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Abstract

In recent years, stochastic modelling has emerged as a physically more realistic al-
ternative for modelling in vivo reactions. There are numerous stochastic approaches
available in the literature; most of these assume that observed random fluctuations
are a consequence of the small number of reacting molecules. We review some im-
portant developments of the stochastic approach and consider its suitability for
modelling intracellular reactions. We then describe recent efforts to include the
fluctuation effects caused by the structural organisation of the cytoplasm and the

limited diffusion of molecules due to macromolecular crowding.
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1 Introduction

Dramatic advances in genetic and molecular biology have brought about an unprece-
dented flood of genomic data. Analysis of this data — to understand how genes and
proteins work collectively — has led to a significant increase in the use of computers
both for modelling and data interpretation. This is one of the challenges of modern
science. The current interest in computational cell biology reflects the widespread
belief that the complexity and sophistication of computers and programming could
potentially match the complexity of living cells. The aim of computational biology
is to produce sophisticated computer simulations against which biological phenom-
ena, data or patterns are compared. Unfortunately, no consensus presently exists as
to the best methodologies for performing these tasks. This is particularly true for
the computational modelling of complex biochemical reactions and gene networks

in cellular media.

The modelling of chemical reactions using deterministic rate laws has proven ex-
tremely successful in both chemistry (Epstein and Pojman, 1998) and biochemistry
(Heinrich and Schuster, 1996) for many years. This deterministic approach has at
its core the law of mass action, an empirical law giving a simple relation between
reaction rates and molecular component concentrations. Given knowledge of initial
molecular concentrations, the law of mass action provides a complete picture of the

component concentrations at all future time points (Espenson, 1995).

The law of mass action considers chemical reactions to be macroscopic under con-
vective or diffusive stirring, continuous and deterministic (Cox, 1994). These are
evidently simplifications, as it is well understood that chemical reactions involve dis-
crete, random collisions between individual molecules. As we consider smaller and
smaller systems, the validity of a continuous approach becomes ever more tenuous.
As such, the adequacy of the law of mass action has been questioned for describing
intracellular reactions (Clegg, 1984; Halling, 1989; Kuthan, 2001). Arguments for
the application of stochastic models for chemical reactions come from at least three
directions, since the models (a) take into consideration the discrete character of the
quantity of components and the inherently random character of the phenomena; (b)
are in accordance (more or less) with the theories of thermodynamics and stochas-
tic processes; and (c) are appropriate to describe “small systems” and instability

phenomena.

More than 150 years ago the Scottish botanist Robert Brown discovered the existence

of fluctuations whilst studying microscopic living phenomena (for the early history



of Brownian motion, Kerker, 1974). This in itself has significant implications for
biochemistry where we often wish to model reaction rates within individual cells
where the volume of the system is small and the molecular populations often too
low for the system to be considered macroscopic. At the molecular level, random
fluctuations are inevitable, with their effect being most significant when molecules
are at low numbers in the biochemical system. This typically occurs in the regulation
of gene expression where transcription factors interact with DNA binding sites in the
gene’s regulatory sequences. Indeed, these intrinsic fluctuations have recently been
measured using fluorescent probes (see, for example, Elowitz et al., 2002; Blake et al.,
2003). Additionally, it has been proven that low copy numbers of expressed RNAs
can be significant for the regulation of downstream pathways (McAdams and Arkin,
1997). Thus, there are evidently a number of important biological environments
where only small numbers of molecules are present in the reaction volume, for which,
it is argued, stochastic modelling approaches are required (Morton-Firth and Bray,
1998).

There is also growing evidence of the importance for reaction kinetics of the struc-
tural organisation of the intracellular environment, which is far from the homoge-
neous, well mixed solution typical of in vitro experiments (see Schnell and Turner,
2004, and references therein). Cellular environments are highly compartmented and
structured throughout the reaction volume. A high degree of molecular crowding as
well as the presence of endogenous obstacles in cellular media have important conse-
quences in the thermodynamics of the cell (Minton, 1993, 1998) and strongly affect
diffusion processes (Luby-Phelps et al., 1987). The viscosity of the mitochondrion
is 25-37 times higher than that of a typical in vitro experimental buffer (Scalettar
et al., 1991). Diffusion of macromolecules in the cytoplasm can be 5-20 times lower
than in saline solutions (Verkman, 2002). Furthermore, many reactions occur on
two-dimensional membranes or one-dimensional channels (Clegg, 1984; Srere et al.,
1989). These structural considerations mean we must be careful when considering

how well mized a chemical system is.

The stochastic approach introduced above uses the inherent random nature of mi-
croscopic molecular collisions to build a probabilistic model of the reaction kinetics
(Qian and Elson, 2002). This approach is thus inherently suited to the small, het-
erogenous environments typical of in vivo conditions (Kuthan, 2001). However, one
major problem with stochastic methods is that they are difficult to implement ana-

lytically and researchers are reduced to numerical studies.

In this work, we review some important developments of the stochastic approach



and consider its suitability for modelling in vivo reactions. Firstly, we examine how
Gillespie (1977) has used the stochastic formalism to develop an algorithm for simu-
lating reaction dynamics, and illustrate by means of numerical simulations how the
stochastic and deterministic approaches compare. We discuss some further stream-
lining of the algorithm by Gibson and Bruck (2000), Gillespie (2001), Burrage and
Tian (2003), Rathinam et al. (2003) and Tian and Burrage (2004a) leading to greater
computational efficiency. We then consider how Rao and Arkin (2003) have incor-
porated the quasi-steady state assumption — an approximation derived from the
deterministic approach — into the stochastic method, and the computational savings
achieved. We highlight the failure of the considered stochastic approaches to incor-
porate non-homogeneities typical of in vivo conditions into the models and present
an alternative two-dimensional Monte-Carlo approach by Berry (2002) and Schnell
and Turner (2004). Finally we discuss the implications of Schnell and Turner’s re-
sults — in particular with relation to Kopelman’s formulation of fractal-like kinetics

— to our understanding of in vivo biochemical kinetics.

2 The deterministic and stochastic approaches

There is now considerable evidence from both theoretical and experimental per-
spectives of the role of noise in biochemical pathways. Fedoroff and Fontana (2002)
remark that “stochasticity is evident in all biological processes. The proliferation of
both noise and noise reduction is a hallmark of organismal evolution”. However, a
natural question to ask is: What is the nature of this stochasticity? Hume (2000)
notes that “transcription in higher eukaryotes occurs with a relatively low frequency
in biological time and is regulated in a probabilistic manner”. Sano et al. (2001) also
remark that “initiation of gene transcription is a discrete process in which individ-
ual protein-coding genes in an off state can be stochastically switched on, resulting
in sporadic pulses of mRNA production”. This is the dichotomy that we must re-
solve — proteins are discrete objects, yet their effects are often modelled (as ordinary

differential equations) in terms of concentrations.

Recently, Crampin and Schnell (2004) pointed out that “biological systems are char-
acterised by their regulatory and adaptive properties, from homeostatic mechanisms
which maintain constant output levels to switching between alternative substrates
or developmental pathways. Regulatory mechanisms including thresholds, allosteric
interactions and feedback in gene transcription networks, metabolic pathways, signal

transduction and intercellular interactions are defining biological characteristics—



almost everything that happens in life boils down to enzyme-catalysed reactions”.
This leads us to the modelling process of how to represent in vivo enzymic reactions

mathematically. There are many approaches; these include:

e Directed graphs in which molecules are vertices and the reactions are the edges;

e Bayesian networks in which the vertices correspond to random variables that de-
scribe, for example, a gene expression while the network defines a joint probability
density function;

e Boolean networks in which a biological object is either in an on or off state;

e Ordinary Differential Equations (ODEs) in which chemical kinetics rate equations
are used to represent protein concentrations;

e Partial Differential Equations (PDEs) in which the spatial structure of cells are
taken into account; and finally

e Stochastic Differential Equations (SDEs) in which we have to resolve the issue
of whether we work with concentrations or with individual molecules through

continuous or discrete models.

As the previous discussions would suggest, we can consider three different types of
modelling regimes for understanding biochemical pathways and networks. These are
the discrete and stochastic, the continuous and stochastic and the continuous and
deterministic regimes and reflect the nature of the considered reactions and number

of molecules present in the system.
2.1 Deterministic: The law of mass action

The fundamental empirical law governing reaction rates in biochemistry is the law
of mass action. This states that for a reaction in a homogeneous, free medium, the
reaction rate will be proportional to the concentrations of the individual reactants

involved. For example, given the simple Michaelis—-Menten reaction

StECcR pip (1)
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the rate of production of complex C' would be
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Combining these terms gives an expression for the rate of change of concentration

of C

¢ dc, dC-
E_F—’_F_IQSE_(IC_I—FIQ)O (2)

Using this law, similar expressions for the rate of change of concentration of each
of the molecules can be found. Hence, we can express any chemical system as a
collection of coupled non-linear first order differential equations. Apart from the
most simple cases these do not in general have an analytical solution (Schnell and
Mendoza, 1997). However, it is straightforward enough to numerically integrate them

to find an approximation of the reaction dynamics of the system.

2.2 Stochastic: The chemical master equation

Whereas the deterministic approach outlined above is essentially an empirical law,
derived from in vitro experiments, the stochastic approach is far more physically
rigorous. The stochastic treatment of chemical reactions was initiated by Kramers
(1940). Fundamental to the principal of stochastic modelling is the idea that molec-
ular reactions are essentially random processes; it is impossible to say with complete
certainty the time at which the next reaction within a volume will occur. In macro-
scopic systems, with a large number of interacting molecules, the randomness of this
behaviour averages out so that the overall macroscopic state of the system becomes
highly predictable. It is this property of large scale random systems that enables
a deterministic approach to be adopted; however, the validity of this assumption
becomes strained in in vivo conditions as we examine small-scale cellular reaction

environments with limited reactant populations.

Bartholomay (1957) was one of the first biochemists to examine enzyme-catalysed
reactions within the framework of statistical kinetics. Over the subsequent 20 years
the framework led to the stochastic analysis of a variety of simple reaction mech-
anisms including the Michaelis-Menten mechanism (Bartholomay, 1962a,b; Jachi-
mowski et al., 1964; Darvey and Staff, 1967; Staff, 1970; Ardnyi and Téhn, 1977). As
explicitly derived by Gillespie (1992b), the stochastic model uses basic Newtonian
physics and thermodynamics to arrive at a form often termed the propensity function

that gives the probability a, of reaction p occurring in time interval (¢,¢ + dt)
a,dt = hyc,dt | (3)

where the M reaction mechanisms are given an arbitrary index p (1 < p < M)

and h,, denotes the number of possible combinations of reactant molecules involved



in reaction p. For example, if reaction [ involves two species S; and S, with X;

molecules of species S;, we have h; = X1 X5.

The rate constant c, is dependent on the radii of the molecules involved in the
reaction, and their average relative velocities — a property that is itself a direct
function of the temperature of the system and the individual molecular masses
(Gillespie, 1977). These quantities are basic chemical properties which for most
systems are either well known or easily measurable. Thus, for a given chemical
system, the propensity functions, a, can be easily determined. Indeed, their form as
described above, constitute the fundamental hypothesis of the stochastic formulation
of chemical kinetics — valid for any chemical system that is kept “well mized” either
by direct stirring or by requiring that non-reactive molecular collisions occur far

more frequently than reactive molecular collisions (Gillespie, 1976).

The stochastic formulation proceeds by considering the grand probability function
P(X;t) = probability that there will be present in V' at time ¢, X; of species S;,
where X = (X7, Xo, ..., X) is a vector of molecular species populations. Evidently,
knowledge of this function provides a complete understanding of the probability

distribution of all possible states at all times.

By considering a discrete infinitesimal time interval (¢,¢+ dt) in which either 0 or 1

1 we see that there exist only M + 1 distinct configurations at time

reactions occur
t that can lead to the state X at time ¢ 4+ d¢ and as such, we can write our grand
probability function at time t 4+ dt as a function of all possible precursor states at

time ¢

P(X;t+ dt) = P(X;t)P(no state change over dt)
+ nyzl P(X — v,;t)P(state change to X over dt) ,
where v, is a stoichiometric vector defining the result of reaction ;1 on state vector

X, i.e. X — X + v, after an occurrence of reaction p. It is straightforward to show
that

e P(no state change over dt) =1— 30", a,(X)dt.
e P(state change to X over dt) = 300, P(X — vy t)a, (X — v, )dt.

1 The probability of more than one reaction occurring in time interval (¢,¢ + dt) is o(dt)

and hence vanishes in the limit dt — 0



If we then note that

P(X;t+dt) — P(X;t) _ OP(X;1)

I
a0 dt ot
we arrive at the chemical master equation that describes the stochastic dynamics of
the system
oP(X;t) M
T > a, (X = v,)P(X — v, t) — a,(X)P(X; ) (4)
p=1

3 Stochastic simulation algorithms

Essentially the characterisations of the three modelling regimes — the discrete and
stochastic, the continuous and stochastic and the continuous and deterministic —
depend on the nature of the reactions and the number of molecules in the system
being studied. One key simulation technique is the stochastic simulation approach to
chemical reactions developed by Gillespie (1977) through the stochastic simulation
algorithm (SSA). This is essentially an exact procedure for numerically simulating
the time evolution of a well-stirred chemically reacting system by taking proper ac-
count of the randomness inherent in such a system. It is rigorously based on the same
microphysical premise that underlies the chemical master equation described above
(Gillespie, 1992a) and gives a more realistic representation of a system’s evolution
than the deterministic reaction rate equation (RRE) represented mathematically by
ODE. In particular, the RRE is entirely inappropriate if the molecular population of
some critical reactant species is so small that microscopic fluctuations can produce
macroscopic effects. This is especially true for the enzymatic reactions in living cells
(Kuthan, 2001). As with the chemical master equation, the SSA converges, in the

limit of large numbers of reactants, to the same solution as the law of mass action.

The algorithm takes time steps of variable length, based on the rate constants and
population size of each chemical species. The probability of one reaction occurring
relative to another is dictated by their relative propensity functions. According to the
correct probability distribution derived from the statistical thermodynamics theory,
a random variable is then used to choose which reaction will occur, and another
random variable determines how long the step will last. The chemical populations are
altered according to the stoichiometry of the reaction and the process is repeated. In
recent years, the SSA has been successfully applied in a number of settings including
A-phage (Arkin et al., 1998), and circadian rhythms (Elowitz and Leibler, 2000;
Gonze et al., 2002). The cost of this detailed stochastic simulation algorithm is the



likely large amounts of computing time. The key issue is that the time step for the
next reaction can be very small indeed if we are to guarantee that only one reaction

can take place in a given time interval.

An alternative approach to the SSA is via the StochSim package developed initially
by Morton-Firth (1998) [now Carl Firth] as part of a study of bacterial chemotaxis.
The aim was to develop a realistic way of representing the stochastic features of this
signalling pathway and to handle the large numbers of individual reactions encoun-
tered (Firth and Bray, 2000). Molecules or molecular complexes are represented
as individual software objects. Reactions between molecules occur stochastically,

according to probabilities derived from known rate constants.

StochSim works by quantising time into a series of discrete, independent time
intervals, the sizes of which are determined by the most rapid reaction in the system.
In each time interval, a molecule and another object (either a molecule or a pseudo-
molecule) is selected at random. If two molecules are selected, any reaction that
occurs is bimolecular, whereas if one molecule and a pseudo-molecule are selected, it
is unimolecular. Another random number is then generated to determine if a reaction
will occur. The probability of a reaction is retrieved from a look-up table and if this
exceeds the random number, the particles do not react. On the other hand, if the
probability is less than the random number, the particles react, and the system is

updated.

StochSim is likely to be slower than the Gillespie algorithm especially when the
number of molecules is large. However, if the system contains molecules that can exist
in multiple states, then StochSim may not only be faster but also closer to physical
reality. StochSim has been extended to incorporate explicit spatial representation
in which nearest-neighbour interactions of molecules (such as clustered receptors on

a membrane) can be simulated (Shimizu et al., 2000).

3.1 Gillespie’s exact algorithm

To understand the SSA in more detail, we first introduce the reaction probability
density function P(7, u|X) defined such that P(7, u|X)dr = probability that given
the state X at time ¢, the next reaction in the volume will occur in the infinitesimal

time interval (¢ + 7,t + 7 + d7) and will be an R, reaction.

The algorithm works by commencing at ¢ty with some initial state and randomly

picking the time and type of the next reaction to occur from the distribution



P(7, 1| X(tp)). It then updates the overall state of the system to take account of
an occurrence of R, and repeats the whole procedure this time picking from the
distribution derived from the newly updated state, i.e. P(7, u|X(¢1)). This process
loops repeatedly and in doing so effectively steps through time forming a complete

evolution of the system based on the probabilistic model.

To find an expression for P(7, ;4|X) we note that it is equal to the probability of no
reaction over time interval (¢,¢ + 7), Po(7|X) multiplied by the probability that R,

will occur over time interval (¢t 4+ 7,t + 7 4 d7), namely a,dr. Thus

P(r, p|X) = Py (7|X)a,dr
= Po(7|X)hyc,dr |

It turns out that Py(7|X) has the form (Gillespie, 1977)

M
Py(1|X) = exp(— >_ a,7) (5)
v=1
from which we may conclude that

a,exp(—apr) if0 <7 <ocand p=1,---, M
P(rpX) =

0 otherwise ,

where a,, = h,c, and ag = 3.2 | a,. By noting that P(r, u|X) is separable, i.e. the
product of two functions f(u) and g(7) which each only depend on one of our two
parameters, we see that at any point we can pick 7 and p from the distribution
P(7, 1|X) by choosing two random numbers r; and ro from the interval [0, 1] and

setting 1 and 7 such that

1 1
= —In— 6
T ” nr1 (6)
p—1 I
Z<r2a0§2. (7)
v=1 v=1

So in summary, after setting the initial species populations X and reaction constants

¢, the algorithm loops the following steps:

(1) Calculate a, = h,c, (1 < p < M).
(2) Generate r; and 79 and calculate 7 and p according to (6) and (7).

(3) Increase t by 7 and adjust X to take account of an occurrence of R,,.

10



3.2 Computational implementation

By following the simple procedure outlined above, a computational algorithm was
set up to explore the behaviour predicted by the stochastic approach and compare
it to the predictions of the deterministic rate laws. The algorithm implemented the
Michaelis-Menten mechanism (1) whereby enzyme and substrate molecules combine
to form a complex which can then either disassociate back into the original enzyme-
substrate pair or instead convert the substrate molecule into a product molecule

leaving the enzyme free to form a new pairing.

In the deterministic approach, the three reactions are controlled by the reactant con-
centrations X; and the rate constants k1, k_; and ks. By contrast, in the stochastic
approach at any given time the reaction probabilities are governed by the reactant
concentrations X; and rate constants c¢;, c_; and ¢y as described in Section 2.2. It
turns out that ¢, and k, are essentially equivalent differing only by factors of V', the
volume of the vessel (Gillespie, 1977).2

3.2.1 Results and analysis

Thus it is relatively straightforward to contrast the results of the two methods.
FIGURE 1(a) shows the results of 2 000 runs of the stochastic algorithm simulating
a system with initial molecular populations Sy = 100, Fy = 10, Cy = Py =0 and a
volume of 1 000 units®. The blue/broken solid curves of each run (3 runs are shown)
of the stochastic method show significant random fluctuations from the mean (shown

in red/plus sign symbols).

The result of numerically integrating the equations of the deterministic approach is
shown in green/smooth solid curve. It is clear that there is a close correspondence
between the predictions of the deterministic approach and the stochastic approach,
with the deterministic curve falling well within 1 standard deviation (SD) of the
stochastic mean (the red/dotted curve). This is a very close match, especially consid-
ering our stochastic simulation is modelling a system containing just 110 molecules

— well within what we might consider to be the microscopic domain.

2 This is simply a consequence of the way the different constants are defined, with Cu

based on absolute molecular populations and k,, based on molecular concentrations.
3 The unit of volume is arbitrary as long as we are consistent in our units when considering

molecular concentrations.
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Fig. 1. Stochastic algorithm simulation for the substrate density S in the Michaelis—Menten
reaction (1). The blue/broken solid curves are individual simulations. The green/smooth
solid curves are the results of numerically integrating the deterministic differential equa-
tion. The red/plus sign symbols are the mean for the 2 000 runs of the stochastic simulation
and the red/dotted line corresponds to the mean plus (or minus) one standard deviation.

Initial conditions are: C' = P = 0.

However it is worth bearing in mind that an actual in vivo biochemical reaction
would follow just one of the many random curves (shown in blue/broken solid curves)
that average together producing the closely fitting mean. This curve may deviate
significantly from that of the deterministic approach, and thus call into question
its validity. Hence, it is perhaps most important to consider the wariance of the
stochastic approach — with a larger variance indicating a greater deviation from

the mean and hence from the deterministic curve.

FIGURE 1(b) shows the results for exactly the same simulation setup, except this
time we are modelling a system consisting of just 11 molecules within a volume of
100 units [thus the molecular concentrations are equal to those in FIGURE 1(a)].
We see that the deterministic curve (green/smoth solid curve) now shows significant
deviation from the mean curve (red/plus sign symbols) but still lies within the 1 SD
envelope. However this envelope is now very much wider, indicating that the results
of individual runs (blue/broken solid curve) will differ more significantly from the

deterministic solution.

Finally, to confirm compatibility of the two approaches FIGURE 2 illustrates how, on
average, the stochastic approach tends to the same solution as the deterministic ap-

proach as the number of molecules in the system increases, and we hence move from

12
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Fig. 2. Mean results from 2 000 runs of the stochastic algorithm simulating systems with
varying molecular populations for the enzyme substrate complex C' population in the
Michaelis—Menten reaction (1). The green/smooth solid line is the numerical solution for
the deterministic differential equations. The total number of molecules in the simulation
increases from 10 molecules (cyan/broken solid curves), 110 molecules (blue/dash curve)
to 1100 molecules (red/plus sign symbols). The initial molecular concentrations for the

simulations are: Sp = 0.10, Ey = 0.01, Cy = Py = 0 molecules per unit volume.

the microscopic to the macroscopic domain. Coupled with this, we also find (F1G-
URE 3) that the log SD of the data from the 2 000 simulation drops highly linearly
as the simulation volume is increased (keeping molecular concentrations constant),
meaning that each specific run is individually in closer and closer agreement with
the deterministic approach as the number of molecules in the system increases. This
is a direct effect of the inherent averaging of macroscopic properties of a system of

many particles.

These results provide clear verification of the compatibility of the deterministic
and stochastic approaches, but importantly also illustrate the validity of the deter-
ministic approach in systems containing as few as 100 molecules. As is clear from
FIGURE 1(a) the match between individual runs of the stochastic simulation and

the deterministic solution is still good even for such a small system.
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Fig. 3. “Global SD’s” (i.e. the mean over the whole simulation time of the S.D. at each
time-point) of molecular concentration data from 2 000 runs of the stochastic algorithm
for four different simulation volumes with equal initial molecular concentrations. Data for
S (circle symbol) and P (cross symbol) are indistinguishable (blue/dash curve), as are

data (red/solid curves) for C' (circle symbol) and E (cross symbol).

3.8  Enhanced stochastic simulation techniques

Gillespie’s algorithm suffers from a rapidly increasing computational overhead as
the complexity of the system being modelled is increased. It is very common in bio-
chemistry to have systems with several or even tens of chemical reactants interacting
via an array of distinct reaction mechanisms. The key point about the SSA is that
the time step 7 must be small enough to guarantee that only one reaction occurs in
that time interval, and as such, increasing the molecular population or number of
reaction mechanisms necessarily requires a corresponding decrease in 7. Clearly the
SSA can be very computationally inefficient especially when there are large numbers

of molecules or the propensity functions are large.

Now if the system possesses a macroscopically infinitesimal timescale so that during
any dt all of the reaction channels can fire many times, yet none of the propensity
functions change appreciably, then the discrete Markov process as described by the
SSA can be approximated by a continuous Markov process. This Markov process is
described by the Chemical Langevin Equation (CLE), which is a stochastic ordinary
differential equation (SDE) — see Gillespie (1992b). Thus the vector of chemical

species as a function of time can be viewed as the solution of an SDE in It6 form

14



M M
dX = Z l/ja,j(X)dt + Z l/j CL]‘ (X)dVV](t) s (8)
j=1 j=1
where the W;(t) are independent Wiener processes.

The CLE represents processes in the intermediate regime, that is those processes that

are stochastic and continuous. A Wiener process is a stochastic process satisfying
EW(t) =0, EW(t)W(s))=min{t,s} .

It is known that the Wiener increments are independent Gaussian processes with
mean 0 and variance |t — s| (that is, N(0,|t — s|)). Thus the Wiener increment
AW (t) = W(t+ At) — W (t) is a Gaussian random variable N (0, At) = v AtN(0, 1).

The Chemical Langevin Equation is an example of the more general class of It

Stochastic Differential Equations given by

d
dy(t) = go(y()dt +>_ g;(y(®) dW;(t),  y(to) =wo, yeR™  (9)
j=1
Thus, general classes of methods that can be used to solve (9) can also be used to

simulate solutions of (8) (see, for example, Kloeden and Platen, 1992).

We note that the third regime occurs when the noise terms are negligible compared
with the deterministic term. This leads to the standard chemical kinetic approach

that is described by the reaction rate equations
M
X'(t) = _vja;(X(t)) -
j=1

There are standard ODE techniques for solving such a system. The efficacy of such
methods depends on whether the system is stiff or not — that is whether or not
there are widely differing time constants. If there are, then explicit methods cannot

be used and A-stable implicit methods are required.

Recently, considerable attention has been paid to reducing the computational time
of simulation algorithms for stochastic chemical kinetics. Gibson and Bruck (2000)
refined the first reaction SSA of Gillespie by reducing the number of random variables
that need to be simulated. This can be effective for systems in which some reactions
occur much more frequently than others. Resat et al. (2001) treat systems which

have widely varying rate constants by applying a weighted Monte Carlo approach.

Gillespie (2001) proposed two new methods, namely the 7-leap method and the

15



midpoint 7-leap method in order to improve the efficiency of the SSA while main-
taining acceptable losses in accuracy. The key idea here is to take a larger time step
and allow for more reactions to take place in that step, but under the proviso that
the propensity functions do not change too much in that interval. Thus in the time
interval [t, £+ 7) and with the present state X (¢) at time ¢, then the number of times

that the reaction channel R; will fire is a Poisson random variable
Ki(r; X, t) = P(aj(X),7), j=1,...,M.

Here the notation P(A,t) denotes a stochastic Poisson process with mean A\t and

variance A\t and where
€_>\t()\t)k

Pr(P(\t) =k) = ]

These considerations lead to the 7-leap method.

3.3.1 The T-leap method

Choose a value for 7 that satisfies the Leap Condition: i.e., a temporal leap by 7 will
result in a state change A such that for every reaction channel R;, [a;(X +X)—a;(X)]
is “effectively infinitesimal”. Generate for each j = 1,..., M a sample value k; of the
Poisson random variable P(a;(X),7), and compute A = 332, k;v;. Finally, perform
the updates by replacing t by ¢t +7 and X by X + \.

Burrage and Tian (2003) introduced the framework of Poisson Runge-Kutta (PRK)
methods for simulating chemical reaction systems. These PRK methods are related
to the class of stochastic Runge-Kutta (SRK) methods for solving stochastic differ-

ential equations driven by Wiener noise.

The reason for adopting this framework is as follows. A Poisson random variable
P(a;(X), ) with a large mean a;(X)7 can be approximated by a Gaussian random
variable N (a;(X)7,a;(X)7), since

Pla;(X),7) = N(a;(X)7,0;(X)7) = a;(X)7 + \/a;(X)TN(0, 1) ,

where N(u,0?) is a Gaussian random variable with mean p and variance o?. This

can be viewed as

P(aj(X),7) =~ a;j(X)T + \/a;(X)AW (t) . (10)
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Now the simplest numerical method for solving (9) is the Euler-Maruyama method.
It takes the form

Yn+1 = Yn + th yn Z AW(n gy (yn) bny1 = tn + h,
j=1

where AW]-(R) = W;(t, + h) — W;(t,) is a Gaussian random variable N(0, h).

The Euler-Maruyama method converges with strong order 0.5 and weak order 1 to
the It6 form of the SDE. If it is applied to (8) it takes the form

M M
Xn1=Xn+7 Z Vjaj(Xn) + Z AWj(n)Vj V aj(Xn) :
j=1 j=1

Now using the approximation in (10) we can write this as

M
Xnt1 :Xn_'_zyjpj(aj(Xn)’T) : (11>

j=1
This method is nothing but the 7-leap method of Gillespie. Thus the 7-leap method

is the Euler method applied in the discrete setting when there are small numbers
of molecules. This means that we can essentially apply the same algorithm in dif-
ferent regimes, which is important in attempting to use multi-scaled, partitioning

techniques — see below.

More recently, Tian and Burrage (2004a) have considered sampling from a Bino-
mial distribution rather than a Poisson distribution in (11). This avoids generating
negative molecular numbers that can occur with the Poisson leap methods and ap-
pears to lead to more robust methods with significant improvements in accuracy

and efficiency.

Rathinam et al. (2003) consider how stiffness manifests itself at both the continuous
deterministic and discrete stochastic levels. In this case explicit methods become im-
practical. The authors construct two implicit versions of the explicit 7-leap method
known as the rounded and unrounded implicit 7-leap method, which have better
stability properties than the explicit 7-leap method and are suitable for solving stiff

chemical systems. The rounded method has the form

X=X,+7 z_: —a;(X,)) + z_: v; P (a;(X,),T)

1

j
M
X1 =X, +Z ) —a;(X —i—Zyj n),T)
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where [] denotes the nearest nonnegative integer.

4 Incorporating the Quasi-Steady-State Assumption in the stochastic

formulation

One of the great challenges to the efficient simulation of chemical kinetic systems
is how we deal with mixed systems in which some key species have low abundances
(as is the case for some molecules in genetic regulation) while other molecules have
large abundances and can be modelled via continuous SDEs. Thus a vital question to
address is how we can link discrete and continuous models and simulation algorithms

in a sensible and efficient manner when treating chemical kinetic systems?

Recently two new approaches by Haseltine and Rawlings (2002) and Rao and Arkin
(2003) have been proposed in an attempt to speed up the performance of the SSA.
Both of these ideas are based on partitioning of the system. In the case of Rao
and Arkin, they consider a timescale separation in which a subset of the system
is asymptotically at steady state. This is called the quasi-steady-state assumption
(QSSA) and eliminates the fast dynamics that is responsible for the poor compu-
tational performance of the SSA. The QSSA is a simplification derived from the
deterministic approach to reduce the number of coupled differential equations gov-
erning the dynamics of the system under study (see Schnell and Maini, 2003, for
a review). It assumes that one or more intermediate molecules within a chemical
system quickly reach a quasi-equilibrium state whereby their rate of formation and
destruction approximately sum to zero. Hence, applying the QSSA to determinis-
tic kinetics, results in the ODEs describing the intermediate species being set to 0
(Schnell and Mendoza, 1997; Schnell and Maini, 2000). Similarly, in the stochastic

setting the system is split into primary (y) and ephemeral (z) subsystems.

Inherent in the QSSA is the assumed macroscopic nature of the system allowing the

averaging out of microscopic fluctuations in molecular populations.

Accordingly, Haseltine and Rawlings (2002) attempt to speed up the performance
of the SSA by partitioning a chemical reaction system into slow and fast reaction
subsets. The slow subsystem corresponds to extents with small propensity functions
and few numbers of reactions, while the latter corresponds to large propensity func-
tions and large numbers of reactions. This partitioning is achieved by exploiting the
structure of the CME and deriving master equations that describe the evolution of

the probability density function for both the slow and fast subsystems. The slow
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system is treated by the SSA, while the fast system is treated either deterministi-
cally or by applying the explicit Euler-Maruyama method to the CLE. Thus at each
time point ¢, the CLE is repeatedly solved until ¢,,,1 = t,, + 7 is reached, then the
SSA is applied to the slow subsystem with a stepsize of 7.

Burrage et al. (2004) extended these ideas to classify a system (in terms of both the
size of the propensity functions and the number of molecules in the system) into
slow, intermediate and fast reactions. They form three vectors corresponding to the
slow, intermediate and fast regimes and place in those vectors the corresponding
reaction numbers. If there are no reactions in, say, the intermediate vector for a
given time step, this means there are no intermediate reactions for that step and the
simulation regime changes accordingly. They use the SSA, the 7-leap method, and

the Euler-Maruyama method in the slow, intermediate and fast regimes, respectively.

Returning to the Rao and Arkin approach, we explicitly consider the important case
of the Michaelis-Menten mechanism (1). Subject to the condition derived analyti-
cally by Schnell and Mendoza (1997)

E E
1 O~ itk > kg, ko (12)

>
Ky +So  So

where Ky = (k_1+k2)/k1, the QSSA assumes after some initial transient period that
the complex concentration C' stays constant, i.e. dC'/dt ~ 0. This reduces the number
of coupled differential equations by one as well as simplifying those that remain. Rao
and Arkin (2003) propose that application of the QSSA to the stochastic formulation
has a similar simplifying effect by excluding the quasi-steady-state “intermediate”
chemical species from the state vector X thus reducing its dimensionality. This in
turn reduces the dimensionality and complexity of the chemical master equation of
the system (4).

By splitting state vector X into the primary species vector Y and the intermedi-

ate species vector Z such that X = (Y,Z), the chemical master equation can be

rewritten
OP(Y,Z;t) X
— = ; a,(Y =V, Z—vIP(Y =V}, Z —v;t)—a, (Y, Z)P(Y,Z;t) .

(13)
We then make use of the definition of conditional probabilities

P(Y,Z:t) = P(Z|Y;t)P(Y;?)
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and the chain rule of differentiation to rewrite (13) as

oP@Yit) o OP(YiY)
—  TPAY ) ——

P(Y;t) = nyzl[a“(Y—vz,Z—vf)

XP(Z =Y =v);t)P(Y —v),;t)
—a,(Y,Z)P(Y,Z;1)] .

We then apply the QSSA by setting the net rate of change of the conditional prob-

ability of the intermediate species to zero
OP(Z|Y;t)
ot
eliminating the first term from the LHS of the above equation. By noting >, P(Z|Y;t) =

1 we arrive at the approzimate master equation, which is dependent only on Y

~ 0 (14)

OP(Y;t M

T) = > [bu(Y = v )P(Y = v}5t) = bu(Y)P(Y; )] (15)

p=1
where

bu(Y) = Zau(Yv Z)P(Z]Y).

Thus we have an approximate stochastic form for the dynamics of the primary
species dependent only on the state of the primary species. From this point we
are able to use a modified version of Gillespie’s algorithm to go from the chemical
master equation to the generation of a stochastic simulation of the system. The
modification involves at each time step picking Z from the conditional probability
function P(Z|Y), before using it to calculate a,(Y,Z) = a,(X) for the M reactions

in the usual way.

Taking as an illustrative example the Michaelis-Menten mechanism (1), Rao and
Arkin (2003) show that by application of the QSSA choosing

e Primary species: St = S 4+ C' = total concentration of substrate, free and bound

e Intermediate species: C' = enzyme-substrate complex concentration
we can consider the simplified system
S—P (16)

with associated chemical master equation

dP(ST; t)

dt = a(St + 1)P(Sr + 1;t) — a(S7)P(573t) - (17)
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In this equation,

VUmax S T

O = Ky sr

where Vpax = ko Fp is the maximum velocity of the reaction and Ky = (k_1+k2)/k1
is the Michaelis—Menten constant. Thus we have a much simplified chemical master
equation involving just one (as opposed to the original three) reaction mechanism,
and in principle stochastic simulation of this system becomes less computationally
demanding. This technique of combining more than one species (S and C) into a
single aggregate variable (S7) is known as lumping, and as shown by (Schnell and
Maini, 2002) is the basis of the total Quasi-Steady-State Assumption (tQSSA) — an
alternative approximation technique valid in many cases where the standard QSSA

is not.

However, the clear computational benefit of this simplification is offset to a de-
gree by the need to calculate or approximate the conditional probability function
P(Z)Y) = P(C|St). In this case, rather than generating and randomly selecting
from the probability function P(C|St) at each time step, an analytical expression

for the expectation E(C|St) is instead used.

Rao and Arkin further apply the QSSA to more complex biochemical systems in-
volved in gene regulation, illustrating the computational savings inherent in their
approach. In doing so they reduce the number of reactions considered in the system
from 10 down to 2. In this case, rather than explicitly calculating conditional prob-
ability function P(Z]Y) it is instead approximated with a Gaussian distribution.
The modified Gillespie algorithm is then implemented and shown to cause a 50%

reduction in computational time with minimal loss of accuracy.

Whilst this evidence is convincing as to the accuracy and computational benefit of
Rao and Arkin’s technique, it is important to consider how valid it is to apply the
QSSA within the stochastic method — a method whose benefit over the deterministic
approach has been shown to exist only within the microscopic domain. The QSSA
is fundamentally derived from the deterministic approach where large numbers of
molecules are assumed. As such, it is far from obvious that we can safely transfer this
approximation to the microscopic domain. Thus it seems pertinent to ask whether

it is valid at all to incorporate the QSSA within the stochastic framework.
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5 Two-dimensional Monte Carlo simulations

Common to all the stochastic methods considered so far is the assumption that the
chemical system is well mixed at all times. This allows us to make the simplifying
assumption that throughout the reaction any given particle has equal chance of

colliding with any other particle wherever in the volume they are each located.

This well mixed assumption requires that the diffusion of molecules through the
volume be sufficiently unrestricted that the average time taken for a molecule to go
from one reactive collision to another is significantly greater than the average time

taken to diffuse across the volume.

The structural organisation of the cytoplasm has only recently come to the fore in
modelling in vivo kinetics (Ellis, 2001). Intracellular environments are characterised
by significant physical structures that are likely to seriously inhibit the diffusion
of molecules across the reaction volume. As such the validity of the stochastic ap-
proaches discussed so far is called into question when considering in vivo reactions

(see Schnell and Turner, 2004, and references therein).

Chemical reactions in crowded environments show fractal-like kinetic properties
(Kopelman, 1986, 1988). Berry (2002) and Schnell and Turner (2004) implemented
a lattice gas automata method using a Monte Carlo algorithm on a two dimen-
sional square lattice with cyclic boundary conditions. Each molecule is mobile on
the lattice through diffusion, modelled by independent nearest-neighbour random
walks of the individual molecules. Time is split into discrete steps and at each step
molecules are selected at random to take a single step in a random direction along
the grid. In this way, molecules move through the volume via two-dimensional ran-
dom walks known as blind ant processes (Majid et al., 1984). When two compatible
molecules collide, they react with a certain probability. For enzyme-catalysed reac-
tions, enzyme-substrate complex molecules when randomly chosen may also spon-
taneously disassociate with a set probability. Obstacles are represented as an extra,
non-reactive, immobile molecular type. The coordinates of the position of every
molecule and occupancy status of each lattice site are stored and used for analysis.
At any moment of the simulation, one given lattice site cannot be occupied by more

than one molecule.

In our simple model of the Michaelis-Menten reaction (1), the rate coefficients ky,

k_q1 and ko are modelled by the reaction probabilities f, r and g respectively where
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e f is the probability that an enzyme and substrate molecule will react to form a
complex molecule (F + S — (') given that they have collided on the lattice.

e r and g are the probabilities that when randomly selected by the Monte Carlo
method, a given complex molecule will disassociate into respectively an enzyme
and substrate molecule (C' — E 4 .5) and an enzyme and product molecule (C' —
E+P).

Thus, we expect for a sufficiently large system, or for the averaging of the data from
sufficient repetitions of the simulation, that the numerically derived rate coefficients

k1, k_1 and ko will respectively tend to the reaction probabilities f, r and g.

This simulation method differs from the stochastic simulation algorithm of Gillespie
(1977) in one crucial way: Gillespie’s Exact Algorithm utilises the spatial homo-
geneity of the reaction environment to derive a probability distribution for the time
between elementary reaction events. The algorithm then samples randomly from
this distribution to simulate the dynamics of the reaction. In contrast, the Monte
Carlo method assumes only that the molecular motion is Brownian in nature — i.e.
that it progresses via individual molecular random walks over a discrete lattice. As
such, the time between second order reaction events does not conform to a pre-
determined probability distribution, but rather is dictated by two factors: firstly,
the chance occurrence of two random walks bringing together two molecules on the
same site simultaneously. Secondly, the preset reaction probabilities dictating how

likely two co-incident molecules are to react.

At the beginning of each simulation, the £ and S molecules and the obstacles (if
present) are placed on the lattice by randomly choosing the co-ordinates for each
of them. At each Monte Carlo sequence, a “subject” molecule is chosen at random

and moved /reacted upon according to the following rules:

1. Randomly choose nearest neighbour “destination” site.

2. If the “subject” molecule is F/, S or P and destination site is empty, move to it.

3. Otherwise

3.1. If the “subject” molecule is £ or S and the molecule occupying the “destination”
site (“target” molecule) is respectively S or F, then generate a random number
between 0 and 1. If this is lower than reaction probability f, replace the “target”
molecule with C, remove the “subject” molecule and set v = 7 + 1, where ()
is simply a counter of the number of £ + S — C reactions that have occurred
in time interval [0, ¢].

3.2. If the “subject” molecule is C', check vacancy of nearest neighbour sites. If at

least one nearest neighbour site is vacant, randomly choose a vacant “destina-
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tion” nearest neighbour site and generate a random number x between 0 and
1.
3.2.1. If x < r place E on the “subject” site and S on the “destination” site. This
step corresponds to the elementary reaction C' — E + S.
3.2.2. If r <x <r+ g place E on the “subject” site and P on the “destination”
site. This step corresponds to the elementary reaction C' — FE + P.
3.23. If z > r + g move C to the “destination” site.
4. Otherwise, keep “subject” molecule on initial site. No movement or reaction oc-

curs.

For each time step, the Monte Carlo sequence is repeated ngoai(t) times, where
Ntotal (t) is the number of distinct molecules on the lattice (excluding obstacles)
at time t. Despite a fully conservative system where no molecules are created or
destroyed, the total number of distinct molecules n. changes over time because
when an E and an S molecule combine to form a C' molecule, we have one fewer
distinct molecule in the system. Setting this number of repetitions ensures that one
time unit statistically represents the time necessary for each molecule to move once.

The simulation proceeds until a predetermined final time point.

The net rates for bimolecular reactions, averaged over the spatial grid, have been
found to decrease with time, following an empirical time-dependent relationship
k(t) = ko(r + t)~", where ko is the ideal (dilute solution) rate constant, and the
positive parameters h and 7 are found to depend on the number and arrangement of
the obstacles (Schnell and Turner, 2004). In diffusion-limited reactions the rate de-
pends on the geometry of the obstacles, leading to fractal-like effects in the reaction
rates that are hardly separable from the purely geometric effects (Kopelman, 1986).
Numerous studies have been made to tabulate the values of fractal-like scaling ex-
ponents for reactions in different geometries (see, for example Ahn et al., 1999, and

reference therein).

The lattice gas approach offers the significant benefit of being able to incorporate
a non-homogenous environment. However, this benefit comes at a large compu-
tational cost. FIGURE 5(a) shows the time taken to perform 10 runs of the SSA
(blue/circle symbols), a two-dimensional lattice gas algorithm (green/plus sign sym-
bols) and a three-dimensional lattice gas algorithm (red/triangle symbols) for various
sizes of simulation environment on a 2.8MHz Intel Pentium4 running MATLAB
within Microsoft Windows XP. For the lattice gas simulations, the term “vol-
ume” refers to the total number of grid elements present on the two-dimensional or

three-dimensional lattice.

24



1400

3500 T T T T
1300f

3000

T

1200F

2500 1100

T

1000f

n
o
o
(=)
T

900f

a1

o

=}
T

800f

Simulation time (s
Simulation time (s)

A
1000 . 700f

600f

500f

0 0.5 1 15 2 25 3 3.5 4 4000 0.1 02 03 0.4 0.5 0.6 0.7 08

Simulation volume x 10 0

(a) Average simulation time in seconds for  (b) Average simulation time in seconds as a
various sizes of the simulation environment.  function of obstacle density, 6, for the lattice

gas simulations.

Fig. 4. Benchmarking results for the stochastic simulations. We compared the sim-
ulation time (seconds) for the Gillespie algorithm simulations (blue/circle symbols),
two-dimensional (green/plus sign symbols) and a three-dimensional (red/triangle sym-

bols) lattice gas algorithms.

As is evident from the figure, all three approaches scale approximately linearly with
volume, but with the lattice gas approaches growing in cost at at a far higher rate
than the SSA. The three-dimensional lattice gas simulations have an additional pre-
mium due to the increased overhead of database searching through three-dimensional
rather than two-dimensional data arrays. It is also worth noting when comparing
two- and three-dimensional systems that for a given volume they have the same
number of elements, so the three-dimensional cube will be of much smaller side

length than its equivalent two-dimensional square.

F1GURE 5(b) shows the variation in computational load for the two- (green/plus sign
symbols) and three-dimensional (red/triangle symbols) lattice gas approaches as a
function of obstacle density, 6. Evidently, the computational overhead increases with
0 as expected until approximately 6 = 6. (~ 0.5) at which point the load tails off.
This drop off is likely to be due to the formation of isolated sub-volumes within the
reaction environment when 6 > 6., thus reducing the frequency of reaction events

and consequently the computational load.

We must also acknowledge that the lattice gas simulations represent a simplified
picture of the cellular environment. They model reactions in fully conservative con-
ditions where no external factors have an effect on the observed kinetics. They also
allocate structure to the environment in an entirely random fashion, in contrast to

the highly organised structure of living cells (Kuthan, 2001). The lattice gas au-
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tomata algorithm has restricted the motion of our reactant molecules to discrete
jumps in restricted directions where in reality, the movement of these reactants will
be entirely continuous. These restrictions may potentially have unforseen effects on
the overall dynamics of the simulated reaction in terms of the size of the lattice and
its mesh size. Furthermore, from a physical point of view, the simulations conserved
momentum within the cell only on average, with individual reactants changing di-
rection entirely independently. Thus it is important to verify the extent to which the
results of the lattice gas automata conform to well understood in vivo experimental

results.

6 Discussion and conclusions

Several levels of detail have traditionally been employed in modelling biochemical
reactions and pathways (Crampin et al., 2004). The most detailed level of description
is the chemical kinetics approach, in which the concentrations (or numbers) of the
molecules involved in reactions are modelled over time. Normally, the kinetic models
consist of a system of ODEs that can be analysed with nonlinear dynamics techniques
and numerically computed with standard software packages. Unfortunately, the rep-
resentation of a biochemical reaction as system of ODEs is completely deterministic
and does not take into account the random noise of fluctuations in concentration
within the cell.

The stochastic kinetic modelling approach provides a more detailed description for
reactions than the systems of ODEs. There are numerous stochastic approaches for
modelling reactions, but they are difficult to implement analytically and researchers
are reduced to numerical studies (see, for a review Burrage et al., 2004). Another
caveat to the use of stochastic modelling is that the appropriate approach to describe
the fluctuations of biochemical reactions must be used. There are clearly two sources
of fluctuations in in vivo biochemical reactions: (i) small number of molecules —
simulated typically in reactions involving protein-DNA binding, transcription and
translation — and (ii) limited diffusion effects due to the structural organisation of

the cytoplasm and the macromolecular crowding.

The Gillespie approach is an efficient method to model chemical reactions taking
into account the effects that only small quantities of molecules are involved. Having
introduced the key properties of the stochastic approach to biochemical kinetics and
implemented Gillespie’s SSA to model the Michaelis-Menten mechanism, we have

shown that results from the stochastic and deterministic methods are consistent.
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Even in highly microscopic environments, mean data from the SSA (Gillespie, 1976,
1977) was seen to coincide closely with the predictions of the law of mass action con-
firming that the two approaches remain consistent on average for large and small
systems (Gillespie and Mangel, 1981). We have demonstrated this in the case of the
Michaelis-Menten mechanism, where the deterministic approach remains in close
agreement with the stochastic approach even when considering highly microscopic
environments with as few as 100 molecules present. This suggests that when consid-
ering reaction kinetics in vivo the deterministic approach can indeed be a valid one

to use.

We have discussed the benefits and potential problems of incorporating the QSSA
into the stochastic approach, along with attempts to take account of the finite
timescale of individual reaction cycles. We have also discussed attempts to improve
on algorithmic efficiencies through the 7-leap and more general approaches, sam-
pling either from a Poisson or Binomial distribution. There is strong evidence that
sampling from the Binomial distribution confers greater robustness and improved

efficiencies.

However such approaches have their own difficulties involving assumptions that
molecules act as dimensionless point-particles and environments are entirely ho-
mogeneous and well stirred, ensuring the probability of a molecule existing in any
sub-region of the vessel is equal across the whole volume. These assumptions ren-
der these approaches unsuitable for incorporating the fluctuation effects of limited

diffusion due to the cytoplasm structure and macromolecular crowding.

The diffusion-limited reaction kinetics differ significantly from the classical kinetic
approaches. In most of the limited diffusion stochastic approaches presented in the
literature (see Calef and Deutch, 1983, for a review), the kinetics laws resemble
mass action kinetics laws: reactions are driven by time independent rate constants,
which are proportional to the microscopic diffusion constants of the reactants. The
stochastic approach is based on the mean square displacement, which is linear in
time for homogeneous systems. Alternative approaches can be based on the first
passage time or on the exploration space (Kopelman, 1986); “fractal-like kinetics”
is one such approach. Tian and Burrage (2004b) have also found that the standard

rate constant can be inappropriate in certain genetic regulatory networks.

Recently two-dimensional Monte Carlo simulations incorporating immobile obstacles
have been introduced to model limited diffusion biochemical reactions (Berry, 2002;
Schnell and Turner, 2004). Results from this approach have shown that the kinetics

of the reaction are indeed altered by the presence of heterogeneities, and this effect is
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well modelled by the “fractal-like kinetics”. Thus, Monte Carlo simulation appears
to be the most promising stochastic technique for modelling in vivo biochemical
kinetics as it can take into account both the small number of reacting molecules and
the limited diffusion. This approach can be improved by simulating an environment
more closely representative of a living cell and no longer considering the system in
isolation. It will certainly yield a detailed picture of the behaviour of a biochemical
pathway. However, this completeness would come at a high computational cost and
does not provide an analytical treatment to further our understanding of the system
under consideration. It is worth making the effort of implementing the SSA to the
analytical description of the fractal-like kinetics approach in order to obtain a more

computationally efficient approach for modelling reactions in in vivo conditions.
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