with the dependency relation VMOD.

2
ROOT agar unhone muh kholaa to wo unhe maar daalegaa

agar unhone muh kholaa to wo unhe maar daalegaa

if they mouth opened then he them kill wil
Sy/Sy NP NP (Sf\NP)\NP (S;\Ss)/Sy NP NP (S;\NP)\NP S¢\S¢
—_—< — < By

St \NP (Sf\NP)\NP

Sf Sf\NP
St i Sy
Sy\Sy N
St

‘If they opened their mouth then he will kill them’

Fig. 20: Paired Connectives: Modified dependency tree and corresponding CCG
derivation.

Hindi CCGbank: CCG Treebank from the Hindi Dependency Treebank 25

In the case of English if-then constructions, the CCG category of ifis (S/S)/S[dcl]
which consumes a sentence to its right, leading to an S/S category for the if-clause.
It then consumes the then-clause leading to S category. But in the case of Hindi agar

“if””) can be optional. To capture this phenomenon, we make the category of tho
(“then”) to demand agar (“if”’) clause rather than the opposite. So, the CCG cate-
gory of fo (“then”) is (S;\Sy)/S; which consumes a sentence to its right forming
a then-clause with the category S¢\Sy. It then combines with a sentence to its left
which is the if-clause leading to Sy. Also, as agar (“if”) is optional it takes an adjunct
category making the main verb the head of the clause. Figure [20] shows the modified
dependency tree with the corresponding CCG derivation.

8.5 Genitives and Dislocated/Discontinuous Genitives

The genitive/possessive relation which holds between two nouns is marked by GEN
dependency label. It mostly occurs with ‘kaa’ (masc.) or ‘kii’ (fem.) postposition
marker. A reliable cue for its identification is that the postposition agrees with the
noun it modifies in number and gender. In the majority of cases the nouns in genitive
relation are next to each other. But, in some cases, due to the free word-order nature
of Hindi, some other word can occur between the two nouns in a genitive relation as
in the following example in Figure [21] This construction is the source of 7.5% of the
crossing arcs in the the dependency treebank.

ROOT

ROOT maine uskaa mumbai mai kiraayaa dediyaa

maine uskaa mumbai mai kiraayaa dediyaa
[-ERG his Mumbai in rent have-given
NP NPy, NP (S¢/S§)\NP NP\NP gy, (Sf\NP)\NP
B
S/Sy (S \NP)\NPg¢,,
> B2

(St \NP)\NPgcr,
St \NP
Sy
‘I have given his rent in Mumbai’

Fig. 21: Genitive construction.

In the example in Figure 21} maine uskaa mumbai mai kiraayaa dediyaa (“1 have
given his rent in Mumbai”), uskaa (‘his”) and kiraayaa (“rent”) are in genitive re-
lation. But, mumbai mai (“in Mumbai”) is between these two nouns leading to a
crossing arc. Though the dependency labels are different, the construction is similar

26 Ambati et al.

to the ones described in Section When two nouns are in a genitive relation, if
the both the nouns are next to each other we make the noun with genitive marker
demand a noun to its right similar to genitive cases in other languages. But, if both
the nouns in genitive relation are not next to each other, then we make the head noun
demand the noun with genitive marker as in Figure [21] In this way, we can capture
this unusual word ordering elegantly in CCG.

Hindi also has extensive use of “light” verbs, also called conjunct verbs. A con-
junct verb is composed of a noun or an adjective followed by a verbalizer. Subject
(SUBJ) or Object (OBJ) arguments of a conjunct verb can have the genitive case
marker. In such cases, the arguments have a dependency relation with the noun of
the conjunct verb since the agreement is with the noun of the conjunct verb and not
with the verb. The free word-order nature of adverbs and time and/or place expres-
sions can cause crossing arcs as in the following examples. Such constructions are
called dislocated/discontinuous genitives. We treat Part-OF (POF) and subject/object
of conjunct verb (CSUBJ/COBJ) as arguments. For example, in Figure 22] the light
verb hua (“happened”) looks for an NP, udhghaatana (“inauguration”) to its left. ud-
hghaatana has a child mandir kaa (“of temple”) with CSUBJ dependency relation.
Since CSUBJ is an argument relation, CCG category of udhghaatana is NP\NP g,
which looks for an NP with genitive marker to its left. udhghaatana first combines
with the light verb hua and then with the optional time expression kala (“yesterday’)
leading to Sy\NPgcr,. The verb phrase S;\NPg., is then combined with the noun
phrase with genitive marker mandir kaa (“of temple”) resulting in a sentence Sy.

ROOT

TN
ROOT mandhir kaa kala udhghaatana hua

mandir kaa kala udhghaatana hua
temple of yesterday inauguration happened
NP NPy, \NP S¢/S; NP\NPge, S;f\NP
NPQen) Sf\NPgen -
> Bx
Sy \NP gen
Sy

“Yesterday, the temple got inaugurated.’

Fig. 22: Dislocated/Discontinuous genitives (time expression).

Figure 23]is similar to Figure [22] except that the noun with genitive marker bud-
hdhiimattaa kii (“intelligence”) is in COBJ dependency relation with the noun of the
conjunct verb faariiph (“appreciate”). Also the intervening node jamkara (“greatly”)
which is the cause for the crossing arc is an adverb (ADV) unlike the time expression
in the previous case.

Hindi CCGbank: CCG Treebank from the Hindi Dependency Treebank 27

AUX

v
ROOT usakii budhdhiimattaa kii jamkara taariiph kii hai

usakii budhdhiimattaa kii jamkara taariiph kii hai

his intelligence gen greatly appreciate do is
NP/NP NP NPy, \NP S;/S; NP\NPge, S;\NP S;\S;s
—— < B

NP - S;\NP
< < B

NPgen Sf\Npgen
S/ \NPyen
Sy

‘His intellegence is greatly appreciated.’

Fig. 23: Dislocated/Discontinuous genitives (adverb).

8.6 Others

Other major dependency labels/constructions which lead to crossing dependency arcs
are time/place expressions (TIME/PLACE), noun modifiers (NMOD), SUBJ. These
labels corresponds to 9% of crossing arcs.

Similar to adverbs, time/place expressions, due to freer word-order nature of
Hindi, can occur at any place in the sentence and can be handled using crossed com-
position in general cases. But, when these occur between nouns in genitive relation
or in the conjunct verbs constructions (as in [8.5)), they lead to crossing arcs, and are
handled as discussed in section 8.3

NMOD is the label for noun modifier. NMOD constructions which lead to cross-
ing arcs are similar to those of genitives as in[8.5] SUBJ constructions also engender
crossing arcs similarly to the OBJ constructions/topicalization in[8.3] These construc-
tions are handled similarly to the ones described in the previous sections.

9 Analysis of the Hindi CCGbank

In this section, we provide a brief analysis of the different CCG categories and com-
binators in the Hindi CCGbank. Table[2]lists the top 12 most frequent CCG categories
in both coarse-grained and fine-grained versions of the lexicon. The most common
categories are the category for nouns (NP) and noun modifiers like adjectives and
determiners (NP/NP). The next most frequent categories are the categories for post-
position markers for nouns and auxiliary or tense, aspect and modality (TAM) mark-
ers for verbs. S¢\S; and NP\NP are the categories for auxiliary or TAM markers
for verbs and post-position markers for nouns respectively. The post-position marker

28 Ambati et al.

of an adjunct noun phrase gets the category (Sy/S;)\INP. (NP/NP)\NP is the cate-
gory for both genitive marker and conjunction in NP coordination. (S \NP)\NP and
S+ \IVP are the categories for transitive and intransitive verbs respectively. Adjectival
phrase gets a category JJP. (NP/NP)/(NP/NP) is the category for modifier of a noun
modifier and CCP /S is the category for subordinate conjunction.

Categories in the top 12 list of the fine-grained lexicon but not in the coarse-
grained are NP[0], NP[0_ne]\NP and NP[0_ko]\NP. In this lexicon, the coarse cat-
egory for nouns gets split into NP (the category for a noun with a separate lexical
item as a case marker) and NP[0] (the category for a noun without any case marker).
For example, in noun chunks raam ne (“Ram ERG”) and raam (“Ram”), the cate-
gory of raam is NP in first case and NP[0] in the later case. 0 here means that the
case marker appeared as a separate lexical item. For example, raam ne (“Ram ERG”)
will have NP [0_ne] as the category whereas usne (“he+ERG”) will have NP [ne]
as the category. This is the notation followed in the Hindi dependency treebank. The
remaining two categories, NP[O_ne]\NP and NP[0_ko]\NP, are the categories for
ergative (‘ne’) and dative (‘ko’) case-markers.

CCG Category Percentage (%) CCG Category Percentage (%)
NP 28.09 NP 17.67
NP/NP 16.45 NP/NP 16.44
Sp\Sy 9.05 NP[0] 9.11
NP\NP 6.99 S¢\Sy 9.05
(S¢/S§)\NP 6.66 (S¢/SF)\NP 591
(NP/NP)\NP 453 (NP/NP)\NP 4.09
S¢/S¢ 2.56 S¢/S¢ 2.56
(S \NP)\NP 2.21 JIP 2.12
JIpP 2.11 (NP/NP)/(NP/NP) 1.90
Sy \NP 2.05 NP[0_ne]\NP 1.84
(NP/NP)/(NP/NP) 1.90 Sy\NP[0] 1.82
CCP/Sf 1.60 NP[0_ko]\NP 1.77

Table 2: Distribution of CCG categories in coarse-grained (left) and fine-grained
(right) lexicon.

Table 3] shows the distribution of different CCG combinators in the Hindi CCG-
bank. Since Hindi is a verb final language, the backward application and composition
combinators are more frequent than forward application and composition combina-
tors. Due to freer word-order nature and crossing dependency arcs, there are around
0.5% of crossed composition combinators in the Hindi CCGbank. This shows the
importance of crossed composition combinators for freer word-order languages.

10 Conclusion

We presented an approach for automatically creating a CCGbank from a dependency
treebank for Hindi which is a morphologically rich, freer word-order and verb final
language. We created two types of lexicon: fine-grained which keeps morphological
information in noun categories and coarse-grained which doesn’t. We have provided

Hindi CCGbank: CCG Treebank from the Hindi Dependency Treebank 29

CCG Combinator Percentage (%)
Forward Application (>): 38.61
Backward Application (<): 45.90
Forward Composition (> B): 0.01
Backward Composition (< B): 14.99
Forward Crossed Composition (> Bx): 0.04
Backward Crossed Composition (< Bx): 0.45

Table 3: Distribution of combinators in the Hindi CCGbank.

a detailed analysis of various long-range dependencies like coordinate and relative
constructions, and shown how to handle them in CCG. We have also discussed in
detail the different word-orders that arise from the free word-order nature of Hindi in
various constuctions, and provided a unified projective analysis for them under CCG.
We have also provided a brief statistical analysis of the different CCG categories and
combinators occurring in the Hindi CCGbank.

The approach described here has already been successfully applied to Telugu, an-
other Indian language (Kumari and Raol 2015). In future we would like to extract
CCQG lexicons and/or CCGbanks for the many other languages for which dependency
treebanks are available, including the languages of the CoNLL dependency parsing
shared tasks (Buchholz and Marsi, [2006; Nivre et al., 2007a) and universal depen-
dency treebanks (McDonald et al., 2013E State of the art results for parsers trained
and tested on the treebank are reported in/Ambati et al.| (2013} [2014); Ambati|(2016)).

Acknowledgements This work was supported by ERC Advanced Fellowship 249520 GRAMPLUS and
EU IST Cognitive Systems IP Xperience grants.

References

Ambati, B. R. (2011). Hindi Dependency Parsing and Treebank Validation. Master’s
Thesis, International Institute of Information Technology - Hyderabad, India.

Ambati, B. R. (2016). Transition-based Combinatory Categorial Grammar parsing
for English and Hindi. PhD thesis, University of Edinburgh, UK.

Ambati, B. R., Deoskar, T., Johnson, M., and Steedman, M. (2015). An Incremental
Algorithm for Transition-based CCG Parsing. In Proceedings of the 2015 Con-
ference of the North American Chapter of the Association for Computational Lin-
guistics: Human Language Technologies, pages 53—63, Denver, Colorado.

Ambati, B. R., Deoskar, T., and Steedman, M. (2013). Using CCG categories to
improve Hindi dependency parsing. In Proceedings of the 51st Annual Meeting
of the Association for Computational Linguistics (Volume 2: Short Papers), pages
604-609, Sofia, Bulgaria.

Ambati, B. R., Deoskar, T., and Steedman, M. (2014). Improving Dependency Parsers
using Combinatory Categorial Grammar. In Proceedings of the 14th Conference

19 http://universaldependencies.org/

30 Ambati et al.

of the European Chapter of the Association for Computational Linguistics, volume
2: Short Papers, pages 159-163, Gothenburg, Sweden.

Auli, M. and Lopez, A. (2011). A Comparison of Loopy Belief Propagation and Dual
Decomposition for Integrated CCG Supertagging and Parsing. In Proceedings of
the 49th Annual Meeting of the Association for Computational Linguistics: Human
Language Technologies, pages 470—480, Portland, Oregon, USA.

Begum, R., Husain, S., Bai, L., and Sharma, D. M. (2008a). Developing Verb Frames
for Hindi. In Proceedings of LREC.

Begum, R., Husain, S., Dhwaj, A., Sharma, D. M., Bai, L., and Sangal, R. (2008b).
Dependency annotation scheme for Indian languages. In Proceedings of The Third
International Joint Conference on Natural Language Processing (IJCNLP), pages
721-726, Hyderabad, India.

Bharati, A., Chaitanya, V., and Sangal, R. (1995). Natural Language Processing: A
Paninian Perspective. Prentice-Hall of India, pages 65-106.

Bharati, A., Mannem, P., and Sharma, D. M. (2012). Hindi Parsing Shared Task. In
Proceedings of Coling Workshop on Machine Translation and Parsing in Indian
Languages, Kharagpur, India.

Bharati, A., Sangal, R., and Sharma, D. M. (2007). SSF: Shakti Standard Format
Guide. In Technical Report (TR-LTRC-33), LTRC, IIIT-Hyderabad.

Bharati, A., Sangal, R., Sharma, D. M., and Bai, L. (2006). AnnCorra: Annotating
Corpora Guidelines for POS and Chunk Annotation for Indian Languages. In
Technical Report (TR-LTRC-31), LTRC, IlIT-Hyderabad.

Bharati, A., Sharma, D. M., Husain, S., Bai, L., Begum, R., and Sangal, R.
(2009). AnnCorra: TreeBanks for Indian Languages, Guidelines for Annotating
Hindi TreeBank (version 2.0). http://ltrc.iiit.ac.in/MachineTrans/research/tb/DS-
guidelines/DS-guidelines-ver2-28-05-09.pdf.

Bhat, R. A. and Sharma, D. M. (2012). Non-projective structures in Indian language
treebanks. In Proceedings of the 11th Workshop on Treebanks and Linguistic The-
ories (TLT11), pages 25-30.

Bhatt, R., Narasimhan, B., Palmer, M., Rambow, O., Sharma, D. M., and Xia, F.
(2009). A multi-representational and multi-layered treebank for Hindi/Urdu. In
Proceedings of the Third Linguistic Annotation Workshop at 47th ACL and 4th
IJCNLP, pages 186—189, Suntec, Singapore.

Bos, J., Bosco, C., and Mazzei, A. (2009). Converting a Dependency Treebank to
a Categorial Grammar Treebank for Italian. In Proceedings of the Eighth Inter-
national Workshop on Treebanks and Linguistic Theories (TLTS), pages 27-38,
Milan, Italy.

Bos, J., Clark, S., Steedman, M., Curran, J. R., and Hockenmaier, J. (2004). Wide-
Coverage Semantic Representations from a CCG Parser. In Proceedings of Coling
2004, pages 1240-1246, Geneva, Switzerland. COLING.

Brants, S., Dipper, S., Hansen, S., Lezius, W., and Smith, G. (2002). The TIGER
Treebank. In Proceedings of the First Workshop on Treebanks and Linguistic The-
ories (TLT 2002), Sozopol, Bulgaria.

Buchholz, S. and Marsi, E. (2006). CoNLL-X shared task on multilingual depen-
dency parsing. In Proceedings of the Tenth Conference on Computational Natural
Language Learning, pages 149—164, New York City, New York.

Hindi CCGbank: CCG Treebank from the Hindi Dependency Treebank 31

Cakici, R. (2005). Automatic Induction of a CCG Grammar for Turkish. In Proceed-
ings of the ACL Student Research Workshop, pages 73-78, Ann Arbor, Michigan.

Clark, S. and Curran, J. R. (2007). Wide-Coverage Efficient Statistical Parsing with
CCG and Log-Linear Models. Computational Linguistics, 33:493-552.

Collins, M. (1999). Head-driven Statistical Models for Natural Language Parsing.
PhD thesis, University of Pennsylvania.

Hays, D. (1964). Dependency Theory: A Formalism and Some Observations. Lan-
guage, 40:511-525.

Hockenmaier, J. (2006). Creating a CCGbank and a Wide-Coverage CCG Lexicon
for German. In Proceedings of the 21st International Conference on Computa-
tional Linguistics and 44th Annual Meeting of the Association for Computational
Linguistics, pages 505-512, Sydney, Australia.

Hockenmaier, J. and Steedman, M. (2002). Generative Models for Statistical Parsing
with Combinatory Categorial Grammar. In Proceedings of 40th Annual Meeting
of the Association for Computational Linguistics, pages 335-342, Philadelphia,
Pennsylvania, USA.

Hockenmaier, J. and Steedman, M. (2007). CCGbank: A Corpus of CCG Derivations
and Dependency Structures Extracted from the Penn Treebank. Computational
Linguistics, 33(3):355-396.

Honnibal, M. and Curran, J. R. (2007). Improving the complement/adjunct distinc-
tion in CCGBank. Proceedings of the 10th Conference of the Pacific Association
for Computational Linguistics (PACLING-07), pages 210-217.

Honnibal, M., Curran, J. R., and Bos, J. (2010). Rebanking CCGbank for Improved
NP Interpretation. In Proceedings of the 48th Annual Meeting of the Association
for Computational Linguistics, pages 207-215, Uppsala, Sweden.

Ilida, R., Komachi, M., Inui, K., and Matsumoto, Y. (2007). Annotating a Japanese
text corpus with predicate-argument and coreference relations. In Proceedings of
the Linguistic Annotation Workshop, pages 132—139. Association for Computa-
tional Linguistics.

Joshi, A., Vijay-Shanker, K., and Weir, D. (1991). The Convergence of Mildly
Context-Sensitive Formalisms. In Sells, P., Shieber, S., and Wasow, T., editors,
Processing of Linguistic Structure, pages 31-81. MIT Press, Cambridge, MA.

Kawahara, D., Kurohashi, S., and Hasida, K. (2002). Construction of a Japanese
Relevance-tagged Corpus. In LREC.

Kiparsky, P. and Staal, J. F. (1969). Syntactic and semantic relations in Paini. Foun-
dations of Language, pages 83—117.

Kuhlmann, M., Koller, A., and Satta, G. (2015). Lexicalization and Generative Power
in CCG. Computational Linguistics, 41:187-219.

Kumari, B. and Rao, R. R. (2015). Improving Telugu Dependency Parsing using
Combinatory Categorial Grammar Supertags. ACM Transactions on Asian and
Low-Resource Language Information Processing, 14(1):3.

Kwiatkowski, T., Choi, E., Artzi, Y., and Zettlemoyer, L. (2013). Scaling Semantic
Parsers with On-the-Fly Ontology Matching. In Proceedings of the 2013 Confer-
ence on Empirical Methods in Natural Language Processing, pages 1545-1556,
Seattle, Washington, USA.

32 Ambati et al.

Lewis, M. and Steedman, M. (2013a). Combined Distributional and Logical Seman-
tics. Transactions of the Association for Computational Linguistics, 1:179-192.
Lewis, M. and Steedman, M. (2013b). Unsupervised Induction of Cross-Lingual
Semantic Relations. In Proceedings of the 2013 Conference on Empirical Methods

in Natural Language Processing, pages 681-692, Seattle, Washington, USA.

Lewis, M. and Steedman, M. (2014). A* CCG Parsing with a Supertag-factored
Model. In Proceedings of the 2014 Conference on Empirical Methods in Natural
Language Processing, Doha, Qatar.

Magerman, D. M. (1994). Natural Language Parsing as Statistical Pattern Recogni-
tion. PhD thesis, Stanford University.

Mabhajan, A. (2000). Relative Asymmetries and Hindi Correlatives. In Alexiadou, A.,
Law, P., Meinunger, A., and Wilder, C., editors, The Syntax of Relative Clauses,
pages 201-229. Amsterdam: John Benjamins.

Mannem, P., Chaudhry, H., and Bharati, A. (2009). Insights into non-projectivity
in Hindi. In Proceedings of the ACL-IJCNLP 2009 Student Research Workshop,
pages 10—17, Suntec, Singapore.

Marcus, M. P., Santorini, B., and Marcinkiewicz, M. A. (1993). Building a large
annotated corpus of English: The Penn Treebank. Computational Linguistics,
19(2):313-330.

McDonald, R., Nivre, J., Quirmbach-Brundage, Y., Goldberg, Y., Das, D., Ganchey,
K., Hall, K., Petrov, S., Zhang, H., Tackstrom, O., Bedini, C., Bertomeu Castelld,
N., and Lee, J. (2013). Universal Dependency Annotation for Multilingual Parsing.
In Proceedings of the 51st Annual Meeting of the Association for Computational
Linguistics (Volume 2: Short Papers), pages 92-97, Sofia, Bulgaria.

Meyers, A., Reeves, R., Macleod, C., Szekely, R., Zielinska, V., Young, B., and Gr-
ishman, R. (2004). The NomBank Project: An Interim Report. In Meyers, A.,
editor, HLT-NAACL 2004 Workshop: Frontiers in Corpus Annotation, pages 24—
31, Boston, Massachusetts, USA.

Mohanan, K. P. (1982). Grammatical relations in Malayalam. In Joan Bresnan (ed.),
The Mental Representation of Grammatical Relations.

Mohanan, T. (1994). Argument Structure in Hindi. CSLI Publications.

Nivre, J. (2009). Non-Projective Dependency Parsing in Expected Linear Time. In
Proceedings of the Joint Conference of the 47th Annual Meeting of the ACL and
the 4th International Joint Conference on Natural Language Processing of the
AFNLP, pages 351-359, Suntec, Singapore.

Nivre, J., Hall, J., Kiibler, S., McDonald, R., Nilsson, J., Riedel, S., and Yuret, D.
(2007a). The CoNLL 2007 Shared Task on Dependency Parsing. In Proceedings of
the CoNLL Shared Task Session of EMNLP-CoNLL 2007, pages 915-932, Prague,
Czech Republic.

Nivre, J., Hall, J., Nilsson, J., Chanev, A., Eryigit, G., Kiibler, S., Marinov, S., and
Marsi, E. (2007b). MaltParser: A language-independent system for data-driven
dependency parsing. Natural Language Engineering, 13(2):95-135.

Nivre, J. and Nilsson, J. (2005). Pseudo-Projective Dependency Parsing. In ACL
'05: Proceedings of the 43rd Annual Meeting on Association for Computational
Linguistics, pages 99-106, Ann Arbor, Michigan.

Hindi CCGbank: CCG Treebank from the Hindi Dependency Treebank 33

Palmer, M., Kingsbury, P., and Gildea, D. (2005). The Proposition Bank: An Anno-
tated Corpus of Semantic Roles. Computational Linguistics, 31(1):71-106.

Reddy, S., Lapata, M., and Steedman, M. (2014). Large-scale semantic parsing with-
out question-answer pairs. Transactions of the Association for Computational Lin-
guistics, 2:377-392.

Robinson, J. (1970). Dependency Structures and Transformational Rules. Language,
46:259-285.

Shastri, C. (1973). Vyakarana Chandrodya (Vol. 1 to 5). Delhi: Motilal Banarsidass.
(In Hindi).

Steedman, M. (2000). The Syntactic Process. MIT Press, Cambridge, MA, USA.

Tse, D. and Curran, J. R. (2010). Chinese CCGbank: extracting CCG derivations
from the Penn Chinese Treebank. In Proceedings of the 23rd International Con-
ference on Computational Linguistics (Coling 2010), pages 1083-1091, Beijing,
China. Coling 2010 Organizing Committee.

Uematsu, S., Matsuzaki, T., Hanaoka, H., Miyao, Y., and Mima, H. (2013). Inte-
grating Multiple Dependency Corpora for Inducing Wide-coverage Japanese CCG
Resources. In Proceedings of the 51st Annual Meeting of the Association for Com-
putational Linguistics (Volume 1: Long Papers), pages 1042-1051, Sofia, Bulgaria.

Uematsu, S., Matsuzaki, T., Hanaoka, H., Miyao, Y., and Mima, H. (2015). Inte-
grating Multiple Dependency Corpora for Inducing Wide-Coverage Japanese CCG
Resources. ACM Transactions on Asian and Low-Resource Language Information
Processing, 14(1):1-24.

Vaidya, A., Husain, S., Mannem, P., and Sharma, D. M. (2009). A karaka-based
dependency annotation scheme for English. In Proceedings of Computational Lin-
guistics and Intelligent Text Processing (CICLing), pages 41-52.

Xu, W., Clark, S., and Zhang, Y. (2014). Shift-Reduce CCG Parsing with a Depen-
dency Model. In Proceedings of the 52nd Annual Meeting of the Association for
Computational Linguistics (Volume 1: Long Papers), pages 218-227, Baltimore,
Maryland.

Xue, N., Xia, F, Chiou, F.-D., and Palmer, M. (2005). The Penn Chinese Tree-
Bank: Phrase structure annotation of a large corpus. Natural language engineering,
11(02):207-238.

Zhang, Y. and Clark, S. (2011). Shift-Reduce CCG Parsing. In Proceedings of the
49th Annual Meeting of the Association for Computational Linguistics: Human
Language Technologies, pages 683—692, Portland, Oregon, USA.

34 Ambati et al.

Appendix A : Hindi dependency labels

Hindi depenency label English Equivalent | Description
k1 (kartha) SUBJ Subject/Agent
kl1s (kartha samanadhikarana) SCOM Noun complements of kartha
k2 (karma) OBJ Object/Patient
k3 (karana) INST Instrument
k4 (sampradaana) RCPT Recipient
kS5 (apaadaana) SRC Source
k7t (kaalaadhikarana) TIME Time Expression
k7p (deshadhikarana) PLACE Place Expression
r6 (shashthi) GEN Possessive/Genitive marker
nmod_relc RELC Relative Clause
vmod VMOD Verbal Modifier
nmod NMOD Noun Modifier
nmod__adj AMOD Adjectival modifier of a noun
Iwg__psp CASE Case marker
Iwg__aux AUX Auxiliary verb or
Tense, Aspect and Modality marker for verb
pof POF Part-OF units such as conjunct verbs
IS CCOM Clausal Complement
r6-k1 CSUB SUBJ of conjunct verb
r6-k2 COBJ OBJ of conjunct verb

Table 4: Hindi dependency labels and their English equivalents.

Appendix B : Hindi Chunk Tags

SI. No | Chunk Type Tag Name
1 Noun Chunk NP

2.1 Finite Verb Chunk VGF
2.2 Non-finite Verb Chunk | VGNF
2.3 Infinitival Verb Chunk VGINF
2.4 Verb Chunk (Gerund) VGNN
3 Adjectival Chunk P

4 Adverb Chunk RBP

5 Chunk for Negatives NEGP
6 Conjuncts CCP

7 Chunk Fragments FRAGP
8 Miscellaneous BLK

Table 5: Hindi Chunk Tagset

Hindi CCGbank: CCG Treebank from the Hindi Dependency Treebank 35

Appendix B : Machine-readable Format

CCG derivation for the first sentence in the Hindi dependency treebank guidelines
using fine-grained lexicon is given below. We follow the format of Hockenmaier and
Steedmanl (2007) for representing the binary CCG derivation trees with the bracketed
notation.

(< TSy 12> (< T NP[ne] 02> (< L NP NNP NNP raam NP>) (< L NP[ne]\NP PSP PSP ne
NP[ne]\NP>)) (< T S\NP[ne] 1 2> (< T NP[ko] 0 2> (< L NP NNP NNP mohan NP>) (< L
NP[ko]\NP PSP PSP ko NP[ko]\NP>)) (< T (S{\NP[ne])\NP[ko] 1 2> (< T NP[0] 1 2> (< L
NP/NP JJ JJ niilii NP/NP>) (< L NP[0] NN NN kitaab NP[0]>)) (< L ((S \NP[ne])\NP[ko])\NP[0]
VM VM dii (S \NP[ne])\NP[ko])\NP[0]>))))

There are two types of nodes in the derivation trees: Leaf nodes and Non-leaf
nodes. Leaf nodes have six fields.

<L NP [ne] NNP NNP raam NP[ne]>

<L CCGCat mod-POS-tag orig-POS-tag word CCGCat2>

L represents that it is a leaf node. CCGCat is the CCG category of the node.
Unlike English, POS tag is not modified during the conversion of dependency trees
to CCG derivations. So, in Hindi CCGbank, mod-POS-tag and orig-POS-tag
both represent the POS tag of the word. Lexical item is represented using word field.
In English CCGbank, CCGCat?2 slot is used to represent predicate-argument struc-
ture of the CCG category. In Hindi CCGbank, we just use the lexical CCG category
to fill this slot.

Non-leaf nodes have four fields. T represents that the node is a non-leaf node.
CCGCat is the CCG category of the node. head takes two values: 0 if the left node
is the head and 1 if the right node is the head. Since the CCG derivation trees are
binary trees, children field will have 1 or 2 based on whether there are one or two
children. Example non-leaf node is given below.

<T NP[ne] 0 2

<T CCGCat head children

CCQG derivation tree with coarse-grained lexicon is provided below in machine-
readable format along with the dependency tree and derivation.

Ambati et al.

36
ROOT
‘CASE ‘CASE

—~
ROOT raam ne mohan ko niilii kitaab dii
Ram ERG Mohan to black book give-past-fem
[Ny p raam ne [;v p mohan ko] [v p niillii kitaab] [sy dii]
NP NP[ne/\NP ~ NP NP[ko]\NP NP/NP NP[O] ((S;\NP[ne])\NP[ko])\NP[0]
NP[ne] NP[ko] NP[0]
(S \NP[ne])\NP[ko]

S ¢\NP[ne]

S

‘Ram gave a black book to Mohan.’
Fig. 24: Example dependency tree and CCG derivation (Fine-grained).

(<TS; 12> (< TNPO2> (< L NP NNP NNP raam NP>) (< L NP\NP PSP PSP ne NP\NP>)) (<
T S§\NP 12> (< T NP 0 2> (< L NP NNP NNP mohan NP>) (< L NP\NP PSP PSP ko NP\NP>)
) (< T (Sf\NP)\NP 12> (< T NP 1 2> (< L NP/NP JJ JJ niilii NP/NP>) (< L NP NN NN kitaab
NP>)) (< L ((Sf\NP)\NP)\NP VM VM dii ((S; \NP)\NP)\NP>))))

ROOT

—~
ROOT raam ne mohan ko niilii kitaab dii
Ram ERG Mohan to black book give-past-fem
[vpraam ne] [np mohan ko] [p niillii kitaab] [sy dii]
NP NP\NP NP NP\NP NP/NP NP ((S\NP)\NP)\NP
NP NP NP

(S;\NP)\NP
SF\NP

S
‘Ram gave a black book to Mohan.’

Fig. 25: Example dependency tree and CCG derivation (Coarse-grained).

	Introduction
	Combinatory Categorial Grammar
	Related Work
	Hindi Dependency Treebank
	Extracting a CCG Lexicon
	CCG Lexicon to Treebank conversion
	Coordination Constructions
	``Non-Projective'' Constructions
	Analysis of the Hindi CCGbank
	Conclusion

