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Abstract
Large Language Models (LLMs) are claimed001
to be capable of Natural Language Inference002
(NLI), necessary for applied tasks like question003
answering and summarization. We present a004
series of behavioral studies on several LLM005
families (LLaMA, GPT-3.5, and Anonymous006
LLM1) which probe their behavior using con-007
trolled experiments. We establish two bi-008
ases originating from pretraining which predict009
much of their behavior, and show that these010
are major sources of hallucination in generative011
LLMs. First, memorization at the level of sen-012
tences: we show that, regardless of the premise,013
models falsely label NLI test samples as entail-014
ing when the hypothesis is attested in training015
data, and that entities are used as “indices” to016
access the memorized data. Second, statistical017
patterns of usage learned at the level of cor-018
pora: we further show a similar effect when the019
premise predicate is less frequent than that of020
the hypothesis in the training data, a bias fol-021
lowing from previous studies. We demonstrate022
that LLMs perform significantly worse on NLI023
test samples which do not conform to these bi-024
ases than those which do, and we offer these as025
valuable controls for future LLM evaluation.2026

1 Introduction027

Large Language Models (LLMs) such as LLaMA,028

GPT-3/4, PaLM, and more (Touvron et al., 2023;029

Brown et al., 2020; Chowdhery et al., 2022), have030

been trusted by many to perform language un-031

derstanding in downstream tasks such as summa-032

rization, question answering, and fact verification,033

among others (Zhang et al., 2023). However, due034

to the large-scale nature of LLM training on vast,035

often proprietary data, and the inherent opacity036

of LLM parameters, it is difficult to explain their037

behavior when answering user queries and the cor-038

responding risks in terms of bias and robustness.039

1An LLM larger than GPT-3, anonymized for review.
2Code and LLM outputs (LLaMA and GPT-3.5) will be

available online.

In particular, one LLM behavior poses a signifi- 040

cant challenge: “hallucination,” the phenomenon 041

in which LLMs provide information which is in- 042

correct or inappropriate, presented as fact. 043

This paper investigates how LLMs perform on 044

natural language inference tasks, sometimes called 045

textual entailment, a basic component of language 046

understanding, critical in real tasks. We exam- 047

ine broader NLI, and especially directional entail- 048

ments, which hold in one direction, but not both. 049

For example, DEFEAT entails PLAY but PLAY does 050

not entail DEFEAT. Inferring directional entailment 051

is more difficult than that of symmetric paraphrase, 052

so it more deeply probes understanding. 053

Our approach is a behavioral study of prompted 054

LLM decision-making. We alter existing NLI 055

datasets in targeted ways while measuring how pre- 056

dictions change, across several major LLM fam- 057

ilies (LLaMA, GPT-3.5, and Anonymous LLM). 058

We demonstrate two sources of LLM performance 059

on the NLI task, which we offer as explanations 060

of general false positive hallucination: (1) LLM 061

bias toward affirming entailment when the hypoth- 062

esis may be attested in the training text, includ- 063

ing reliance on named entity identifiers; and (2) a 064

corpus-frequency bias, affirming entailments with 065

premises less frequent than hypotheses. 066

We establish that these biases originate from 067

the LLM pretraining objective, in which statisti- 068

cal modeling of the natural distribution of human- 069

generated text leads to (at the level of sentences) 070

memorizing individual statements, and (at the 071

level of corpora) learning typical patterns of usage. 072

Though superficially performant, our experiments 073

show that even powerful LLMs still use unsatisfac- 074

tory tools instead of robust reasoning. 075

We present three contributions, the demonstra- 076

tions of both factors and an analysis of their impact: 077

(1) In a prompting scenario, LLMs respond to 078

entailment samples according to an attestation bias, 079

affirming entailments more readily if the hypothe- 080
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sis is attested by the pretraining text. We find that081

LLaMA-65B, GPT-3.5, and Anonymous LLM are082

respectively 1.9, 2.2, and 2.0 times more likely to083

wrongly predict Entail when the model already084

asserts the hypothesis is attested, compared to when085

not. Further, LLMs recall from their propositional086

memory using named entities as identifying “in-087

dices,” even though they are irrelevant to the logic088

of the predicate inference task.089

(2) LLMs also rely on a simple corpus-statistic090

bias using relative term-frequencies, especially091

when propositional memory is not available. The092

three LLMs are 1.6, 1.8 and 2.0 times more likely to093

wrongly affirm entailments if the premise has lower094

term frequency than the hypothesis, than when not.095

(3) For the NLI test subsets consistent with these096

factors, LLM scores are misleadingly high; for097

NLI subsets adversarial to them, LLM performance098

degrades severely. We show that when labels go099

against the attestation bias, LLMs can be poor100

or even near-random classifiers; for the relative101

frequency bias, we similarly show a substantial102

performance decrease across all LLMs.103

2 Related Work104

Addressing task robustness, Poliak et al. (2018)105

found a range of NLI datasets to contain artifacts106

which are learnable by supervised models trained107

on only the hypothesis. In this paper, we use a108

similar hypothesis-only test with LLMs, but we use109

it to probe model memory without any training.110

For task-specific supervised neural models, Tal-111

man and Chatzikyriakidis (2019) observed gener-112

alization failure among NLI tasks; on smaller Lan-113

guage Models such as RoBERTa (Liu et al., 2019;114

355M params.), Li et al. (2022) also observed a115

reliance on dataset artifacts when performing di-116

rectional NLI on predicates. We now study the117

behavior of much larger LMs, which have demon-118

strated more robust performance across NLP tasks.119

Recent work has also explored LLM memoriza-120

tion and generalization. Carlini et al. (2023) estab-121

lish that LLMs are able to memorize more data than122

small LMs, whereas Tirumala et al. (2022) further123

demonstrate that LLMs pay special attention early124

in training to numbers and nouns, which act as125

unique identifiers for individual training sentences.126

We also show that memories used in language infer-127

ence are tied to specific named entities. And while128

Weller et al. (2023) and Kandpal et al. (2022) find129

that entity frequency in training data is correlated130

with performance in factual recall about them, we 131

find that entity frequency is anti-correlated with 132

hypothetical generalization performance (§6). 133

Bubeck et al. (2023) argue that GPT-4 under- 134

stands language “beyond memorization”. We do 135

not disprove generalization, but we show that GPT- 136

4 shows the same hallucinations in Appendix F. 137

3 Experimental Design 138

We design behavioral experiments on LLMs by 139

modifying NLI datasets with rigorous controls. We 140

observe large behavior changes across three major 141

LLM families due to propositional-memory effects 142

in §5 and §6, and corpus frequency in §7. Finally, 143

we show the impact on real performance in §8. 144

3.1 Two Biases in Inference Predictions 145

We claim that the pretraining objective to fit the 146

distribution of natural text leads to biases in LLM 147

generations. We explore two such biases. 148

The Attestation Bias is the over-reliance of an 149

LLM on its propositional memory about a query 150

statement. We claim that when a statement is likely 151

to be attested in some way by an LLM’s training 152

data, it is more likely to affirm it as a conclusion in 153

NLI tasks, regardless of any premise it is presented 154

with. We measure the attestedness of a sample 155

by prompting the LLM to ask if the hypothesis in 156

question is true, false, or unknown.3 Attestation 157

predictions are denoted by Λ. 158

As discussed in §2, we draw inspiration from 159

the hypothesis-only baseline (Poliak et al., 2018), 160

but we use the test to probe model memory without 161

training. We describe prompt generation in detail 162

in §4.2, with an example in appendix Table 12. 163

Dasgupta et al. (2022) show a similar effect in 164

LLMs on abstract reasoning tests, related to sen- 165

tential content, and equate it to human tendencies. 166

In contrast, we examine the risks of propositional 167

memory on more realistic inference tasks. 168

The Relative Frequency Bias is the use of a sim- 169

ple rule for deciding entailment, calculable from 170

corpus statistics. Entailment is affirmed if, ignoring 171

named entities, the eventuality in premise P is less 172

frequent in training than that in hypothesis H . 173

This bias is reflected in natural text: it is known 174

that nouns follow a trend of becoming more specific 175

as corpus-frequency decreases (Rosch et al., 1976; 176

3Alternatively, LLM perplexity for a statement could be
used; however, this is not always available, e.g. with GPT-3.
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Caraballo and Charniak, 1999) and the same is177

observed for predicates (McKenna and Steedman,178

2022). Since entailments may carry from a specific179

term to a more general one, e.g. SPRINT entails180

RUN, relative frequency can often indicate direction181

of entailment. However, it is an artifact of natural182

text and has no direct relationship to meaning.183

Test samples are labeled for agreement with this184

bias separately from models. Since LLM pre-train185

corpora are impractically large or proprietary, we186

instead use Google N-grams4 as a proxy of the nat-187

ural distribution of text, and thus the distributions188

of these corpora. We average frequencies between189

the years 1950-2019, and compare between P and190

H . To acquire generic eventualities, we mask any191

extracted entities and lemmatize phrases; further,192

we control noise and sparsity by requiring a wide193

margin of difference between P and H frequency194

estimates. Frequency decisions are denoted by Φ.195

3.2 Datasets196

Levy/Holt consists of premise-hypothesis pairs,197

with a task formatted: “Given [premise P ], is it198

true that [hypothesis H]?” (Levy and Dagan, 2016;199

Holt, 2019). Each P - and H-statement has the200

property of containing one predicate with two en-201

tity arguments, (where the same entities appear in202

both P and H) as shown in Table 1. This targeted203

dataset is ideal for precisely measuring model un-204

derstanding of predicates, because entailment be-205

tween statements is decidable purely on the basis206

of the predicates and their attributes. We study the207

challenging directional subset, where entailments208

hold in one direction but not both.209

RTE-1 is one of the original and most difficult210

tests of NLI (Dagan et al., 2006). It is not purely211

directional on the basis of predicates or consistently212

structured like Levy/Holt, so we leave it out of the213

behavioral experiments. However, it is a widely214

understood dataset, and we use it to demonstrate215

the impact of the two biases in general NLI in §8.216

Exclusions are made of NLI datasets relating217

to knowledge of the world, since we aim to test218

LLMs on their capability to reason purely about219

the semantics of natural language predicates with-220

out relying on memorized facts. We explicitly221

avoid datasets such as MMLU (Hendrycks et al.,222

2021), Natural Questions (Kwiatkowski et al.,223

2019), OpenBookQA (Mihaylov et al., 2018) etc.224

4https://books.google.com/ngrams

3.3 Dataset Transformations 225

The standard inference task I is on original 226

NLI datasets, in which entailment is determinable 227

by using general language inference on sentences. 228

In Levy/Holt, it is determinable just by predicates. 229

We define three dataset transformations to study 230

the change in model responses as targeted infor- 231

mation is removed. These include randomized 232

premise predicate IRandPrem, and two argument- 233

transformations: generic arguments IGenArg, and 234

type-constrained randomized arguments IRandArg. 235

Transformations involve first identifying the 236

types of entities in statements, in order to constrain 237

entity or predicate replacements. We type each 238

entity with one of the 48 FIGER types (Ling and 239

Weld, 2012), such as “person,” “location,” etc. We 240

use an entity linker (Nguyen et al., 2014) which 241

identifies the Freebase ID (Bollacker et al., 2008), 242

from which we obtain the type of the entity; we 243

assign a default type “thing” in failure cases. 244

The random premise task IRandPrem replaces 245

the original premise predicate with a random predi- 246

cate, while maintaining the same entity arguments. 247

This manipulation produces a dataset in which all 248

samples are labeled No-Entail, since two ran- 249

domly paired predicates are very unlikely to be 250

related by entailment. Hence, any positive decision 251

by the model is a false positive hallucination. 252

To maintain naturalness and grammaticality, we 253

constrain a new predicate to have argument slots 254

of the same types as the original premise. For ex- 255

ample, “[medicine] is indicated for patients with 256

[disease]” is swapped for “[medicine] does not 257

cure [disease]”. We source candidates from dev 258

set premises satisfying the target type-constraints, 259

and sample uniform randomly. We map the original 260

entities to their respective slots in the new premise. 261

Examples are shown in Table 1. IRandPrem is a 262

good test of model reliance on propositional mem- 263

ory, since we prevent entailments while maintain- 264

ing the attestedness of conclusions (hypotheses). 265

The generic argument task IGenArg replaces 266

original entities with unique FIGER-typed identi- 267

fiers, e.g. “location X” and “food Y”. In using these 268

generic identifiers to mask the identities of entities, 269

this test is designed to remove extraneous informa- 270

tion while maintaining the same entailment label, 271

as a baseline control setting. We append unique 272

identifiers (e.g. “X”, “Y”) to allow tracking of 273

entity slots across the premise and the hypothesis. 274
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The random argument task IRandArg replaces275

original entities with other real, random entities276

of the same FIGER-type. Like IGenArg, this test277

is designed to create novel strings by modifying278

statements without changing entailment labels. But279

now we test model sensitivity to added extraneous280

information. Examples are shown in Table 2.281

We use entity type constraints here to ensure pol-282

ysemous predicates maintain the same sense. For283

example, a different sense of run is used in “[per-284

son] runs [organization]” vs. “[person] runs [soft-285

ware]”, but between different entities of the same286

type, the same senses are used, so the exact entity287

IDs do not affect entailment labels. We source new288

entities from NewsCrawl (Barrault et al., 2019),289

a decade-long span of multi-source news text, in290

which entities are typed as above. We draw new291

entities uniform randomly from the 5% least com-292

mon entities in NewsCrawl (IRandArg↓), and the293

5% most common (IRandArg↑). We swap the ar-294

guments for sampled entities while preserving the295

rest of each statement.296

4 Querying Models with Prompts297

4.1 Models298

LLaMA is a recent LLM model family which299

rivals or surpasses GPT-3 performance while being300

open to scientific study. LLaMA provides a range301

of model sizes; we test with the largest LLaMA-302

65B model. LLaMA is not fine-tuned; while there303

have been fine-tuned variants (Taori et al., 2023;304

Chiang et al., 2023), we found them less competent305

than LLaMA-65B, so we leave them out.306

GPT-3 Series models are closed to deep scien-307

tific review (Brown et al., 2020), though they are a308

widely-used comparison for their performance, and309

have been reasonably well-studied. We evaluate on310

text-davinci-003 (GPT-3.5), as it is the largest, and311

has undergone instruction- and RLHF-finetuning,312

enabling interesting comparisons.313

Anonymous LLM is larger than GPT-3, which314

often claims state-of-the-art on evaluation datasets.315

It is also only pretrained, so it serves as a fur-316

ther comparison point to LLaMA. The LLM is317

anonymized to maintain double-blind review, and318

will be de-anonymized if accepted.319

Later GPT models (like text-davinci-003 in our320

experiments) have been pre-trained and fine-tuned,321

while base LLaMA and Anonymous LLM have322

only undergone pre-training, so their contrast in- 323

dicates what stage of training is responsible for 324

the phenomena we study. Our aim is not to judge 325

which LLM is superior, but to show the common 326

sources of hallucination they share. 327

We also omit models superseded in performance 328

by LLaMA (e.g. OPT, GPT-J, etc.), as well as 329

products that are closed to scientific review (e.g. 330

GPT-4, Bard, etc.)5. 331

4.2 Prompt Design and Evaluation 332

Formatting We feed each test sample into the 333

model by insertion of the premise and hypothesis 334

into a prompt template, which is used to query 335

the model in natural language. Following this, we 336

append a three-way answer choice: A) Entailment, 337

B) Neutral, C) Contradiction, following the typical 338

format in NLI (Bowman et al., 2015). 339

Selection For testing, we select the prompt tem- 340

plate which scores the highest AUC on each respec- 341

tive dev set. We try 8 promising templates includ- 342

ing 5 from Schmitt and Schütze (2021), also used 343

in other NLI work6 (Webson and Pavlick, 2022). 344

Ideally, an LLM with advanced language under- 345

standing ability could perform inference in zero- 346

shot without annotated examples, which would 347

raise confidence that this faculty is ready for down- 348

stream tasks. To this end, we examine each LLM in 349

zero-shot (detailed in Appendix A), but they exhibit 350

severely degraded, even near-random performance. 351

We turn to few-shot, and hand-annotate a mini- 352

mal 4 examples in the style of the template, with 353

added explanations about why the given answer 354

is correct for each example. These examples are 355

prepended before the query (see Appendix A for 356

an example). Our goal is to study model behavior 357

as conditions change, not to maximize the score on 358

any particular dataset. Therefore, we use a mini- 359

mal 4-example setup, which we find is capable of 360

evoking positive responses from all three LLMs on 361

each dev set, across most templates. 362

Scoring We convert choice A into Entail and 363

collapse both B and C choices into No-Entail to 364

align with Levy/Holt and RTE-1 annotation. For be- 365

havioral experiments in §5, §6, and §7, we score the 366

model solely based on its textual response, which is 367

one of A/B/C on all dev questions for each model. 368

5We include an analysis of GPT-4 in Appendix F
6See Appendix A for details on prompt template selection.
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Task Label Dev Sample Query: [premise] ⇒ [hypothesis]

I (Entail) George Bush was the Governor ofwas the Governor ofwas the Governor ofwas the Governor ofwas the Governor ofwas the Governor ofwas the Governor ofwas the Governor ofwas the Governor ofwas the Governor ofwas the Governor ofwas the Governor ofwas the Governor ofwas the Governor ofwas the Governor ofwas the Governor ofwas the Governor of Texas ⇒ George Bush is a politician fromis a politician fromis a politician fromis a politician fromis a politician fromis a politician fromis a politician fromis a politician fromis a politician fromis a politician fromis a politician fromis a politician fromis a politician fromis a politician fromis a politician fromis a politician fromis a politician from Texas
IRandPrem (No-Entail) George Bush resided inresided inresided inresided inresided inresided inresided inresided inresided inresided inresided inresided inresided inresided inresided inresided inresided in Texas ⇒ George Bush is a politician fromis a politician fromis a politician fromis a politician fromis a politician fromis a politician fromis a politician fromis a politician fromis a politician fromis a politician fromis a politician fromis a politician fromis a politician fromis a politician fromis a politician fromis a politician fromis a politician from Texas

Table 1: From the original dataset task (I) we derive the Random Premise task (IRandPrem), respecting type-
constraints. A random premise predicate is highly unlikely to entail the hypothesis, so all labels are No-Entail.

For the analysis in §8 which measures model per-369

formance across confidence thresholds, we convert370

the letter choice to a score with the mapping:371

Sent = 0.5 + 0.5 ∗ I[tok = A] ∗ Stok372

− 0.5 ∗ I[tok ∈ {B,C}] ∗ Stok373

Where I is the indicator function, and Sent esti-374

mates the likelihood of Entail from a textual375

output (0 ≤ Sent ≤ 1) with token probability Stok376

using a linear transformation, preserving the order-377

ing of model confidences, which is sufficient for378

calculating a precision-recall curve.379

5 EXP-1: Attestation Bias380

We begin our experiments by assessing LLMs’ re-381

liance on their propositional memory of training382

text by conditioning each model’s entailment task383

predictions I on its own predictions of attestation384

Λ. We do this by comparing estimated probabilities385

of predicting Entail conditioned on whether the386

hypothesis is predicted Attested or not.387

Further, we test a setting which controls for the388

possibility that original Levy/Holt entailments may389

coincidentally refer to attested facts, which could390

lead to spurious correlation between inference and391

attestation scores without clearly demonstrating use392

of memory versus true entailment. This controlled393

setting is the random premise task IRandPrem,394

which converts entailments into non-entailments395

without altering the hypothesis. An ideal model396

capable of drawing inferences from information in397

context should detect that in the IRandPrem task it398

is no longer possible to infer the hypothesis based399

on the premise (even if the hypothesis is itself400

attested in training), and never predict Entail.401

Thus, in IRandPrem, all Entail predictions are402

assumed to be false positive hallucinations.403

5.1 Results404

With I , IRandPrem and Λ predictions acquired as405

described in §3.1, we present the conditional proba-406

bilities in Figures 1 and 2. It is clear that a model’s407

memory about the hypothesis plays a part in its pre-408

dictions of the hypothesis given a premise, either409

related or random.410

Figure 1: Estimated probability of predicting Entail
for original entries in Levy/Holt, conditioned on LLMs’
attestation of hypotheses (Λ). This setting is intuitive
but subject to spurious correlations, thus included but
colored darker.

Figure 2: Estimated probability of predicting Entail
for Random-Premise entries in Levy/Holt, conditioned
on LLMs’ attestation of hypotheses (Λ). In this setting,
predicting Entail is false positive hallucination (lower
is better). Models are sensitive to hypothesis attestation,
and hallucinate more when the hypotheses are attested.

For I , we observe significantly higher probabil- 411

ity of predicting Entail when the hypothesis is 412

attested. In the random premise task IRandPrem, 413

this trend continues. LLaMA, GPT-3.5, and Anony- 414

mous LLM, respectively, show a 1.9x, 2.2x, and 415

2.0x higher chance of falsely predicting that a ran- 416

dom premise Entails the hypothesis if it already 417

predicts the hypothesis is attested. We further in- 418

vestigate the impact of such hallucination on NLI 419

performance in §8. 420

This behavior is observed across model fami- 421

lies (LLaMA, GPT, and Anonymous LLM), es- 422

tablishing that it is due to pretraining rather than 423

Instruction-tuning or RLHF, since LLaMA and 424

Anonymous LLM have only undergone pretrain- 425
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Task Label Dev Sample Query: [premise] ⇒ [hypothesis]

I (Entail) IndiaIndiaIndiaIndiaIndiaIndiaIndiaIndiaIndiaIndiaIndiaIndiaIndiaIndiaIndiaIndiaIndia exports tons of ricericericericericericericericericericericericericericericericerice ⇒ IndiaIndiaIndiaIndiaIndiaIndiaIndiaIndiaIndiaIndiaIndiaIndiaIndiaIndiaIndiaIndiaIndia exports ricericericericericericericericericericericericericericericericerice
IGenArg (Entail) location Xlocation Xlocation Xlocation Xlocation Xlocation Xlocation Xlocation Xlocation Xlocation Xlocation Xlocation Xlocation Xlocation Xlocation Xlocation Xlocation X exports tons of food Yfood Yfood Yfood Yfood Yfood Yfood Yfood Yfood Yfood Yfood Yfood Yfood Yfood Yfood Yfood Yfood Y ⇒ location Xlocation Xlocation Xlocation Xlocation Xlocation Xlocation Xlocation Xlocation Xlocation Xlocation Xlocation Xlocation Xlocation Xlocation Xlocation Xlocation X exports food Yfood Yfood Yfood Yfood Yfood Yfood Yfood Yfood Yfood Yfood Yfood Yfood Yfood Yfood Yfood Yfood Y
IRandArg↓ (Entail) SloterdijkSloterdijkSloterdijkSloterdijkSloterdijkSloterdijkSloterdijkSloterdijkSloterdijkSloterdijkSloterdijkSloterdijkSloterdijkSloterdijkSloterdijkSloterdijkSloterdijk exports tons of oatmeal cookiesoatmeal cookiesoatmeal cookiesoatmeal cookiesoatmeal cookiesoatmeal cookiesoatmeal cookiesoatmeal cookiesoatmeal cookiesoatmeal cookiesoatmeal cookiesoatmeal cookiesoatmeal cookiesoatmeal cookiesoatmeal cookiesoatmeal cookiesoatmeal cookies ⇒ SloterdijkSloterdijkSloterdijkSloterdijkSloterdijkSloterdijkSloterdijkSloterdijkSloterdijkSloterdijkSloterdijkSloterdijkSloterdijkSloterdijkSloterdijkSloterdijkSloterdijk exports oatmeal cookiesoatmeal cookiesoatmeal cookiesoatmeal cookiesoatmeal cookiesoatmeal cookiesoatmeal cookiesoatmeal cookiesoatmeal cookiesoatmeal cookiesoatmeal cookiesoatmeal cookiesoatmeal cookiesoatmeal cookiesoatmeal cookiesoatmeal cookiesoatmeal cookies
IRandArg↑ (Entail) HelsinkiHelsinkiHelsinkiHelsinkiHelsinkiHelsinkiHelsinkiHelsinkiHelsinkiHelsinkiHelsinkiHelsinkiHelsinkiHelsinkiHelsinkiHelsinkiHelsinki exports tons of Granny SmithGranny SmithGranny SmithGranny SmithGranny SmithGranny SmithGranny SmithGranny SmithGranny SmithGranny SmithGranny SmithGranny SmithGranny SmithGranny SmithGranny SmithGranny SmithGranny Smith ⇒ HelsinkiHelsinkiHelsinkiHelsinkiHelsinkiHelsinkiHelsinkiHelsinkiHelsinkiHelsinkiHelsinkiHelsinkiHelsinkiHelsinkiHelsinkiHelsinkiHelsinki exports Granny SmithGranny SmithGranny SmithGranny SmithGranny SmithGranny SmithGranny SmithGranny SmithGranny SmithGranny SmithGranny SmithGranny SmithGranny SmithGranny SmithGranny SmithGranny SmithGranny Smith

Table 2: An original dev sample (I) is transformed by insertion of entity types (IGenArg); by real entities sampled
from the 5% least frequent in NewsCrawl (IRandArg↓); and also from the 5% most frequent (IRandArg↑).

ing. This behavior is undesirable, because model426

predictions on NLI tasks should be based solely on427

general language understanding, not prior knowl-428

edge. We may conclude that memory of training429

data is a significant contributor in LLM inference,430

and may be an important source of hallucination.431

5.2 Implications for Real Applications432

Using prior knowledge as part of language infer-433

ence has bad implications for the use of LLMs in434

real applications. We offer an example scenario435

of a question-answering task where user questions436

are answered from a Knowledge Base (KB). In437

typical formulations of this task, if a statement in438

the KB (premise) entails a user query (hypothe-439

sis), the premise may be formulated into an answer.440

Consider a KB such as a legal document or HR rule-441

book. Assume that the text is prepended to the user442

query and presented to the LLM, as in other works443

(Srinivasan et al., 2022). Given our findings, we444

might observe the LLM hallucinating answers to445

questions using information which is not presented446

in the KB, but may have been read by the LLM in447

text from other sources during pretraining. These448

answers could be illogical, contradictory, and could449

misrepresent the views of the KB, or other harms.450

Such poor use of in-context learning has already451

been observed in specific domains like medicine452

(Jimenez Gutierrez et al., 2022).453

In general, this is a risk for LLMs which (a) are454

deployed for tasks like QA by feeding novel text455

(e.g. a legal document) in-context as part of the456

user query, and (b) are trained on datasets which are457

private or otherwise infeasibly large to read man-458

ually, containing many facts and human opinions459

unknowable to both the user and modeler.460

6 EXP-2: Entities are Indices to Memory461

In §5, we have established that propositional mem-462

ory explains a significant portion of false positives463

in LLM inference predictions. In this section, we464

continue by showing the importance of named enti-465

ties in the process of LLMs’ memory recall.466

Levy/Holt (Directional)

Model Task Precision Recall ∆-Recall

LLaMA

I 67.0 68.4 0
IGenArg 69.0 66.9 -1.5
IRandArg↓ 64.0 63.8 -4.6
IRandArg↑ 67.2 53.7 -14.7

GPT-3.5

I 62.4 92.3 0
IGenArg 65.1 75.7 -16.6
IRandArg↓ 65.5 66.5 -25.8
IRandArg↑ 68.8 55.3 -37.0

Anon.
LM

I 72.8 76.2 0
IGenArg 79.8 50.8 -25.4
IRandArg↓ 69.5 58.7 -17.5
IRandArg↑ 70.8 52.4 -23.8

Table 3: Scoring model outputs in different argument-
replacement tasks. We indicate the highest and lowest
recall score across replacement settings, and note that
recall decreases sharply across settings in all models.

As described in §3.3, we manipulate the enti- 467

ties with the IGenArg generic argument replace- 468

ment, and two random entity replacements, one 469

with infrequent-entities IRandArg↓ and one with 470

frequent-entities IRandArg↑ (examples in Table 2). 471

By replacing arguments constrained by type, en- 472

tailment labels are maintained; however, new sam- 473

ples should contain novel strings not attested in pre- 474

train corpora. We expect that an ideal, generalizing 475

model would maintain its predictions across all 476

conditions; a flawed model utilizing the attestation 477

bias would predict fewer Entail, since entities 478

no longer identify these statements in training. 479

6.1 Results 480

We report results across conditions in Table 3. We 481

observe two phenomena across all three models, 482

aligning with the above conjecture of “flaws”. 483

First, we observe that all models’ behavior signif- 484

icantly changes in the same way when original en- 485

tities are replaced by either entity types or random 486

real entities. Despite similar (or marginally increas- 487

ing) precision across conditions, recall degrades 488

sharply from original entities (I) (GPT-3.5 @92.3) 489

to random frequent entities (IRandArg↑) (GPT-3.5 490
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@55.3). Generic-argument IGenArg performance491

also degrades in this way, showing that this is not a492

matter of poorly selected real entities, but rather a493

loss of information from the original dataset which494

models were using to answer questions.495

Second, across the 3 models, we observe a sig-496

nificant difference in recall between the two real497

entity conditions IRandArg↓ and IRandArg↑, which498

are both composed of unattested statements, but in-499

volve entities that differ in typical corpus frequency.500

Infrequent entities (IRandArg↓) yield better gener-501

alization and a higher recall (GPT-3.5 @66.5) than502

frequent entities (IRandArg↑) (GPT-3.5 @55.3).503

These findings corroborate those from §5, that504

LLMs use memory as part of language inference,505

and additionally show that these memories are re-506

called using named entities acting as indices. These507

experiments demonstrate that too much prior ex-508

posure to an entity may impede model generaliza-509

tion when that entity is discussed in novel infer-510

ences: the more a model has read about an entity511

during pretraining, the less capable it is of draw-512

ing novel natural language inferences involving it,513

even though those inferences do not require de-514

tailed knowledge of the entity.515

Like §5, the effect is consistent across models,516

indicating LLM pretraining is responsible.517

We show similar results on RTE-1 in Appendix518

B. Further, instructing LLMs to ignore proposi-519

tional memory in Appendix C shows little change.520

7 EXP-3: Relative Frequency Bias521

We continue the conditioning experiments from §5,522

now exploring the relative frequency bias. Sam-523

ple labels for this bias are denoted by the model-524

agnostic Φ as described in §3.1. Φ labels the con-525

formance of sample predicates to the bias: Φ<526

means P is less corpus-frequent than H by a mar-527

gin (positive class), Φ> means P more frequent528

than H by the margin (negative class). To control529

for differences between datasets, the margin is set530

so that 1/3 of samples are classed as “roughly equal”531

(Φ≈), which we discard.532

Following the observations in §6, we further ap-533

ply a generic-argument transformation to control534

for attestation, yielding IGenArg
RandPrem. With the en-535

tities masked, models cannot recall propositional536

memory for this task: by re-calculating the Λ mea-537

sure with generic arguments, only 2 hypotheses are538

still predicted as Attested by GPT-3.5, whereas539

for LLaMA and Anonymous LLM, the numbers540

Figure 3: Estimated probability of predicting Entail
for random-premise Levy/Holt conditioned on relative
frequencies (Φ), with original (IRandPrem) or generic
(IGenArg

RandPrem) entities. Predicting Entail is false posi-
tive hallucination (lower is better). Models hallucinate
more often when test samples conform to the relative
frequency bias (Φ<) than when not (Φ>).

are also only 6.2% and 3.9%. Additionally, as with 541

IRandPrem, here the entailment label of each sam- 542

ple remains No-Entail, so any Entail predic- 543

tion is false positive hallucination. 544

7.1 Results 545

We estimate the probabilities of models predicting 546

Entail conditioned on the Frequency label Φ, 547

between IRandPrem and IGenArg
RandPrem settings, and 548

present the results in Figure 3. We observe a clear 549

and consistent rise of hallucination when samples 550

conform to the bias. Namely, in case of Φ<, models 551

are more likely to predict Entail, even though 552

no semantic relation exists between P and H . 553

Between the two settings, with IRandPrem, when 554

entities are available, this effect is moderate. On 555

the other hand, with IGenArg
RandPrem when entity-based 556

memory is blocked, we observe a decrease in the 557

overall level of hallucination, but the separation be- 558

tween Φ< and Φ> becomes more drastic, to 1.6x, 559

1.8x and 2.0x for LLaMA, GPT-3.5 and Anony- 560

mous LLM respectively. This indicates a tension 561

between Λ and Φ: propositional memory may be 562

used when available, and if not, the predicate pair- 563

ing may be attended to more closely. Again, the Φ 564

effect is observed across the three model families, 565

revealing its root in the large-scale pre-training pro- 566

cess, rather than model peculiarities or fine-tuning. 567

8 Impact of Bias on Performance 568

We have demonstrated two sources of hallucination 569

by LLMs on inference tasks. We now assess their 570
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Levy/Holt RTE-1

Attestation (Λ) Rel. Frequency (Φ) Attestation (Λ) Rel. Frequency (Φ)

Model Task cons. adv. diff. cons. adv. diff. cons. adv. diff. cons. adv. diff.

LLaMA I 65.5 8.1 -57.4 42.1 32.3 -9.8 62.1 37.4 -24.7 55.5 51.7 -3.8
GPT-3.5 I 85.0 10.8 -74.2 53.5 43.2 -10.3 84.6 47.5 -37.1 77.6 43.4 -34.2
Anon. LM I 79.1 31.5 -47.6 63.3 53.0 -10.3 87.1 83.4 -3.7 87.5 81.0 -6.5

LLaMA IGenArg 52.1 34.4 -17.7 55.3 34.9 -20.4 59.2 30.4 -28.8 51.7 39.4 -12.3
GPT-3.5 IGenArg 67.1 18.8 -48.3 50.4 35.0 -15.4 80.1 56.4 -23.7 79.6 49.1 -30.5
Anon. LM IGenArg 58.1 46.6 -11.5 59.9 47.3 -12.6 78.1 84.4 +6.3 85.4 78.7 -6.7

Table 4: LLM performance on subsets where Λ/Φ is consistent/adversarial to entailment labels, measured with
AUCnorm (0% = random chance performance). Decrease from cons to adv subsets are shown in the diff. columns.

impact on model performance to quantify their risk.571

We compare LLMs’ performance between NLI572

subsets that are consistent or adversarial to each573

factor. A sample P ⊨ H? is consistent with a574

factor when the prediction by the factor agrees575

with the gold entailment label; conversely, it is576

adversarial to a factor when the prediction with the577

factor disagrees with the label.578

For example, “Google bought YouTube ⊨579

Google owns YouTube” is consistent to the attes-580

tation bias of every model, because the conclusion581

Google owns YouTube is attested in every LLM’s582

training data, and the sample label is Entail;583

“Apple owns Samsung ⊭ Apple bought Samsung”584

is also consistent, because its conclusion is not at-585

tested and the sample label is No-Entail. The586

reverses of these two samples are adversarial, since587

their respective attestedness (unchanged) does not588

agree with the entailment labels (now flipped). For589

each subset, there is substantial representation in590

both Levy/Holt and RTE-1 (see appendix Table 8).591

While earlier experiments inspected model tex-592

tual responses to characterize behavior change,593

we now use area under the precision-recall curve594

(AUC) to summarize model performance over a595

tunable confidence threshold (scoring described in596

§4.2), which is better for measuring practical dis-597

criminative power. Following Li et al. (2022), we598

re-scale AUC values to normalize over the label599

distribution, yielding AUCnorm values that assign600

random classifiers 0% and perfect classifiers 100%.601

We report results in Table 4. Under the stan-602

dard inference task I , the performance drop from603

ΛCONSISTENT to ΛADVERSARIAL is severe for all 3604

LLMs: they deteriorate from very good classi-605

fiers to poor or even near-random ones.7 This606

7We note Λ predictions could possibly be influenced by
model-specific idiosyncrasies in prompt format. We provide
an analysis in Appendix E, where we find no significant effect.

fragility from the attestation bias can be alleviated 607

by masking entities with type-identifiers (condition 608

IGenArg), which reduces the performance drop. 609

On the other hand, with the generic arguments 610

in IGenArg, LLMs are forced to focus on the pred- 611

icates in each proposition. As a result, the im- 612

pact of the relative frequency bias is intensified. 613

From the standard inference task I to IGenArg, the 614

average performance gap between the cons. and 615

adv. subsets w.r.t. Φ is widened from 10.1% to 616

16.1% for Levy/Holt and from 14.8% to 16.5% for 617

RTE-1. The differences for Φ-consistency subsets 618

are generally narrower than Λ-consistency subsets, 619

possibly because the relative frequencies require 620

generalizing from instances, and may be more dif- 621

ficult to capture, and potentially because frequency 622

measures with Google N-gram are a crude estimate 623

of the actual frequencies in LLM pre-train corpora. 624

9 Conclusion 625

Across several major LLM families and experimen- 626

tal settings, we demonstrate two important biases 627

in the performance of LLMs on natural language 628

inference tasks, which may also manifest in applied 629

tasks as hallucination. Contrary to claims of LLM 630

general reasoning capabilities, we show that much 631

of this performance is achieved by (1) recall of rel- 632

evant memorizations and (2) corpus-based biases 633

like term frequency. Since these factors are repro- 634

duced in all models, we establish that they originate 635

in LLM pre-training, and are not corrected during 636

GPT-3.5 fine-tuning. 637

We conclude that LLMs, though powerful, use 638

unsatisfactory tools for the basic tasks of language 639

understanding and inference. We propose several 640

approaches to control for these biases in evaluation, 641

and ultimately conclude that further attention on 642

alleviating these biases are needed, before LLMs 643

may be trusted to reason robustly about language. 644
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Limitations645

In this paper, we have discussed two prominent646

sources of hallucination for LLMs in natural lan-647

guage inference tasks. We acknowledge that this is648

not an exhaustive search of all the sources, where649

further exploration should be done in future work.650

We also note that after controlling for the factors651

discussed in this paper, there remains residual, un-652

explained performance on NLI tasks. This residual653

might be due to other undiscovered biases or pos-654

sibly generalising inference capability. We leave655

further exploration of this residual to future work.656

As discussed in Appendix A, we compared a657

range of popular LLM prompting techniques and658

selected the most promising approach. We ac-659

knowledge that there could potentially be other660

novel prompting techniques that could help the661

LLMs resist the influence of the biases discussed662

in this paper. We identify this as an open question663

and advocate for future research.664

Ethics Statement665

This paper discusses two major sources of hallu-666

cination in LLM output when asked to perform667

natural language inference, which we note is a ca-668

pability required of many downstream tasks such669

as summarization, question answering, etc. We670

show that users of LLMs may be subjected to faulty671

judgements if the content of their request overlaps672

with data in pretraining. However, it is difficult to673

ascertain for both a user or modeler exactly what674

is contained in pretraining data, or how this will675

interact with a user’s query. Our proposed attes-676

tation query shows promise in detecting potential677

overlaps, but model responses in applications of678

these cases are not explored. Further, the relative679

frequency bias demonstrates a much more subtle680

problem of corpus distribution that is naturally in-681

herent to model pretraining on human generated682

text.683

In light of these, the potential harms of LLM use684

for drawing natural language inferences may in-685

clude: offering inaccurate or irrelevant information686

to a user’s query or contradiction of information687

provided in-context with a user’s query.688
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A Prompt Format Selection 924

In prompt-based interactions with the LLMs, sev- 925

eral types of context information could be added 926

to help models produce accurate and robust predic- 927

tions. We attend to two design choices in prompt 928

engineering: prompt templates and in-context ex- 929

amples. 930

Prompt templates are known to have a direct 931

and sometimes decisive impact on LLM behavior. 932

As such, we carefully select a range of clear and 933

concise templates as promising candidates. As 934

discussed in §4.2, we run each template through 935

the dev sets of each dataset, and select the template 936

with the best discriminative power according to 937

AUC scores (similarly to §8). The candidate set of 938

templates includes 3 concise templates we wrote: 939

1. If [PREMISE], then [HYPOTHESIS]. 940

2. [PREMISE], so [HYPOTHESIS]. 941

3. [PREMISE] entails [HYPOTHESIS]. 942

We also considered the 5 prompt templates 943

used in bias work on LMs for textual entailments 944

(Schmitt and Schütze, 2021): 945

4. [PREMISE], which means that [HYPOTHESIS]. 946

5. [HYPOTHESIS], because [PREMISE]. 947

6. It is not the case that [HYPOTHESIS], let alone 948

that [PREMISE]. 949

7. [HYPOTHESIS]NEG, which means that 950

[PREMISE]NEG. 951

8. [PREMISE]NEG, because [HYPOTHESIS]NEG. 952

In preliminary experiments with GPT-3.5, we ob- 953

served that LLMs are not responsive to the 3 contra- 954

positive prompts from Schmitt and Schütze (2021) 955

(colored gray), performing at random. We also 956

observed that prompt number 5 from Schmitt and 957

Schütze (2021) also consistently underperforms the 958

other 4 templates, so we use the remaining 4 tem- 959

plates (namely, template no. 1, 2, 3, 4) as our final 960

candidate set. 961
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In-Context Examples have been widely used for962

interactions with LLMs since Brown et al. (2020).963

Further, Wei et al. (2022) has demonstrated that964

including chain-of-thought explanation, namely965

step-by-step explanations, in the in-context exam-966

ples, helps LLMs perform reasoning tasks. On the967

other hand, Ouyang et al. (2022) has suggested968

that instruction-tuned LLMs are also capable of969

performing tasks in zero-shot, without exposure to970

any in-context examples.971

We compared zero-shot and few-shot in our pre-972

liminary experiments with LLaMA and GPT-3.5 on973

Levy/Holt directional dev set. Following Touvron974

et al. (2023), for zero-shot, we prepend a textual975

description of the task to each test sample; for few-976

shot, we prepend a minimal 4 examples with ex-977

planations. Instantiated prompts in the two settings978

are demonstrated in Table 12. Here we report the979

dev set results with the best-performing templates.980

We found that for the two pre-traiend LLMs,981

namely, LLaMA and Anon. LLM, zero-shot perfor-982

mance on the Levy/Holt directional dev set is near-983

random, at 56.6% and 61.5% AUC respectively984

(random is 50%); with 4 in-context examples, the985

models begin to exhibit non-trivial behavior, with986

65.0% and 80.2% AUC, respectively. This is not987

surprising, since pre-trained LLMs without instruc-988

tion fine-tuning should not be expected to perform989

complex tasks zero-shot. For GPT-3.5, the perfor-990

mance is still much lower in zero-shot, at 64.5%,991

compared to 74.6% in few-shot.992

As discussed in §4.2, ideally we would like993

LLMs to have zero-shot natural language abili-994

ties readily available for downstream tasks. How-995

ever, in light of this observation, our primary ex-996

periments are conducted in the few-shot setting997

throughout, in order to better explore the abilities998

of these LLMs.999

B RTE-1 Results For Experiment 2:1000

Entities are Indices to Memory1001

The RTE-1 dataset contains complex natural lan-1002

guage statements with varied linguistic features,1003

so predictions about entailment are not decidable1004

only on the basis of contained predicates. However,1005

RTE-1 is a difficult challenge set for models, and1006

interesting to compare to in the broader domain of1007

NLI. Though the sentences are much more com-1008

plex, we are able to conduct an analogous experi-1009

ment as in §6 by first identifying spans of named1010

entities and their respective entity types, then re-1011

placing the entities with new ones. As before, we 1012

compare model scores on the original dataset to 1013

three test conditions: generic arguments (“location 1014

X”, “person Y”, etc.), sampled low-frequency en- 1015

tities constrained to the same type, and the same 1016

for high-frequency sampled entities. Since only 1017

the entities in each statement have been altered, 1018

the entailment labels between premise/hypothesis 1019

pairs remain unchanged, and an ideal model capa- 1020

ble of generalizing inference would make the same 1021

predictions across dataset conditions. Results are 1022

shown in Table 5. 1023

We observe similar trends to those reported on 1024

Levy/Holt. GPT-3.5 performs very consistently be- 1025

tween Levy/Holt and RTE-1 in terms of degrading 1026

recall when information is changed in each sample. 1027

We observe that model performance is worse than 1028

the original dataset when using generic arguments, 1029

and worse still using type-constrained random ar- 1030

guments. We further observe that across all three 1031

LLMs across both datasets, models consistently 1032

achieve worse recall using high-frequency entities 1033

than low-frequency entities, supporting the claim 1034

that increasing the frequency of entity occurrence 1035

in training data impedes generalization. 1036

Different from in Levy/Holt, we observe some 1037

noise in LLaMA’s predictions; the recall on the 1038

original task is actually lower than the generic argu- 1039

ment condition and the low-frequency entity condi- 1040

tion. We note that overall, LLaMA is the weakest 1041

LLM tested in this experiment on both Levy/Holt 1042

and RTE-1, and that its performance on RTE-1 is 1043

particularly low. We suggest that the increased dif- 1044

ficulty of RTE-1 over Levy/Holt (due to having 1045

much more linguistic variation) is simply too com- 1046

plex for LLaMA, which is neither the largest LLM 1047

tested, nor instruction-finetuned. 1048

We also observe a smaller gap between Anony- 1049

mous LLM’s recall rates across dataset conditions, 1050

though the gaps are consistent with our claims. 1051

While the model appears able to generalize to con- 1052

ditions in which random real arguments are in- 1053

serted, recall on the generic argument condition 1054

is significantly degraded. Failure on this control 1055

condition indicates that the model may not be gener- 1056

alizing as well as the other conditions would imply. 1057
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Model Task Precision Recall ∆-Recall

LLaMA

I 74.5 52.5 0
IGenArg 70.9 57.3 +4.8
IRandArg↓ 66.9 60.5 +8.0
IRandArg↑ 70.6 51.5 -1.0

GPT-3.5

I 80.6 96.5 0
IGenArg 79.7 91.3 -5.2
IRandArg↓ 80.1 82.5 -14.0
IRandArg↑ 81.9 80.5 -16.0

Anon.
LLM

I 90.3 84.0 0
IGenArg 92.3 71.5 -12.5
IRandArg↓ 87.8 82.5 -1.5
IRandArg↑ 88.2 82.0 -2.0

Table 5: Scoring model outputs in different conditions of RTE-1. We indicate the highest and lowest recall score
across replacement settings.

task GPT-3.5 Instructed to Ignore Attestedness Not Instructed

I P (Entail | Attested) 74.3 77.6
I P (Entail | ¬Attested) 57.8 63.6

IRandPrem P (Entail | Attested) 39.0 41.3
IRandPrem P (Entail | ¬Attested) 17.6 18.8

Table 6: We estimate the probability of positive predictions in I and IRandPrem tasks respectively given that the
hypothesis is predicted as veracious, namely Λ = True. Not instructed results are copied from Figure 2 and listed
here for ease of comparison; also note that all IRandPrem = Entail predictions are false positives.

C The Ineffectiveness of Instructing1058

LLMs to Stop Conditioning on1059

Attested Information1060

In §5 and §6, we showed that entailment predic-1061

tions from LLMs are strongly biased by their pre-1062

dictions on the attestation of hypotheses. We won-1063

dered whether there are intuitive prompt engineer-1064

ing techniques to steer its behavior away from at-1065

tending to attestation.1066

Towards this goal, we experimented with1067

prepending a brief task description to the few-shot1068

prompts in part B of Table 12, explicitly instructing1069

the models to ignore the attestedness of individual1070

statements: Please check the entailments between1071

the following hypothetical statements. Ignore the1072

veracity of these statements.1073

We replicated the experiments in §5 and §6 with1074

GPT-3.5, since GPT-3.5 is an instruction-finetuned1075

model trained to be responsive to prompts, where1076

the other two LLM families are only pre-trained.1077

Despite having been instruction-finetuned, the re-1078

sults with GPT-3.5 show only marginal improve-1079

ments in model behavior.1080

In Table 6, we show that instructing GPT-3.51081

to ignore attestation does not help narrow the gap1082

between Λ = Attested and Λ = ¬Attested;1083

instead, probabilities of predicting Entail went 1084

down by similar amounts, indicating that the model 1085

is becoming slightly more conservative in predict- 1086

ing positives when instructed to ignore attestation, 1087

but not in a principled manner. 1088

Further, as shown in Table 7, despite the ex- 1089

plicit instruction, recall still drops at similar scales 1090

when arguments are randomly replaced with the 1091

same sets of frequent/infrequent replacement enti- 1092

ties as before. Since GPT-3.5 has been instruction- 1093

finetuned to respond to prompts, its failure means 1094

eradicating such biases from model outputs is a 1095

difficult task, one that needs further research atten- 1096

tion. 1097

D Statistics of Consistency Subsets 1098

The statistics of consistency subsets are presented 1099

in Table 8. 1100

E The Reliability of Λ Measure and Its 1101

Relation to Consensus of Attestation 1102

The Λ-consistency subsets most directly capture 1103

the impacts of the attestation bias. However, these 1104

subset separations are based on Λ predictions from 1105

individual models, which can be noisy, subject to 1106

model-specific idiosyncracies such as trigger words 1107
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Levy/Holt (Directional)

GPT-3.5 Condition Task Precision Recall ∆-Recall

Few-shot, instructed to ignore attestedness.

I 64.9 90.8 0
IGenArg 73.5 69.3 -21.5
IRandArg↓ 64.6 68.4 -22.4
IRandArg↑ 67.5 58.1 -32.7

Few-shot, no instructions.
I 62.4 92.3 0
IGenArg 65.1 75.7 -16.6
IRandArg↓ 65.5 66.5 -25.8
IRandArg↑ 68.8 55.3 -37.0

Table 7: GPT-3.5 predictions when models are explicitly instructed to avoid taking the attestedness of individual
statements into account. In the upper half are the instructed behavior, and in the lower half are the regular few-shot
behavior as in Table 3. Differences in recalls remain at a similar scale, with precision again stable, where the benefit
from the explicit instruction is marginal.

# of Entries Levy/Holt RTE-1

LLaMA GPT-3.5 Anonymous LLM LLaMA GPT-3.5 Anonymous LLM

VCONSISTENT 955 947 999 479 447 480
VADVERSARIAL 829 837 785 321 353 320

FCONSISTENT 972 286
FADVERSARIAL 220 247

Table 8: Subsets defined by the consistency between entailment label L and either Λ (hypothesis attestation
prediction from each LLM) or Φ (model-agnostic relative frequency bias). CONSISTENT subsets are where L agrees
with Λ/Φ. ADVERSARIAL subsets are where L disagrees with Λ/Φ.

Levy/Holt

Model Task Λ̃cons. Λ̃adv. diff.

LLaMA I 65.3 6.5 -58.8
GPT-3.5 I 70.8 23.5 -47.3
Anon. LLM I 80.7 28.3 -52.4

LLaMA IGenArg 54.4 29.6 -24.8
GPT-3.5 IGenArg 56.2 35.5 -20.7
Anon. LLM IGenArg 59.3 40.1 -19.2

Table 9: LLM performance on Levy/Holt subsets where
Attestation Λ̃ is Consistent/Adversarial to the labels,
measured with AUCnorm (0% = random chance per-
formance). Performance drops from Λ̃cons to Λ̃adv are
presented in the diff. columns, sharper decreases than
Λ-comparisons in Table 4 are colored red, milder ones
are colored green.

or certain syntactic structures in the prompt, etc.1108

To verify that the performance gaps in Λ-1109

consistency subsets that we observe in §8 comes1110

from predicted attestedness and not some idiosyn-1111

crasy, we experiment with another pair of subsets1112

based on consensus attestation instead of individu-1113

ally predicted attestation.1114

We use a majority vote among the three1115

independently-trained LLMs to approximate con-1116

sensus attestation. The approximation is denoted1117

as Λ̃. This is because any model-specific idiosyn- 1118

crasies should not be shared between LLMs in- 1119

dependently trained from different source corpora 1120

in general. Therefore, with the majority vote, we 1121

mask this noise and acquire predictions on the con- 1122

sensus attestation of statements. 1123

Performances of LLMs between Λ̃-consistency 1124

subsets are listed in Table 9. Gaps between 1125

the Λ̃-consistency subsets that are larger than Λ- 1126

consistency gaps are colored red; those narrower 1127

than Λ-consistency gaps are colored green. It is 1128

clear that the gaps are consistent between Λ/Λ̃- 1129

consistency experiments, where the gaps are even 1130

larger on many occasions. This confirms, that the 1131

performance gaps in Λ-consistency experiments 1132

can be credited to the attestation bias, rather than 1133

model-specific idiosyncrasies. 1134

It is also to be noted that, since the Φ-consistency 1135

subsets are separated based on the model-agnostic 1136

criterion Φ, model-specific idiosyncrasies are not a 1137

problem for Φ-consistency comparisons. 1138

F Impacts of Bias on GPT-4 Performance 1139

GPT-4 (OpenAI, 2023) is a recent, strong LLM 1140

claiming SOTA performance on various NLP tasks. 1141

Due to its closed-source nature and the impossibil- 1142

14



Levy/Holt RTE-1

Model Task Best tplt. ID DEV set AUCnorm Best tplt. ID DEV set AUCnorm

LLaMA

I #4 30.0 #3 62.5
IGenArg #1 34.6 #3 52.3
IRandArg↓ #1 31.8 #1 51.3
IRandArg↑ #1 26.3 #3 43.8

GPT-3.5

I #1 49.2 #3 74.8
IGenArg #1 39.8 #3 64.8
IRandArg↓ #1 43.4 #3 63.6
IRandArg↑ #1 34.2 #3 66.0

Anon. LM

I #1 60.9 #4 84.5
IGenArg #1 48.1 #4 79.4
IRandArg↓ #1 43.6 #3 79.8
IRandArg↑ #1 35.3 #3 78.3

Table 10: LLM dev set performance on the two datasets, measured with AUCnorm (0% = random chance
performance). AUC is calculated using estimated model scores as in §4.2 and then normalized into AUCnorm. We
select the highest scoring template on each dev task (shown in this table) and use this in the corresponding test set
evaluation (shown in the main text).

ity of fully tracking the sources of its behaviors, we1143

refrain from reporting results with it in the main1144

content of this paper.1145

However, in order to provide a richer con-1146

text for the attestation bias and the Relative Fre-1147

quency Bias, in this section we report the perfor-1148

mance differences of GPT-4 between subsets con-1149

sistent/adversarial to the two biases.1150

As a light-weight experiment, we elicit GPT-41151

predictions in the original I task in the zero-shot1152

setting, and re-use subsets from experiments in1153

§8. Specifically, for the attestation bias, we use1154

the majority vote Λ̃ among LLaMA, GPT-3.5 and1155

Anonymous LLM, to approximate Λ predictions1156

from GPT-4 itself; for the relative frequency bias,1157

we keep the Φ measure for approximating corpus-1158

frequency of terms.1159

F-1 score Task Levy/Holt

Λ̃Cons Λ̃Adv

random baseline I 70.3 62.0
GPT-4 I 85.1 (+14.8) 67.6 (+5.6)

ΦCons ΦAdv

random baseline I 66.7 66.7
GPT-4 I 74.6 (+7.9) 69.7 (+3.0)

Table 11: LLM performance on Levy/Holt subsets
where Attestation Λ̃ is Consistent/Adversarial to the
labels, measured with F-1 score. random baseline is the
highest F-1 score from a random classifier, by reaching
random precision and 100% recall. For each GPT-4
score, we also show the improvement over random (in
parentheses).

Because GPT-4 is a commercial service and does 1160

not provide logit confidence with their discrete pre- 1161

dictions, AUCnorm values could not be calculated. 1162

Therefore, we are forced to report the F-1 scores 1163

at the binary prediction point of confidence. As 1164

results in Table 11 show, we observe the same trend 1165

as in §8: for the subset adversarial to each factor, 1166

GPT-4 performance also drops substantially. 1167

This experiment is designed to provide more con- 1168

text for the two biases discussed in the paper and 1169

NOT to compare GPT-4 with other models; how- 1170

ever, we can conclude that GPT-4 is subject to the 1171

same fragilities as the other LLMs w.r.t. the two bi- 1172

ases, where our conclusions and recommendations 1173

also apply. 1174

G Dataset Statistics and Dev Set 1175

Performances 1176

In the paper, we have examined the behavior and 1177

performance of three major LLM families on two 1178

NLI datasets: Levy/Holt and RTE-1. 1179

The directional portion of Levy/Holt dataset8 1180

contains 630 entries in its dev set, and 1784 entries 1181

in its test set; the RTE-1 dataset9 contains 567 en- 1182

tries in its dev set, and 800 entries in its test set. 1183

Each dataset has a 50%/50% class distribution be- 1184

tween Entail and No-Entail (for RTE-1 dev 1185

set, the numbers of entries in the two label classes 1186

differ by 1). 1187

8https://github.com/mjhosseini/
entgraph_eval/tree/master/LevyHoltDS

9https://www.kaggle.com/datasets/
nltkdata/rte-corpus?resource=download
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In Table 10, we report dev set performances and1188

the best prompt template used for each model on1189

each dataset. Note that no training is involved in1190

the paper, and prompt template selection is the1191

only hyper-parameter tuned on the dev sets. These1192

selected best prompt templates are then used on the1193

respective test sets, where the results are used for1194

the analysis throughout the paper.1195

For Random-Premise experiments, AUC values1196

cannot be meaningfully calculated because gold1197

labels are always No − Entail. For these ex-1198

periments, we use the most frequently-selected1199

prompt template on each dataset, namely template1200

#1 for Levy/Holt dataset, and template #3 for RTE-1201

1 dataset.1202
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A. Zero-shot Example Instantiated Prompt

Please check the entailments between the following statements.

If kanamycin kills infections, then kanamycin is useful in infections.
A) Entailment
B) Neutral
C) Contradiction

B. Few-shot Example Instantiated Prompt

If Google bought Youtube, then Google owns Youtube.
A) Entailment
B) Neutral
C) Contradiction
Answer: A) Entailment. Owning is a consequence of buying.
If Google owns Youtube, then Google bought Youtube.
A) Entailment
B) Neutral
C) Contradiction
Answer: B) Neutral. Owning does not imply buying, the ownership may come from other means.
If John went to the mall, then John drove to the mall.
A) Entailment
B) Neutral
C) Contradiction
Answer: B) Neutral. John may have gone to the mall by other means.
If John drove to the mall, then John went to the mall.
A) Entailment
B) Neutral
C) Contradiction
Answer: A) Entailment. Driving is a means of going to the mall.
If ephedrine is widely used in medicine, then ephedrine is used in medicine.
A) Entailment
B) Neutral
C) Contradiction
Answer:

C. Hypothesis-only Example Instantiated Prompt

Google bought Youtube.
A) True
B) Unknown
C) False
Answer: A) True.
Yoshua Bengio likes oak trees.
A) True
B) Unknown
C) False
Answer: B) Unknown.
The sun rises from the west.
A) True
B) Unknown
C) False
Answer: C) False.
ephedrine is used in medicine.
A) True
B) Unknown
C) False
Answer:

Table 12: Example instantiated prompts in Zero-shot / Few-shot settings, for the test entry “PREMISE: [ephedrine
is widely used in medicine], HYPOTHESIS: [ephedrine is used in medicine]”. The few-shot prompts in part B are
used throughout the main experiments in this paper. We also present an example of the prompts we use for the
hypothesis-only Λ measure as described in §3.1.
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