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The Well-tempered ComputerBy Mark SteedmanDepartment of Computer and Information Science, University of Pennsylvania,Philadelphia PA 19104-6389, U.S.A.The psychological mechanism by which even musically untutored people can compre-hend novel melodies resembles that by which they comprehend sentences of their nativelanguage. The paper identi�es a syntax, a semantics, and a domain or \model". Theseelements are examined in application to the task of harmonic comprehension and analysisof unaccompanied melody, and a computational theory is argued for.1. IntroductionThe question of what constitutes musical experience and understanding is a very ancientone, like many important questions about the mind. The answers that have been o�eredover the years since the question was �rst posed have depended on the notion of mechanismthat has been available as a metaphor for the mind.For Aristotle, and for the Pythagoreans, the explanation of the musical faculty lay inthe mathematics of integer ratios and the physics of simply vibrating strings. Helmholtzwas able to draw upon nineteenth century physics, for a more properly mechanistic andcomplete explanation of the phenomenon of consonance. For him, a mechanism was aphysical device such as a real resonator or oscillator. The principal tool that we haveavailable, beyond those that Aristotle and Helmholtz knew of, is the computer.Of course, it is often the algorithm that the computer executes that is of interest, ratherthan the computer itself, since for many interesting cases we can state the algorithmindependently of any particular machine. However, the idea of an algorithm is not initself novel. Algorithms (such as Euclid's algorithm) were known to Helmholtz. It is thecomputer which transforms the notion of an algorithm from a procedure that needs aperson to execute it to the status of a mechanism or explanation.2. ConsonanceHelmholtz (1862) explained the dimension of Consonance in terms of the coincidence andproximity of the overtones and di�erence tones that arise when simultaneously soundednotes excite real non-linear physical resonators, including the human ear. To the extentthat an interval's most powerful secondary tones exactly coincide, it is consonant orsweet-sounding. To the extent that any of its secondaries are separated in frequency bya small enough di�erence to \beat" at a rate which Helmoltz puts at around 33 c/s, itis dissonant, or harsh. Thus for the diatonic semitone, with a frequency ratio of 16/15,only very high, low-energy overtones coincide, so it is weakly consonant, while the twofundamentals themselves produce beats, in the usual musical ranges, so it is also stronglydissonant. For the perfect �fth, on the other hand, with a frequency ratio of 3/2, all itsmost powerful secondaries coincide, and only very weak ones are close enough to beat.The �fth is therefore strongly consonant and only weakly dissonant. This theory, whichhas survived (with an important modi�cation due to Plomp and Levelt 1965) to thepresent day, successfully explains not only the subjective experience of consonance and1



dissonance in chords, and the e�ects of chord inversion, but also the possibility of EqualTemperament. The latter is the trick whereby by slightly mistuning all the semitonesof the octave to the same ratio of 12p2, one can make an instrument sound tolerably intune in all twelve major and minor keys. Equal Temperament distorts the seconds andthirds (and their inverses the sevenths and sixths) more than the fourths and the �fths,and a�ects the octaves hardly at all. Helmholtz' theory predicts than distortion to theseconds and thirds will be less noticeable that distortion to the latter, so it explains whythis works.However, Helmholtz recognised very clearly that this success in explaining equal tem-perament raised a further question which his theory of consonance could not answer,namely what it is that makes the character of an augmented triad (C E G]) or a dimin-ished seventh chord (C E[ G[ B[[ ) so di�erent from that of a major or minor triad.Consonance does not explain this e�ect, since all four chords when played on an equally-tempered instrument are entirely made up of minor and major thirds. He correctlyobserves that one of the equally-tempered major thirds in the augmented triad is alwaysheard as the harmonically remote diminished fourth, and observes that \this chord iswell adapted for showing that the original meaning of the intervals asserts itself evenwith the imperfect tuning of the piano, and determines the judgement of the ear." (Cf.Helmholtz 1862, as translated by Ellis 1885, p.213 and cf. p.338). But Helmholtz had noreal explanation for how this could come about.It is in no way to Helmholtz' discredit that this was so. He did in fact sketch an answerto the problem, and it is striking that his way of tackling it is essentially algorithmic,despite the fact that it implies a class of mechanism that he simply did not have a way ofreifying. However, Helmholtz tried to approach the perceptual e�ect as one of dissonance,while in reality it concerns an entirely orthogonal relation between notes, namely theone that musicians usually refer to as the \harmonic" relation. This relation, whichunderlies phenomena like chord progression, key, and modulation, is quite independentof consonance, although both have their origin in the Pythagorean integer ratios.3. HarmonyThe �rst complete formal identi�cation of the nature of the harmonic relation is inLonguet-Higgins (1962a, 1962b) (cf. the paper in this volume), although there are someearlier incomplete proposals, including work by Weber, Schoenberg, Hindemith, and theimportant work of Ellis (1874, 1875), to which we return below. Longuet-Higgins showedthat the set of musical intervals relative to some fundamental frequency was the set ofratios de�nable as the product of powers of the prime factors 2, 3, and 5, and no others{ that is as a ratio of the form 2x:3y:5z, where x, y, and z are positive or negative inte-gers. (The fact that ratios involving factors of seven and higher primes do not contributeto this de�nition of harmony does not exclude them from the theory of consonance. Inreal resonators, overtones involving such factors do arise, and contribute to consonance.Helmholtz realised that the absence of such ratios from the chord system of tonal harmonyrepresented a problem for his theory of chord function, and attempted an explanation interms of consonance { cf. Ellis (translation) 1885, p.213-213).Longuet-Higgins' observation means that the intervals form a three-dimensional discretespace, with those factors as its generators, in which the musical intervals can be viewed asvectors. Since the ratio 2 corresponds to the musical octave, and since for most harmonicpurposes, notes an octave apart are functionally equivalent, it is convenient to projectthe three dimensional space along this axis into the 3 x 5 plane. It then appears as in2



Figure 1, adapted from Longuet-Higgins (1962a), in which the (not terribly systematic)traditional interval names are associated with positions in the plane. As Longuet-HigginsAug- Aug- Small Aug- Aug- Aug- Aug-mented mented Half- mented mented mented mentedSeventh Fourth Tone Fifth Second Sixth ThirdIm- Minor Major Major Major Tri- Smallperfect Tone Sixth Third Seventh tone LimmaFifthIm- Dom- Perfect Perfect Major Im-perfect inant Fourth Unison Fifth Tone perfectThird Seventh SixthFalse Minor Semi- Minor Minor Minor Im-Octave Fifth tone Sixth Third Seventh perfectFourthDimin- Dimin- Dimin- Dimin- Dimin- Dimin- Greatished ished ished ished ished ished LimmaSixth Third Seventh Fourth Octave FifthFigure 1: The space of harmonic intervals (adapted from Longuet-Higgins 1962a).points out, the musician's notion of harmonic distance or \remoteness" of intervals is verydirectly reected by a number of simple metrics upon this space, of which the summed\city block" distance between points is the most obvious, while the minimum spanningrectangle is another.It is convenient to represent the space in terms of the traditional note-names that wouldbe associated with each of these intervals relative to an origin of C, as in Figure 2. Thenote names are ambiguous with respect to the intervals, and the entire space now repeatsitself in a south-easterly direction. (That is to say that the note names \wrap" the fullspace onto a cylinder, which is here projected back onto the plane). While we generatedthis map from an origin of C, any of the positions can now be regarded as the origin: ifwe slide the earlier interval-name space (Figure 1) across the note-name space (Figure 2),the former will correctly identify the note name for all intervals from any origin.The distortions of equal temperament have the e�ect not only of equating pairs offrequencies with the same name, such as the various Cs in the �gure, but also pairs suchas G] and A[. That is to say that equal temperament maps the note-name space into atorus, with twelve positions on it. If we project this highly ambiguous set onto the fullplane, using the numbers 0 (for C, B], etc) to 11 (for B, C[, etc) for the twelve notes ofthe equally-tempered octave, it looks like Figure 3.Helmholtz' problem can now be formulated as follows in terms of Longuet-Higgins'theory. When we hear an equally-tempered chord, we project each ambiguous equally-tempered note onto all possible interpretations in some portion of the full space, relativeto some origin. (A sensible interpretation of \some portion" would be the region de�nedby the traditional interval names, Figure 1). We then pick one interpretation for eachnote, on the basis of one of our two metrics. With the major and minor triads, there is away of picking a single interpretation for each note that makes all intervals between pairsof notes in the chord a major or minor third, or a perfect �fth (or their inverses). Theproblem can be visualised as in Figure 4, in which it will be apparent that there are severalsuch clusters, all equivalent under translation. The same applies to the minor triad, as3



G] D] A] E] B] Fx Cx Gx DxE B F] C] G] D] A] E] B]C G D A E B F] C] G]A[ E[ B[ F C G D A EF[ C[ G[ D[ A[ E[ B[ F CD[[ A[[ E[[ B[[ F [ C[ G[ D[ A[B[[[ F [[ C[[ G[[ D[[ A[[ E[[ B[[ F [Figure 2: The space of note-names (adapted from Longuet-Higgins, 1962a).the reader may easily verify. However, the augmented chord that caused Helmholtz suchtrouble does not have this property. All ways of selecting a single interpretation for allthree notes force one of the equally-tempered major thirds to be interpreted as a moreremote augmented/diminished interval, as can be seen in Figure 5.The augmented chord di�ers from the major and minor triads in another way. Whereasexamination of Figure 4 will show that, once a particular C has been chosen, there isa unique closest cluster of interpretations for the other notes, this is not true for theaugmented chord in Figure 5. C E G] is no more and no less closely grouped thanC E A[. The interpretation remains ambiguous until we hear the following chord, which\resolves" the ambiguity. For example, if this chord is an F major triad, then we hearthe ambiguous chord as the �rst alternative. This resolution is strongly inuenced byprogressions of a semitone between notes in the �rst chord and the second, as is shown bythe fact that the resolution in question is considerable reinforced if the dominant seventhnote B[ is added to the augmented chord (by constrast, a resolution onto a D[ majortriad is not particularly convincing). These claims can be veri�ed by inspecting Figure 6.It is important to note that the cluster of interpretations that results for the \augmentedplus seventh" chord is not a unique tightest cluster under either of the metrics thatwere mentioned earlier. Under the minimal spanning rectangle metric it is among anequivalence class of minimal clusters. Under the alternative city block metric, it is noteven minimal, although it is not far o�. This is an indication that in interpreting a chord,we will in general need to take its context, and particularly the succeeding chord into4



8 3 10 5 0 7 2 9 44 11 6 1 8 3 10 5 00 7 2 9 4 11 6 1 88 3 10 5 0 7 2 9 44 11 6 1 8 3 10 5 00 7 2 9 4 11 6 1 88 3 10 5 0 7 2 9 4Figure 3: The space of Equal Temperament (adapted from Longuet-Higgins & Steedman,1971).account.All of these characteristics hold of the diminished chord C E[ G[ B[[: again, verifyingthis fact is suggested as an exercise.It is interesting to ask at this point why the tonal harmonic space should involve thethree dimensions associated with prime factors of two, three, and �ve. One might imaginethat the answer might be physiological, or even that this fact might be an accident.However, it turns out that the answer is again essentially algorithmic. It is easy to seethat this particular space is the unique highest dimensional space in which positions whichare close in frequency (and therefore confusable to an ear with limited acuity) are widelyseparated, and therefore can be disambiguated by context in the manner just discussed.For example, the inclusion of the ratio seven, which intruduces a note close in frequencyto the dominant seventh (see Figure 1), at a remove of only three steps in harmonic spacefrom the true dominant seventh. By contrast the spatial distance between the majorand minor tones is �ve steps. It follows that while musics based on other ratios can beconstructed (and probably have arisen naturally), and can be perfectly consonant, theyare necessarily more restricted harmonically. In particular, they can have no equivalentof equal temperament, and no scope for the richness of harmonic development that itpermits. (That is not of course to imply that such musics are less interesting thantonal music, merely that they must achieve their richness on some other dimension { for5



: : : : 0 7 : : 44 : : : : : : : 00 7 : : E : : : :: : : : C G : : 44 : : : : : : : 00 7 : : 4 : : : :Figure 4: The projection of an equally-tempered chord of C major.example, in rhythm).4. Algorithms and Computational ArchitecturesAlthough the above discussion has referred to processes of searching and clustering, wehave not yet said anything about how these computations might be carried out. Thealgorithm implicit in the above examples is to map the torus of equal temperamentonto a suitably circumscribed portion of the plane, and serially compute for chords andchord sequences the tightest cluster(s) containing one interpretation for each equally-tempered note. This is the tactic discussed in Steedman (1973). However, this processis also parallellisable, and one way to think about it is to think in terms of a neuralnet, with inputs corresponding to the twelve degrees of the equally-tempered scale, anda considerably larger number of outputs corresponding to interpreted diads, triads, andso on, each associated with a set of fully disambiguated positions in the full space of justintonation. This device would be a close relative of the approach of Bharucha (1987,cf. Jones et al. 1988), di�ering only in having a considerably greater variety of chordunits, and in mapping those units onto Longuet-Higgins' harmonic representation, andis being investigated by Dan Petit at the University of Pennsylvania. (Such nets couldconceivably be trained by one of the standard algorithms. However, it seems more likelythat human novices add new chord units piecemeal, covering a larger and larger regionof the harmonic space.)The use of such a device is not quite as straightforward as the above remarks imply.The harmonic centre of a piece may move via the chord of the mediant or major third andan extended sequences of descending �fths (that is, via an extended \perfect cadence"),to a di�erent instance of its supposed tonic. (Examples are a�orded by the opening tutti6



8 : : : 0 : : : 44 : : : 8 : : : 00 : : : 4 : : : 88 : : : 0 : : : 44 : : : 8 : : : 00 : : : 4 : : : 8Figure 5: The projection of an equally-tempered augmented chordof Beethoven's fourth piano concerto in G, and by Basin Street Blues. The latter doesthis trick repeatedly, exploiting the perfect-cadence -inducing dominant seventh chordextensively, in a manner discussed at length in Steedman 1984. This fact lends this piecea feeling of perpetual paradoxical motion, exempli�ed in a famous recording by LouisArmstrong.) For this reason, any �xed �nite net must be mapped onto the cylindricalspace of traditional notation. In terms of the model involving piecemeal addition of units,one must envisage a developmental stage at which the novice recognises that his or herharmonic space can be wrapped into a cylinder. Such a mapping arguably preserves allthe information in the interpretation that a musician would regard as signi�cant.A similar perpetual motion in the vertical direction, along the major third axis, doesnot seem to be nearly as compelling. The reason is presumably that there can be noreally convincing \mediant-cadential" chord equivalent to the dominant seventh chord.(This in fact follows from the characteristics of Longuet-Higgins' space, and the factthat confusable intervals like the augmented �fth and diminished fourth are not widelyseparated on this axis.) It is therefore not necessary to map such networks onto thetorus, as in Bharucha's model of key identi�cation. Nor is this move desirable, since forthe purpose of identifying the harmonic function of chords and notes within chords, thetactic loses information that a musician would regard as signi�cant.Which style of algorithm we use does not greatly matter, and in fact the net represen-tation can be regarded as a compiled form of the serial algorithm, derivable by networklearning techniques. What is more important is to recall that chord-based clustering aloneis not enough to disambiguate chord function, as we saw in the case of the augmented anddiminished chords, and as is in fact the case with virtually all chords except the minorand major triads, and the major seventh chord, all of which are extremely resolved. (It isprobably even possible to contextualise the minor triad so that it is perceived as including7



8 : 10 : 0 : : : 44 : : : .G] : 10 : 00 : : (A) .E : : : 88 : B[% (F ) C : : : 44 : : : 8 : 10 : 00 : : : 4 : : : 8Figure 6: The projection of an equally-tempered augmented seventh chord.an augmented second rather than a minor third, although most styles of tonal music willcollapse under the strain). We usually need to look at the succeeding chord to decidewhich interpretation is correct.Although Bharucha extends his net-based analyser to deal with sequences of chordsand tonalities, and applies it to the task of identifying the key of such sequences, it is notentirely clear that net-based parallel techniques, which integrate over wide stretches ofmusic with rather inde�nite boundaries, are really appropriate for the task of interpretingchord sequences. This is particularly likely to be the case in assigning tonalities or chordalaccompaniments to melodies, in which the transitions between tonalities which contributeto the identi�cation of key seem to be quite abrupt and all-or-none in character.5. Key-analysis in Unaccompanied MelodiesConsider a listener who hears an unaccompanied melody for the �rst time. A minimalrequirement for us to agree that they have correctly understood the piece is for themto be able to identify the kinds of harmonic relationships that are implicit in the keysignature. We can translate this into the problem of correctly identifying the position inLonguet-Higgins space for the interpretation of each note. Of course, most listeners willnot have perfect pitch, so we will allow them to do this relative to an arbitrary origin,such as the �rst note of the piece. But we shall insist that they correctly identify thekey note, or at least the sequence of tonalities involved. (Of course, most listeners do nothave the vocabular to identify these properties either, but we can show by getting themto perform various completion tasks and error detection tasks that everybody has thisknowledge implicitly).To discuss this problem concretely we need a corpus of melodies. Since we have been8



discussing equal temperament, we will follow Longuet-Higgins and Steedman (1971) inchoosing the subjects of the fugues from Bach's Well-tempered Keyboard. Not leastamong the virtues of this corpus is the fact that it has not been assembled with anyparticular theory of processing in mind. However, it has one peculiarity that it would bewrong to take advantage of: all the subjects happen to begin on either the tonic or thedominant. Since this is not a characteristic of tonal melodies in general { nor even ofBach's fugue subjects { we shall eschew any rules that exploit this fact. (Thus we avoidthe infamous \tonic-dominance preference rule" of the earlier paper entirely).The �rst point to note is that merely identifying the tightest clustering of interpretationsof the earliest notes in the piece will not yield a correct identi�cation of its key. While itmay be reasonable to believe that a piece will not include an imperfect interval until thekey has been su�ciently resolved for it to be clear that it is imperfect, we can in the caseof the A minor fugue of book I (Figure 7) �nd a subject which has a diminished seventhas its third interval. The tightest cluster of interpretations for the �rst four notes underI 44 > ! ! ! 4! > ? ! ! ! !`abcd!Figure 7: A minor fugue, book II.the city block metric (though not under the minimal spanning rectangle) is one in whichthe G] is interpreted as an A[, implying a key of F minor. However, no human listenerwould make this mistake.At the other extreme, when the tonality is clearly and unambiguously established, sayby a major or minor arpeggio, then it is virtually impossible to entertain the hypothesisthat any of the intervals is imperfect. For example, it is hard to hear the E minor subjectof book I as being in the key of G] minor, and to interpret the G as an F double-sharp,despite the fact that the �rst six notes are all compatible with the latter key, while theseventh note is an accidental in both. We cannot escape hearing the �rst four notes as achord of E minor (Figure 8).G4 34 !>>! ! ! 4! !6! ! 4! !6! ! !��!6! ! 4! ! ! ! !4! ! !Figure 8: E minor fugue, book I.However, to identify the initial tonality is not the same as identifying the key. Even ifthe piece begins with the notes of a major or minor triad, this initial tonality may be partof a cadence onto the tonic, rather than the tonic itself. The D major subject from bookII, Figure 8, is a case in point. The initial tonality here is undoubtedly that of G major,I44 44 ? ! ! ! ! !�! ! ! ! ! !Figure 9: D major fugue, book II.9



the subdominant of the key as Bach wrote it, and indeed up to the �fth note the keycould perfectly well be Gmajor. (`La Cucaracha' is a conveniently well-known example ofa melody which begins in essentially the same way, give or take an octave, and for whichthe hypothesis that the repeated initial note was the tonic would be quite correct). It isonly after the transition from the tied-note on B to an E (another instance of an earlyimperfect interval) and the succeeding A, establishing a new tonality of the dominant Amajor, that we suspect what is con�rmed by the subsequent F] and D, namely that thisis a IV,V,I cadence onto the tonic D.But how do we know that? Since there is no C or C] anywhere in the melody, we couldin fact notate this example in G, with the imperfect fourth falling between the E andthe A, rather than the B and the E. As in the case of the C] minor fugue, Figure 14, weseem to require an analysis of the piece at a higher level than mere individual notes. Infact, we need something that it is tempting to call a grammar of melody, whose syntaxcaptures such structures as the repeated initial note and the scale progression from the Ato the F] as structural constituents, and whose semantics de�nes interpretations of suchconstituents in terms of the harmonic space. As we have already noted, this kind of �ne-grained analysis is something that neural nets seem quite ill-adapted to. The lack of suchan analysis in terms of chord progressions rather than global properties of the melodywas also the major shortcoming of the otherwise closely related approach in Steedman1973. 6. Towards a Grammar of Melodic TonalityThe work of Lerdahl and Jackendo� (1983) at the structural end of such grammars,drawing on the Chomskean tradition of Generative Grammar, and of Narmour (1977,1990) building on the more psychologistic approach of Meyer in a more interpretativedirection, is particularly important. I think it is fair to say, however, that such frameworksprovide both more and less than we need to solve the problem that Helmholtz bequeathedto us. They provide more in the sense that the structures that they encompass are farmore extensive than those that we need for the local analysis of tonality. They provideless than we need in the sense that the link between structural rules and interpretativerules { that is, the equivalent of a semantics { is as yet somewhat underspeci�ed.Whatever the limitations on our access to natural language semantics, (cf. Chomsky1957), the study of its syntax would not have got far if it had not been informed by somefairly strong intuitions about meaning. While recent work by these authors and theircolleagues is explicitly addressed to this question, and appears extremely promising (I amthinking particularly of Lerdahl 1988, (who discusses a number of related approaches toharmony, including those of Balzano 1982, Shepherd 1982, and Krumhansl and Kessler1982), and of Narmour 1992, and references therein). I think it may in the meantime beworth sketching the form that such a grammar might take if we were to assume (in theFregean tradition of Montague 1974) that the structural rules of such a grammar shouldbe related as closely and simply as possible to rules of interpretation. The earlier exampleof the D major fugue (Figure 9) and many others among the subjects of the Forty-eightshow that such a semantics must compositionally de�ne key in terms of cadences, orprogressions of chord-tonalities, perhaps along the lines suggested in Steedman (1984),with positions in the harmonic space playing much the same role as individuals in the\model" in linguistic semantics, and with the rules de�ning cadences playing much thesame role as rules of logical inference.The earlier remarks suggest that our grammar of melody should be concerned with10



movements between points in the harmonic space, and their relation to basic major andminor triads, or tonalities, as in Steedman (1973). We have already seen in the case of theD major fugue, Figure 9, that more than one successive note may correspond to the sameposition, and that a movement may either be a discontinuous jump, or a scale movement.Thus the three repeated eighth-note Ds at the start of this subject appear to be more orless equivalent to a single dotted quarter-note D, and the scale progression from A to F]in the middle of the second bar seems more or less equivalent to a jump from the formerto the latter. More interestingly, sequences of di�erent notes may count as staying in thesame place in harmonic terms, and sequences of notes separated by intervals other thanseconds may count as scale transitions between harmonic positions.In the �rst category, various kinds of trills and twiddles can be equivalent to a singlenote. For example, the E[ major subject of Book I is heard as beginning with a tonicarpeggio, in which the mediant is realised as an \inection" consisting of three notes,of which only the �rst and last are actually G (Figure 10). A similar con�gurationG222 44 !VV! ! ! ! ! ! ! !PQRST! ? 6!qrtqrt! !PQRST! !trFigure 10: E[ major fugue, book I.immediately following is also perceived as equivalent to A[. There are a number of suchcon�gurations of notes of the same duration separated by upward and downward secondsthat have the same e�ect.It is convenient to refer to such sequences, which count as equivalent to a single har-monic position, as \points". Such con�gurations have a recursive character. For example,we have seen that repeated notes of the same pitch and duration count as a point of thesame total duration. It is also the case that a \turn" of notes of the same duration andthe following con�guration of ascending and descending seconds can be heard as a pointwhose value or e�ective pitch is that of the repeated note, as in the C] major subject ofBook II, Figure 11. The G major fugue, book I, Figure 12, suggests that a note followedG4444444 44 > ? !( !FF! ! ! !PQRST! !RTU!QRT! !�����! !�����! !�����!Figure 11: C] major fugue, book II.by a turn on the same note also counts as a point. This kind of recursive constituency isG4 68 ! ! ! ! ! ! ! ! ! ! !QRSTU! ! !( ! !QRSTU! ! !( !Figure 12: G major fugue, book I.familiar from phrase-structure grammars for natural languages, and it seems possible inprinciple to construct more deeply embedded examples.11



Similarly, just as there is more than one way of staying in the same place, so there ismore than one way of getting from one place to another. We have already seen that ascale of seconds of the same duration and direction is equivalent to a discontinuous jumpbetween its endpoints. Scale movements also can be recursive in character, either byinvolving complex points rather than individual notes, or by virtue of interleaving scalesin parallel motion, or by interleaving a repeated same pitch, as in the case of the E minorfugue, Book I, Figure 8.The construction of a parser for such a grammar is quite a di�cult task. The de�nitionsof points, including inections and turns, and the de�nition of scales, in terms of ascendingand descending seconds of the same duration are locally ambiguous. For example, howare the sequences in Figures 13, 14, and 15 to be \parsed" according to these grammars?Clearly, the answer to this question depends on our perception of the metric structureI44 44 > ! ! ! ! ! ! ! ! -!. .! -!. .! -!. .! -!. .!Figure 13: D major fugue, book II4444 1216 !4! ! ! ! ! !��������4! ! !��������! ! ! ! ! !��������! ! ! ! ! !(.Figure 14: C ] minor fugue, book IIG2 44 !� �������	! ! !XY[]XY[]	! ! !��������	! ! !XY[]XY[]	! ! ! ! 4! 6! 6! 2! ! !�!�����! ! !Figure 15: D minor fugue, book IIof these pieces, as indicated in the time signature, bar lines etc. Thus the three piecesseem to be heard as in Figures 16, 17, and 18.The perception of rhythm and metre has been investigated by Longuet-Higgins (1994),and references therein, and by Steedman (1977). However, the integration of metricaland harmonic analysis of the kind that is required for a really adequate account of keyanalysis has hardly begun, and seems quite challenging, as does the integration of notionsof cadence and chord progression. For example, the question of whether the key of the Cmajor fugue in Book I (Figure 19) is in fact C, rather than F, and whether it thereforebegins with a tonality of IV or of I, rests on the question of whether it is the intervalbetween the A and D of notes 8 and 9, or that between the same D and the succeeding Gthat is imperfect. This decision seems to rest upon the considerable rhythmical salienceof the syncopated G itself: an imperfect interval onto such a resting place seems unlikely.Nor will clustering do anything for us here: the clusters under the two key analyses areidentically close, under any conceivable metric.The powerful theories of Lerdahl and Jackendo�, and Narmour, and the references12



I44 44 > !���! ! ! -!. .! -!. .! -!. .! -!. .! -!. .!Figure 16: Cf. Figure 14.I4444 1216 !(. -!. !��������4! ! !��������! ! -!. !��������! ! ! ! ! !(.Figure 17: Cf. Figure 15.already cited, will undoubtedly be as helpful in this venture as will as the constructivemethods of the computer scientists that I have concentrated on here.7. ConclusionWhat has been presented in this paper is work in progress by a number of scientists in anumber of disciplines. The problem that they are trying to solve is a di�cult one, andthe solutions remain incomplete. In the terms of the question that is addressed at thisconference, as suggested in its title, it would be premature to claim a \new breakthrough".On the other hand, they do not seem to be a dead end. The computer has already providedan entirely new kind of algorithmic answer to questions about the nature of mind, whichit is simply impossible to imagine having to do without.In pursuit of this argument, I would like to return for a moment to the question of whyHelmholtz did not manage to answer his own beautifully simple question concerning thenature of our experience of equal temperament.Helmholtz actually had access to more of the crucial concepts that were needed for ananswer than I have so far revealed. A very close relative of Longuet-Higgins' harmonytheory was available during Helmhotz's lifetime. In fact it was presented to this Society, ina paper by Ellis (1874), entitled `On Musical Duodenes', concerning the nature of modu-lation. We know that Helmholtz at least had access to this work, for the following curiousreason. The translator of Helmholtz' 1862 book was none other than Ellis (1875), whogreatly expanded the original by the addition of numerous appendices, mostly concerninga variety of novel keyboard instruments and tables of the precise frequencies of the pipesin the organs of the more signi�cant churches of Europe { a fact of which we know thatHelmholtz was aware, since he took exception to these rather extensive additions.One of these appendices consisted of a fairly complete version of his paper on mod-ulation to the Royal Society of the previous year, including the diagram reproduced inFigure 20 (taken from the second edition of Ellis' translation 1885, p.463, where he givesreferences to related even earlier work by Weber.).We shall of course probably never know whether Helmholtz got as far as actuallyreading Appendix XX of Ellis' translation. But it is striking that neither he, nor Ellis,not any of their contemporaries, seem to have seen that this diagram, which is in essencea reection and a rotation of that proposed by Longuet-Higgins, needed only the notionof computation to breathe it into life as an answer to the question that Helmholtz had soclearly recognised. 13
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