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1 INTRODUCTION

Temporality in computational linguistics and natural language processing can
be considered from two aspects. One concerns the use of linguistic and philo-
sophical theories of temporality in computational applications. The other con-
cerns use of computational theory in its own right to define new kinds of theo-
ries of dynamical systems including natural language and its temporal seman-
tics. The latter influence is at least as important as the former.

2 LINGUISTIC CONTRIBUTIONS TO COMPUTATIONAL LINGUISTICS

As in the case of nominal expressions in natural language, we should be careful
to distinguish temporal semantics, or the question of what kinds of objects and
relations temporal categories denote, from the question of temporal reference
to particular times or events that the discourse context affords.

It is useful to draw a further distinction within the semantics between tem-
poral ontology, or the types of temporal entity that the theory entertains, such
as instants, intervals, events, states, or whatever, temporal quantification over
such entities, and the temporal relations over them that it countenances, such
as priority or posteriority, causal dependence, and the like.

2.1 Temporal Semantics: Ontologies, Quantifiers, and Relations

Applications such as information retrieval (IR), and question-answering (QA),
have made surprisingly little use of the riches offered by linguistic temporal
semantics and temporal logic. The reason is the inextricable entanglement
of the temporal categories with everyday knowledge. As other chapters of
this handbook show, categories like tense, mood, and aspect are confounded
with non-temporal relations such as causality, teleology, counterfactuality, ev-
identiality, and the like, to an extent that makes firm boundaries to temporal
semantics hard to draw.
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For example, the question

(1) Have you met Miss Jones?

does not define a temporal relation between the present time and an event of
meeting Miss Jones, as theories of temporal reference founded on Reichenbach
(1947) might seem to suggest, but rather asks whether the state of affairs that
is consequent upon such an event—roughly speaking, knowing Miss Jones—
is in force (Moens and Steedman, 1988). One may be able to answer such
questions in the affirmative even if one has no recollection of the event in
question, nor any idea when it might have been, or even lacks the capacity for
such recollection, as in the case of certain agnosias.

Of course, one may infer that meeting Miss Jones must have preceded the
present, for this state of affairs to hold—but that is an entailment of the relation
between cause and effect, rather than temporal sequence as such.

Similarly, if a search engine offers (2A) in answer to a query (2Q), in order to
answer the question correctly, a question answerer must understand the textual
entailment of A that, although one might have expected Swatman to win, in
the event he did not:

(2) Q: Did John Swatman win the British Open Gold Medal?

A: In 1980 at 16 years of age he fought his way to the final in the under
60 Kg category, and was winning the contest when he was forced to
withdraw through injury.

That is, the progressive denotes a state of affairs that would normally bring
about a win, rather than a temporal relation to an actual event of winning.

Such inferences are extremely specific to the particular content that is in-
volved. Thus, the temporal extent of the state of having met Miss Jones is
generally (as the song says) only bounded by the lifetime of the participants.
However, if the following question is asked, the relevant consequent state is
bounded by our knowledge of the digestive process to a few hours:

(3) Has the patient had anything to eat?

Similarly, if the question is:

(4) Has the patient had a tetanus shot recently?

—then the answer depends on specific knowledge of the length of time the
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consequent protection typically lasts, which is a few years.
Human beings are remarkably good at such associative inference, which

they seem to achieve quite effortlessly. However, the problem of formulating
such knowledge in computational terms, and carrying out similar inference by
machine, using the standard logics that have been designed for the purpose
(Prior, 1967; McDermott, 1982; Allen, 1983), is very hard, although Prior’s
work provided one of the foundations for the computational dynamic logics
discussed in section 3. Pratt and Francez (2001) formulate temporal gener-
alized quantifiers for such a framework, and Pratt-Hartmann (2005) proves
complexity properties of this system.

There have been attempts to design limited logics with better search proper-
ties, which have tended to trade under the name of “temporal database query
languages”, and there have been attempts to design natural language user-
interfaces or “front ends” for such systems, drawing on linguistically-informed
semantics, notably the ontologies of Vendler (1967) and followers (e.g. Bruce,
1972; Ritchie, 1979; Moens, 1987; Hinrichs, 1988; Palmer et al., 1993; Crouch
and Pulman, 1993; White, 1994; Dorr and Olsen, 1997; Androutsopoulos et al.,
1998; Dorr, 2007).

Such ontologies typically distinguish event-types according to a number of
dimensions including ±durativity and ±telicity, and distinguish states as of
type progressive, consequent, iterative, habitual, and so on. Several of these
systems constitute recursive mereologies, or part-whole hierarchies, some-
times embodying a notion of type-coercion or overloading, whereby aspects
and adverbial modifiers compositionally add layers of temporal predication
such as preparation, initiation, iteration, and culmination, and the like, without
any limit on depth of embedding, as in:

(5) It took me two years to be able to play “Young and Foolish” in less than
thirty seconds for up to an hour at a time.

Further examples of work of this linguistically informed kind are Pustejovsky
1991a; Kameyama et al. 1993; Hitzeman 1997; Narayanan 1997. However,
such attempts at general-purpose solutions to the problem of temporal query
have not been widely used, and typically involve serious investments of time
in knowledge-engineering by hand.

Instead, early natural language query systems for temporally rich domains,
such as Sager et al. 1994 tended to hard-wire the requisite knowledge into
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collections of very specific hand-built inference rules representing actions di-
rectly, in ad-hoc (although nonetheless revealing) ways, in the tradition of AI
action representations systems, to which we will return in section 3.

The CYC project (Lenat, 1995) is an attempt in the same tradition to build a
knowledge representation of this kind by hand on a very large scale, and with
general applicability including temporal reasoning, based on a rather general
ontology and a number in the millions of specific rules of inference, many
of which represent relations among events and states. Specialized versions of
CYC have been developed for supporting effective inference in several nar-
rower “closed” domains, many of them industrially significant, and a research
version is freely available.

However, common sense reasoning about the everyday world, of the kind
that is needed to capture the simple natural language examples with which this
piece began, remains a very difficult task. Attempts to apply the publicly avail-
able version in tasks like text-based inference have not proved very successful
(Mahesh et al., 1996), The general suspicion is that this is because such hand-
built resources are both too high-level in terms of ontology, and too small-scale
in comparison to what a mixture of animal evolution and social learning has
put in our own heads.

In reaction to this realization concerning the limits of hand-built knowledge
resources of many kinds, including ontologies such as WordNet (Fellbaum,
1998b), FrameNet (Baker et al., 1998), and VerbNet (Kipper et al., 2008),
there is renewed interest recently in building larger resources of this kind by
clustering on collocations in large volumes of text (Lin and Pantel, 2001), or by
searching such text corpora for string-based proxies for ontological relations
(Webber et al., 2002). The proposals of Banko and Etzioni (2007); Etzioni
et al. (2007) and Mitchell et al. (2009) for “machine reading” to create similar
knowledge resources are related.

A more radical proposal of this kind is to use more directly associative
knowledge representations such as associative memory models and semantic
networks whose nodes directly correspond to individuals of various types, and
whose arcs represent relations between them. Harrington and Clark (2009)
have proposed a method using a wide coverage parser to parse unlabeled text
and constructing a semantic network an orders of magnitude larger than CYC,
using spreading network activation to bound the complexity of network access
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and update.
The biggest obstacle to such ambitious plans is the low reliability of wide-

coverage parsers. Because of the large search spaces involved, the best-
performing parsers use parsing models (and often grammars) acquired by “su-
pervised” machine learning from human-annotated corpora such as the one
million word Penn Wall Street Journal Treebank. The models are acquired by
deriving probabilities (or feature weights) from the frequency with which com-
ponents of derivations are found in the corpus, in order to choose the derivation
that most closely resembles the training material.

The most successful parsers frequently exploit “head dependency” models,
in which probabilities or weights are computed on the basis of frequency of
co-occurrence of relations between particular words, such as the noun “days”
acting as the subject of verb “elapsed”. Such parsers, while performing better
than the hand-built alternative, still have dependency recovery rates of only
around 90% (Collins, 2003). Since word dependencies are closely related to
semantic predicate-argument relations, there is a danger that the structures the
parsers deliver will be too errorful for this process to deliver useful semantic
networks.

Error analysis suggests that the reason the parsers are so weak is that 1M
words of fairly arbitrarily selected annotated newspaper text is not enough to
give us a grammar or a parsing model comparable to what we have in our own
heads. There is considerable work going on to develop unsupervised methods
for parser induction from unannotated text, and semisupervised methods for
using unlabeled text to generalize the treebank parsers.

The relative success of supervised-learned parsers using head dependency
models trained on human-labeled data might seem to suggest a quite different
and much bolder solution to the common-sense reasoning bottleneck in tem-
poral semantics. The content-dependency of the extent of the consequent state
denoted by the perfect on the nature of the core event—meeting Miss Jones ver-
sus eating something versus having a tetanus shot—is reminiscent of the way
in which those parsing models rank parses by assigning higher probability to
a head-word dependency that occurs frequently in the training data than one
that appears rarely or not at all. Head-word dependency parsing models work
because they approximate a mixture of semantics and real world knowledge
that underlies frequent collocations.
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One can therefore consider as a thought experiment the idea of approxi-
mating a similar mixture underlying the interpretation of tenses, moods, and
aspects, by having human annotators annotate texts about events like meet-
ing Miss Jones with the implicit consequent states like knowing Miss Jones
and preparatory processes like traveling for the purpose of fulfilling an ap-
pointment with Miss Jones, together with their temporal extents, and learning
a model that would allow a machine to answer questions like Was Mr. Smith
meeting Miss Jones when he had the accident? and had he met Miss Jones?.

Of course, such an experiment is completely unrealistic, both in terms of
the possibility of obtaining reliable annotations, and in terms of the amount of
annotated data that would be required for effective machine learning, let alone
in terms of the limitations of the learning techniques themselves when faced
with an essentially AI-complete problem. However, a scaled-down version of
this idea is being attempted in the related area of temporal reference, to which
we now turn.

2.2 Temporal Reference

By temporal reference is meant the anchoring of temporal descriptions to spe-
cific clock-times, or to other events in an established narrative. The simple
tenses—the past, present, and in English the bare infinitival future—are tem-
porally referential, in the sense that their underlying Reichenbachian reference
time R must stand in an inferable temporal/causal relation to some time or
event that is either already give discourse-given, as in (6a), or provided by a
modifier that is itself temporal/causally anchored, as in (6b,c);

(6) a. It was the night they raided Minsky’s. I met Miss Jones.
b. I met Miss Jones the night they raided Minsky’s.
c. I met Miss Jones when they raided Minsky’s.
d. I met Miss Jones soon after they raided Minsky’s.

Webber (1988) points out that such temporal anchoring processes resemble
definite noun-phrase reference in allowing “bridging” reference to inferred ref-
erents, as when the mention of a car supports reference to “the driver” (Clark
and Marshall, 1981). Such inferences are knowledge-dependent in the same
way as the temporal semantic interpretations considered in the last section.
Thus, in the following example, the fact that we know that throwing us in jail
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followed the raid, and that coming with a warrant preceded it, is a matter of
world-knowledge about preparations for, and consequences of, such events:

(7) The night they raided Minsky’s,
a. they threw us all in jail.
b. they came with a warrant

Such discourse is also characterized by shifting temporal focus: once we have
decided the relation of throwing in jail to the raid, it may in turn act as anchor
for further events such as phone calls, which may act as anchors for events
of obtaining bail, and so on, under similar conditions of script-like general
knowledge about goal-directed activities (Schank, 1975).

As in the case of early work on temporal semantics, for suitably closed do-
mains we may be able to finesse explicit reference. Wiebe et al. (1998) de-
scribe a domain-specific rule-based approach to temporal reference resolution
in the sense of time-stamping for a corpus of scheduling dialogs consisting of
exchanges like the following:

(8) a. Would you like to meet Wednesday, August 2nd?
b. No, how about Friday at 2?

This work uses a graph-structured stack as a focus model that allows non-
adjacent antecedent anchors in complex dialogs. Filatova and Hovy (2001)
offer a related approach to time-stamping event clauses in the more open do-
main of newspaper stories, including relations of anteriority and priority. Both
papers evaluate on held-out data—that is, additional human-labeled data that
have not been used for training.

Developed as part of the ACE (automatic content extraction) initiative
hosted at the Linguistic Data Consortium at the University of Pennsylvania,
the TIMEX2 annotation scheme (Ferro et al., 2005) has been used to anno-
tate corpora such as the ACE 2005 corpus (around 600 documents), which has
been used for training and evaluating automatic temporal expression recogni-
tion and normalization (TERN) programs using a mixture of small numbers of
hand-written rules and machine learning (e.g. Ahn et al. 2007)

The TimeML temporal mark-up language (Pustejovsky et al., 2003a; Verha-
gen et al., 2009) is a reformulation of TIMEX2 that has been extended to cover
events, temporal relations, and certain kinds of state, and used for annotation of
the Timebank corpus of 186 news reports (Pustejovsky et al., 2003b). Pan et al.
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(2006) have extended the Timebank annotation to include estimated upper and
lower bounds on the temporal extents of TimeML temporal expressions, with
reasonable inter-annotator agreement. Chambers et al. (2007) present a tempo-
ral relation classifier for six relations trained on the original Timebank corpus,
reporting 72% accuracy when these relations are collapsed to the simplest bi-
nary classification before/after.

Mazur and Dale (2010) criticize both ACE and Timebank for the brevity
of the documents that they include, and the limitations on the complexity of
the temporal reference that they support. They point out that most temporal
expressions in these corpora can be interpreted relative to a single temporal
focus or “anchor”, defined as the dateline of the report, rather than involving
the kinds of shifting focus characteristic of extended discourse and narrative.
They offer an alternative WikiWars corpus comprising 22 much more extended
Wikipedia articles on the major wars of human history, containing around 2700
TIMEX2annotated temporal expressions.

It is possible in principle that the typical extent of events could be learned
from such data, and used to improve TERN-style temporal reference programs
of the kind discussed earlier. While TimeML does not mark consequent states
(of the kind crucial to the interpretation of (1), Have you met Miss Jones?)
as such, it does mark “signal words” such as modals and auxiliary verbs, so
it is even possible in principle that the typical temporal extent that should be
considered in answering questions like (3) (Has the patient eaten anything?)
and (4) (Has the patient had a tetanus shot recently?) could be learned.

Not surprisingly, nothing as ambitious as this has been attempted so far. As
Lapata and Lascarides (2006) point out, these corpora are quite small in com-
parison with the Penn Wall Street Journal treebank (the TIMEX2-annotated
English portion of ACE 2005 is around 26K words, while TimeBank is around
69K.) Given the sparse nature of these data, and the sheer difficulty in many
cases of annotating temporal relations reliably, it is unclear whether supervised
learning with human-labeled data can succeed practically on this problem, al-
though, as Lapata and Lascarides point out, the labeled corpora remain valu-
able as gold-standards against which unsupervised methods can be evaluated.

In reaction to these resource limitations for supervised learning, there has
been considerable research into unsupervised methods for training such classi-
fiers using unsupervised methods based on wide-coverage parsing of unlabeled

8



text. Chklovski and Pantel (2004) learn verb subcategorization frames and se-
mantic relations between them including temporal relations, the latter chosen
on the model of Fellbaum 1998a. Lapata and Lascarides (2006) have used such
methods successfully to automatically extract a restricted class of specifically
temporal relations, by parsing unlabeled text using a wide-coverage statistical
parser trained on the Penn treebank, in search of main and subordinate clauses
linked by temporal connectives such as “after”, “while”, and “until”, evaluating
against the human-labeled Timebank corpus (see above). Chambers and Juraf-
sky (2009) show how script-like narrative chains involving shared participants
can be mined using similar unsupervised methods, evaluating in comparison
to the related but non-narrative relations in the hand-built FrameNet corpus
(Baker et al., 1998), as well as by a novel “narrative Cloze” procedure.

Automatically identifying temporal semantics and temporal reference re-
mains an extremely hard problem, to which linguistic semantics provides only
part of a solution which we do not seem very close to attaining. The Recog-
nizing Text Entailment (RTE) task (Dagan et al., 2006) attempts to provide a
standard test-set of pairs of text passages of the kind delivered by real informa-
tion retrieval and machine translation programs, and questions or “hypotheses”
which the text may or may not answer in the positive or negative. Many of the
examples involve temporal reference, such as the following:

(9) T: Bush returned to the White House late Saturday while his running mate
was off campaigning in the West.

H: Bush left the White House. (RTE example no. 1960:PP)

(10) T: De La Cruz’s family said he had gone to Saudi Arabia a year ago to
work as a driver after a long period of unemployment.

H: De la Cruz was unemployed. (RTE example no. 1030:RC)

The question of whether T entails H is in both cases dependent upon the tem-
poral referent of the latter. If in (9), it is taken as Saturday relative to the
dateline of T then the latter entails that H is false. If it is taken as sometime
prior to that Saturday, then the entailment is true. Similarly, in (10), the text T
says that at the time the family spoke, the time De la Cruz went to employment
in SA was after being unemployed. If the reference time of the hypothesis
H is the time the family spoke, then either the entailment is false, or there
is no entailment (because we are not actually told how long the employment
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lasted). Thus it seems that the RTE task examples considerably underspecify
the task of temporal reference (Beigman-Klebanov and Beigman 2010). Lin-
guistic semantics will certainly continue to be crucial to solving these hard
computational problems, but it is not in itself a sufficient solution.

3 COMPUTATIONAL CONTRIBUTIONS TO LINGUISTIC TEMPORAL
SEMANTICS

The temporal semantics of both human languages and programming languages
can be thought of as logical languages predicating relations over a model (in
the logicians’ narrow sense of the term) that can be visualized as in figure 1.

α
βαβ

Figure 1: The S4 model

The figure depicts a Kripke or S4 model, in which nodes represent possible
states of the world (only a few of which are depicted, and which should be
thought of as complex structures, consisting of a number of propositional “flu-
ents”, or facts subject to change), and directed arcs represent events α,β, etc.
that transform one state into another (of which few are depicted also). We may
want to distinguish some particular sequence of states and events as actual or
historical: those might be the ones in solid black.

This structure is not “there,” in the mind or the computer. It is not some-
thing that can ever be built—for one thing, it is infinitely extending. Rather, it
describes the space of possibilities that we or a machine inhabit, and to a very
limited extent can think about by searching it to some limited depth.

What we and other animals do have in our heads (as do machines, if we
program them with that capability, or allow them to acquire it for themselves)
is a finite but extendable set of rules that describe the events that change one
state to another, some of which are probabilistically under our control.

These rules (together with some computational resources that must include
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a (possibly simulated) push-down automaton) are what allows us and some
other animals to see small portions of the eternal world, and to construct plans
or sequences of actions that (with any luck) will take us to the more desirable
possible worlds (or at least to the ones that we can find by searching the forest
of crossing destinies to some very limited depth).

Most of the semantic theories discussed in the present volume assume such
a model, implicitly or explicitly, and can be seen as addressing the question of
the precise content of the states, and the nature of the events that take us from
one state to another.

For example, the theories differ as to whether they take intervals as the basic
temporal primitive, and regard events as durative, or whether they take instants
as primitive and intervals as composite. Under the first view, a Vendlerian Ac-
tivity like running would be represented as a transition, with a temporal and
spatial extent. Under the second view, an Activity would be regarded as a pro-
gressive fluent, or property of a state, with the states that it characterizes being
accessed via instantaneous incipitative events of beginning running and aban-
doned via terminative events of stopping running. (Vendler and his followers
seem equivocal between these two interpretations.) Under the latter interpre-
tation, the instantaneous incipitative and terminative events themselves corre-
spond to Vendlerian Achievements, associated with further changes in fluents
corresponding to consequent states, such as running and having stopped run-
ning. Vendlerian Accomplishments like running to the bus-stop are then the
composition of an Activity of running with the goal of being at the bus-stop,
the terminative Achievement of stopping running and the culminative achieve-
ment of reaching the bus-stop, which in turn initiates its own consequent state
of being at the bus-stop.

When scaled to practical problems of planning in realistic worlds, such mod-
els are clearly going to be very complex. In deciding which of the many the-
ories they allow we should adopt, we will be guided not only by the usual
questions of soundness in representing temporal knowledge, but also by ques-
tions of efficiency for the purpose of searching for plans, which we can think
of as proofs in a logic of change.

It is in this connection that theoretical computer science can be of help to
linguistics. Computation can also be modeled as a space of states and opera-
tors that change state, using logics of change, as Prior (1967) noted himself.
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In computer science, issues of constructivity (that proofs of attainability of a
state are always accompanied by an algorithm for actually getting there) and
efficiency (that useful proofs can actually be found with affordable resources)
are always paramount. As a result, theoretical computer science has been the
main engine driving progress in the use of temporal logics since the time of
Prior.

With these ends in mind, computer scientists have made a very important
observation about logics of change as they apply to programs and human rea-
soning. That is that the kind of changes that we are interested in are localized,
affecting only a very few among the vast number of facts or fluents that define
the current state in the model. Thus, assigning a value to a register affects that
register and no other aspect of the state of the machine. Similarly, drinking
an ice-cold beer affects the beer, and the consumer, in predictable ways, but
leaves unaffected a miriad other facts that hold in the situation of the action,
such as the weather, the color of the walls, and the current popularity ratings
of the president of the United States. This suggests that events are to be de-
fined in terms of partial descriptions of situations. (There are some events, like
detonating H-bombs, that change practically everything. However, these too
are only useful to the extent that they can be defined in terms of simple partial
descriptions—for example, using a universal quantifier.)

This insight has been captured in a number of ways, both informal and for-
mal. In linguistic theory, an early version of the idea surfaced in Lewis’s (1973)
idea of “inertia worlds,” which he defined in terms of similarity between actual
and hypothetical worlds, in order to provide a semantics for counterfactuals,
which Dowty (1991) used explain the imperfective paradox. (Fine, 1975, criti-
cized this definition using examples involving H-Bombs and the like, for which
similarity between the inertia world and the actual world doesn’t seem to work.
Lascarides (1991) showed that inertia worlds cannot sensibly be defined other
than in terms of the progressive itself.)

In Artificial Intelligence, the idea is usually identified with the STRIPS
representation for actions for the purpose of automatically constructing plans
(Fikes and Nilsson, 1971), although the idea seems to have been arisen more
than once (cf. PLANNER, Hewitt, 1969). STRIPS actions are represented
in terms of three elements: a list of preconditions, that is, facts or “fluents”
which must hold for the action to be possible; a list of deletions, or fluents that
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cease to be true when the action occurs, and a list of additions, or fluents that
become true in the aftermath of the action. Additions and deletions are mod-
eled by database update, so the property that every fact that is not explicitly
mentioned in the rule remains as it is, holds by default.

For example, the earlier example of my drinking an ice-cold beer might
be represented by the following triple, in which the variable x is implicitly
existentially quantified:

(11) preconditions: beer(x), ice-cold(x), here(x), here(me), thirsty(me)
delete: beer(x), here(x), ice-cold(x), thirsty(me)
add: high(me)

This rule says that when I drink an ice-cold beer, it ceases to be, while I, al-
though I still exist, stop being thirsty and start being high. Whatever else holds
in the current state remains unchanged. If we want to model a counterfactual
situation such as If I had not drunk an ice-cold beer we can reverse the rule
and work out that it would be pretty much the same apart from my state and
that of the beer. Since our representation is in terms of actions rather than pos-
sible worlds, notions of similarity between worlds don’t come into it: if we
want to include actions like detonating an H-bomb in our plans we can do so.
(Simplifying a bit, the latter action deletes everything, so it is easy to work out
that counterfactuals like If someone had detonated an H-Bomb, you wouldn’t
be here are true.)

A number of important lessons were learned from work using STRIPS-like
action representations. First, it isn’t at all easy to represent even the simplest
temporal knowledge domains consistently, especially if you want to be able to
extend the domains by freely adding new actions. For example, if you repre-
sent the fact that some boxes and a truck are in Edinburgh as ground facts in a
database, then your action of loading boxes on trucks should delete the ground
fact that the boxes are in Edinburgh, and add a ground fact that they are on the
truck. If the move action for trucks is defined in the obvious way, as deleting
the ground fact of the truck being in Edinburgh and adding one of it being in
London (say), this stratagem will ensure consistency in reasoning about where
the boxes are when the truck moves. (Alternatively, you could define the move
action as deleting the location at the origin of any objects that are on the mov-
ing object and asserting their location at the destination.) It is easy to make
mistakes defining domain knowledge like this.
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The other lesson learned from STRIPS is that, if you want to do any kind
of temporal reasoning over the representation, or more generally need to rep-
resent co-occurrent actions, then you have to represent durative events like
trucks moving as composed of an instantaneous incipitative event that intro-
duces a progressive fluent, and a terminative event removing it (cf. Kowalski
and Sergot, 1986). This ensures that if the truck is dry at the start of its jour-
ney, and it starts to rains while the truck is moving, the database will not end up
saying inconsistently that the truck is both wet and dry at its destination. (This
observation seems to suggest that instants and not intervals should be taken as
the primitive elements in any model theory for systems of this kind—see Allen
and Hayes, 1989 for a dissenting opinion.)

Event calculi of this kind underlie some very powerful planning programs,
which compete at an annual competition on shared tasks of considerable com-
plexity. The STRIPS idea was enshrined in a standard notation by McDermott
et al. (1998), and extended in a series of papers culminating in Fox and Long
(2006) to cover a rich ontology of time-stamped event types for purposes of
the competition.

STRIPS representations were initially derided by logicians for their non-
monotonicity. However, they provide a very natural expression for change
of state, particularly when events are instantaneous and discrete, as they are in
digital computers. Hoare Logic (Hoare, 1969) is founded on a very similar idea
of “triples” P{S}Q, where P is a set of preconditions for a program statement
S and Q describes the resulting state.

Pratt (1976) and Harel (1984) extend Hoare Logic to Dynamic Logic (DL)
for the purpose of proving correctness of programs. DL combines a modal
logic with the algebra of regular events or finite-state machines. DL is a mul-
timodal one, in which the 2 and 3 modalities are relativized to particular
event-types. For example, if a program or command α computes a function F
over the integers, then we may write the following:

(12) a. n≥ 0⇒ [α](y = F(n))
b. n≥ 0⇒ 〈α〉(y = F(n))

The meaning of (12a) is that in any state in which n ≥ 0, executing α always
results in a state where y = F(n). The meaning of (12b) is that in any state
in which n ≥ 0, executing α sometimes results in a state where y = F(n).
Although our knowledge of action is inherently nondeterministic, as far as
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reasoning about the world goes, we usually reason as if we could predict out-
comes, even if we attach a probability of success, so we will mostly be dealing
with the [α] modalities.

The α may be sequences α;β; . . .. They may also include loops or iteration,
as in the following representation for Piaget’s “primary circular reaction” of
sucking in infants (1936):

(13) [while hungry do suck]

Dynamic Logic is usually applied to pure functional programming lan-
guages, without update. If we want to apply it for representing actions and
change we may want to extend to make it “resource sensitive”, by extending it
to include Girard’s (1995) linear implication operator, written−◦ (pronounced
“lolly”), to yield “linear dynamic” versions of event calculi such as STRIPS
and its descendants.

For example, we might represent the earlier naive version of the move action
as follows:

(14) affords(move(x, loc2))∧at(x, loc1)−◦[move(x, loc2)]at(x, loc2)

This formula means that if you can move and are at a location, and you move
to another location, you stop being at the first place and start being at the other
place. We adopt a convention that only ground fact (that is, the ones actu-
ally explicit in the data-base) are deleted or added, so the rule doesn’t define
whether the new situation supports inferrable facts like affords(move(x, loc2).
If we define the latter in terms of a ground facts, using standard implicature as
follows, to say that you can’t move to a place if you are at that place, then it
will not:

(15) ¬at(x, loc)⇒ affords(move(x, loc))

(The predicate affords for preconditions is used in homage to Gibson’s (1979)
notion of affordance of actions by situations, which lies at the heart of effective
action representation.)

If we want to avoid ramification problems arising from unexpected events
like rain, as in the earlier example, then we need to recast the representation in
terms of the instantaneous and stative components described there. For exam-
ple:
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(16) a. ¬at(x, loc)⇒ affords(start(move(x, loc)))
b. affords(start(move(x, loc2)))∧at(x, loc1)

−◦[start(move(x, loc2))]moving(x, loc1, loc2)

(17) a. moving(x, loc1, loc2)⇒ affords(stop(move(x, loc2)))
b. affords(stop(move(x, loc2))))∧at(x, loc3)∧moving(x, loc1, loc2)

−◦[stop(move(x, loc2))]at(x, loc3)

Equipped with such rules, practical planning programs can search possible
futures by progressing the database breadth-first to some limited depth (say, by
iterative deepening, Korf, 1985), and build and execute plans to reach desirable
states by search and composing actions in very complicated domains involving
multiple actions and objects.

At some point, it may be thought desirable to timestamp everything in such
representations. However, the causal structure implicit in the representation
will often define the simplest relations of temporal antecedence and aspectual
state without explicit indexing to clock-times. For example a simple history of
starting to move from loc1 to loc2 followed by stopping doing so at a different
place loc3 will contain the information necessary to answer the question “Was
x moving to loc2 when she stopped at loc3?” Such calculi therefore appear to
offer a transparent and efficient representation for the concepts implicit in most
current linguistic theories of temporal semantics for natural language, and have
obvious relevance for purposes of linguists and philosophers of language.

Systems related to dynamic and nonmonotonic logics in application to natu-
ral language semantics are described by van Benthem (1991); Blackburn et al.
(1994); Barwise and Seligman (1997)and Fernando (2011). Dynamic and non-
monotonic formalisms invoking or capturing real-world knowledge and related
to the computational calculi outlined in this section have been applied to ele-
gant effect in linguistic theories of temporality by Dowty (1986); Sperber and
Wilson (1986); Pustejovsky (1991b); Moltmann (1991); Lascarides (1991);
Asher (1992); Kamp and Reyle (1993); ter Meulen (1995); Glasbey (2004);
Ramchand (1997); Piñon (1997); Pianesi and Varzi (1999); Stone and Hardt
(1999); van Lambalgen and Hamm (2005); Bittner (2007); Truswell (2007),
among others.
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4 FURTHER READING

The computational literature on temporality and representation of causal action
and its applications is overwhelming, and I am painfully aware of having been
forced to pass over entirely or, worse, to treat very superficially, a great deal of
important and relevant work. The following sources are offered as a means of
entry to a more extensive literature.

Vardi 2008 provides an exceptionally readable summary of temporal
and dynamic logic from Prior to the present from a computer science per-
spective. Mani et al. 2005 is an indispensable collection of mainly com-
putational readings including several of the papers discussed above, and
much other work that deserves attention. Virtually all of the more re-
cent literature on computational approaches is accessible from the web,
and in particular from the similarly indispensable ACL Computational
Linguistics Anthology, at http://www.aclweb.org/anthology-new/.
References to the broader literature on tense and aspect in natural lan-
guage can be found in the Annotated Bibliography of Contemporary Re-
search in Tense, Grammatical Aspect, Aktionsart, and Related Areas at
http://www.scar.utoronto.ca/~binnick/TENSE/
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