
Tuning Systems: From Composition
to Performance

Jane Hillston

School of Informatics, University of Edinburgh, Scotland UK

Email: Jane.Hillston@ed.ac.uk

This paper gives a summary of some of the work of the PEPA project, work
which attracted the 2004 Roger Needham Award from the BCS. Centred on
the PEPA modelling formalism, the project has been a happy interaction of
theory and application. Theoretical developments have been tested and validated
by application to a wide range of problems including the originally intended
application domain of performance analysis of computer and communication

systems, but also a number of unforeseen novel application areas.

Keywords: Performance modelling, stochastic process algebra, PEPA, compositional
modelling, decomposed solution

Received ??; revised 2005; accepted ??

1. INTRODUCTION

The PEPA project started in Edinburgh in 1991. It
was motivated by problems encountered when carrying
out performance analysis of large computer and
communication systems, based on numerical analysis
of Markov processes. Performance analysis seeks to
predict the behaviour of a system with respect to
dynamic properties such as the number of requests
that can be satisfied per unit time (throughput) and
response time. Markov processes, whilst offering
general applicability, are difficult to construct for large
systems so an intermediate system description language
is often used. In the early nineties the most common of
these were queueing networks and Stochastic Petri Nets
(SPN). Queueing networks, whilst very powerful when
applicable, have limited expressiveness and lack formal
interpretation. SPN models have formal interpretation
but do not have the explicit structure found in queueing
networks, which greatly eases model construction.

Process algebras such as CCS and CSP [76, 63] offer
a compositional description technique supported by
apparatus for formal reasoning. From a performance
perspective, however, they lack the timing information
essential to derive performance estimates: actions
are instantaneous and choices are non-deterministic.
Performance Evaluation Process Algebra (PEPA)
sought to address these problems by the introduction
of a suitably quantified process algebra. Associating
an exponentially distributed delay with each activity of
the process algebra, PEPA is a language suitable for
generating a continuous time Markov chain (CTMC).

The PEPA project has sought to investigate and
exploit the interplay between process algebra and the
underlying continuous time Markov chain (CTMC).

The remainder of this paper is structured as follows.
In Section 2 a more detailed account of the motivation
and background of the project is given. Some of
the theoretical developments of the PEPA project are
described in Section 3. It is unwise practice to develop
theory without checking it against real applications and
some of the case studies which have been undertaken
using PEPA are outlined in Section 4. This section
also gives an account of the tool support for PEPA
and recent efforts to extend the applicability of PEPA
modelling. To conclude, some directions for future and
on-going work are presented in Section 5.

2. BACKGROUND

In this section we explain in more detail the context
in which PEPA was developed, that of performance
modelling of computer and communication systems
using continuous time Markov chains (CTMC). This is
followed by a brief overview of process algebras, and an
introduction to the idea of stochastic process algebra.

2.1. Performance Modelling using CTMC

There are a variety of approaches available for the per-
formance evaluation of computer and communication
systems. If the system exists it may be possible to mon-
itor the system directly. However, in general, such an
approach is time-consuming, difficult and lacks general-
ity. Therefore it is often preferrable to model the system
rather than use such direct experimentation. Indeed
when the system is yet to be constructed, modelling is
the only option.

Performance models may be analysed by simulation,
numerical solution or analytical solution. Simulation

The Computer Journal, Vol. 00, No. 01, 2005

2 J. Hillston

models have the advantages of being insensitive to
state space size. Unfortunately such models are time-
consuming to analyse and bring the intellectual burden
of evaluating the trustworthiness of the results by the
calculation of confidence intervals.

In contrast analytic solution, in which an expression
for the performance measure of interest is derived in
terms of the input parameters of the model, can be
extremely efficient to use. However, constructing such
solutions is very much the domain of the expert and
typically each system requires a bespoke solution.

Numerical solution of a Markov chain offers a
compromise between these two extremes. Some
assumptions about the system, particularly with
respect to the timing of events, are needed. But
the resulting models are relatively straightforward to
solve, relying only on simple linear algebra techniques.
For moderately sized models the generator matrix of
the Markov chain can be stored as a dense matrix,
admitting direct solution methods with good numerical
accuracy. For larger models sparse matrices are needed,
necessitating the use of iterative solution techniques
with some loss of numerical precision. The largest
models require yet more ingenuity in the representation
of the matrix using Kronecker or BDD-based storage.
Here convergence becomes an issue plus these storage
schemes inevitably lead to much longer solution times,
because they are data structures tuned for compactness
not speed of access.

2.2. Process Algebra

Process algebras are abstract languages used for the
specification and design of concurrent systems. The
most widely known process algebras are Milner’s
Calculus of Communicating Systems (CCS) [76] and
Hoare’s Communicating Sequential Processes (CSP)
[63]. The stochastic process algebras take inspiration
from both these formalisms.

In the process algebra approach systems are modelled
as collections of entities, called agents, which execute
atomic actions. These actions are the building
blocks of the language and they are used to describe
sequential behaviours which may run concurrently, and
synchronisations or communications between them.

In CCS two agents communicate when one performs
an action, a say, while the other performs the
complementary action ā. The resulting communication
action has the distinguished label τ , which represents
an internal action that is invisible to the environment.
Agents may proceed with their internal actions
simultaneously but it is important to note that the
semantics given to the language imposes an interleaving
on such concurrent behaviour.

The communication mechanism in CSP is different
as there is no notion of complementary actions.
In CSP two agents communicate by simultaneously
executing actions with the same label. Since

during the communication the joint action remains
visible to the environment, it can be reused by
other concurrent processes so that more than two
processes can be involved in the communication
(multiway synchronisation). This is the communication
mechanism adopted by most of the SPA languages.

In either case the language is given a small-step
structured operational semantics [80], and this is used
to generate a labelled transition system. This can be
regarded as a derivative tree or graph, in which language
terms form the nodes and transitions (actions) are the
arcs, which records all the possible evolutions of a
language expression or model. This graph can be used
for functional verification. For example (see Figure 1):

Reachability analysis considers whether there is an
evolution of the system which will arrive at a
particular state or exhibit a particular behaviour,
for example establishing freedom from deadlock or
livelock.

Specification matching contrasts a process algebra
expression of the expected behaviour of the
system, a specification, with a model of the actual
implementation. If under an appropriate notion of
equivalence the two are equivalent it can be verified
that the implementation will deliver the expected
behaviour.

Model checking. Many process algebras are
equipped with complementary logics which
allow properties of the system or its evolution to
be expressed1. Model checking is a procedure for
establishing whether a particular property φ will
be respected by the system.

Various forms of equivalence relations have been
defined for process algebras, based on the structured
operational semantics, and they play a fundamental role
in model analysis. An important class of relations are
based on the notion of bisimulation: two agents are
bisimilar if, from the perspective of an observer, each is
able to mimic the behaviour of the other.

Consider the agents, P and Q, below:

Q

a

a
c d

b

P
c

b

d

a

Although the two are trace equivalent, i.e. they can
generate identical sequences of actions, they are not
bisimulation equivalent because when Q has performed
an a action it cannot offer the choice of a b or a c in the
manner of P .

2.3. Stochastic Process Algebra

In order to carry out performance analysis of a
system, it is essential to record information about the

1Specifications can be expressed in such a logic as an
alternative to a process algebra model.

The Computer Journal, Vol. 00, No. 01, 2005

Tuning Systems: From Composition to Performance 3

Will the system
arrive in a

particular state?

e ee e e ehee e
- - -

?
����

���

-

���

Does system
behaviour match
its specification?

ee
e

e
e

-

6

-

?�
��� ≡

? e ee e e eee e
- - -

?
����

���

-

���

Does a given

property φ hold

within the system?
φ ��������

PPPPPPPP

e ee e e eee e
- - -

?
����

���

-

���

FIGURE 1. Functional analysis of process algebra

timing characteristics of the system and the relative
probabilities of alternative behaviours. Without this
quantified information it is not possible to derive
quantitative measures such as expected response time
or throughput. Therefore in order to create a
process algebra suitable for performance modelling
this quantification was added by associating a random
variable with all of the actions of the algebra [52]. In the
case of PEPA it is assumed that these random variables
are governed by a negative exponential distribution
[55]. This is because it is only in that case that
it is possible, in general, to associate a CTMC with
the process algebra model. Explicit probabilities need
not be used to differentiate alternative behaviours —
implicit probabilities may be derived from the relative
timings of the actions involved.

The benefits of adding quantification can be seen if we
reconsider the functional analysis scenarios presented in
Figure 1. In each case we can enrich the question asked
to take into account timing or probability information.
For example, we can now query how long it might
take to reach a particular state or behaviour, whether
the probability profiles of the specification and the
implementation models match, and the probability that
a particular property holds.

3. THEORY

The theoretical development underpinning PEPA has
focused on the interaction between the process algebra
and the underlying mathematical structure, the CTMC.
The work can be broadly categorised into three areas:

• Designing the language
• Manipulating models
• Solving models and deriving measures

These will be discussed in the following subsections.

3.1. Designing the language

In the early 1990s several stochastic process algebras
motivated by the desire to add quantification to process
algebra models and make them suitable for performance
modelling, appeared in the literature. These included
TIPP [47] from the University of Erlangen, EMPA [6]
from the University of Bologna and SPADE [83] from
Imperial College, in addition to PEPA. PEPA was the
first language to be developed with the intention of
generating a CTMC which could be solved numerically,
but versions of TIPP and EMPA from around the same
time were similarly Markovian based.

As previously mentioned, PEPA extends classical
process algebra by associating a random variable, rep-
resentating duration, with every action. These random
variables are assumed to be negative exponentially dis-
tributed and this leads to a clear relationship between
the process algebra model and a CTMC. Via this un-
derlying CTMC performance measures can be extracted
from the model.

PEPA models are described as interactions of
components. Each component can perform a set of
actions: an action a ∈ Act is described by a pair
(α, r), where α ∈ A is the type of the action and
r ∈ R+ is the parameter of a negative exponential
distribution governing its duration. Whenever a process
P can perform an action, an instance of the probability
distribution is sampled: the resulting number specifies
how long it will take to complete the action in this
instance.

A small but powerful set of combinators is
used to build up complex behaviour from simpler
behaviour. The combinators are familar from classical
process algebra: prefix, choice, parallel composition
(cooperation) and abstraction (hiding). Each of the
combinators is informally introduced below in terms
of a very simple model of a web-based information
system, and the formal operational semantics are shown
in Figure 2.

Prefix (.): A component may have purely sequential
behaviour, repeatedly undertaking one activity after
another and eventually returning to the beginning of
its behaviour. A simple example is a web server, which
allows one data transfer at a time. Each browser
requiring web pages etc. will need to acquire access
to the server and only when the transfer is complete
will the server be released and available again for
acquisition.

Server
def= (get,>).(downld, µ).(rel,>).Server

In some cases, as here, the rate of an action is outside
the control of this component. Such actions are
carried out jointly with another component, with this
component playing a passive role. For example, the

The Computer Journal, Vol. 00, No. 01, 2005

4 J. Hillston

Prefix

(α, r).E
(α,r)
−−−→ E

Choice

E
(α,r)
−−−→ E′

E + F
(α,r)
−−−→ E′

F
(α,r)
−−−→ F ′

E + F
(α,r)
−−−→ F ′

Cooperation

E
(α,r)
−−−→ E′

E ��
L

F
(α,r)
−−−→ E′ ��

L
F

(α /∈ L)

F
(α,r)
−−−→ F ′

E ��
L

F
(α,r)
−−−→ E ��

L
F ′

(α /∈ L)

E
(α,r1)
−−−→ E′ F

(α,r2)
−−−→ F ′

E ��
L

F
(α,R)
−−−→ E′ ��

L
F ′

(α ∈ L)

where R =
r1

rα(E)
r2

rα(F)
min(rα(E), rα(F))

Hiding

E
(α,r)
−−−→ E′

E/L
(α,r)
−−−→ E′/L

(α /∈ L)

E
(α,r)
−−−→ E′

E/L
(τ,r)
−−−→ E′/L

(α ∈ L)

Constant

E
(α,r)−→ E′

A
(α,r)−→ E′

(A def= E)

FIGURE 2. PEPA Structured Operational Semantics

server is passive with respect to the get action and this is
recorded by the distinguished symbol, > (called “top”).

Choice (+): A choice between two possible behaviours
is represented as the sum of the possibilities. For
example, if we consider a browser in the information
system, displaying the current data may have two
possible outcomes: demand for access to data available
in the local cache (with probability p1) or demand
for access to data stored at the remote server (with
probability p2 = 1 − p1). These alternatives are
represented as shown below:

Browser
def= (display, p1λ).(cache,m).Browser +

(display, p2λ).(get, g).(downld,>).(rel, r).Browser

A race condition governs the behaviour of simultane-
ously enabled actions and the continuous nature of the
probability distributions ensures that the actions can-
not occur simultaneously. Thus a sum will behave as
either one summand or the other. When an action has
more than one possible outcome, e.g. the display action
in the browser, it is represented by a choice of separate
actions, one for each possible outcome. The rates of
these actions are chosen to reflect their relative proba-
bilities.

Cooperation (��
L

): We have already anticipated that
the browser and the server in the example will be
working together within the same system. This will
require them to cooperate when the browser needs
to download data which is not available locally. In
contrast, the local activities of the browser can be
carried out independently of the server. Cooperation
over given actions is reflected in the cooperation by the
cooperation set, L = {get, download, rel} in this case.
Actions in this set require the simultaneous involvement
of both components. The resulting action, a shared

action, will have the same type as the two contributory
actions and a rate reflecting the rate of the action in
the slowest participating component. This is discussed
in more detail in the following subsection.

If, for simplicity, we assume that the system consists
of just two browsers, the system is represented as the
cooperation of the browsers and the server as follows:

WEB
def=

(
Browser ‖ Browser

)
��

L
Server

L = {get, download, rel}

The combinator ‖ is a degenerate form of the coop-
eration combinator, formed when two components be-
have completely independently, without any coopera-
tion between them (i.e. L = ∅), as in the case of the
two browsers.

Abstraction (/): It is often convenient to hide some
actions, making them private to the component or
components involved. The duration of the actions is
unaffected, but their type becomes hidden, appearing
instead as the unknown type τ . Components cannot
synchronise on τ . For example, as we further develop
the model of the information system we may wish to
hide the access of a browser to its local cache. This
might lead to a new representation of the browser:

Browser′
def= Browser/{cache}

and a corresponding new representation of the system:

WEB′ def=
(
Browser′ ‖ Browser′

)
��

L
Server

L = {get, download, rel}

Use of the hiding combinator in this way has two
implications. Firstly, it ensures that no components
added to the model at a later stage can interact, or
interfere, with this action of the browser. Secondly,

The Computer Journal, Vol. 00, No. 01, 2005

Tuning Systems: From Composition to Performance 5

private actions are deemed to have no contribution
to the performance measures being calculated and
this might subsequently suggest simplifications to the
model.

Throughout the simple example above we have used
constants (names) such as Server to associate identifiers
with behaviours. Using recursive definitions we are able
to describe components with infinite behaviours.

3.1.1. Cooperation
Communication or parallel composition is the essence of
compositionality in process algebras. It gives structure
to models, indicating which actions may be undertaken
concurrently, and which cannot. In PEPA there is
no concept of conjugate or complementatry actions,
as there is CCS, because the aim was to capture
something more general than a communication. Thus
there need not be strict input and output roles assigned
to the participants. Instead a multiway synchronisation
framework is adopted as in CSP. This means that
components or agents jointly perform actions of the
same type, when the parallel composition dictates it.
Note that in PEPA the cooperation combinator is in
fact a family of combinators, since its meaning varies
according to the contents of the cooperation set L.

Additional consideration is needed since the actions
which are to be performed jointly may each have
been assigned rates (durations) in their respective
components. The issue of what it means for two timed
actions to synchronise is a vexed one and the various
stochastic process algebras have adopted a variety of
solutions to this problem. This issue is discussed in [53]
and in detail in Bradley’s thesis [14].

In PEPA it is assumed that each component has
bounded capacity to carry out activities of any particular
type, determined by the apparent rate. For a component
P and action type α, the apparent rate of α in P ,
denoted rα(P), is the sum of the rates of each α
action enabled in P . This corresponds to the rate
at which P appears to an external observer to carry
out an α action, due to the superposition principle of
the negative exponential distribution. The definition of
cooperation in PEPA is based on the assumption that
a component cannot be made to exceed its bounded
capacity, meaning that the apparent rate of the shared
action will be the minimum of the apparent rates of the
components involved.

3.1.2. Semantics and Equivalence relations
The semantic rules of PEPA generate a labelled
transition system, just as in the case of classical process
algebra. However there are some significant differences
introduced by the inclusion of quantified information.
In particular it is important to note that the semantics
gives rise to a multi-transition system i.e. it is not
sufficient to record the existence of a transition or arc
between two nodes. The multiplicity of the transition is

also important. This is because the apparent rate of a
term which has two copies of the same arc, generated by
two instances of the same action, will differ from that
of a term with only one instance.

Once a derivation graph has been generated for a
particular model this forms the basis of the underlying
CTMC on which performance analysis will be carried
out. A state of the CTMC is associated with each
node of the graph, and the transition rate between
states is simply the sum of the rates of actions labelling
arcs between the corresponding nodes. Thus each
syntactic term of the PEPA model during its evolution
corresponds to a state of the CTMC. It is established
in [55] that this generates a unique Markov process.

PEPA has been equipped with a number of
equivalence relations which have been shown to be
useful for a variety of purposes [55]. The most
significant is strong equivalence, sometimes termed
Markovian bisimulation. Just as with the bisimulation
for classical process algebra, the central notion here
is that each of the pair of components should be
able to mimic the behaviour of the other from the
perspective of an external observer. This observer is
now assumed to have the ability to time the behaviour
over many repetitions and thus deduce information
about the apparent rates of actions. This means that for
components to be strongly equivalent they must have
the same apparent rate for all action types. Therefore
if we consider again the two processes, P and Q,
considered earlier, now enhanced with activity rates,

Q

(b,s)

(c,t) (d,u)

(a,r)

(a,r)
P

(a,r)

(c,t)

(b,s)

(d,u)

we can immediately deduce they are not bisimilar
because the apparent rates with respect to a in the
initial states are not the same. Note that this is
a bisimulation in the same style as the bisimulation
defined by Larsen and Skou for a probabilistic variant
of CCS [73].

Kemeny and Snell, established in 1960 that if we
partition the state space of a CTMC, and then form
a new stochastic process in which each partition forms
a state and the transition rate between states is the
superposed transition rate of all transitions in one
partition to the other, this stochastic process will satisfy
the Markov property, if and only if, the partition has a
property called lumpability [70]. An important property
of strong equivalence in PEPA is that it induces a
lumpable partition on the underlying CTMC. This
forms the basis of an exact model reduction technique,
termed aggregation which is discussed in the next
subsection.

The Computer Journal, Vol. 00, No. 01, 2005

6 J. Hillston

3.2. Manipulating models

PEPA, like all state-based modelling techniques,
suffers from problems of state space explosion. The
compositionality of the process algebra can greatly aid
model construction, but it can readily result in a model
which is too large to be solved directly. As explained
earlier, research into techniques which can reduce the
state space of models, or otherwise make them more
amenable to solution, has been an active area of
research in performance modelling for over 20 years.
Two such techniques are model simplification and model
aggregation, and the application of these techniques
in the process algebra setting has been investigated.
The challenge for PEPA has been to define such model
manipulation techniques in the context of the process
algebra, in such a way that they can subsequently be
applied automatically, based on the formally defined
equivalence relations.

3.2.1. Model simplification
In model simplification the objective is to replace one
model by another. Thus an equivalence relation is used
to establish behavioural or observational equivalence
between models. The aim is to find a replacement model
which is more desirable from a solution point of view,
e.g. smaller state space, special class of model, etc.
Once the desirable model has replaced the original, the
underlying CTMC is generated as usual, associating one
state with each node in the labelled transition system
generated by the semantics. Equivalence relations that
have been used in this way are weak isomorphism
[55, 24] and strong bisimulation [55] in PEPA.

3.2.2. Model aggregation
In model aggregation the objective is to take a more
abstract view of the system, and thus regard the
model at a coarser granularity. Here an equivalence
relation is used to establish behavioural or observational
equivalence between states within a model. In effect
this results in an alternative mapping from the labelled
transition system, given by the semantics of the model,
to the underlying CTMC. The equivalence relation is
used to partition the nodes of the labelled transition
system into equivalence classes. Then, instead of the
usual one-to-one correspondence between nodes and
states, one state in the CTMC is associated with each
equivalence class of nodes (see Figure 3) [54].

Establishing the link between strong equivalence and
lumpability in the underlying Markov process forms the
basis for an automatic procedure to reduce the size of
models. Moreover, since the equivalence relation is a
congruence the reduction can be applied to isolated
components of the model meaning that the state space
of the complete model need never be constructed [54].
An algorithm to apply this technique on-the-fly, at the
process algebra level, during state space generation has
been developed and implemented for PEPA models [42].

a) original state space

b) applying equivalence relation to form partition

c) aggregate, reducing each partition to a single state

FIGURE 3. State-state equivalence for aggregation

3.3. Solving models

Despite the successes that have been gained in
techniques for model manipulation, it still remains the
case that in many instances the matrix characterising
the underlying CTMC, and the corresponding steady
state probability vector, are simply too large to be
readily stored on standard computing equipment. A
variety of approaches to this problem for numerical
solution of CTMCs have appeared in the literature,
including using disk-based storage [33], Kronecker and
BDD-based representation of these entities [57, 51] and
decomposed solutions of various forms [56].

Much work on PEPA has studied the use of
decomposed solutions. It is clear that there is great
advantage to be gained if the compositional structure
of a PEPA model can be used during model solution,
i.e. if the CTMCs corresponding to the components can
be solved separately and their solutions combined to
obtain a solution, exact or approximate, of the whole
CTMC. This work is discussed in this subsection.

In many cases the techniques which are applied are
well-known at the CTMC level. The advantage of
characterising the corresponding class of PEPA models
is that by “lifting” the definition from the stochastic
process level to a formally defined high-level modelling
paradigm we can facilitate the automatic detection of
these structures when they occur, thus avoiding the

The Computer Journal, Vol. 00, No. 01, 2005

Tuning Systems: From Composition to Performance 7

construction of the original CTMC.

3.3.1. Product form models
One class of CTMCs which are susceptible to an efficient
solution technique are those which exhibit a product
form equilibrium distribution. Consider a CTMC X(t),
whose state space S is of the form S ⊆ S1 × S2,
i.e. each state s = s1 × s2 contains two pieces of
information capturing different aspects of the current
state. In general, these aspects may be dependent
in many ways. When the process X(t) exhibits a
product form solution, i.e. the steady state probability
of an arbitrary state s, π(s), can be expressed as
π1(s1)×π2(s2), it indicates that these different aspects
of the state description are independent with respect to
steady state.

Product form distributions have been widely used in
the analysis of queueing networks and, due to their
efficient solution, have contributed to the popularity
of queueing networks in performance analysis. For
example, Jackson networks [66] and their generalisation
BCMP-networks [3], have been widely employed. In
these cases the underlying CTMC is known to have a
reversible or quasi-reversible structure.

Work on finding PEPA models which give rise to
product form solutions has drawn on the previous work
on queueing networks. Essentially this can be seen as
an investigation of when components interact and yet
remain statistically independent at steady state. It is
clear that when a PEPA model consists of completely
independent components, i.e. P ‖ Q, the steady state
distribution will have product form:

π(P ‖ Q) = πP (P)× πQ(Q)

where πP and πQ are the steady state distributions over
the local states of P and Q respectively. However,
few real systems consist of components which are
independent in this way. The challenge has been
to find circumstances in which components P and Q
which interact, still exhibit statistical independence. A
number of classes of such models have been identified:

Reversible models Informally, a reversible Markov
process is one which behaves identically when we
observe it with time reversed as when we observe
it with time flowing forward. More formally, an
irreducible, stationary CTMC X(t) is reversible if
it satisfies the detailed balance equations:

π(j)q(j, k) = π(k)q(k, j) (1)

where q(j, k) is the instantaneous transition rate
from state j to state k and π(·) is the steady state
probability distribution.

An initial study of the structure of the state space
of SPA models giving rise to reversible CTMCs
was presented by Bhabuta et al. in [7]. In [61],
Hillston and Thomas, identify syntactic conditions

which a PEPA model must satisfy in order for the
underlying process to be reversible. The problem
is tackled in two stages. First, a basic class of
sequential components which give rise to reversible
structures are identified. Then, assuming that a
known class of reversible PEPA components exist,
the authors investigate under what circumstances
the conditions for reversibility will be preserved
if reversible components are composed using the
combinators of the PEPA language.

Fundamental to the basic class of reversible
sequential components is the notion of a reverse
pair. A pair of action types (α,−α) form a reverse
pair if, in any state, any α transition leads to a state
in which a −α transition leads back to the original
state. This ability to “undo” any transition in
the subsequent transition seems to be fundamental
to reversibility. It is clear to see that this is a
necessary condition for equation 1 to be satisfied.

Quasi-reversible models Like reversibility, quasi-
reversibility originates in queueing theory. For-
mally, a stationary CTMC X(t) is quasi-reversible
if, for all times t0 the state X(t0) is independent of

1. the input process after t0 and
2. the output process before t0.

Rather than the detailed balance equations
which characterised reversibility, a quasi-reversible
process satisfies partial balance equations:

π(i)
∑
j∈S′

q(i, j) =
∑
j∈S′

π(j)q(j, i) (2)

for all states i and a corresponding subset of
states S′. More details of the definition of quasi-
reversibility can be found in [69].

In [48], a PEPA characterisation of this class
is presented. As in the work on reversibility,
the approach is to first find simple instances
of PEPA processes which give rise to quasi-
reversible structure in their underlying CTMC.
Then, conditions are established under which these
components can be composed whilst maintaining
the quasi-reversible property. Again the notion of
a reverse pair is important and strong restrictions
are placed on the interactions between components:
each must be a flow cooperation. This means
that the “positive” half of a reverse pair in one
component is carried out in cooperation with the
“negative” half of a reverse pair in another.

Routing process models Sereno’s work, reported in
[81], derives product form criteria for PEPA models
based on earlier work on product form criteria
for SPN [50]. The SPN results rely on defining
a Markov chain whose states correspond to the
transitions of the SPN, the so-called routing chain.

The Computer Journal, Vol. 00, No. 01, 2005

8 J. Hillston

This chain exists only when severe restrictions are
placed on the forms of synchronisation and resource
contention which can be represented in the net.

Sereno’s approach for PEPA is completely anal-
ogous to the earlier work on SPN—he defines a
Markov chain in which the states correspond to the
actions of the SPA model. This is called the rout-
ing process. Sereno shows that if the state space of
the routing process can be partitioned into equiva-
lence classes of enabling actions (roughly speaking,
one action enables another if the post-set of one is
the pre-set of the other; we take the transitive clo-
sure of that relation), then a product form solution
exists. Moreover the partition forms the basis for
the decomposition.

Boucherie resource contention models Other
classes of models have been considered in which
the interaction between components is indirect
i.e. the components themselves are composed in
parallel (without cooperation) in the model defi-
nition, but they compete over cooperation with a
third component. Boucherie characterised a class
of Markov chains which fit in this framework.
In his definition, otherwise independent CTMCs
compete for exclusive access to shared resources,
causing blocking while a resource is held [11].

In [62] Hillston and Thomas characterise this
class of CTMC in PEPA. As in the underlying
CTMCs, the PEPA models consist of non-
interacting components which give rise to the
constituent processes of the underlying CTMC.
These components compete, via synchronisation
with resource components. A PEPA component
is termed a resource if it is never free to act
independently. The general form of these process
algebra terms and the resulting product form is,
schematically:

π
(
(P ‖ Q) ��

L
R

)
= B×πP (P ��

L
R)×πQ(Q ��

L
R)

where the component R represents the resource, πP

and πQ are the steady state distributions over the
derivatives of P ��

L
R and Q ��

L
R respectively, and

B is the normalising constant. The decomposition
is formed by considering each of the model terms
(P and Q in this case) acting in cooperation with
the resource (R) in isolation. Although presented
here informally, these conditions are defined as
formal syntactical conditions which can be checked
on the model specification.

Queueing discipline models In his PhD thesis [24],
Clark defined a new combinator QA,ξ for PEPA
which forces sequential components within its
scope to observe first-come-first-served (FCFS)
discipline with respect to action types within the
set A. Moreover the rates of activities of those

types are no longer controlled by the individual
components but by the vector ξ. This is a
derived combinator, meaning that any expression
involving the combinator can be re-expressed using
the existing PEPA combinators. In particular for
a set of components, S1, . . . , Sn,

QA(S1, . . . , Sn) ≡ (S1 ‖ · · · ‖ Sn) ��
Mξ

Rξ

for suitably chosen Mξ and Rξ.

This class of models is shown to be insensitive
and therefore to have a product form solution so
that the steady state probability of the complete
model can be written as an expression involving
the steady state probabilities of the individual
models solved in isolation. In [28] it is established
that this class of models is related to BCMP
queueing networks, capturing infinite server and
FCFS stations from the user’s perspective.

Unlike the other clases which have been discussed
above, characterisation does not necessitate the
definition of syntactic rules which may be used
to check whether any model instance belongs to
the class of not. Instead the use of the derived
combinator means that models can be constructed
with a guaranteed product form solution.

Quasi-separable models As with reversibility and
quasi-reversibility, the notion of quasi-separability
is one which has been developed in relation to
queueing networks, in particular queueing networks
in which breakdowns occur [78]. It is assumed
that the CTMC is comprised of a number of
components and that there are two pertinent
pieces of information for each component. A
representation of the whole process can then be
formed as a pair of vectors, each vector capturing
one piece of information for each component. For
a process to be quasi-separable it must be possible
to analyse the behaviour of a component, say
component i, given the ith element of the first
vector and all elements of the second, or vice versa.
This allows the complete process to be reduced to
a number of sub-models, each of which contains all
the information about exactly one component.

For such processes it is not possible to find the
exact solution of the steady state distribution as
a product of the local steady state distributions.
Nevertheless decomposed solution can lead to exact
results for the local steady state distributions and
many performance measures.

In [84], Thomas and Gilmore present a characteri-
sation of PEPA models which are quasi-separable.
It is assumed in this characterisation that the infor-
mation which must be included in each decomposed
submodel is not distributed between the compo-
nents but maintained by a single scheduler compo-
nent. There are several conditions on the way in

The Computer Journal, Vol. 00, No. 01, 2005

Tuning Systems: From Composition to Performance 9

which this component may interact with the other
components of the model. Furthermore the indi-
vidual components have no direct interaction be-
tween them—they must be in parallel composition
with no synchronisation, i.e. each of these compo-
nents interacts only with the scheduler. The model
is decomposed into a set of models, each comprising
of a single component considered with the sched-
uler, in isolation.

Recent work on product form PEPA models has
taken a slightly different form. In Harrison’s work on
the Reversed Compound Agent Theorem (RCAT) the
process algebra has been used to establish a framework
in which the relationships between different classes of
product form CTMCs can be compared [49]. Within
this framework Harrison has been able to demonstrate
that the product forms which arise in Jackson networks
[66] and G-networks [36] are based on the same
fundamental mechanisms: this becomes apparent when
they are represented in PEPA.

3.3.2. Aggregated decomposed solutions
Product form models have the benefit of yielding the
exact solution of the complete model. There are a
variety of other techniques which have been developed
for decomposed solution of CTMCs which impose
less stringent conditions on the candidate models but
which yield only approximate results. In many cases
these are forms of aggregated decomposed solutions.
Due to the richer interactions between submodels
it is not sufficient to only consider the submodels
in isolation when forming a solution to the whole
model. In addition the decomposed solution involves
a stochastic representation of the interactions between
the submodels, the aggregated model. Some work has
been done on considering PEPA, and other SPA, models
in this framework.

Time scale decomposition The work on time scale
decomposition in SPA is based on the notion of near
completely decomposable CTMCs [31], and inspired by
previous work on time scale decomposition of SPN
models [8]. A characterisation of a near completely
decomposable CTMC at the matrix level is that the
matrix is block structured with elements in the diagonal
blocks being at least an order of magnitude larger
than elements in the off-diagonal blocks. This implies
that the model is made up of subsystems whose
internal interactions are much more frequent than the
interactions between subsystems. As a consequence it
can be assumed that the subsystems reach an internal
equilibrium between external interactions.

The initial classification of SPA models susceptible to
time scale decomposition [60], relied on a classification
of the sequential components within a model into fast
or slow ; this in turn was based on a classification of all
actions relative to some threshold rate. A component

is considered to be fast if it enables fast or passive
actions; a component is considered to be slow if it
enables only slow actions. Only models comprised of
fast and slow components were considered. Submodels
were formed by allowing evolution only via fast actions.
The aggregated model was formed by allowing evolution
between such subsets of states via slow actions [60].

Later work by Mertsiotakis [74], tackles the problem
of hybrid components—sequential components which
cannot be classified as either fast or slow since they
enable both fast and slow actions.

Related work on other SPAs includes

• Mertsiotakis and Silva’s work on decomposition
of a class of SPA models, termed decision free
processes [75, 74], based on earlier work on
throughput approximation in a class of SPN called
marked graphs [68].

• Bohnenkamp and Haverkort’s work on near-
independence [9], exploiting the notion of near-
independence introduced by Ciardo and Trivedi in
[23] in the context of SPN.

• This was later expanded by the same authors in
[10], which aims to reformulate the underlying
Markov process of an SPA model as a set of
semi-Markov processes. These are then solved
via their embedded Markov chains and evaluations
of the time distributions between synchronisations
between the SPA components.

4. APPLICATIONS

Developing models of real applications has always
been part of the PEPA project. This allows us to
demonstrate to ourselves and others that the theory we
have developed is useful. It is also a valuable source of
inspiration for new theory and future directions.

In this section we give a brief overview of some of the
case studies which have been undertaken by ourselves
and others using PEPA, give an account of some of the
tools supporting modelling with PEPA and then more
detailed accounts of two recent projects which seek to
make PEPA modelling more accessible to practitioners.

4.1. Case studies

As originally intended, PEPA has been applied to
study the performance characteristics of a number
of computer and communication systems. Initial
examples focussed on well-known standard performance
evaluation abstractions such as multi-server multi-
queue systems [55] and various queueing systems
[85]. However over time more realistic case studies
emerged, both from the PEPA group and from others.
For example, in [27] the performance impact of
fault-tolerant protocols within a distributed system
framework is evaluated. In [13] Bowman et al. develop
a model of multimedia traffic characteristics and use
it to derive quality of service measures such as jitter,

The Computer Journal, Vol. 00, No. 01, 2005

10 J. Hillston

throughput and latency. In an investigation of ways
in which to ease the development of parallel database
systems, the STEADY group at the Heriot-Watt
University proposed the use of performance estimators.
PEPA was used to verify the output of the performance
estimators for a number of particular configurations and
therefore improve confidence in the approach [34].

In recent work a group at the PRiSM Laboratory
of the University of Versailles are working on a novel
active rule-based approach to active networks (networks
in which intermediate nodes supplement routing of data
with some computation) [12]. A PEPA model was used
to study the impact of the “active” traffic on the non-
active cross-traffic in terms of loss rate and latency
within an active switch [58]. Furthermore the models
were validated against simulation models of the same
system and showed very good agreement [59].

In addition, the formalism has been applied to a
number of other problems which are beyond the usual
arena of computer performance evaluation.

Inland shipping Luk Knapen of Hasselt applied
PEPA to study traffic flow within the inland
shipping network of Belgium focussing in particular
on the locks and movable bridges.

Robotic workcells Robert Holton of the University
of Bradford used PEPA models to analyse the
performance and functional correctness of a robotic
workcell designed for a automated manufacturing
system [39, 64].

Cellular telephone networks A team from the
PRiSM Laboratory at the University of Versailles
considered a problem of dimensioning in a cellular
telephone network. They used a PEPA model to
study the impact on call blocking and dropping of
allocating bandwidth resources between micro and
macro-cell level [35]. They took advantage of au-
tomatic aggregation [42].

Automotive diagnostic expert systems Console
et al. of the University of Turin constructed a
PEPA model of an automatic diagnostic system
to be deployed in a car. A large number of sensors
were placed around the car and some number
could trigger an alarm. The role of the PEPA
model was to provide probabilistic reasoning to
resolve the likely cause of the alarm based on
previous observations of the timing and frequency
of individual faults [30].

4.2. Tool Support

Case studies of the size and complexity described in the
previous subsection are only possible if the modelling
process has adequate support. The PEPA formalism
has been fortunate to be supported in a number of
different tools offering a variety of different analysis

techniques. Such support has been a strong factor in
encouraging others to use the formalism.

The major tools which support PEPA are sum-
marised in Figure 4 and briefly described in the sub-
sections below.

Möbius
modelling
platform

(Univ. of Illinois

PRISM
model checker

(Birmingham University)

Imperial PEPA
Compiler/Dnamaca

and Hydra
(Imperial College)

PEPA
Workbench

(Edinburgh University)

PEPAroni
simulation
engine

(Edinburgh)

-�

?

@
@@I

�
���

PEPA

FIGURE 4. Tool support for PEPA modelling

4.2.1. The PEPA Workbench
Initially developed in 1993, the PEPA Workbench
has undergone several revisions, but has nevertheless
maintained the same core functionality. It provides
a parser which can apply the operational sematics to
derive the derivation graph capturing all the possible
evolutions of the model. It can render this as the
infinitesimal generator matrix of a CTMC in formats
suitable for both internal numerical solvers (biconjugate
gradient algorithm or successive over-relaxation) or
external numerical computing platforms such as Maple
and Matlab. In addition it includes facilities to
automatically derive some performance measures such
as throughput, and a one-step debugger which can show
the evolution of a model one activity at a time [38, 26].

The tool exists in two versions: the original
version written in the functional programming language
Standard ML, and a later edition written in Java [65].
The simple high-level tool was used to gain experience
and insights. This was subsequently extended to a
better engineered, more portable version. The ML
edition of the PEPA Workbench is still used in this
way, as a testbed for extension of the PEPA language
such as PEPA nets [43] and for new algorithms [42]. In
contrast, some less research-oriented extensions, such
as the inclusion of transient solution facilities [86] are
found only in the Java edition.

Generating the CTMC underlying a PEPA model,
and finding its steady state probability vector is rarely,
if ever, the final objective of PEPA modelling. Formal
tool support for querying performance models is an area
which has received little attention until recently, despite
its practical importance. Whilst some effort has been
applied in this direction for PEPA models, it remains
an area in which there is much scope for future work.

The Computer Journal, Vol. 00, No. 01, 2005

Tuning Systems: From Composition to Performance 11

At the most basic level the modeller wishes to
construct a reward structure over the state space of the
CTMC, to be used in conjunction with the steady state
probability vector to derive performance measures. For
steady state measures the reward structure is a vector
recording a “reward” for each state, although for many
states the reward value will be zero. Thus the problem
becomes one of identifying the appropriate set of states
to attach a non-zero reward to. Clearly, when the
CTMC arises from a stochastic process algebra model
we prefer to characterise the state at the process algebra
level. PEPA analysis tools have been developed which
tackle this problem in two distinct ways.

The PEPA State Finder The PEPA State Finder is
used with the ML edition of the PEPA Workbench.
It identifies subsets of states using regular expression
pattern matching, applied to the table of PEPA
expressions which make up the state of the model.
Recall that there is a one-to-one correspondence
between the syntactic forms of the PEPA process as it
evolves and the states of the CTMC. The Workbench
maintains a table recording this correspondence, and
using regular expression pattern matching the PEPA
State Finder is able to extract the states of interest.
For example, it is possible to use an expression such
|(next,r). to return the state numbers of all the
states in which the second component enables a (next,
r) activity. This could then be used to construct a
reward structure suitable for calculating the throughput
of next in the second component: the value r is placed
in the reward vector at each position corresponding to
a (numerical) state found by the PEPA State Finder.

PMLµ A more sophisticated means of specifying
rewards is described in Clark’s PhD thesis [24], and
developed around the stochastic logic PMLµ. Inspired
by the probabilistic model logic of Laren and Skou,
PML [73], PMLµ is able to differentiate PEPA terms
which perform the same activities but at different rates.
The key to this is a modification to Hennessy-Milner
logic in which the diamond operator becomes decorated
with a rate. The semantics of an expression in the logic
is a subset of states, and thus logical expressions may be
used, in conjunction with a value, to specify a reward
structure. Clark extended the ML edition of the PEPA
Workbench to include support for PMLµ and associated
reward structures [24].

4.2.2. The Imperial PEPA Compiler
The recently developed Imperial PEPA Compiler (IPC)
incorporates an alternative parser for PEPA models
[15], thus providing a bridge to alternative analysis tools
developed at Imperial College by Knottenbelt and his
group [71, 16].

The IPC tool translates an input PEPA model into
the Petri net notation provided by Dnamaca [71].

Its support for the PEPA language is comprehensive.
Apparent rates are supported, as are anonymous
components. These are two advantages over the PEPA-
to-PRISM compiler, and a richer class of PEPA models
can be analysed by IPC/Dnamaca as a result.

The steady state probability distribution represents
the behaviour of the system at equilibrium, where the
influence of the initial state of the system is no longer
measurable. Some performance measures of interest
cannot be derived from the results of steady state
analysis. Examples of performance measures in the
class of non-equilibrium measurements include mean
time to failure analysis, as computed in the evaluation
of dependable systems. Other examples include
the probabilistic quality-of-service guarantees which
underpin most commercial service level agreements
(SLAs): e.g. the probability that a 10-node cluster
should be able to process 3000 database transactions
in less than 6 seconds should be greater than 0.915; or
a train service should not run more than 10 minutes
late more than 20% of the time.

More generally, such measures necessitate the
computation of passage-time quantiles which detail the
probability of passing through the system evolution
from a start state to an end state (or set of starting
states to a set of end states). The computation of
such measures depends on the aggregate time behaviour
across a whole system of complex interactions. The
computation of passage-time quantiles depends on
transient analysis of the CTMC, which is more
expensive than steady-state analysis in both run-time
and memory consumption.

Via IPC, the unique solution capabilities of Dnamaca
become available and because of this it is possible to
efficiently perform passage time analysis over PEPA
models [15, 16]. Start and end points are specified
using the concept of stochastic probes developed by
Argent-Katwala, Bradley and Dingle [2]. Stochastic
probes are themselves PEPA components which have
been generated from regular expression-based inputs.

4.2.3. PEPAroni simulation engine
Simulation has proved to be a useful alternative to
numerical analysis of the underlying CTMC in two
cases. Firstly, if the size of the model is prohibitively
large for numerical analysis simulation can be used,
although issues of run length can arise. Secondly, in
the context of extending the expressiveness of PEPA
with general distributions [24] numerical solution is no
longer exact in most cases. Principally motivated by
this second case, Clark implemented a simulator for
PEPA models, called the PEPAroni simulator.

4.2.4. The PRISM model checker
PRISM is a probabilistic model checker developed by
Kwiatkowska’s group at the University of Birmingham.
It supports discrete time Markov chains and Markov

The Computer Journal, Vol. 00, No. 01, 2005

12 J. Hillston

decision processes as well as CTMCs. The standard
input to PRISM is a model described in a simple
reactive modules language. PEPA was integrated
into the tool via a compiler which translates PEPA
models into this language. There was also some
work required to extend the model checker to support
PEPA’s combinators (cooperation and hiding).

Integration into PRISM enables model checking
of the CTMC underlying a PEPA model against
properties expressed in Continuous Stochastic Logic
(CSL) [72]. It also provides access to the efficient
numerical solutions of PRISM based on MTBDDs [51]
and sparse matrix representation. PRISM has been
applied successfully to a number of PEPA (and PEPA
net) case studies [45, 41].

4.2.5. The Möbius modelling platform
The Möbius modelling framework [25] was developed at
the University of Illinois Urbana-Champaign. It is both
a multi-formalism and multi-paradigm modelling tool,
i.e. it aims to offer the user a choice of model description
techniques and solution methods. Moreover it is
designed to allow a model to be composed of submodels
which may be expressed in different formalisms. It
has a broad spectrum of users in North America.
Integrating PEPA into Möbius offered opportunities
to present stochastic process algebra to users who
were previously unfamiliar with the formalism, and to
expore the possibilities of interaction between modelling
formalisms [29].

4.3. New application areas

In this section we describe two recent research projects
which have sought, in different ways, to extend the
applicability of PEPA. In both cases the use of
PEPA becomes much more transparent to the users,
who interact with the tools through other high-level
system descriptions. Whilst the take-up of PEPA
has been more widespread than perhaps anticipated
it remains the case that the majority of users are
academic. Our objective is not to increase the user
community of PEPA per se but to encourage the
use of sound performance analysis as the basis for
design and deployment decisions. Thus in these latest
developments the use of PEPA is in some ways hidden
from the user.

4.3.1. The DEGAS project
In the CEC-funded DEGAS project2 we have been
investigating ways to make performance modelling
using PEPA more accessible to software designers who
may be unfamiliar with process algebra. We have
sought to take advantage of the popularity of the
Unified Modelling Language (UML) by providing a

2Design Environments for Global ApplicationS project IST-
2001-32072 funded by the FET Proactive Initiative on Global
Computing

way to derive performance measures from a suitably
annotated UML model. A schematic view of this
process is shown in Figure 5.

.xmi

.xml

.xmi

.pepa

ExtractorReflector

Poseidon

PEPA
Workbench

UML

FIGURE 5. Architecture of the DEGAS analysis
environment

The key functionality is provided by a pair of software
modules, the extractor and the reflector [20]. These
form a bridge between the UML modelling environment
and the PEPA tools. Annotations are added to the
UML model according to a pre-determined stereotype.
The UML is then saved in the usual way in .xmi
format. The extractor produces a corresponding .pepa
format which can be loaded into the PEPA Workbench.
This allows a steady state probability distribution
corresponding to the states of the PEPA model to be
derived. However this is still inaccessible to the UML
modeller — it is essential that results are reported in
terms which make sense to the software designer, i.e. in
terms of the original UML model. This functionality is
provided by the reflector module which aggregates the
steady state probability distribution data to produce
suitable annotations to the UML model. This has
required a modification to the PEPA Workbench so that
results can be written out in XML format. The reflector
then combines these with the original .xmi file.

The Computer Journal, Vol. 00, No. 01, 2005

Tuning Systems: From Composition to Performance 13

This scheme is not specific to UML models. For
example, an extractor has recently been developed for
models developed in BPEL, a web service composition
language [77].

4.3.2. The ENHANCE project
The EPSRC-funded ENHANCE project3 seeks to assist
in the development of efficient executions of programs
on computational grid environments. The thrust of the
project is two-fold

• The use of high-level programming schemes
such as Cole’s skeletons facilitate correct high-
level implementation of systems with complex
coordination patterns. These patterns (the
“skeletons”) are abstracted into a reusable, efficient
library of coordination combinators. The use of
this library elevates the programming model and
eliminates low-level parallel programming errors
such as sends with unmatched receives.

• Predefined performance models (PEPA compo-
nents) corresponding to these skeletons, as well as
the grid infrastructure, can be appropriately pa-
rameterised to represent any given configuration.
Thus alternative configurations can be evaluated
prior to scheduling (and re-scheduling) in order to
select the schedule with the best predicted perfor-
mance.

A prototype tool, AMoGeT, supporting this frame-
work has been developed [5]. This uses the Network
Weather Service to query the available grid in order to
obtain a short-term forecast of compute load on these
machines. It assimilates this information with a PEPA
model composed of the present program and grid infras-
tructure. In fact a set of PEPA models are constructed,
one for each candidate schedule. Solving these mod-
els within AMoGeT derives performance information
which can be used to place processes on processors in
order to reduce the makespan of the application overall.

5. FUTURE WORK

As in the past the plan is to continue the development
of both new theory and new applications of PEPA in
tandem. In this section we give brief overviews of the
current work in both areas.

5.1. New theory

PEPA nets Over the last decade mobility has had a
major impact on the way we design, implement and
manage many computer systems. Mobility may be
manifest in the form of devices which change location
and spontaneously connect/disconnect, or in the form
of executable code which is moved around the network

3Enhancing the Performance Predictability of Grid Applica-
tions with Patterns and Process Algebras, EPSRC grant number
GR/S21717/01

for a variety of reasons. In either case the effect is
that the context in which computation is taking place
is dynamically changing, and these changes will have
consequences for the performance of the system. The
PEPA nets formalism has been designed to capture
information about mobility and so allow performance
models of such systems to be readily and naturally
developed [44].

A PEPA net is a stochastic Petri net with coloured
tokens. The tokens represent mobile objects with state
and behaviour, where we use the term mobile loosely
to characterise objects which may find themselves in
different contexts during execution. The tokens are
described using PEPA.

The use of stochastic Petri nets for performance
models is well-established [1] and coloured variants,
e.g. Stochastic Well-Formed Nets (SWN) [21], have also
been developed. However the use of colours in PEPA
nets offers something quite distinct — the possibility
of differentiating between two types of change of state
within a system. Unlike SWN where tokens remain
indistinguishable within their colour classes, tokens
within PEPA nets are autonomous components. Firings
of the net will typically be used to model macro-
step (or global) changes of state, whereas transitions
within the PEPA tokens are typically used to model
micro-step (or local) changes of state as components
undertake activities. Thus modelling with PEPA nets
uses both Petri nets and process algebras together as
a single, structured performance modelling formalism.
Moreover, we have demonstrated that PEPA nets offer
some expressivity which is not directly offered by either
PEPA or Petri nets [44]. Their modelling capabilities
have been shown on a number of case studies including
MobileIP[40], a decentralised peer-to-peer emergency
medical application [37] and a distributed multi-user
role-playing game [46].

New mathematical models As detailed earlier, a ma-
jor challenge for all discrete state-based performance
modelling formalisms (i.e. queueing networks, stochas-
tic Petri nets and stochastic process algebra) is the
problem of state space explosion. Much research ef-
fort of the performance analysis community for the last
twenty years has been devoted to tackling this prob-
lem, using techniques such as those discussed in Sec-
tion 3.3. However, recent work in the PEPA group
has been studying an alternative approach. In this ap-
proach we move away from the assumption of discrete
state space and consider instead continuous approxi-
mations. Where there are sufficient numbers of compo-
nents, early indications are that this is a viable alter-
native to steady state Markovian analysis [4] for some
problems.

When the state variables are assumed to be
continuous, and activity rates are taken to be constant,
the evolution of the system can be described by
a set of ordinary differential equations. When

The Computer Journal, Vol. 00, No. 01, 2005

14 J. Hillston

this is generalised to allow activity rates to be
governed by probability distributions rather than
being deterministic the evolution of the system
can be described by a set of random differential
equations [82]. A further generalisation, introducing
more uncertainty, is offered by stochastic differential
equations[79]. The investigation of the use of these
alternative mathematical models is the subject of on-
going research.

5.2. New application domains

As already mentioned, the elegance of the PEPA
modelling language, the available tool support and the
access to quantified analysis have attracted researchers
from other fields to develop PEPA models. This has
lead us to develop models in some novel areas. We
conclude by outlining two of these areas below.

Biochemical signalling pathways We have begun
exploratory work in the area of biochemical signalling
pathways taking the ERK signalling pathway as an
example [22]. A PEPA model has been developed
to represent the pathway and subsequently analysed
using both standard Markovian analysis [18] and
the continuous state space approximation technique
described above [19].

In the longer term it is anticipated that new
description lanugages and solution techniques will be
needed for this new domain of application. For example:

• Process algebras model a system by focusing on the
activities and agents who undertake them. Whilst
this view of a system comprised of individuals
who interact to produce a collective behaviour has
strong resonances within the biological community,
the forms of activity and interaction which may
be witnessed are more complex. For example,
the interaction which captures inhibition without
blocking is not readily represented in existing
process algebras.

• Issues of scalability of analysis mechanisms
have been a major concern within the work
on performance evaluation, but the systems
considered in the biological domain take this
problem even further. In many instances existing
techniques are not going to adequately cope,
suggesting that new analysis techniques, or at least
new mappings between the process algebra and
analysis techniques, are needed.

Security and timing attacks Many security analyses
can be undertaken without information about the
timing of message exchanges and therefore the system
description does not need to record timing information.
However timing attacks are a form of security breach
in which the timing, rather than just the ordering, of
events is crucial.

Timing attacks can be mounted by timing the
exchange of messages during a session between two
parties. The parts of the communication which do
not require user interaction have sufficient repeatability
that timings of these interactions can be used to derive
information. (Any user interaction usually introduces
sufficient random delay to mask any information which
could have been obtained from the timing information.)
Where a secure session between two parties can be
monitored by an eavesdropper then information about
the time parts of the interaction can be recorded. In
the case where there is a difference in the time taken by
different types of interactions (e.g. between a successful
interactions and one that fails) then information can be
leaked from the communication via the time recorded.
One approach to this problem is to introduce delays into
the faster interactions in order to mask the difference
between fast and slow interactions.

In [17] we have investigated the use of PEPA
to analyse modified protocols to ensure that the
introduced delays do indeed have the desired effect of
masking the timing differences between interactions.

ACKNOWLEDGEMENTS

Many people have contributed to the PEPA project
in a variety of ways. In particular the author would
like to thank Ashok Argent-Katwala, Anne Benoit,
Jeremy Bradley, Linda Brodo, Muffy Calder, Catherine
Canevet, Graham Clark, Nick Dingle, Amani El-Rayes,
Stephen Gilmore, Zully Grant-Duff, Valentin Haenel,
Peter Harrison, Robert Holton, Jon Hunter, Lëıla Kloul,
Marta Kwiatkowska, Vassilis Mertsiotakis, Amdjed
Mokhtari, Gethin Norman, Dave Parker, Corrado
Priami, Matthew Prowse, Marina Ribaudo, Matteo
Sereno, Fotis Stathopoulos, Joanna Tomasik, Nigel
Thomas, Feng Wan.

Tool Availability The PEPA tools are mostly available
in open-source form under the GNU Public License.
The PEPA Workbench and related tools are available
from the PEPA Web site at www.dcs.ed.ac.uk/pepa.

The Möbius multi-paradigm modelling framework is
available from the University of Illinois at www.crhc.
uiuc.edu/PERFORM/mobius-software.html.

PRISM is available from www.cs.bham.ac.uk/~dxp/
prism/.

The Imperial PEPA Compiler is available from www.
doc.ic.ac.uk/ipc/.

REFERENCES

[1] M. Ajmone Marsan, G. Balbo, G. Conte, S. Donatelli,
and G. Franceschinis. Modelling with Generalized
Stochastic Petri Nets. John Wiley, 1995.

[2] A. Argent-Katwala, J.T. Bradley, and N.J. Dingle.
Expressing performance requirements using regular
expressions to specify stochastic probes over process
algebra models. In Proc. of 4th Int. Workshop on

The Computer Journal, Vol. 00, No. 01, 2005

Tuning Systems: From Composition to Performance 15

Software and Performance, pages 49–58, Redwood
Shores, California, USA, January 2004. ACM Press.

[3] F. Baskett, K.M. Chandy, R.R. Muntz, and F.G.
Palacios. Open, Closed and Mixed Networks of Queues
with Different Classes of Customers. Journal of the
ACM, 22(2):248–260, April 1975.

[4] A. Benoit, M. Cole, S. Gilmore, and J. Hillston.
Enhancing the effective utilisation of grid clusters
by exploiting on-line performability analysis. In
Proceedings of the 2nd Grid Performability Workshop,
2005. to appear.

[5] A. Benoit, M. Cole, S. Gilmore, and J. Hillston.
Realistic performance evaluation of skeleton-based grid
applications using the Network Weather Service, 2005.
To appear in the Computer Journal.

[6] M. Bernardo and R. Gorrieri. A tutorial on EMPA: a
theory of concurrent processes with nondet erminism,
priorities, probabilities and time. TCS, 202:1–54, 1998.

[7] M. Bhabuta, P.G. Harrison, and K. Kanani. Detecting
reversibility in Markovian Process Algebra. In Per-
formance Engineering of Computer and Telecommu-
nications Systems, Liverpool John Moores University,
September 1995. Springer-Verlag.

[8] A. Blakemore and S. Tripathi. Automated Time Scale
Decomposition of SPNs. In Proc. of 5th International
Workshop on Petri Nets and Performance Models
(PNPM ’93), Toulouse, 1993.

[9] H. Bohnenkamp and B. Haverkort. Decomposition
Methods for the Solution of Stochastic Process Algebra
Models: a Proposal. In E. Brinksma and A. Nymeyer,
editors, Proc. of 5th Process Algebra and Performance
Modelling Workshop, 1997.

[10] H. Bohnenkamp and B. Haverkort. Semi-Numerical
Solution of Stochastic Process Algebra Models. In
C. Priami, editor, Proc. of 6th Process Algebra and
Performance Modelling Workshop, 1998.

[11] R.J. Boucherie. A Characterisation of Independence
for Competing Markov Chains with Applications to
Stochastic Petri Nets. IEEE Trans. on Software
Engineering, 20(7):536–544, July 1994.

[12] M. Bouzeghoub, L. Kloul, and A. Mokhtari. A
new active network framework based on active rules.
Technical Report 2002/21, PRiSM, Université de
Versailles, 2002.

[13] H. Bowman, J. Bryans, and J. Derrick. Analysis of
a multimedia stream using stochastic process algebra.
In C. Priami, editor, 6th Int. Workshop on Process
Algebras and Performance Modelling, pages 51–69,
Nice, September 1998.

[14] J. Bradley. Towards Reliable Modelling with Stochastic
Process Algebras. PhD thesis, Department of
Computer Science, University of Bristol, 1999.

[15] J.T. Bradley, N.J. Dingle, S.T. Gilmore, and W.J.
Knottenbelt. Derivation of passage-time densities
in PEPA models using IPC: The Imperial PEPA
Compiler. In Proc. of 11th IEEE/ACM Intl.
Symposium on Modeling, Analysis and Simulation
of Computer and Telecommunications Systems, pages
344–351. IEEE Computer Society Press, October 2003.

[16] J.T. Bradley, N.J. Dingle, S.T. Gilmore, and W.J.
Knottenbelt. Extracting passage times from PEPA
models with the HYDRA tool: A case study. In Jarvis
[67], pages 79–90.

[17] M. Buchholtz, S. Gilmore, J. Hillston, and F. Nielson.
Securing statically-verified communications protocols
against timing attacks. In Proc. of 1st Int. Workshop
on Practical Applications of Stochastic Modelling, pages
61–79, September 2004. To appear in ENTCS.

[18] M. Calder, S. Gilmore, and J. Hillston. Modelling the
influence of RKIP on the ERK signaling pathw ay using
the stochastic process algebra PEPA. In Proceedings of
BioConcur’04, London, England, August 2004.

[19] M. Calder, S. Gilmore, and J. Hillston. Automatically
deriving ODEs from process algebra models of
signalling pathways. To appear in CMSB’05, 2005.

[20] C. Canevet, S. Gilmore, J. Hillston, M. Prowse,
and P. Stevens. Performance modelling with UML
and stochastic process algebras. IEE Proceedings:
Computers and Digital Techniques, 150(2):107–120,
March 2003.

[21] G. Chiola, C. Dutheillet, G. Franceschinis, and
S. Haddad. Stochastic well-formed colored nets and
symmetric modeling applications. IEEE Transactions
on Computers, 42(11):1343–1360, 1993.

[22] K.-H. Cho, S.-Y. Shin, H.-W. Kim, O. Wolkenhauer,
B. McFerran, and W. Kolch. Mathematical modeling
of the influence of RKIP on the ERK signaling
pathway. In C. Priami, editor, Computational Methods
in Systems Biology (CSMB’03), volume 2602 of LNCS,
pages 127–141. Springer-Verlag, 2003.

[23] G. Ciardo and K.S. Trivedi. A Decomposition Ap-
proach for Stochastic Petri Net Models. Performance
Evaluation, 1992.

[24] G. Clark. Techniques for the Construction and
Analysis of Algebraic Performance Models. PhD thesis,
The University of Edinburgh, 2000.

[25] G. Clark, T. Courtney, D. Daly, D. Deavours,
S. Derisavi, J. M. Doyle, W. H. Sanders, and
P. Webster. The Möbius modeling tool. In Proc. of 9th
Int. Workshop on Petri Nets and Performance Models,
pages 241–250, Aachen, Germany, September 2001.

[26] G. Clark, S. Gilmore, and J. Hillston. The
PEPA performance modelling tools. In J. Hillston,
editor, Proc. of 7th Workshop on Process Algebra and
Performance Modelling, Zaragosa, Spain, September
1999. University of Zaragosa Press.

[27] G. Clark, S. Gilmore, J. Hillston, and M. Ribaudo. Ex-
ploiting modal logic to express performance measures.
In Computer Performance Evaluation: Modelling Tech-
niques and Tools, Proc. of 11th Int. Conf., number 1786
in LNCS, pages 211–227, Schaumburg, Illinois, USA,
March 2000. Springer-Verlag.

[28] G. Clark and J. Hillston. Product form solution
for an insensitive stochastic process algebra structure.
Performance Evaluation, 50(2–3):129–151, 2002.

[29] G. Clark and W.H. Sanders. Implementing a stochastic
process algebra within the Möbius modeling framework.
In de Alfaro and Gilmore [32], pages 200–215.

[30] L. Console, C. Picardi, and M. Ribaudo. Diagnosis
and Diagnosability Analysis using Process Algebras. In
Proc. of 11th Int. Workshop on Principles of Diagnosis
(DX00), Morelia, Mexico, June 2000.

[31] P.J. Courtois. Decomposability: Queueing and
Computer System Applications. ACM Series. Academic
Press, New York, 1977.

The Computer Journal, Vol. 00, No. 01, 2005

16 J. Hillston

[32] L. de Alfaro and S. Gilmore, editors. Proceedings of the
first joint PAPM-PROBMIV Workshop, volume 2165 of
LNCS, Aachen, Germany, September 2001. Springer-
Verlag.

[33] D.D. Deavours and W.H. Sanders. An efficient
disk-based tool for solving large Markov models.
Performance Evaluation, 33:67–84, 1998.

[34] E. W. Dempster, N. T. Tomov, J. Lü, C. S. Pua, M. H.
Williams, A. Burger, H. Taylor, and P. Broughton.
Verifying a performance estimator for parallel DBMSs.
In Proceedings of EuroPar (EuroPar’98), September
1998.

[35] J.M. Forneau, L. Kloul, and F. Valois. Performance
modelling of hierarchical cellular networks using PEPA.
Performance Evaluation, 50(2–3):83–99, 2002.

[36] E. Gelenbe. Queueing networks with negative and
positive customers. Journal of Applied Probability,
28:656–663, 1991.

[37] S. Gilmore, V. Haenel, J. Hillston, and L. Kloul.
PEPA nets in practice: Modelling a decentralised
peer-to-peer emergency medial application. In M.
Núñez et al, editor, Applying Formal Methods: Testing,
Performance, and M/E-Commerce (EPEW 2004),
volume 3236 of LNCS, pages 262–277. Springer-Verlag,
October 2004.

[38] S. Gilmore and J. Hillston. The PEPA Workbench:
A Tool to Support a Process Algebra-based Approach
to Performance Modelling. In Proc. of 7th Intl.
Conf. on Modelling Techniques and Tools for Computer
Performance Evaluation, number 794 in LNCS, pages
353–368, Vienna, May 1994. Springer-Verlag.

[39] S. Gilmore, J. Hillston, D.R.W. Holton, and M. Ret-
telbach. Specifications in Stochastic Process Algebra
for a Robot Control Problem. International Journal of
Production Research, 34(4):1065–1080, 1996.

[40] S. Gilmore, J. Hillston, and L. Kloul. PEPA nets. In
M.C. Calzarossa and E. Gelenbe, editors, Performance
Tools and Applications to Networked Systems: Revised
Tutorial Lectures, number 2965 in LNCS, pages 311–
335. Springer-Verlag, 2004.

[41] S. Gilmore, J. Hillston, L. Kloul, and M. Ribaudo. Soft-
ware performance modelling using PEPA nets. In Proc.
of 4th Int. Workshop on Software and Performance,
pages 13–24, Redwood Shores, California, USA, Jan-
uary 2004. ACM Press.

[42] S. Gilmore, J. Hillston, and M. Ribaudo. An
efficient algorithm for aggregating PEPA models. IEEE
Transactions on Software Engineering, 27(5):449–464,
May 2001.

[43] S. Gilmore, J. Hillston, and M. Ribaudo. PEPA
nets: A structured performance modelling formalism.
In Proc. of 12th Intl. Conf. on Modelling Tools and
Techniques for Computer and Communication System
Performance Evaluation, number 2324 in LNCS, pages
111–130, London, UK, April 2002. Springer-Verlag.

[44] S. Gilmore, J. Hillston, M. Ribaudo, and L. Kloul.
PEPA nets: A structured performance modelling
formalism. Performance Evaluation, 54(2):79–104,
October 2003.

[45] S. Gilmore and L. Kloul. A unified tool for performance
modelling and prediction. In Proc. of 22nd Intl.
Conf. on Computer Safety, Reliability and Security

(SAFECOMP 2003), volume 2788 of LNCS, pages 179–
192. Springer-Verlag, 2003.

[46] S. Gilmore, L. Kloul, and D. Piazza. Modelling
role-playing games using PEPA nets. In Proceedings
of the 19th International Symposium on Computer
and Information Sciences (ISCIS 2004), volume 3280
of LNCS, pages 523–532, Kemer-Antalya, Turkey,
October 2004. Springer-Verlag.

[47] N. Götz, U. Herzog, and M. Rettelbach. TIPP—
a language for timed processes and performance
evaluation. Technical Report 4/92, IMMD7, University
of Erlangen-Nürnberg, Germany, November 1992.

[48] P. Harrison and J. Hillston. Exploiting Quasi-reversible
Structures in Markovian Process Algebra Models. The
Computer Journal, 38(6), 1995.

[49] P.G. Harrison. Turning back time in Markovian process
algebra. TCS, 290:1947–1986, 2003.

[50] W. Henderson and P.G. Taylor. Embedded Processes
in Stochastic Petri Nets. IEEE Transactions on
Software Engineering, 17(2):108 – 116, February 1991.

[51] H. Hermanns, J. Meyer-Kayser, and M. Siegle. Multi-
terminal binary decision diagrams to represent and
analyse continuous time markov chains. In Proc. of 3rd
Intl. Workshop on the Numerical Solution of Markov
Chains, pages 188–207, 1999.

[52] U. Herzog. Formal description, time and performance
analysis: A framework. Technical Report 15/90,
IMMD VII, Friedrich-Alexander-Universität, Erlangen-
Nürnberg, Germany, September 1990.

[53] J. Hillston. The nature of synchronisation. In
U. Herzog and M. Rettelbach, editors, Proc. of 2nd
Int. Workshop on Process Algebras and Performance
Modelling, pages 51–70, Erlangen, 1994.

[54] J. Hillston. Compositional Markovian Modelling Using
a Process Algebra. In W.J. Stewart, editor, Numerical
Solution of Markov Chains. Kluwer, 1995.

[55] J. Hillston. A Compositional Approach to Performance
Modelling. Cambridge University Press, 1996.

[56] J. Hillston. FMPA Lecture Notes, chapter Exploiting
Structure in Solution: Decomposing Composed Models.
Springer-Verlag, 2001.

[57] J. Hillston and L. Kloul. An efficient Kronecker
representation for PEPA models. In de Alfaro and
Gilmore [32], pages 120–135.

[58] J. Hillston, L. Kloul, and A. Mokhtari. Active nodes
performance analysis using PEPA. In Proc. of 19th
UK Performance Engineering Workshop, pages 244–
256, 2003.

[59] J. Hillston, L. Kloul, and A. Mokhtari. Towards a
feasible active networking scenario. Telecommunication
Systems, 27(2–4):413–438, 2004.

[60] J. Hillston and V. Mertsiotakis. A simple time
scale decomposition technique for stochastic process
algebras. The Computer Journal, 38(7):566–577, 1995.

[61] J. Hillston and N. Thomas. A Syntactical Analysis
of Reversible PEPA Models. In Proc. of 6th Process
Algebra and Performance Modelling Workshop, Nice,
France, September 1998. University of Verona.

[62] J. Hillston and N. Thomas. Product form solution for a
class of PEPA models. Performance Evaluation, 35(3–
4):171–192, 1999.

The Computer Journal, Vol. 00, No. 01, 2005

Tuning Systems: From Composition to Performance 17

[63] C.A.R. Hoare. Communicating Sequential Processes.
Prentice-Hall, 1985.

[64] D.R.W. Holton. A PEPA specification of an industrial
production cell. The Computer Journal, 38(7):542–551,
1995.

[65] J. Hunter. Re-evaluation of the PEPA Workbench.
Master’s thesis, School of Computer Science, The
University of Edinburgh, September 1999.

[66] J.R. Jackson. Jobshop-like Queueing Systems.
Management Science, 10:131–142, 1963.

[67] S. Jarvis, editor. Proc. of 19th UK Performance
Engineering Workshop, University of Warwick, July
2003.

[68] H. Jungnitz. Approximation Methods for Stochastic
Petri Nets. PhD thesis, Rensselaer Polytechnic
Institute, May 1992.

[69] F. Kelly. Reversibility and Stochastic Processes. Wiley,
1979.

[70] J.G. Kemeny and J.L. Snell. Finite Markov Chains.
Van Nostrand, 1960.

[71] W.J. Knottenbelt. Generalised Markovian analysis of
timed transition systems. Master’s thesis, University
of Cape Town, 1996.

[72] M. Kwiatkowska, G. Norman, and D. Parker. PRISM:
Probabilistic symbolic model checker. In Proc. of
12th Int. Conf. on Modelling Tools and Techniques for
Computer and Communication System Performance
Evaluation, number 2324 in LNCS, pages 200–204,
London, UK, April 2002. Springer-Verlag.

[73] K. Larsen and A. Skou. Bisimulation through
probabilistic testing. Information and Computation,
94(1):1–28, 1991.

[74] V. Mertsiotakis. Approximate Analysis Methods for
Stochastic Process Algebras. PhD thesis, Universität
Erlangen–Nürnberg, Martensstraße 3, 91058 Erlangen,
September 1998.

[75] V. Mertsiotakis and M. Silva. A Throughput
Approximation Algorithm for Decision Free Processes.
In M. Ribaudo, editor, Proc. of 7th Int. Workshop on
Petri Nets and Performance Models, 1996.

[76] R. Milner. Communication and Concurrency.
Prentice-Hall, 1989.

[77] B. Mitchell and J. Hillston. Analysing web service
composition with PEPA. In Proc. of 3rd Workshop on
Process Algebras and Stochastically Timed Activities,
pages 33–44, Edinburgh, Scotland, June 2004.

[78] I. Mitrani and P.E. Wright. Routing in the Presence
of Breakdowns. Performance Evaluation, 20:151–164,
1994.

[79] B.K. Oksendal. Stochastic Differential Equations.
Springer, 2003.

[80] G. D. Plotkin. A Structural Approach to Operational
Semantics. Technical Report DAIMI FN-19, University
of Aarhus, 1981.

[81] M. Sereno. Towards a Product Form Solution of
Stochastic Process Algebras. The Computer Journal,
38(6), 1995.

[82] T.T. Soong. Random Differential Equations in Science
and Engineering. Academic Press, 1973.

[83] B. Strulo and P.G. Harrison. Spades - a process algebra
for discrete event simulation. J. Logic Computat,
10(1):3–42, 2000.

[84] N. Thomas and S. Gilmore. Applying Quasi-
Separability to Markovian Process Algebra. In Proc.
of 6th Process Algebra and Performance Modelling
Workshop, Nice, France, September 1998. University
of Verona.

[85] N. Thomas and J. Hillston. Using Markovian
process algebra to specify interactions in queueing
systems. Technical Report ECS-LFCS-97-373, LFCS,
The University of Edinburgh, 1997.

[86] F. Wan. Interface engineering and transient analysis
for the PEPA Workbench. Master’s thesis, School
of Computer Science, The University of Edinburgh,
September 2000.

The Computer Journal, Vol. 00, No. 01, 2005

