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Abstract. Sensitivity Analysis (SA) provides techniques which can be
used to identify the parameters which have the greatest influence on the
results obtained from a model. Classical SA methods apply to determin-
istic simulations of ODE models. We extend these to stochastic simu-
lations and consider the analysis of models with bifurcation points and
bistable behaviour. We consider local, global and screening SA methods
applied to multiple runs of Gillespie’s Stochastic Simulation Algorithm
(SSA). We present an example of stochastic sensitivity analysis of a real
pathway, the MAPK signalling pathway.

1 Introduction

Reaction-based biochemical models use input parameters such as concentrations
and kinetic rate constants to predict the time evolution of a biochemical sys-
tem. The chemical species involved in the reactions have the role of the output
variables of the model. Fig. 1 shows an example with four species.

Sensitivity Analysis (SA) studies the relationships between the inputs and
the outputs of models. When we wish to perform SA we choose a time point at
which to read the output values. In the case of an ODE model, a selected output
(species) has a precise value at a given time. Changing one or more parameters
of the model may alter this. In the case of stochastic simulation [1] the output
of a selected species at a selected time can be considered to be the collection of
the values given by the individual simulation runs. If it is sufficiently large, this
set of values will reveal the distribution of the output.

One of the basic SA operations is to compute the difference between the output
of a model and the output of the same model with one or more parameters
perturbed. This is simple to do with ODE models but not so straightforward
when facing stochastic simulation. One simple approach is to take as output the
mean of the values coming from the simulations. However, this can lead to a loss
of information: by taking the mean we are assuming a normal distribution and we
are even neglecting the variance. Another possibility is the use of a distribution
distance or histogram distance which, with sufficient simulation runs, is able
to precisely describe the difference. In [2] this is used to quantify how well an
approximate SSA emulates the exact SSA. We use it here with SA to quantify
the effect of perturbation of the parameters of a stochastic model.
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Fig. 1. Examples of time evolution of a biochemical model computed with ODE (on
the left) and with SSA (on the right)

Histogram distance is computed as follows:

Dk(X, Y ) =
k∑

i=1
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where X and Y are two sets of numbers, k is the number of histogram columns
or intervals which divide the range of the output variable, |X | is the cardinality
of the set X (resp. |Y | is the cardinality of the set Y ), xj and yj are elements
of the sets X and Y respectively and the function χ returns 1 if the element xj

belongs to the interval Ii, 0 otherwise. Ii is the i-th interval in the range, which
runs from xmin + (i−1)L

k to xmin + iL
k , where L = xmax − xmin.

An interesting measure is then the self distance, given by Dk(X, X ′). This
runs the same experiment twice, with the same parameters, and then computes
the histogram distance between the results. Perturbations in the parameters
which generate values of distances less than or very close to the self distance will
be considered not to have an influence, or, at least, we can say that we cannot
distinguish any effect arising from this perturbation.

2 Sensitivity Analysis Classifications

According to [3], sensitivity analysis (SA) techniques can be classified as follows.

Local Methods: These concentrate the analysis around a particular point in
the parameter space. For example, local one at a time and elementary one
at a time approaches belong to this class.

Screening Methods: These are used to select the most important parameters
when the complexity of the model is problematic or the number of param-
eters intractable. The main idea of these methods is that they should be
computationally inexpensive and give the idea of which parameters can be
fixed (low importance), even if the information that can be achieved is poor.
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They are a tradeoff between information and algorithm complexity. Once
the most influential parameters have been identified, it is then possible to
apply a more informative and computationally expensive technique.

Global Methods: These techniques try to explore the entire space of the
parameters or, at least, explore the subspace that is believed to contain the
real value of the parameters and that represents their uncertainty. Usually
these are the most computationally expensive, but also the most informative.

2.1 One-At-a-Time Methods

The classical and most widely used SA is the one-at-a-time (OAT) approach: a
parameter is perturbed (usually by 1%) and the changes in the output measured.
Alternatively it is possible to compute the derivative of the output with respect
to each parameter to obtain its sensitivity coefficient:

Sij =
δyj(p)

δpi

where yj(p) is the j-th output of the model which depends on the parameters
and pi is the i-th parameter.

In the study of biochemical systems, OAT methods represent the prevalent
practice when analysing ODE models. Other more complex and informative
analysis has been proposed [4]. However, none of these are directly applicable
to stochastic models whose output is defined as a probability density function
(pdf) over the number of molecules for each species. The need to consider the
entire pdf is very clear in the analysis of bistable systems. These present at a
certain time a pdf which is not normal, but instead presents two distinct peaks of
likelihood. In this particular context an analysis cannot make any assumptions
about the pdf resulting from the model. For this reason SA of stochastic systems
is an engaging research question [5] and here we are using histogram distance to
quantify the change in the output value:

Si = D(Xn, Xpi)

where Xn is a random variable (r.v.) with nominal pdf = f(x,p) and Xpi is a
r.v. with perturbed pdf = f(x, p1, ..., pi + Δpi, ..., pk). This distance can instead
be divided by Δpi, leading to a correspondent derivative-based approach.

Together, these approaches can be classified as local one-at-a-time (LOAT)
SA and are applicable if we assume that varying one parameter at a time affects
the output of the model in a proportional way. However, that assumption is
often not valid for biological systems making LOAT incapable of giving a com-
plete view of the relationships between parameters and output and also between
the parameters themselves. LOAT methods are useful mainly because they can
give a first impression of sensitivity indices and because they are computation-
ally inexpensive – an important consideration when dealing with thousands of
stochastic simulations.
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Fig. 2. Example of a grid in the Morris method. In this case we have two parameters
(k = 2) and a grid level of five (p = 5), so the maximum possible combinations are
52 = 25. The black dots are two possible random points, while the circles are other
points computed during the algorithm iterations. An efficient implementation should
not recompute the point circled twice.

2.2 Morris’ Method

Morris’ method [3] can be classified as one at a time, because it uses as a basic
step the local OAT approach, and global, because the experiment covers the
entire space over which the factors are believed to vary. Morris estimates the
main effect of a factor by computing a number r of local measures, at dif-
ferent random points x1, ...,xr in the parameter space, and then taking their
average.

When applying this method, a computationally expensive model is assumed,
or a model with a large number of factors. The goal is to determine which
factors have (a) negligible effects, (b) linear and additive effects, or (c) non-
linear interaction effects. This will help to apply later the most appropriate
global sensitivity analysis only on the relevant parameters.

The k-dimensional factor vector x has components xi that have p values in
the set {0, 1/(p − 1), 2/(p − 1), ..., 1}. The region of experimentation Ω is then
a k-dimensional p-level grid (Fig. 2). In practice, the values sampled in Ω are
then rescaled to generate the actual values of the parameters as sampled from a
specific parameter range. Let Δ be a predetermined multiple of 1/(p − 1). Then
Morris defines the elementary effect of the ith factor at a given point x as:

di(x) =
y(x1, ..., xi + Δ, ..., xk) − y(x)

Δ

where x is any value in Ω selected such that the perturbed point x + Δ is still
in Ω. After sampling r times, the result will be a distribution Fi of elementary
effects. The characterisation of this distribution through its mean μ and standard
deviation σ gives useful information about the influence of the ith input on the
output.
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Fig. 3. An example of a possible deterministic model f(x1, x2) = Y which depends on
the factors x1 and x2, together with examples of conditional expectations

2.3 Variance-Based Methods

Variance-based methods use the variance of the conditional expectation (VCE)
as a measure of the importance of the input factors. The goal in these methods is
to estimate the VCE by exploring the space made by all the possible values of the
parameters. Applied to ODE-based models, the most well-known techniques are
correlation ratio, Sobol’, and Fourier amplitude sensitivity test (FAST) [3,4,6].
Probability theory states that:

V [Y ] = Vx
[
E[Y |x]

]
+ Ex

[
V [Y |x]

]
. (1)

The term Vx
[
E[Y |x]

]
is the variance of the conditional expectation of Y , con-

ditioned on x. This is a suitable measure of the importance of x, identifying
the part of the variance of Y due to x. If the variance of Y is matched by the
VCE of x we can say that x is the only parameter (or set of parameters) which
influences Y .

The variance of the conditional expectation is given by:

Vx
[
E[Y |x]

]
=

∫ (
E[Y |x] − E[Y ]

)2
px(x)dx

where E[Y |x] =
∫

ypY |x(y)dy. Here the integral is substituted with the sum over
all the possible values of x sampled from the range of x. A simple example of a
deterministic model is shown in Fig. 3.

The parameter space is sampled through the use of a grid. After having col-
lected all the results, the conditional expectations are estimated by fixing a
parameter to its possible values in the grid. A complete analysis of the influence
of the parameters on the output and on the other parameters is provided but,
as can be expected, the algorithm complexity increases exponentially with the
grid level and the number of parameters.

Let Sx be the n-th order sensitivity index, with x ∈ N
n. This corresponds to

the VCE fixing the factors in x minus the sensitivity indices relative to all the
possible combinations of the factors in x. For example, S12 is given by V CE12 −
S1 −S2 and S123 is given by V CE123 −S12 −S13 −S23 −S1 −S2 −S3. The VCE
relative to x, where x contains all the factors, is nothing but V [Y ].
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Following [6] the sensitivity measure which is the most suitable to determine
the influence of a parameter on the output of the model is the Total Sensitivity
Index (TSI) or simply TSi. This is defined as the sum of all the sensitivity indices
that contain i in x. For example, TS1 is given by S1 + S12.

3 Sensitivity Analysis of Stochastic Simulations of
Biochemical Reactions

In this section we introduce two new sensitivity measures and present them as
variants of Morris’ method and the variance-based approach respectively. When
doing this, we compare these new techniques with their original versions.

From now on, when we refer to results obtained with ODE or deterministic
methods, we implicitly intend that they are obtained using a 5/4 Dormand-
Prince ODE solver with adaptive step-size. When we refer to results obtained
with stochastic simulations, we implicitly intend that we used the original
SSA [1], if not otherwise stated.

3.1 The Schlögl Model

The Schlögl model [5,2] is a suitable model to show the differences between usual
Local OAT approaches and the one based on histogram distance. It is defined
as follows:

Reaction Propensity Stochastic Molecular
channels functions constants populations
A + 2X

a1→ 3X a1 = k1AX(X − 1)/2 k1 = 3 · 10−7 X0 = 247
3X

a2→ A + 2X a2 = k2X(X − 1)(X − 2)/6 k2 = 1 · 10−4 A = 1 · 105

B
a3→ X a3 = k3B k3 = 1 · 10−3 B = 2 · 105

X
a4→ B a4 = k4X k4 = 3.5

where A and B are kept constant. That is, they are available in sufficient supply
that we do not model changes to their molecular populations. The parameter
values are set close to a bifurcation point, where a small perturbation in them
can lead to completely different results in the ODE time evolution, as can be
seen in Fig. 4 (left and centre).

From a single set of parameters the time evolution of the stochastic simula-
tions will follow either one of two possible behaviours, as can be observed in
Fig. 4 (right). With the goal of describing the behaviour of this system, ODE
models, or the simple average of X from different stochastic simulations could
be inappropriate if not misleading. The use of estimated distributions can be
considered a more suitable choice.

3.2 Local Methods

Three local one-at-a-time sensitivity analyses have been applied to the Schlögl
model: LOAT (ODE), LOAT (Gillespie Average) and LOAT (Gillespie Density).
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Fig. 4. Left, the time evolution of the output variable X of the Schlögl ODE model
obtained with the value of the parameters stated in the text. Centre, the time evolution
of X changing only the initial number of molecules of X from 247 to 250: the behaviour
seems to completely change. Right, 50 runs of the SSA on the Schlögl model shows the
behaviour in a more informative way.

These differ in the way in which the distance is calculated and in the method
used to compute the time evolution of the system.

LOAT (ODE): The difference is computed from the output resulting from the
ODE models. Performing the analysis more than once will lead to the same
result, due to the deterministic nature of the ODEs.

LOAT (Gillespie Average): Many exact SSA simulations are computed here,
so the result may change from analysis to analysis, reducing its variation if
the number of stochastic simulations increases. The average of the simula-
tions output is used.

LOAT (Gillespie Density): Also in this case, the exact SSA (Gillespie’s
Direct Method) is used to compute the evolution of the system. In this
analysis the histogram distance is used instead of the simple difference of
the averages.

Given the difference in the order of magnitude of the parameters of the Schlögl
model, we may be more interested in the relative perturbation. For this reason
we consider the simple output difference a more interesting sensitivity index than
the derivative and we will discuss that first.

In Fig. 5 the first significant observation is that the ODE and Gillespie Density
procedures share common results. They both show that k1 produces the same
variation as A and that k3 produces the same variation as B. Indeed, we know
that k1 and A are related, because they could have been considered a single
parameter (consider the propensity functions), and this fact has been captured
by the analysis. The same reasoning holds for k3 and B. On the other hand, an
important and expected difference appears in the influence of X0. With ODEs,
the output variation induced by the perturbation of X0 is similar to that of k1
and k3, showing high sensitivity. This is due to crossing the bifurcation point.
The Gillespie Density method shows instead a low value of histogram distance
for the same perturbation, revealing it to be far less influential than k1. (This
latter method can easily be proved to be the correct one by considering Fig. 6,
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Fig. 5. Results of the three LOAT SA described in the text. The time of the analysis
is 20 seconds with a perturbation of 1%. Above the line all results are computed
using derivatives (distance divided by the perturbation). Below the line all results are
computed using elementary OAT (just distance). The histogram distance is computed
with 50 histogram columns and 5000 runs. The histogram self distance for X is 0.068.
ODE fractional value 0.001. Results obtained using the simulator Dizzy [7].

where the histograms of the distribution of X at time 20, generated with nominal
and perturbed parameter values, nearly coincide. In Fig. 6 can also be observed
how the perturbation of k1 influences the outcome of the stochastic simulations.)
Parameter k3, along with B, has been discovered to be not particularly influen-
tial, with a histogram distance close to the self distance.

The Gillespie Average approach seems instead inconsistent, particularly when
it shows k1 and A to have different sensitivities.

To conclude the discussion of the results we can notice how the derivative
approach (Fig. 5, above the line) attributes the same order of importance to the
parameters in all three cases. However, this is due mainly to their different orders
of magnitude and not significant with regard to the sensitivity of the system. It
is clear that, at least in this context, a parameter that is estimated to be of the
order of 10−5 and a parameter that is estimated to be of the order of 103 are
not directly comparable.

According to the results of this first study we will from now on prefer the
simple distance, specifying the relative perturbation in percentage.

3.3 Screening Methods

In this section we apply Morris’ method in two different versions: firstly an
adapted version of the original algorithm which makes use of the output of
ODEs; and secondly a novel modification which uses the information captured
by sets of stochastic simulations.
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Fig. 6. Values of output X of the stochastic simulations at time 20. On the left with
nominal parameter values (H0) and X0 perturbed by 1% (H1). On the right with nom-
inal parameter values (H0) and k1 perturbed by 1% (H1). Each histogram is obtained
from 5000 samples grouped in 50 columns.

Given our previous experience with LOAT SA we make use of two different
elementary effects : one being the simple difference of the outputs of ODE models;
the other the histogram distance of outputs of stochastic simulations. Moreover
we consider the possibility of having multiple outputs:

dij(x) = yj(x1, ..., xi + Δ, ..., xk) − yj(x)
dij(x) = D(Yj , Y

′
j )

where in general dij is the local influence of the ith input on the jth output of the
model. Considering a certain fixed time t when the analysis is performed, yj is
the outcome of the output j at that time and x is the vector of parameters. Yj is
the random variable (r.v.) of the outcome of the jth output at time t distributed
following the pdf f(yj,x) and Y ′

j is the r.v. of the outcome of the jth output at
the same time distributed following the pdf f(yj, x1, ..., xi +Δ, ..., xk). D(Yj , Y

′
j )

is the histogram distance between Yj and Y ′
j .

In order for these two measures to have meaning, we modified slightly the
method to generate perturbations which are always comparable. The ranges are
chosen as displacement from a nominal value which is proportional (±10%) to
that value. In the p-level grid we allow only unitary perturbations (not multiples
of 1/(p − 1) but exactly 1/(p − 1) every time). This way, every difference cor-
responds to the same percentage in perturbation with respect to the parameter
nominal value which is central in the grid (Fig. 2).

Morris’ Methods on the Schlögl Model. The two screening methods have
been applied to the Schlögl model. Fig. 7 shows the outcome of the analysis
with ODEs used to determine the time evolution of the system. The average
elementary effect has the role of ordering the parameters from the most to the
least influential. However, the elevated standard deviation of all the parameters
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Fig. 7. Result of Morris’ method on the Schögl model. Time evolution is computed
with ODEs (left) and with stochastic simulations (right). The adopted parameters are
1000 random points for ODE r (40 for stochastic simulations), grid level 5 p, time of the
analysis 10s, ±5% from nominal value, ODE fractional value 0.001. Number of stochas-
tic simulations 1000 and number of histogram columns 50. The average histogram self
distance of the random points was 0.141 with std. dev. 0.025.

sensitivities makes this classification difficult and reveals that the model is likely
to be nonlinear with respect to the parameters and strong dependency between
the parameters is also likely to exist.

Fig. 7 shows also Morris’ method applied using histogram distance. It is impor-
tant to bear in mind that all the conclusions are up to the level of precision that
is given by the average self distance. Observing Fig. 7 (right) we can at this
point say that, with the current approximations, the initial number of molecules
of the species X is a factor that appears not to be influencing the value of the
species X at time 10 seconds. We can also see that the product k3B has a weak
influence and that this influence does not change particularly as other param-
eters change (relatively low standard deviation). The other three parameters,
k2, k4 and k1A show instead that they have a significant influence, particularly
k1A, and their relative larger standard deviation implies non-linearity and cor-
relations. The reduction of the relative standard deviation in the novel Morris’
method helps us to be more confident when stating which factors are the most
important and which require to be further analysed.

3.4 Global Methods

We applied variance-based analysis to the Schlögl model, both with the ODE and
the stochastic simulation approach. The analysis has been performed considering
a subset of three parameters, selected as the most important factors arising from
a previous analysis with Morris’ method (Fig. 7 on the right). The factors are
k4, k1A and k2.

The results of the analysis of the two variance-based approaches are shown
in Table 1. We notice that the order of importance of the three parameters is
the same, according to the total sensitivity indices. Differences in the first and
second order sensitivity indices may be due to the relative weaker importance
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Table 1. Variance-based sensitivity analysis of Schlögl model. First-order sensitivity
indices relative to the factors k4 (1), k1A (2) and k2 (3) and other combined effects are
shown. The last three rows show the total sensitivity indices. Time of the analysis 10s,
grid level 5, fractional step size of ODE method 0.001, number of stochastic simulations
1000, number of histogram columns 50.

VCE with histogram distance VCE with ODEs
index sensitivity rank sensitivity rank

S1 0.244 2 21278 2
S2 0.325 1 30366 1
S3 0.064 5 4028 5
S12 0.086 4 10033 3
S13 0.008 7 299 7
S23 0.086 3 456 6
S123 0.054 6 8969 4
TS1 0.392 2 40580 2
TS2 0.551 1 49826 1
TS3 0.213 3 13752 3

that k2 seems to have in the classical analysis. Indeed, sensitivities involving k2,
like S13 or S23 are weaker in the classical analysis.

4 Sensitivity Analysis of the Mitogen-Activated Protein
Kinase (MAPK) Cascades

Mitogen-activated protein kinase (MAPK) cascades [8,9] are signalling pathways
which share a particular common structure consisting usually of three levels,
where the signal is transmitted from one level to another through the phospho-
rylation of a kinase. Once activated this phosphorylates the kinase at the next
level down the cascade (Fig. 8, left). The MAPK protein that triggers the cell
response usually needs to be activated through a two-site phosphorylation. The
catalyst for this reaction is a MAPKK (MAPK kinase) molecule and, at the
upper level, the same role belongs to a MAPKKK (MAPKK kinase) molecule.
The last molecule in this model is the MKP (MAP kinase phosphatase) which
dephosphorylates, and so deactivates, the MAPK molecule.

We consider a single level of the MAPK cascade with only one MAPK kinase
and without making any distinction between MAPK phosphorylated on tyrosine
or theronine. The model consists of a two step double phosphorylation (Fig. 8 on
the right). When speaking about this level of the MAPK cascade, we use M , Mp
and Mpp as the unphosphorylated, monophosphorylated and biphosphorylated
forms of MAPK.

The model of MAPK which we use in this section has been presented in [8]
as a system of ODEs which describe the evolution of the concentration of M ,
Mp and Mpp in time. The rate at which these concentrations change is obtained
using assumptions from the Michaelis-Menten kinetics. We use the same set of
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Fig. 8. On the left: structure of a MAPK cascade. At each level, the enzyme that
catalyzes the reaction in the next level is activated by a two-site phosphorylation. On
the right: model of a level of the MAPK cascade.

equations, but with number of molecules instead of concentrations. This proce-
dure is correct if we assume that the product of the cell volume and the Avogadro
number is equal to 1.

The system in Fig. 8 (on the right) is defined by the following enzymatic reac-
tions. Notice how, in the first two lines, phosphorylation and product dissociation
are considered a single step, while, in the last two lines, dephosphorylation and
product release are two distinct steps.

M + MAPKK
k1,k−1←→ M-MAPKK k2→ Mp + MAPKK

Mp + MAPKK
k3,k−3←→ Mp-MAPKK k4→ Mpp

Mpp + MKP3
h1,h−1←→ Mpp-MKP3 h2→ Mp-MKP3

h3,h−3←→ Mp + MKP3

Mp + MKP3
h4,h−4←→ Mp-MKP3 ∗ h5→ M-MKP3

h6,h−6←→ M + MKP3

This system can be reduced to only four reactions, under the assumptions of con-
stant number of ATP/ADP molecules and protein-protein complexes at steady-
state. These are the resulting reactions and rate equations.

M v1→ Mp v1 =
kcat
1 · MAPKK · M /Km1

(1 + M /Km1 + Mp/Km2)

Mp v1→ Mpp v2 =
kcat
2 · MAPKK · Mp/Km2

(1 + M /Km1 + Mp/Km2)

Mpp v3→ Mp v3 =
kcat
3 · MKP3 · Mpp/Km3

(1 + Mpp/Km3 + Mp/Km4 + M /Km5)

Mp v4→ M v4 =
kcat
4 · MKP3 · Mp/Km4

(1 + Mpp/Km3 + Mp/Km4 + M /Km5)

In these expressions MAPKK and MKP3 are the total amount of molecules
of the two enzymes and are considered constant through time. The nominal
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Fig. 9. Left, time evolution of the Mpp molecule of the MAPK model computed with
ODEs using the nominal parameter values described in the text. Centre, the initial
number of molecules of the phosphatase MKP3 is incremented by 5%. Right, 40 runs
of the SSA with the nominal parameter values show how the evolution of the system
may lead to two different stable systems.

values of the parameters and the relationship with the kinetics of the elementary
enzymatic reactions are given below.

kcat
1 = k2 = 0.01

kcat
2 = k4 = 15

kcat
3 = h2/(1 + h2/h3) = 0.084

kcat
4 = h5 · (1 + h5/h6 + h−3 · (h−4 + h5)/(h3 · h4))−1 = 0.06

M0 = 200
Mp0 = 0
Mpp0 = 300
MAPKK 0 = 50
MKP3 0 = 100

Km1 = (k−1 + k2)/k1 = 50
Km2 = (k−3 + k4)/k3 = 500
Km3 = (h−1 + h2)/(h1 + h1 · h2/h3) = 22
Km4 = (h−4 + h5) · (h4 · (1 + h5/h6 + h−3 · (h−4 + h5)/(h3 · h4)))−1 = 18
Km5 = (h6/h−6) = 78

The particularity of these parameter values is that they are close to a bifurcation
point. As can be seen in Fig. 9 (left and centre), a small perturbation of an
ODE parameter value can lead to a radical change in the behaviour of the
time evolution of the double phosphorylated MAPK (Mpp). As with the Schlögl
model a set of runs of the SSA shows that the real behaviour of the system
with the nominal parameters is a choice between two stable systems. Moreover,
thanks to [8], we know that this system with the stated parameters presents three
steady-states which we can consider to be three attractors for the stochastic
simulations. This situation is confirmed by the graph of the time evolution of
Mpp in Fig. 9 (right). Although the choice appears to be between two attractors,
it is delayed in those runs which are influenced by a central attractor.

4.1 Sensitivity Analysis

In this section we apply both classical SA and the techniques which we developed
earlier to the presented MAPK model. We will proceed with a comparison of
the methods throughout the analysis. Our choice is to measure the influence of
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Fig. 10. LOAT sensitivity analysis of the MAPK model at time 2000 seconds. The
result of classical analysis is on the left and the result of the analysis based on histogram
distance is on the right. ODE time evolution is computed with fractional step size of
0.0001, while we used 10000 stochastic simulations and 50 histogram columns in the
SSA runs. The perturbation of each parameter has been by 5%. The histogram self
distance is 0.1.

the factors, kinetics and initial number of molecules, on the amount of double
phosphorylated MAPK (Mpp). To do so, we choose the time of the analysis to
be 2000 seconds. This time, as revealed in Fig. 9, is at the core of the choice
between the two possible behaviours of the system and is within the limits of
our possibilities in terms of computational power when using the SSA.

Local one-at-a-time Analysis. As a first step in the sensitivity analysis of
the MAPK model, we performed a LOAT analysis. As we have seen, this consists
of the perturbation of one of the factors at a time and in the measurement of
the corresponding output change with respect to the original model. We used
two different measures: the simple difference of the values of Mpp at time 2000
seconds generated using ODE-based results; and the histogram distance between
the sets of values of Mpp at time 2000 seconds collected using stochastic simula-
tions. With this first and computationally inexpensive analysis, we can have an
idea of the relevance of the factors in the immediate surrounding of the factor
nominal values. However, we have to bear in mind that without a global analysis
we cannot be certain of the implications that may arise from perturbing more
than one factor simultaneously. This last point cannot be neglected when trying
to assert the influence of a factor on the model.

The results of the local one-at-a-time analysis are shown in Fig. 10. The
thirteen factors are listed in the graphs from the most relevant to the least. We
can notice that the relative order of importance is not particularly affected by
the method used for the analysis. However, with the deterministic approach it
appears that just the amount of phosphatase MKP3 is the most relevant factor,
while with the stochastic approach, the intuition is that both the amount of
kinase MAPKK and phosphatase MKP3 are the most relevant factors, above all
the others.

This last statement can be defended, at least in this local analysis, through
reference to the histograms generated using the results of the stochastic simu-
lations of the perturbed models. Fig. 11 highlights that the initial amount of
MAPKK and MKP3 are both the most influential factors. Moreover, they play
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Fig. 11. Histograms which collect the values of Mpp obtained using 10000 stochastic
simulations. Each histogram is divided into 50 columns. Left, all the histograms result-
ing from the one-at-a-time (OAT) analysis, one for each factor perturbed. Right, a
second OAT analysis with only the histograms relative to the perturbations of the ini-
tial amount of MAPKK and MKP3. The histograms labelled with nominal parameters
are those generated with the values of the parameters stated in the text.

the strongest role in the choice between the two possible stable systems. They
have opposite roles, since increasing the amount of one of the two enzymes leads
to opposite choices. It is indeed not surprising that the condition of bi-stability
is guided by the right proportion in the amount of enzymes that catalyze the
reactions.

Screening with Morris’ Methods. Before we proceed to a more detailed
analysis, we wish to use a screening method to identify and then exclude those
factors that are clearly the least influential. Once we have isolated only a small
part of most influential factors, we can proceed with the computationally expen-
sive techniques which can provide the most detailed analysis. To do so, we use
the techniques we developed earlier based on Morris’ method. As we have seen,
we consider a range of possible values for each factor and then we sample in the
vector space generated by all the possible combinations of values of all the fac-
tors. This sampling is done randomly and through the use of a grid. We use here
a grid level of five, meaning that each of the thirteen parameters can assume
one of five possible values. For each random point selected in the grid of all
the possible combinations of values, a LOAT analysis is performed. The indices
resulting from that are the elementary effects which are local with respect to
that random point. Averaging over all these local analyses reveals whether the
degree of importance of a parameter is constant or changes when the other fac-
tors assume other values. The results of Morris’ method applied to the MAPK
model are shown in Fig. 12.

Also in this case we compare the results obtained with the deterministic
method which uses the time evolution computed with ODE and the stochas-
tic method which uses time evolution computed with SSA. The ODE-based
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Fig. 12. The result of Morris’ method applied to the MAPK model. ODE integration
uses a fractional step size of 0.0001. Result obtained with a grid level of 5 and an average
over 1000 random points. In the approach based on histogram distance, 1000 runs of
SSA, 50 columns and 40 random points have been used and the average histogram
distance is 0.15 with standard deviation of 0.061. The parameters vary within ± 10%
of their nominal value.

approach highlights that, although the most influential parameters are confirmed
to be the initial amount of MAPKK and MKP3, the elementary effects of the
factors are extremely variable. In this case it is difficult to say which factors we
want to include in the detailed global analysis, if we exclude MAPKK and MKP3.
The important standard deviation of the elementary effects is certainly due to a
correlation between the factors and the non-linearity of the model output with
respect to the parameters.

Before discussing the results obtained with Morris’ method based on his-
togram distance, we need to point out that we were forced to limit the accuracy
of the analysis, due to the demanding asymptotic complexity of the algorithms
and the computational power available to us. Each experiment is made of 1000
stochastic simulations, number which leads to a relatively high histogram self
distance of 0.150, and a standard deviation of 0.061. However, we have already
seen in the LOAT analysis that the self distance can be considerable even with
the greater precision of 10000 stochastic simulations (self distance of 0.1, see
Fig. 10). Therefore, it appears that the point in time where we perform our
analysis is particularly unstable, with high stochasticity and indecision from the
single runs about which stable system to choose. We can then assume that we
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have two factors that limit the accuracy of our results: a limited number of
stochastic simulations and a strong stochasticity already present in the model.

The results of Morris’ method based on histogram distance, shown in Fig. 12,
confirm the strongly non-linear dependence in the model and the inconstant
influence of the parameters on the amount of double phosphorylated MAPK at
time 2000 seconds. On a more positive note, this method appears to achieve
a more precise information than the ODE-based analysis. First of all, many
parameters have reduced the standard deviation of their elementary effect. We
can therefore be more confident when stating that some factors are less influential
than others. Moreover, the strong influence which is attributed to the initial
amount of the enzymes MAPKK and MKP3 is more clearly evident. Finally,
this second analysis assigns a different role to the factors Mpp0 and M0. Here,
they appear to have a stronger average sensitivity, though this sensitivity may
vary considerably (large standard deviation), showing a strong dependence on
the value of the other parameters.

Global Analysis with Variance Decomposition. Thanks to the screening
which we applied in the previous section, we can now apply a global and more
informative method to a reduced set of parameters taken from the factors of the
MAPK model. The factors that proved to be the most influential are the initial
number of molecules of MAPKK and MKP3, so we investigate their influence
as single parameters and their combined effect. For this purpose we used the
techniques developed in Section 3.4. Again, a method based on differences of
outputs of ODEs and one based on histogram distances of executions of SSA are
compared. These measures consider the variance of the output: while the former
focuses on the variance of the ODE output, the latter estimates the variance in
the distribution approximated by histograms. In both cases, the quantity of the
variance that is due to each parameter is identified (Table 2).

In both the approaches, the initial amount of MAPKK and MKP3 present
the same level of importance, with the former that is slightly more influential.
The difference lies in the importance that is given to the combined effect of the
two factors. While with the first approach the combined effect is considerably
less than the single effects, with the second approach it appears that the two

Table 2. First and second order sensitivity indices relative to the factors MAPKK0

(1) and MKP30 (2) of the MAPK model and their combined effect (12), obtained
computing the variance of the conditional expectation. The fractional step size used in
the ODE integration is 0.0001, the number of stochastic simulations used is 5000 and
the number of histogram columns is 50. The parameters vary within ± 10% of their
nominal value.

Variance-based with ODEs Variance-based with histogram distance
index sensitivity rank sensitivity rank

S1 15695.65 1 0.350 2
S2 15308.66 2 0.332 3
S12 5631.88 3 0.811 1
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Fig. 13. Distribution of the values of Mpp from 2000 stochastic simulations at time
2000 seconds, with simultaneous perturbation of MAPKK and MKP3. Above, from left
to right: number of molecules of the enzymes decreased by 20%, 10% and with their
nominal value. Below, from left to right: number of molecules of the enzymes increased
by 10%, 20% and 30%.

Fig. 14. Time evolution of the double phosphorylated MAPK (Mpp) with ODE for
2000 seconds, with simultaneous perturbation of MAPKK and MKP3. Above, from left
to right: number of molecules of the enzymes decreased by 20%, 10% and with their
nominal value. Below, from left to right: number of molecules of the enzymes increased
by 10%, 20% and 30%.
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parameters are more linked. Changing them together leads to a stronger influence
with respect to a one-at-a-time change.

The visualisations in Fig. 13 help to prove the connection and reciprocal influ-
ence of the factors of this model. In this figure one can see that the combined
perturbation of MAPKK and MKP3 leads to a variation of the distribution of
the set of values obtained with the stochastic simulations. Although the mean
of these values appears to be the same, the distributions seem to pass from a
compact and largely Gaussian shaped (on the left) to a more irregular one, which
begins to show the two peaks of the bi-stability. This observations can be inter-
preted as the simple fact that increasing the amount of enzymes accelerates the
process, allowing the two stable choices to be reached sooner. Other interesting
visualisations are those in Fig. 14, where we can observe that the ODE integra-
tion fails to interpret the high stochasticity and indecision present in the system
at time 2000 seconds. However, also in this case, incrementing or decreasing the
quantity of enzymes accelerates or slows the production of MAPK-PP (Mpp).

5 Conclusions

In this paper we have shown an example of how sensitivity analysis of a model of
biochemical reactions can be performed using both deterministic and stochastic
approaches. As a first result, we have shown how global analysis such as Morris’
method first and the variance decomposition after, are necessary and must be
used to identify the relationship between the factors. For example, if we had
to rely only on a local analysis, we would just accept the order of importance
given in Fig. 10. However, thanks to the further application of a global screening
method (Fig. 12), we have been able to state that this order of importance may
vary if we change the value of more than a single factor at once. This suggested,
if not actually demanded, a further and more informative analysis concerning
those factors that seemed the most influential and dependent on the others. In
this case, we showed the intuitive relationship between the enzymes MAPKK
and MKP3, whose simultaneous increment accelerates the system and whose
proportions play the main role in the bi-stability of the system.

As a second but not less important result, the comparison between deter-
ministic and stochastic approaches to sensitivity analyis highlighted how, when
dealing with bistable systems near a bifurcation point, it becomes necessary to
have a sensitivity analysis tool that takes into account the distribution behind
a set of stochastic simulations. Although the analytical analysis of the ODEs is
fundamental to identify the bifurcation points and the multiple steady-states,
ODE integrations cannot model the uncertainty in the time evolution of the
system close to those bifurcation points. In this situation of high stochasticity,
a more suitable sensitivity analysis is one that takes into account the variations
between sets of stochastic simulations rather than the simple output of a ODE
integration. Here, for example, we have seen how a modified version of Morris’
method, identified some properties that the deterministic method was not able
to capture.
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