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Abstract

Stochastic and analytical approaches are widely used for the analysis of
chemical reactions systems. Dizzy, the chemical kinetic simulation soft-
ware developed by the Institute for System Biology, provides a solution
for such chemical reaction models either by using different stochastic
simulation algorithms or by solving a set of ordinary differential equa-
tions. This thesis provides a method to analyse this data by employing
confidence intervals and showing candle sticks for the representation of
those results. Moreover we have developed a profile analysis of simulated
models. The thesis also deals with a new simulation method which estab-
lishes a solution developed by solving stochastic differential equations.
This method combines differential equations with Brownian motion, and
it turns out to be faster than traditional stochastic algorithms when ap-
plied to specific chemical models. Trajectories of well-known chemical
models, like the Lotka-Volterra and the Schlögl models, are computed by
solving stochastic differential equations, and compared with the solution
obtained using other simulation methods. In the end the thesis explains
other works related to Dizzy regarding sensitivity analysis and deadlock
analysis of chemical reaction models.
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Chapter 1

Introduction

T HIS thesis gives an account of my investigations into the methods for
solving chemical reaction systems, namely by approaching the issue

with stochastic differential equations.

Models of chemically reacting systems have traditionally been simulated
either by solving a set of ordinary differential equations (ODEs) or by
using the stochastic simulation algorithm (SSA) of Gillespie [10]. Tra-
ditional ODE-based approaches are adequate when dealing with large
numbers of molecules, when discreteness and noise have no macroscopic
effects, but in general they are not able to provide a fully physically ac-
curate representation of the noise amplification caused by the essential
stochastic processes in living cells. At the same time SSA approaches can
simulate accurately all those dynamics by using a discrete-space Markov
process, but their drawback remains the great amount of computation
time that is often required to simulate a model.

From this setting we come to stochastic differential equations (SDEs), a
combination between a strictly deterministic approach and a stochastic
one. SDEs represent a position on the border between different branches
of science and engineering, from mathematical analysis to probability cal-
culus. In particular regarding stochastic processes: the application of
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SDEs is of interest to different subjects like physics, financial mathemat-
ics and biology.

In this paper, I present an extended analysis of this methodology applied
to Dizzy [22], the chemical kinetics stochastic simulation software pack-
age written in Java. This software was developed by Stephen Ramsey
in the Institute for Systems Biology since 2002, is licensed under the
GNU Lesser General Public License (LGPL), which is a standard “free
software” and “open source” license1. Dizzy provides a model definition
environment and a set of simulation engines, both deterministic, like the
ODEs, and stochastic, like the Gillespie’s direct method, Gibson-Bruck
algorithm [9] and Gillespie’s τ -leap [5]. Results of the trajectories of the
simulated dynamical models are shown either by way of numerical tables
of values or a chart of the average simulations.

To validate the correctness of the numerical solution of the SDE simula-
tor, I compare this new methodology implemented with more traditional
ODEs and SSA simulators across three models: the Michaelis-Menten
model, the Schlögl model and the Lotka-Volterra model.

Besides providing a new stochastic simulator for Dizzy based on solving
a set of SDEs, the aim of my thesis is also to help Dizzy’s users to have
a more accurate comprehension of the final results. To reach this target,
I have developed a statistical analysis of the computed trajectories sup-
ported by confidence intervals. Such analysis allows a user to set a spe-
cific confidence interval in which a number of simulation results are con-
sidered “good” and others, due to the stochastic nature of the simulator,
can be rejected. To show properly these two new categories of trajectories
I have implemented a candlestick chart, like those used in the financial
field. These charts make very clear the two classes of results, and repre-
sent a useful improvement for Dizzy. Moreover, because some chemical
reaction models like the Schlögl exhibit a bistable behaviour, I decided to
introduce a chart which represents all the simulation runs. This dynamic

1A copy of the license is available online at
http://magnet.systembiology.net/software/License.html
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behaviour cannot be represented using charts of mean values, but only by
showing all the trajectory paths.

During my enquiry period I also worked on two other different little
projects on Dizzy: sensitivity and deadlock analysis. Sensitivity analy-
sis allows Dizzy’s user to set a range of values in which a single species of
a chemical reaction model can start. Results of each trajectory computed
with these different values are shown in a three-dimensional chart. This
particular graph is one of the best ways to represent changes in the initial
conditions of the model, and how these conditions influence trajectories.
Deadlock analysis instead involves stochastic simulators: I can reveal
the moment in which the probability to step to the next reaction becomes
void, and terminate the simulation.

1.1 Background to the research

I led my thesis enquiry as visiting student to the Laboratory for Foun-
dation of Computer Science, University of Edinburgh, under the super-
vision of Doctor Stephen Gilmore. That was a great opportunity for me
to complete my Laurea Specialistica in Metodologie e Sistemi Informatici
course abroad, and I found at the University of Edinburgh, namely the
King’s Buildings campus, an amazing place to study and settle the long
research on the field of chemical reactions. Moreover Dizzy, the chemical
kinetic software, has been developed through the years at the University
of Edinburgh, and I am very proud to have given my little contribution to
this great project.

1.2 Overview of the Thesis

This paper is organised as follows. First in Chapter 2 I show some projects
in the chemical kinetics field related to this thesis, like some chemical ki-
netics simulators already developed. Then in Chapter 3 I introduce the
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theory of the three most important simulation methods to solve chem-
ical reactions: Ordinary Differential Equations, Stochastic Simulation
Algorithms and Stochastic Differential Equations; furthermore I anal-
yse some features of both deterministic and stochastic models. Then in
Chapter 4 I present Dizzy, the chemical kinetics simulation software de-
veloped by the Institute for System Biology: focusing the attention upon
this software, I discuss the main properties of Dizzy in order to solve and
analyse chemical reaction models by using different algorithms and at-
tributes. In Chapter 5 I give a deep account of the statistical analysis
software I have added to Dizzy, supplying a confidence interval analysis
and a brand new candlestick chart in order to show results. Moreover
in Chapter 6 I introduce the stochastic differential equation algorithm I
have developed for Dizzy: I discuss the numerical solution approach with
the Euler-Maruyama method, then I show some well-known models, like
Michaelis-Menten and Lotka-Volterra models, solved with this simulator
and compared to other simulation methods. In Chapter 7 I describe other
pieces of software I have developed during my enquiry on Dizzy for sensi-
tivity and the deadlock analysis. Finally in Chapter 8 I point the reader
to future works, then I provide conclusions and a summary of the whole
thesis.
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Chapter 2

Related works

O THER simulators have been developed in order to solve chemical ki-
netics reaction systems, either by university consortium or by com-

panies.

One of the most important software in this field is Biochemical Network
Stochastic Simulator (BioNetS)1, developed by the BioMed Central. This
software works in particular with biochemical networks, and allows the
user to specify the type of random variable (discrete or continuous) for
each chemical species in the network. For the continuous random vari-
ables, BioNetS constructs and numerically solves the appropriate Chem-
ical Langevin Equations (CLE). Basically one of the peculiarities of this
software is the ability to handle hybrid models that consist of both contin-
uous and discrete random variables and its ability to model cell growth
and division. This framework has been developed by David Adalsteins-
son, David McMillen and Timothy C. Elston [1].

Another important stochastic simulator software is StochSim, developed
by Nicolas Le Novère and Thomas Simon Shimizu [19]. The biggest
difference between this software and Dizzy can be found in the ability
of StochSim to perform only stochastic simulations of chemical kinetics

1A copy of the BioNetS software is available at http://x.amath.unc.edu:16080/
BioNetS/
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models, rather than Dizzy is able to simulate a model either with a de-
terministic and with a stochastic method. The benefit of StochSim is that
each molecule exists as an independent software object, and this allows
the representation of molecules that have specific internal states called
multistate molecules.

One of the most recent simulator for biochemical processes, COPASI, has
been developed by Stefan Hoops and Sven Sahle [17]. COPASI combines
traditional stochastic simulations of reaction networks and flux analy-
sis with some unique methods for the simulation of chemical reaction
models, such as hybrid method which combines the stochastic simulation
algorithm of Gibson-Bruck (Section 4.2) with different algorithms for the
numerical integration of ODEs. So the chemical model is dynamically
partitioned into a deterministic and stochastic subnet depending on the
current particle numbers in the system. The two subnets are then simu-
lated in parallel using the stochastic and deterministic solver. A descrip-
tion of this hybrid method can be found in a diploma thesis of one of the
authors [21].

Stochastic Differential Equations (SDEs) have been recently studied and
analysed by K. Burrage and T. Tian [3, 4]. After an interesting discussion
comparing ODE and SDE approach, they have defined a strong solution
for SDEs, either with explicit and implicit methods. K. Burrage [2], in his
Ph.D. thesis, gave an overview of extant methods of Runge-Kutta type for
solving SDEs, discussing how the theories developed for ODEs may be
useful in developing efficient numerical methods in the stochastic case.

D. J. Higham [15, 16] proposed a Matlab implementation of SDEs, in
order to compare the Michaelis-Menten model with Reaction Rate Equa-
tions and Gillespie’s Direct Method algorithm.

8



Chapter 3

Simulation methods for

solving chemical reaction

systems

I N a fixed volume V, containing a spatially uniform mixture of N chemi-
cal species interacting through M specific chemical reaction channels,

there are two well-known methods to predict the number of molecules of
a particular species after some amount of time. These two methods have
two very different natures: one is a deterministic approach, the other is
a stochastic one.

The deterministic method is the first approach realised in the middle of
the twentieth century. This method involves Ordinary Differential Equa-
tions (ODEs), using such equations to solve a set of chemical reactions.
Since this method does not consider any stochastic process during the
evolution of the chemical model through time, it is now judged to miss in-
teresting behaviour. However, this method is appreciated when we would
like to solve chemical kinetic models in a small amount of time, with
modest computational effort.

Gillespie [10, 13] between 1976 and 1977 defined the first stochastic ap-
proach to chemical reactions, developing the Direct Method, a simulator
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Figure 3.1: Map of the main stochastic simulators developed from 1977 in order
to solve chemical reactions. All the “improved” SSA implementations do not
imply that there is anything wrong with the original SSA procedure by Gillespie:
on the contrary, they either optimise or approximate Gillespie’s Direct Method.

which could exactly predict the molecular population level after different
time steps. This simulator was innovative because it focuses the atten-
tion not on the chemical species, as the deterministic approach, but on
the reactions which fire from time to time in the chemical model. Since
this simulator was very computationally expensive, due to the amount of
data to compute, a lot of improvements have been made: a map of some
stochastic simulators developed since 1977 is shown in Figure 3.1:

A particular note about the τ -leap simulator, developed by Gillespie in
2001. This new simulator is a stochastic process that approximately
solves the Chemical Master Equation (CME), based on a controllable,
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dimensionless error parameter. A quantity known as the “maximum al-
lowed leap time” τ is periodically computed, according to the Gillespie-
Petzold formula [5]. If the time scale τ is less than a few times the inverse
aggregate reaction probability density (where the exact threshold is con-
figurable and only affects efficiency), a Gillespie Direct discrete event is
carried out. In the case where τ exceeds the threshold time scale, a “leap”
is performed. The number of times each reaction occurs during the time
interval τ is generated using the Poisson distribution based on the reac-
tion’s probability density per unit time.

Finally the theory behind Stochastic Differential Equations (SDEs) is ex-
plained in order to give the reader a full knowledge of the basis on which
the SDEs simulator has been developed. SDEs are a combination be-
tween a strictly deterministic approach and a stochastic one; their solu-
tion comes from mixing a portion of ordinary differential equation with a
Brownian process, which enables the stochastic part to the simulator.

In this chapter I am going to introduce a detailed explanation of the two
approaches described above: in particular Section 3.1 gives an overview
of the Deterministic Solution, Section 3.2 of the Stochastic approach and
Section 3.3 of the SDEs solution. Finally a relationship between the
deterministic and the stochastic approach is provided, in order to un-
derstand better the strong connections between all these simulation ap-
proaches.

3.1 Deterministic Solution

Chemical reactions are usually modelled by a set of Ordinary Differen-
tial Equations (ODEs). This is the simplest method to solve a chemical
model, evolving the concentration of a particular species according to a
probability law: indeed this approach focuses the attention solving a sin-
gle differential equation per species of the model, rather than looking at
the single states as in the Stochastic Solution (Section 3.2).

11



Suppose we have four chemical species A, B, C and D. We can write a
chemical equation related to these species like the relation below

A + B
k1→ C + D (3.1)

and another equation that involves only three of the four species de-
scribed before

2A + C
k2→ B (3.2)

Both chemical equations will not take place instantaneously, but they will
react respectively at the rate k1 and k2 according to the concentration of
the species A and B for the Equation 3.1 and A and C for the Equation
3.2.

Defining these two chemical equations as the full specification of the reac-
tions taking place in our system, we can create four ODEs corresponding
to the concentration of the four chemical species according to the model
above:

d[A]
dt = −k1[A][B] − 2k2[A][A][C]

d[B]
dt = −k1[A][B] + 2k2[A][A][C]

d[C]
dt = k1[A][B] − 2k2[A][A][C]

d[D]
dt = k1[A][B]

(3.3)

where the square brackets denote the concentration of the single species.

Looking only at the first part of the very first equation of the Model 3.3,
the rate of reaction will depend proportionally on [A], [B] and the constant
of proportionality given by k1. So the rate of Reaction 3.1 will be given by
k1[A][B]. Each instance of Reaction 3.1 will use up one unit of A. So the
rate of change of concentration of A due to Reaction 3.1 will be equal to
−k1[A][B]. The minus signifies one unit being used up.

12



The rate of the second reaction will depend proportionally two times on
[A] and [C]; so the rate of reaction will be k2[A][A][C]. Each reaction will
use up two units of A, so the rate of change of concentration of A due to
Reaction 3.2 will be equal to −2k1[A][A][C].

There are similar terms in the other ODEs corresponding to using up the
species B and creating species C and D, and in others consuming up one
species C creating species D.

One of the most common problem related to ODE simulators is stiffness.
A stiff ODE is an ordinary differential equation that has a transient re-
gion whose behaviour is on a different scale from that outside this tran-
sient region. Very often a stiff system which involves chemical reaction
rates can converge to a final solution quite rapidly. In order to solve this
issue, new “stiff-free” solvers have been developed by the scientific com-
munity. Although this problem seems to be solved, these new simulators
require a very high amount of computational resources, and due to a lack
of efficiency they are rarely used to solve ODEs.

Two examples of chemical stiff models are the Schlögl model (Section
6.2.2) and Lotka-Volterra model (Section 6.2.3), described in Chapter 6.

This approach obviously assumes that the time evolution of a chemically
reacting system is both continuous and deterministic. However, the time
evolution of a chemically reacting system is not a continuous process,
because molecular population levels can change only by discrete integer
amounts. Moreover, the time evolution is not a discrete process either.
Indeed it is impossible to predict the exact molecular population levels
at some future times unless we take account of the precise positions and
velocities of all molecules in the system.

3.2 Stochastic Solution

The stochastic approach of chemical kinetics takes its stand from the is-
sue that collisions in a system of molecules in equilibrium occur in an

13



essentially random manner.

Let Si (1 ≤ i ≤ N) be the list of chemical species which comprise our model,
and suppose these species can interact through M specified chemical re-
action channels Rµ (1 ≤ µ ≤ M). We can assert the existence of M con-
stants cµdt, which represent the average probability that a particular
combination of Rµ reactant molecules will react accordingly in the next
infinitesimal interval dt only depending on the physical properties of the
molecules and the temperature of the system.

These M constants are the basis for developing the two most important
approaches to a stochastic solution: the master equation approach, de-
scribed in Section 3.2.1, and the stochastic simulation approach, described
in Section 3.2.2. Since both these formulations are derived from the ex-
istence of cµdt, they reach the same results in the limit as the volume V

increase.

3.2.1 The Master Equation Approach

The Chemical Master Equation (CME) can be thought of as a huge sys-
tem of coupled ordinary differential equations. The difference between
the traditional reaction-rate approach explained in Section 3.1 and this
method can be found in the number of differential equations to solve: in
the CME there is one differential equation per state of the system, rather
than ODEs approach where only one differential equation per species is
required.

The complete characterisation of the “stochastic state” is defined by using
the Grand Probability Function

P (X, t) = P (X1, X2, ..., Xn, t) n ∈ N (3.4)

which states the probability of having X1 molecules of species S1, X2

molecules of species S2, ... , Xn molecules of species Sn, at time t. Let
Sj be the reactants or reagents and Sk the products of the reaction, we

14



also assume vjk ∈ Nn the stoichiometric matrix that corresponds to the
state change which occurs whenever reaction Rjk fires. In order to under-
stand better the meaning of this matrix, we can assume each component
vjk of the stoichiometric matrix as an element which represents the load
of that particular chemical species in a reaction. The convention is to
assign negative coefficients to “reactants” (which are consumed) and pos-
itive ones to “products”. Defining in example Reaction 3.1 and Reaction
3.2 as the full specification of the reactions taking place in our system,
we can obtain a stoichiometric matrix as described below:

A B C D

R1 -1 -1 1 1

R2 -2 1 -1 0

Finally let ajk (x, t) be the propensity function, which gives us the proba-
bility that this reaction will take place in the infinitesimal interval time
(t, t + dt) when the system is in the state X(t) = x ∈ Nn. This infinitesi-
mal time interval is chosen as the smallest time interval possible in which
at most only a single reaction could take place. Sometimes it could also
happen that in such a short interval, even a single reaction does not fire:
usually that happens in those models which involve rare events. In order
to avoid this issue, some simulators, like the Tau-Leap Complex algo-
rithm (Section 4.2), generate automatically a shorter time interval dt as
long as a reaction will take place.

In order to reach the solution of the Grand Probability Function, we can
expand the Equation 3.4 as

P (X, t) =
n∑

j=0

n∑

k=0

(ajk (x − vjk, t)P (x − vjk, t) − ajk (x, t) P (x, t)) (3.5)

Now we can split the propensity function ajk (x, t) in three different parts,
according to the kind or reaction we have to deal with:

15



ajk (x, t) =









cjk(t)xj for reaction Rjk

c0k(t) for reaction R0k

cj0(t)xj for reaction Rj0

Having defined the propensity function in terms of c(t), now we can rewrite
the CME 3.6 as

P (X, t) =
∑n

k=1 c0k(t) (P (x − v0k, t) − P (x, t)) +
∑n

k=1 cj0(t) ((xk + 1)P (x + v0k, t) − xkP (x, t))+
∑n

j=1

∑n
k=1 cjk(t) ((xj + 1)P (x − vj0 − v0k, t) − xjP (x, t))

(3.6)

The last sum of the CME 3.6 corresponds the normal reaction Rjk, instead
the first and the second show respectively the inflow reaction R0k and the
degradation reaction Rj0.

The number of problems for which the CME 3.6 can be solved analytically
is even fewer than the number of problems for which the deterministic
reaction-rate equation described in Section 3.1 can be solved analytically.
In addition, unlike the reaction-rate equations, the master equation does
not readily lend itself to the number and nature of its independent vari-
ables.

3.2.2 Stochastic Simulation Approach

We introduce now the Reaction Probability Density Function P (τ, µ). This
probability, accounted in dτ , defines the probability that, given the state
(X1, ..., XN) at time t, the next reaction will occur in the infinitesimal time
interval (t + τ, t + τ + dt), and will be an Rµ reaction. This function indeed
defines the probability of when the next reaction will occur and what this
kind of reaction will be. Furthermore we assume P0(τ) as the probability
that no reaction will occur in the time (t, t + τ), given the state (X1, ..., XN)

at time t.
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Having defined in Section 3.2.1 the propensity function aµ, we can assert
that the probability that the next reaction will occur in the time interval
(t + τ, t + τ + dt) can be considered to be the probability that no reaction
will occur in (t, t + τ) multiplied by the probability that a reaction will
happen in (t + τ, t + τ + dt):

P (τ, µ) dτ = P0(τ)aµdτ (3.7)

Using the definition of the propensity function, given the state (X1, ..., XN)

at time t, we can derive P0 (τ + dτ) as

P0 (τ + dτ) = P0(τ)

(

1 −
M

∑

k=1

akdτ

)

(3.8)

from which is deduced

P0 (τ + dτ) − P0(τ)

dτ
= −

M∑

k=1

ak (3.9)

Passing to the limit dτ → 0 we can solve P0(τ) as

P0(τ) = e−
PM

k=1
akτ (3.10)

Recalling the Equation 3.7, now we can write the Reaction Probability
Density Function P (τ, µ) in terms of propensity functions. Hence, given
the state (X1, ..., XN) at time t, the probability that the next reaction will
occur in the infinitesimal time interval (t + τ, t + τ + dt) is

P (τ, µ) = aµe−
PM

k=1
akτ (3.11)

This is a very important result: it should be emphasised that the second
term of the Equation 3.11 answers the two requests made at the begin-
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ning of this section: when the next reaction will occur and what kind of re-
action it will be. Indeed aµe−

PM
k=1

akτ may be written as aµ+
PM

k=1
akτ

PM
k=1

akτ
e−

PM
k=1

akτ .
In this form is easy to consider the next reaction index as aµ

PM
k=1

akτ
, a dis-

crete random variable, and the time until the next reaction will occur as
(
∑M

k=1 akτ
)

e−
PM

k=1
akτ , a continuous random variable with an exponential

distribution.

3.3 Stochastic Differential Equations Solu-

tion

SDEs, used to solve chemical reactions, are Markov processes described
by the Chemical Langevin Equation (CLE) [11]. We assume Y (t) ∈ Rn

the state vector of a continuous time, real-valued stochastic process at
the time t: so Yi(t) is a real-valued random variable representing the
number of molecules of the ith species. The stoichiometric or state-change
vector is described by vj ∈ Rn, whose ith component is the change in the
number of Si molecules due to the jth reaction. Finally let aj (Y (t)) be the
propensity function, which gives us the probability that this reaction will
take place in the infinitesimal interval time (t, t + dt). Having made this
assumption, the CLE takes the Itô form

dY (t) =
M

∑

j=1

vjaj (Y (t)) dt +
M

∑

j=1

vj

√

aj (Y (t))dWj(t) (3.12)

where the Wj(t) are independent Wiener processes. A Wiener process is
a stochastic process satisfying

E (W (t)) = 0, E (W (t)W (s)) = min {t, s}

The Wiener increments are independent Gaussian processes with mean 0
and variance |t − s|. Specifically the Wiener increment ∆W (t) ≡ W (t + τ)−
W (t) is a Gaussian random variable N (0, τ) =

√
τN (0, 1).
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A numerical solution to solve these kinds of SDEs comes from the Euler-
Maruyama method and, discretising the Brownian path and applying the
Euler-Maruyama method to the linear SDE, it takes the form

Y (t + τ) = Y (t) + τ
M

∑

j=1

vjaj (Y (t)) +
√
τ

M
∑

j=1

vj

√

aj (Y (t))Zj

I have produced a Java implementation of the Euler-Maruyama method
in Section 6.1 as an extension to a simulator for chemical reactions Dizzy,
the chemical kinetics stochastic simulation software of the Institute for
Systems Biology.

Although SDEs are capable of capturing the major aspects of a chemi-
cal reaction, we can find this approach unsuitable for multi-scale models
in which we manage multi-scale problems with exponentially large (or
small) population variables or we have to deal with exponentially un-
likely events. The Schlögl model, in Section 6.2.2, is one of these models
for which SDEs do not give satisfactory results.

3.4 Relationships between deterministic and

stochastic models

The relationship between Markov chain models for chemical reactions
and classical deterministic ordinary differential equation models is strong
and deep.

Recalling the chemical equation 3.1 and considering this equation to be
the complete specification of our new chemical model, we can easily de-
rive the common deterministic approach using the law of mass action,
where the population of A molecules is defined by the following nonlinear
differential equation:

d[A]
dt = −k1[A][B] (3.13)
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The same equation can be reached by using the stochastic approach, us-
ing the Master Equation Approach (Section 3.2.1). We declare A(t), B(t),
C(t) and D(t) to be the number of molecules of the species A, B, C and D

at time t. Moreover, we assume P(a,b,c,d,t) the probability that A(t), B(t),
C(t) and D(t) have respectively values of a, b, c and d, and finally, let α
and β be the initial concentration of A and B, or A(t) and B(t) with t = 0.

The form of P(a,b,c,d,t) can be determined by the stochastic master equa-
tion, which describes the means of transition from and to the state (a,b,c,d)

during the stochastic process of chemical reaction. It may be defined by
the following axiom: the probability of a reaction event in the interval
(t, t + ∆t) whereby (a, b, c, d) → (a − 1, b − 1, c + 1, d + 1) is k1ab∆t + O (∆t),
where k1 is the stochastic constant rate for the reaction.

A detailed balance equation can be written in these terms

P (a, b, c, d, t + ∆t) = k1 (a + 1) (b + 1) ∆tP (a + 1, b + 1, c − 1, d − 1, t)

+ (1 − k1ab∆t) P (a, b, c, d, t) + O (∆t)
(3.14)

Now the stoichiometry of the reaction, a, b, c and d are related as follows:

α− a = β − b = c = d (3.15)

Hence, the probability density function P(a,b,c,d,t) can be expressed as a
function of just one species population. In order to prove the relation be-
tween the deterministic and the stochastic solution, I will take the species
A as reference, such that Pa(t) = P (A(t) = a) = P (a, β − α + a,α− a,α− a, t).
Now the Equation 3.14 can be simplified to the following equations, let-
ting ∆t → 0:

dP0(t)
∆t = k1 (β − α+ 1) P1(t)

dPα(t)
∆t = −k1αβPα(t)

(3.16)

The obtained result of the Equation 3.16 can be easily brought back to
Equation 3.13, without considering the volume issue. Indeed, As Oppen-
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heim, Shuler and Weiss [20] have shown in their article, the deterministic
model of certain special cases is the infinitive volume limit of the Markov
chain models, and the same can be shown for all the chemical models.
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Chapter 4

Dizzy: a chemical kinetics

simulation software

I N this chapter, I give an overview of the most important features of
Dizzy, a chemical kinetics simulation tool for analysing the dynamics

of complex biochemical models.

This software framework is capable of simulating the trajectory behaviour
of a chemical kinetics model by using different simulators, either deter-
ministic or stochastic. Dizzy uses an intuitive user interface to define the
model, and to set the simulation parameters. Finally, using charts and
tables, it is able to show graphs with the results of the simulation.

Dizzy has been developed and is maintained by the CompBio Group, In-
stitute for System Biology with the collaboration of the Laboratory for
Foundations of Computer Science, a research institute inside the School
of Informatics at the University of Edinburgh. The first stable release of
the tool (version 1.0.0) dates back to December 2003; today a copy of the
latest Dizzy software (version 2.4.4) is available for download in the web
site http://magnet.systembiology.net/dizzy. Dizzy is a free and
open-source software, distributed under the GNU Lesser General Public
License (LGPL) [26].
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Dizzy enables the creation of reduced stochastic models containing re-
actions whose propensities may be expressions of arbitrary complexity,
representing the average effect of underlying reaction steps that are in
quasi-steady-state (QSS). This permits efficient approximate modelling
of enzyme-catalysed reactions and other processes for which the overall
kinetic rate is more complicated than mass-action kinetics.

Dizzy provides a feature for estimating or calculating the steady-state
stochastic fluctuations of the species in a biochemical model, requiring
only the solution of the deterministic dynamics. Dizzy also has several
important software features including integration with external software
tools, a graphical user interface GUI, and a high level of portability.

To the best of our knowledge, Dizzy is the first software tool available that
includes all of the features enumerated above. In addition, it includes
novel implementations of the Gibson-Bruck and Gillespie Tau-Leap al-
gorithms that are applicable to models with complex kinetic rate laws.
At present, Dizzy is notable for explicitly modelling spatially in homo-
geneous chemical species concentrations and transport phenomena such
as diffusion. However, Dizzy permits partitioning of a model into dis-
tinct spatial compartments. Each compartment volume is treated as a
spatially homogeneous, continuously well-stirred system.

The performance of the deterministic and stochastic simulation algorithms
described above has been benchmarked using a variant of the heat-shock
response model for Escherichia coli proposed by Srivastava and adapted
by Takahashi for benchmarking the performance of the E-Cell simula-
tor. This model includes a large separation of dynamical time scales,
which is typical of complex biochemical networks. The results show the
efficiency of the Gibson-Bruck algorithm relative to the Gillespie Direct
algorithm, and the significant speed improvement of (approximate) Tau-
Leap algorithms over the (exact) Gibson-Bruck and Gillespie algorithms.
It should be emphasised that no modifications of the model definition file
were necessary in order to switch between the various simulation algo-
rithms shown above. This is made possible because our model definition
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language is simulation algorithm-agnostic. Furthermore, the Tau-Leap
method does not require an ad hoc partitioning of the model into stochas-
tic and deterministic reaction channels. This is a potential advantage
in analysing a complex model for which the “fast” and “slow” degrees of
freedom are not known a priori.

The structure of the software is explained in Section 4.1, whereas all the
simulators included in it are shown in Section 4.2. Finally an overview
of the graphical and the command line user interface can be found in
Section 4.3.

4.1 Package structure

Dizzy has been designed using a modular organisation in which each sim-
ulator is a software unit that conforms to a simple, well-defined interface
specification, as Ramsey [22] shows in his article regarding this frame-
work. Dizzy is implemented in the Java programming language, which
can be executed on any computer platform in which a Java Runtime En-
vironment is available. That makes Dizzy one of the most versatile tools
capable to compute chemical kinetics trajectories.

The biochemical modelling semantics are separated from the description
of how the dynamics is to be solved: this architecture facilitates an it-
erative model development cycle in which the model is analysed using
various simulation algorithms. Moreover Dizzy’s model definition lan-
guage permits the definition of reusable, parametrised model elements
called templates: this enables the construction of a prepackaged library
of templates that can simplify the task of constructing a complex model.

Dizzy is structured in six main packages: the most important packages
are listed below

• chem package, which provides all the classes able to perform a sim-
ulation with one of the simulators described in Section 4.2.
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• gui package, which gathers all the graphical user interface classes
of the main window of the simulator, namely the GUI to describe
the model in the formal language. GUI classes to draw charts and
to manage simulators are located in the chem package.

• math package, which collects all the basic types of the formal lan-
guage to describe chemical kinetics models. It also provides a list of
math functions and other classes useful to deal with very accurate
numbers.

4.2 Stochastic and deterministic simulators

Dizzy allows the user to perform simulations of chemical reaction mod-
els by using several different algorithms, both stochastic and determinis-
tic. The stochastic simulators are discrete-event or multiple-event Monte
Carlo algorithms, instead the deterministic simulators model the dynam-
ics as a set of ordinary differential equations (ODEs) which are solved
numerically.

Stochastic simulators use a Colt Project1 random number generator and
distribution to produce customised sets of random numbers.

One benefit of this modular design is that one may use a deterministic
ODE-based solver for optimisation and parameter fitting, and switch to
a stochastic simulation technique for exploring the stochastic dynamics,
once the model parameters have been established. This modularity also
simplifies the task of implementing a new simulator and integrating it
into the system. In this section we describe the simulators available in
our software system.

• Deterministic Simulators: Runge-Kutta simulator, OdeToJava
1Colt Project provides a set of Open Source Libraries for High Performance Scientific

and Technical Computing in Java. A complete description of this package can be found
at the web site http://dsd.lbl.gov/~hoscheck/colt/
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Figure 4.1: Simulator structure in Dizzy: from the common abstract class
Simulator, four abstract classes define the common simulation methods for
each main algorithm. This enables a very simple method to create new simula-
tors, allowing the developer to focus only the core of simulators.

• Stochastic Simulator: Gillespie’s Direct Method, Gibson-Bruck Method,
Gillespie’s Accelerated Approximate Method (“Tau-Leap” Method)

• Stochastic Differential Equation Simulator: Euler-Maruyama

Dizzy, as specified before, includes a deterministic simulator based on a
fifth order Runge-Kutta ODE solver. Step size is adaptively controlled,
based on a fourth order error estimation. Both relative and absolute er-
ror tolerances may be independently specified, as well as the initial step
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size. Although Runge-Kutta is not state-of-the-art for high-accuracy inte-
gration, it is particularly useful for models in which a derivative function
is discontinuous.

In order to get an accurate deterministic solution, two additional deter-
ministic simulators have been implemented based upon the OdeToJava
ODE solver package by Patterson and Spiteri [25]. This package includes
a Dormand-Prince fourth/fifth order solver [7] with adaptive step size
control. It also contains a Runge-Kutta implicit-explicit ODE solver that
is useful for systems with a high degree of stiffness.

Considering exact solutions using stochastic algorithms, Dizzy includes
an efficient implementation of a stochastic simulator based on Gillespie’s
Direct Method and Gibson-Bruck.

Gillespie’s Direct Method uses the Monte Carlo technique to generate
an approximate solution of the master equation for chemical kinetics.
In this method, simulation time is advanced in discrete steps, with pre-
cisely one reaction occurring at the end of each discrete time-step. Both
the time steps and the reaction that occurs are random variables. The
Direct Method requires recomputing all reaction probability densities af-
ter each iteration. The computational complexity of the method therefore
increases linearly with the number of reactions. Furthermore, for suffi-
ciently large simulation time, the total number of iterations can be pro-
hibitively large for some systems. Nevertheless, for simple systems with
small numbers of species and reactions, the Direct Method can be useful.

As stated before, Dizzy also implements a stochastic simulator based on
Gibson and Bruck’s Next Reaction method [9]. The computational cost
of this Monte Carlo-type method scales logarithmically with the number
M of reaction channels, in contrast with the Gillespie algorithm which
scales linearly with M. A tree traversal technique to analyse a rate ex-
pression for a chemical reaction that has a complex kinetic rate law has
been implemented in order to ascertain the dependence of the rate ex-
pression upon the various chemical species in the model. This permits
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applying the Gibson-Bruck method to models that implement complex
kinetic rate laws.

Two stochastic simulators based on Gillespie’s Accelerated Approximate
Method (here referred to as the “Tau-Leap” Method) have been imple-
mented in Dizzy. The Tau-Leap Method is a stochastic process that ap-
proximately solves the chemical master equation, based on a controllable,
dimensionless error parameter. A quantity known as the “maximum al-
lowed leap time” τ is periodically computed according to the Gillespie-
Petzold formula already described in Chapter 3. If the time scale τ is
less than a few times the inverse aggregate reaction probability density
(where the exact threshold is configurable and only affects efficiency), a
Gillespie Direct discrete event is carried out. In the case where τ exceeds
the threshold time scale, a “leap” is performed. The number of times
each reaction occurs during the time interval τ is generated using the
Poisson distribution based on the reaction’s probability density per unit
time. The state of the system is updated to reflect the predicted number
of times each reaction occurs during the time interval τ . After each “leap”
iteration, the maximum allowed leap time τ is recomputed.

Two versions of the Tau-Leap algorithm have been implemented, Tau-
Leap Complex and Tau-Leap Simple.

The Tau-Leap Simple algorithm is intended for simple models entirely
composed of reaction channels with mass-action kinetics. The Tau-Leap
Complex algorithm is a novel adaptation of Tau-Leap that is intended
for use with models with complicated (e.g., enzymatic) rate expressions
whose partial derivatives are very expensive to evaluate symbolically. In
this method, the full symbolic Jacobian is stored and used at each iter-
ation, in order to exploit the caching of evaluated, algebraically complex
sub-expressions in the computation of the Gillespie-Petzold formula. Us-
ing the Poisson distribution to model the number of times a given reaction
can occur during a time interval τ , has the disadvantage that the expo-
nential tail allows for rare events in which the realised number of times
a reaction occurs (generated from the distribution) is too great for the
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numbers of reactant species available; we call this “reactant exhaustion”.
This is not indicative of a failure of the algorithm per se, but of a need to
decrease the time scale τ .

Finally, the last stochastic simulator has been implemented by using
SDEs. A full detailed overview of this simulator is shown in Chapter
6.

4.3 Graphical user and command line inter-

face

The Dizzy graphical user interface (GUI) is a Java 2 application embed-
ded in the Dizzy package. It allows users to deal with the simulation of
chemical reactions with the help of a menu-driven interface. This user
interface includes screens for simulation control, model editing, plotting
simulation results and browsing/searching the hypertext user manual.

Trajectories computed by Dizzy are shown in plot charts. Dizzy is ca-
pable of drawing up to four different kind of charts: average, all runs,
candlestick and profile chart.

• Average chart: each trajectory is computed a user-specified number
of times, then Dizzy computes the average and plots the result in
the chart.

• All Runs chart: each trajectory simulation calculated is drawn in
the chart. This can be helpful when dealing with bistable systems
(Section 6.2.2), in which the average of trajectories becomes useless
due to the nature of the model.
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Figure 4.2: Dizzy is able to simulate models written in the Systems Biology
Markup Language (SBML), in addition to the Chemical Model Description Lan-
guage (CMDL). This is the user-friendly interface which allows the user to define
models using the languages specified before.
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• Candlestick chart: introducing the statistical analysis of the results
(Chapter 5), the candlestick chart is a convenient way to show a
number of simulations and a confidence interval associated with
them.

• Profile chart: this bar chart shows the number of time that a single
reaction of the chemical model occurs. It is important to look at
this chart to understand the effective reliability of the trajectories
computed. For example, from this chart we can determine that some
reactions never fired on this simulation run, or that some events
occur only very rarely.

Dizzy is also able to produce three-dimensional charts to show the Sensi-
tivity Analysis of chemical kinetics models: a detailed description of this
feature can be found in Section 7.1

Moreover, Dizzy provides a command line interface. The command line
interface is capable of performing all the features as in the graphical in-
terface, and can be useful when working on Dizzy on remote machine, or
when doing batch-mode replications on a computer cluster.
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(a) Choose the simulator..

(b) .. the simulation is running

Figure 4.3: The menu-driven graphical interface provides an easy and efficient
method to select a model simulator, its parameters and finally one or more plot-
ting simulation charts. Here I show two views of the simulator interface: in
the first Picture (a), the simulator is waiting for the user to fill all the informa-
tion regarding the simulation. Finally, in Picture (b), we can see the simulator
performing the trajectory calculations.
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Chapter 5

Statistical analysis of results

T HE first software package I am going to show is the statistical analy-
sis of the results obtained by solving chemical reaction models with

a stochastic simulator in Dizzy.

Before this package was developed, Dizzy was able to perform and show
a simple average of different stochastic simulations of a single kinetic
model. This kind of output was useful for some chemical models, like the
Michaelis-Menten model (Section 6.2.1), when the behaviour of the trajec-
tories through different simulations is almost the same, so the variance
does not reach high values. Problems come when we attempt to simulate
multiple times a model like the Schlögl model (Section 6.2.2), in which
the main species has a bistable behaviour. Indeed showing the average of
different simulations of this model can be almost useless, due to the high
variance of each trajectory simulated.

In order to reach a better understanding of the obtained results, I have
developed Java code to analyse the calculated trajectories, introducing,
apart from the mean, also a variance and a confidence interval estima-
tion. A theoretical introduction of the confidence interval is proposed in
Section 5.1, followed by a representation of these confidence intervals by
using candlestick charts in Section 5.2.
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Another noticed problem was the fact that in some models, like the Grid-
Averaged Lagrangian (GAL) model1, during a single round of simulation
sometimes not every reactions occurred. Due to this problem, the result
of each simulation could be very different and totally unpredictable. A
solution of this problem is therefore described in Section 5.3.

5.1 Confidence Intervals

Let Xj (0 ≤ j ≤ M) be the list of values Xj = x that the jth trajectory sim-
ulated assumes in a particular time step, and let Ti (0 ≤ i ≤ N) be the list
of instanced X lists in each single time steps i. The list X (X1, X2, ..., Xm)

is composed by an independent sample from a normally distributed pop-
ulation with mean µ and variance σ2

Computing the average as X = X1+X2+...+Xm

m and the variance as S2 =
1

m−1

∑m
i=1

(

Xi − X
)2

we can derive the theoretical confidence interval for
the mean µ using the Student’s T distribution with n-1 degrees of free-
dom. Indeed, defining the Student’s T distribution as T = X−µ

S/
√

m , and t

as the Student’s T constant value for m values and confidence interval
1−α, with probability 1−α we will find the parameter µ between the two
endpoints

P

(

X − t ·
S√
m

< µ < X + t ·
S√
m

)

= 1 − α (5.1)

Consequently we can compute the confidence interval as

[

X − t ·
S√
m

, X + t ·
S√
m

]

(5.2)

We now introduce the package Stochastic Simulation in Java[8] (SSJ)2.
1Dizzy comes with the simple stochastic model of the GAL4 system of yeast, taking

into account the proteins GAL4, GAL80 and GAL3, as well as galactose. For a full spec-
ification of the model, please refer to the GAL.cmdl document inside the Dizzy package

2The latest version of the SSJ package can be downloaded at the web site
http://www.iro.umontreal.ca/~simardr/ssj

34



SSJ is a Java library for stochastic simulation, developed under the di-
rection of Pierre L’écuyer, in the Départment d’Informatique et Recherche
Opérationnelle (DIRO) at the Université de Montréal. It provides facili-
ties for generating uniform and non-uniform random variables, comput-
ing different measures related to probability distributions, performing
goodness-of-fit tests, applying quasi-Monte Carlo methods, collecting (el-
ementary) statistics and programming discrete-event simulations with
both events and processes.

SSJ provides different packages. One of these, the stat package, al-
lows the user to develop a statistical analysis storing all his data in the
TallyStore object. This type of statistical collector takes a sequence
of real-valued observations X1, X2, ..., Xn and can return the average, the
variance, a confidence interval for the theoretical mean, and other sta-
tistical analysis. All the individual observations are stored in a list im-
plemented as a DoubleArrayList. Such class is imported from the Colt
Project3 library and provides an efficient way of storing and manipulat-
ing a list of real-valued numbers in a dynamic array. Each value can be
accessed via the getArray method.

I have embedded TallyStore in the classes SimulatorStochasticBase
and SimulatorSDEBase, which provide respectively the main methods
for the simulation of stochastic and SDE algorithms. Namely TallyStore
has been combined with the previous system of data storage, to maintain
the retro-compatibility with some methods that continue using the old
system to store data results, such as the SimulatorDeterministicBase.
Obviously registering only the average of the simulation results is faster
than storing all the data inside the TallyStore: this is the price we
must pay in order to get more specific and detailed results.

Once we have computed N different TallyStore, one for each time step
of the simulation, we can send these to the class SimulationResultsPlot,
the main class which provides the construction of the result charts.

3Colt Project provides a set of Open Source Libraries for High Performance Scientific
and Technical Computing in Java. A complete description of this package can be found
at the web site http://dsd.lbl.gov/~hoscheck/colt/
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TallyStore, as described before, allows the user to get the confidence in-
terval of the stored values, using the method confidenceIntervalStudent
(double level, double[] centerAndRadius). This method returns,
in element 0 and 1 of the array object centerAndRadius[], the centre
and the half-length (radius) of a confidence interval on the true mean of
the random variable X, with confidence interval level level, assuming
that the observations given to this collector are independent and identi-
cally distributed copies of X, and that X has the normal distribution.

In the next section I am going to show how we can illustrate in charts
these confidence intervals.

5.2 Candlestick chart

One of the best methods to show to the user the confidence interval of a
distribution comes from the finance field, and is defined with the name
of “candlestick chart”. A candlestick chart is a style of bar-chart used
primarily to describe price movements of a stock over time. Each bar is
composed of the body and an upper and a lower shadow. In finance, the
shadow shows the highest and the lowest traded price of a stock, instead
the body illustrates the opening and closing trades. Furthermore, the
body assumes a white colour when the opening price is lower than the
closing price (hence the price of the equity is grown), otherwise it assumes
a black colour when the opening price is greater than the closing price.

Apart from the colour of the body, which is the field of chemical kinetics
is quite useless, I decided to use the shadow of a candlestick to illustrate
the highest and the lowest value of a set of simulations, and the body to
describe the endpoints of the confidence interval. A graphical explanation
of the solution is shown in Figure 5.1.
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Figure 5.1: Description of a candlestick used to show confidence intervals of a
set of simulations: the shadow of a candlestick illustrates the highest and the
lowest value of a set of simulations, and the body describes the endpoints of the
confidence interval

In order to get a candlestick chart, I have used the package JFreeChart4,
which had been already embedded in Dizzy because of displaying the av-
erage trajectories of a set of simulations. This functionality was studied
in the previous versions of Dizzy. JFreeChart provides the APIs to build
and show a candlestick chart: according to these APIs, I have devel-
oped three classes, CandleStickDataItem, CandleStickSeries and
CandleStickDataset. These three classes supply the management of
the simulation results and make such data ready for the manipulation
inside the chart:

• CandleStickDataItem: this class provides all the methods to cre-
ate a single candle object, with the highest and lowest values and
with both endpoints. A candle here describes the behaviour of all
the simulations in a single frame step of a single chemical species.

• CandleStickSeries: this class works as a collector of all the can-
dles, described in CandleStickDataItem, in different time steps

4JFreeChart is a free software: the latest version of JFreeChart can be downloaded
at the web site http://www.jfree.org/jfreechart/
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of a particular chemical species. That is very useful because we can
show more than a single species in our candlestick chart, and this
class allows us to disambiguate each trajectory.

• CandleStickDataset: this is the final collector of all the objects
of CandleStickSeries, and is developed according to the APIs of
the JFreeChart package.

An example of an obtained candlestick chart is shown in Figure 5.2.

5.3 Profiling

The last issue to solve in order to improve the quality and knowledge
of the computed results of a solved chemical reaction system is reaction
profiling. Profiling answers at the questions: “Have all the reactions been
fired during the simulation? And how many times?”. This problem turns
out to be very interesting, namely in some models, like the GAL model
mentioned before. To complete a list of the number of reactions which
have been fired during a simulation, it is necessarily to keep a counter of
each reaction fired during a single simulation.

I have developed a simple object FireCounter, that registers the num-
ber of times each reaction has been fired. At the end of a simulation,
the data of this object is converted to a bar-chart by using the package
JFreeChart described before. An example of an obtained bar-chart for
the GAL method is shown in Figure 5.3.
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(a) alpha = 0.05

(b) alpha = 0.2

Figure 5.2: Candlestick charts: this is an example of the Michaelis-Menten
model solved with a stochastic simulator Gibson-Bruck and shown by using a
candlestick chart. As we can see, the bottom chart is slightly different from the
top chart, due to the change of the alpha value.
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Figure 5.3: Profiling of the GAL model: it is immediately clear that some reac-
tions do not occur during the process of chemical simulation, on the other hand,
others, like the G3_transcription reaction, have been fired 529 times.
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5.3.1 The GAL model

Ramsey [22, 23] showed in his article the yeast galactose utilisation path-
way, described in the model Grid-Averaged Lagrangian (GAL), and namely
the complex interactions among the regulatory genes GAL3, GAL4 and
GAL80 which control the synthesis of a handful of enzymes that regu-
late galactose metabolism. In particular, we can observe two different
situations of the model: a metabolic part, in which galactose is trans-
ported into the cell and various enzymes worked in concert to transform
the internal galactose into glucose-1-phosphate; and a genetic part, in
which enzymes are produced via transcription and translation processes
that are controlled by the amounts of transcription factor and repressor
molecules present in the cell. The yeast model used for the simulation
is described in Appendix A, which includes the model definition and the
galactose pathway, according to the Atauri, Orrell and Ramsey article [6].

One of the most relevant issues in this model is that the small numbers
of molecules involved result in high levels of stochastic noise. Although
the computational cost of these simulations has been extremely high,
Ramsey has analysed such variability with a stochastic simulation, us-
ing the Gibson-Bruck simulator, and he has compared these results with
the Dormand-Prince fourth/fifth order ODE solver. Both methods have
been described in Section 4.2.

The solution of the GAL model, solved with the Gibson-Bruck method
by Ramsey, is shown in Figure 5.4. Instead in Figure 5.5 is presented a
comparison between the galactose chart obtained with the Gibson-Bruck
method and the just developed Stochastic Differential Equation algo-
rithm.
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Figure 5.4: Solution of the GAL model, solved with the Gibson-Bruck method.
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(a) Gibson-Bruck simulator (b) SDE algorithm

Figure 5.5: Comparison of the galactose value in the GAL model between the
Gibson-Bruck method and the just developed Stochastic Differential Equation
algorithm

In his exposition of the model results, Ramsey has not considered the fact
that only some reactions have been fired during the simulation, as pre-
viously shown in Figure 5.3. This situation can be now easily noticed by
looking at the Profile chart: I can assert that, even though only few re-
actions have been intensively consumed, this problem does not influence
the final solution of the chemical model. I have tried to perform different
kinds of simulations of the GAL model, still using the Gibson-Bruck sim-
ulator but enlarging the ensemble size. As shown in Figure 5.6, we can
notice that galactose tends toward zero after almost the same amount of
time, independently to the ensemble size of the simulation. This result
has been also achieved by Ramsey, and the charts showed below prove
that, in this model, we can obtain the same trajectories of the chemical
species with a small ensemble size.

An interesting result comes out from performing the GAL model for more
than 200 time steps. According to Ramsey’s article, all performed results
have been studied within an interval of 200 time steps. In this range,
as shown in Figure 5.7, only four reactions have been usually fired. So
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(a) Candlestick with ensemble size = 100 (b) Profile with ensemble size = 100

(c) Candlestick with ensemble size = 1000 (d) Profile with ensemble size = 1000

(e) Candlestick with ensemble size = 5000 (f) Profile with ensemble size = 5000

Figure 5.6: Galactose chart: changing the ensemble size, we can fire more reac-
tions and obtain almost the same results in the GAL model
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other reactions can be considered as “rare events”. This consideration
changes when we perform simulations for more than 100 time steps. In
this case we can observe that some reactions, like G4_dimerization and
G4_dedimerization, respectively the sixth and the last reaction described
in the Profile chart, overtake those reactions which could be considered
“rare events” by looking at Ramsey’s results.

This result demonstrates the importance of the Profile chart, in order to
analyse those models in which rare events are a considerable portion of
the simulated reactions. In particular the Profile chart, together with
the length of the simulation and the ensemble size, improves in a sub-
stantial manner the quality of the obtained results. Indeed now we can
observe that G4D_free reaches steady-state after 4500 time steps, accord-
ing also to the highlight reactions in the Profile Chart, G4_dimerization

and G4_dedimerization.

We conclude that Ramsey will not have seen many activities of interest
in the reaction kinetics. We gained additional insights into the reaction
behaviour because our added reaction profiling highlighted that some re-
actions were very rarely seen over short time scale simulations.

A complete overview of the yeast pathway results can be also found in the
Zimmermann’s book “Yeast Sugar Metabolism” [28].
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(a) Average chart with time 0 - 100 (b) Profile with time 0 - 100

(c) Average chart with time 0 - 200 (d) Profile with time 0 - 200

(e) Average chart with time 0 - 500 (f) Profile with time 0 - 500
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(g) Average chart with time 0 - 1000 (h) Profile with time 0 - 1000

(i) Average chart with time 0 - 2000 (j) Profile with time 0 - 2000

(k) Average chart with time 0 - 5000 (l) Profile with time 0 - 5000

Figure 5.7: GAL model simulated with different time intervals: we can notice
that, increasing the interval of the simulation, we obtain very different kind of
Profile charts 47



Chapter 6

Working on Stochastic

Differential Equations

I N Section 3.3 I have given an overview of the theory behind Stochas-
tic Differential Equations (SDEs). Now I am going to show how to

implement a SDEs simulator in order to solve chemical kinetic reac-
tion systems, introducing a numerical solution which develops the Euler-
Maruyama algorithm (Section 6.1). Such a simulator is now embedded
into the Dizzy package, and can be used as the other previous simulators.

Furthermore I present an experiment made with three well-known mod-
els: the Michaelis-Menten model, the Schlögl model and the Lotka-Volterra
model. These models are analysed using different simulators, in order to
show differences of time spent to simulate each model. As we can see in
Section 6.2.4, some simulators are more efficient when used on particular
models.

6.1 Numerical Solution

The aim of this section is to give the reader a concrete understanding of
the Euler-Maruyama algorithm [18]. To achieve this target, I present
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the Java code I have written for the stochastic simulator Dizzy. The
code is structured in two classes, the SimulatorSDEBase class and the
SimulatorSDEEulerMaruyama class.

The first class is a basic class for possible further SDEs simulators, ex-
tends Simulator and gathers all information regarding model param-
eters and input data. Moreover SimulatorSDEBase provides the main
cycle wherein a specific SDEs simulator computes each iteration, supply-
ing all the essential environment.

SimulatorSDEEulerMaruyama implements the interface ISimulator

and extends SimulatorSDEBase, which provides all the mandatory meth-
ods for every simulator of chemical reactions in Dizzy. The most impor-
tant method in this class is iterate(), called directly from the main
cycle in SimulatorSDEBase in every iteration. The code below is an
extract of the method iterate():

1 /∗ SimulatorSDEEulerMaruyama.java

∗ Implementation of Euler−Maruyama algorithm for Dizzy ∗/

/∗ The probability that a reaction fires in this particular time step

∗ is computed, and the result is stored in the array

6 ∗ mReactionProbabilities ∗/

computeReactionProbabilities();

int numReactions = mReactions.length;
int numSymbols = pNewDynamicSymbolValues.length;

11 double reactionRate = 0.0;

/∗ Initialise all the elements of the vector ’derivative’ to the value 0 ∗/

DoubleVector.zeroElements(derivative);

16 /∗ Define a new vector linked to mDynamicSymbolAdjustmentVectors, the stoichiometric matrix

∗ of the considered chemical kinetics model ∗/

Object []dynamicSymbolAdjustmentVectors = mDynamicSymbolAdjustmentVectors;

/∗ For each reaction of the model, compute the drift and the diffusion term, in order to

21 ∗ obtain the result of the Euler−Maruyama algorithm ∗/

for(int i = 0; i < numReactions; i++) {

49



reactionRate = mReactionProbabilities[i];
drift = reactionRate ∗ stepSize;
diffusion = Math.sqrt(Math.abs(drift)) ∗ mScratchPad.nextRand();

26 diffusion = drift + diffusion;
double []symbolAdjustmentVector =

(double[])dynamicSymbolAdjustmentVectors[i];
DoubleVector.scalarMultiply(symbolAdjustmentVector, diffusion, k);
DoubleVector.add(k, derivative, derivative);

31 }

/∗ Compute the scale of the evaluated step, in order to get accuracy analysis

∗ of the just obtained result. Now the SDE simulator is unable to use this feature,

∗ and it will be maybe provided in a further release ∗/

36 double sumScale = 0;
for(int i = 0; i < numSymbols; i++) {

scale[i] = Math.abs(pNewDynamicSymbolValues[i]) + Math.abs(derivative[i]);
sumScale += scale[i];

}
41 if(sumScale == 0)

throw new AccuracyException("unable to determine any scale at time: " +
mSymbolEvaluator.getTime());

DoubleVector.add(pNewDynamicSymbolValues,derivative,pNewDynamicSymbolValues);
46 mSymbolEvaluator.setTime(mSymbolEvaluator.getTime() + stepSize);

return(mSymbolEvaluator.getTime());

Listing 6.1: SimulatorSDEEulerMaruyama.java

First of all I recall the stochastic differential equation with the discretised
Brownian path.

Y (t + τ) = Y (t) + τ
M

∑

j=1

vjaj (Y (t)) +
√
τ

M
∑

j=1

vj

√

aj (Y (t))Zj (6.1)

Such an equation can be divided in four main components: the previous
result, the drift and the diffusion term, and the white noise.
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Y (t + τ) =

prev
︷︸︸︷

Y (t) +

drift
︷ ︸︸ ︷

τ
M

∑

j=1

vjaj (Y (t)) +

diffusion
︷ ︸︸ ︷

√
τ

M
∑

j=1

vj

√

aj (Y (t)) ·
noise
︷︸︸︷

Zj (6.2)

In line 7, I compute the probability rate for each reaction in the model:
computeReactionProbabilities() is a method inherited from the
class Simulator. This probability is described in (6.2) as the aj (Y (t))

term.

Once probabilities are evaluated, for each simulation (line 22) I begin
to determine the drift (line 24) and the diffusion term (line 25), refer-
ring to τ as the stepsize. The diffusion term is furthermore multiplied
by the white noise: such latter term, which in the code is described as
mScratchPad.nextRand(), is a double random number generated by a
Normal distribution. I have used the package provided by Colt Project1

embedded in Dizzy to generate those random values.

Finally in line 29 I multiply the drift and the diffusion term for the stoi-
chiometric matrix vj described in the array symbolAdjustmentVector

and I add the value to the other values obtained with other reactions.

6.2 Experiments

I apply the methodology implemented in the previous section to three
models: the Michaelis-Menten model, the Schlögl model and the Lotka-
Volterra model. All these models are solved2 in three different ways:
with Ordinary Differential Equations (ODEtoJava adaptive [25]), with

1Colt Project provides a set of Open Source Libraries for High Performance Scientific
and Technical Computing in Java. A complete description of this package can be found
at the web site http://dsd.lbl.gov/~hoscheck/colt/

2All the experiments were performed using P4 Dell 512Mb RAM using a Fedora
Linux with GUI Gnome 2.14
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Stochastic Simulation Algorithms (Gillespie’s direct method, Gibson-Bruck
algorithm and Gillespie’s τ -leap [12]) and with Stochastic Differential
Equations proposed in Section 6.1.

6.2.1 The Michaelis-Menten model

The Michaelis-Menten model is widely used in biology for studying the ki-
netics of many non-allosteric enzymes: enzyme (E) and substrate (S) can
combine themselves in complex (ES), which then eventually dissociates
to free enzyme and product (P).

E = 100;
S = 100;
P = 0;
ES = 0;
enzyme_substrate_combine, E + S −> ES, 1.0;
enzyme_substrate_separate, ES −> E + S, 0.1;
make_product, ES −> E + P, 0.01;

Listing 6.2: Michaelis-Menten model

As described in the model, the initial concentration of the enzymes and
substrates is 100; the rate to combine enzymes and substrates is 1.0; to
separate them is 0.1 and to create products is 0.01.

Comparing these three charts, we can observe a very similar behaviour
of all four species trends. In particular, around the time 60 - 80, the
concentration of P (and E) exceeds the number of ES independent of the
solution algorithm.

6.2.2 The Schlögl model

The Schlögl model is a famous artificial chemical system used to describe
bistable behaviour in the state variable for certain parameters.
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(a) ODE (b) SDE

(c) SSA (d) SSA All Runs

(e) Candlesticks (f) SSA Average

Figure 6.1: Michaelis-Menten Charts
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X = 250;
c1 = 3E−7;
c2 = 1E−4;
c3 = 1E−3;
c4 = 3.5;
N1 = 1E5;
N2 = 2E5;
R1, −> X, [(c1/2)∗N1∗X∗(X−1)];
R2, X −> , [(c2/6)∗X∗(X−1)∗(X−2)];
R3, −> X, [c3∗N2];
R4, X −> , [c4∗X];

Listing 6.3: Schlögl model

As the charts below demonstrate, the trajectory of X can be accurately
simulated only with stochastic algorithms. During these simulations the
state variable has always taken values above the initial condition (250),
either using the SDEs and the SSA simulator. Assuming bistable states,
the mean and the variance do not have a physically significant meaning:
so both SDEs and SSA simulation were computed only a single time.

Unlike the Michaelis-Menten model, SSA Gibson Bruck simulator is slower
than SDEs computing the Schlögl model.

The Schlögl model, due to its rare events that arise in multi-scale systems
when we calculate exponentially large or small observables, has a poor
description if we simulate it with the diffusion approximation. This issue
resides in the diffusion approximation of the SDE process (drift term +
diffusion term), which leads to a wrong result simulating exponential
values. In order to understand the problem, first of all we can give a
deterministic description of the problem, defining the concentration x =

X/V , assuming V the system volume, with the ODE dx
dt = u(x)−d(x), with

u(x) = c1 ∗ x2 + c4 and d(x) = c2 ∗ x3 + c4 ∗ x. In this form 3.12 can be
written as

dx = [u(x) − d(x)] dt +
√

u(x) + d(x)dW (6.3)
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(a) ODE (b) SDE

(c) SSA (d) SSA All Runs

Figure 6.2: Schlögl Charts
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Passing to an intensive quantity x = n/V = εn in order to analyse large
system size limits, we can rewrite 6.3 in this form

dx = [u(x) − d(x) + ε (u1(x) − d1(x))] dt +
√

ε (u(x) + d(x))dW (6.4)

that corresponds to the original SDE only with the rates rescaled by ε.
Applying to 6.4 the large deviations principle leads us to a wrong Partial
Differential Equation (PDE).

A satisfactory description of the issue can be found in [24].

6.2.3 The Lotka-Volterra model

The Lotka-Volterra model is one of the simplest models in which preda-
tors and prey interact together, in a one-prey-group and one-predator-
group scenario. In this example, I set the quantity of food at 1, the num-
ber of predators (pred) and prey (prey) at 1000.

food = 1;
prey = 1000;
pred = 1000;
natc = 0;
r1, food + prey −> prey + prey + food, 10;
r2, prey + pred −> pred + pred, 0.01;
r3, pred −> natc, 10;

Listing 6.4: Lotka-Volterra model

Three simple reactions describe the model: food and prey generate two
prey and release a food with rate 10; a prey and a predator react with
rate 0.01 and become two predators; finally a predator dies of natural
causes (natc) with rate 10.
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(a) SDE (b) SSA

Figure 6.3: Lotka-Volterra Charts

Both charts are characterised by oscillations in the population size of both
preys and predators, as predicted: using the SDEs simulator we can save
a large amount of time computing these oscillations.

6.2.4 Final results

In the table below I show the average time (in seconds) spent by each
algorithm for simulating the three models described above. Each model
was simulated ten times with all the algorithms:

Algorithm/Model Michaelis-Menten Schlögl Lotka-Volterra

ODEs 0.93 0.183 0.253

SDEs 2.81 4.78 2.83
Gillespie’s SSA 0.15 3.72 7.38

Gibson-Bruck Next React. 0.16 4.01 7.65

Gillespie’s τ -leap 0.12 3.69 7.12

As we can see, Gillespie’s τ -leap method is the fastest way to solve either
Michaelis-Menten model and Schlögl model. In these examples, both in
the Schlögl model and in the Lotka-Volterra model, ODEs are not good

3ODEs became stable after a very short amount of time, so this method is not relevant
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enough to describe the behaviour of the species trends. Instead SDEs and
SSAs algorithms, because of their stochastic nature, are suitable for all
three models: moreover SDEs are faster in the Lotka-Volterra model, and
a little bit slower in the Michaelis-Menten model.

6.2.5 Concluding remarks

I presented a simulator which uses stochastic differential equations to
solve chemical reactions, and I compared this simulator with other two
standard ways to solve chemical reaction systems. After making sev-
eral tests, a few shown in Section 6.2, I can assert this simulator is good
enough for models when we treat chemical reaction systems with non-
exponential size variables (i.e. without multi-scale problems). This simu-
lator has also a better performance than a traditional stochastic simula-
tor algorithm in some models, and can represent a valid alternative when
these become too slow to compute the given model.
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Chapter 7

Other works on Dizzy

D URING my period at the University of Edinburgh, besides develop-
ing the statistical analysis of the results and the SDE Simulator,

I focused my attention also to other different issues of the Dizzy frame-
work: the Sensitivity (Section 7.1) and the Deadlock Analysis (Section
7.2).

Sensitivity Analysis involves the study of different behaviour that a chem-
ical kinetic model can exhibit when we change the values of some initial
parameters. In particular I am showing how the evolution of a simulated
trajectory of one or two species changes with a different number of initial
molecules: this can be very useful for the model enhancement: all the
data are represented in a three-dimensional chart, so trajectories of each
new-defined model can be viewed within a single instance of simulation.

Deadlock Analysis instead regards a particular behaviour of Stochastic
Simulation Algorithms. These algorithms indeed work, as I have detailed
in Chapter 3, calculating the probability to get a fired reaction in each
time interval (typically such time step is defined as τ ). When all the
molecules per species in our model are consumed, the probability that a
reaction can fire is null. So I have developed a control system in order to
detect when the probability to get a new reaction becomes null.

59



7.1 Sensitivity Analysis

Sensitivity Analysis of chemical kinetics model has been developed with
the intention to show how slight changes in a chemical system can cause
great differences in the final result. In biological systems exact parame-
ter values are difficult or impossible to obtain, so modellers are motivated
to find out which parameter values have greatest impact. I have devel-
oped and embedded in Dizzy a system which allows the user to set a
range of values of a single parameter of a chemical reaction model, either
a species or a reaction rate. Once the user has defined a range, he must
also defines the number of steps: defining in example a number of 4 steps,
the range will be divided in four parts, and five different instances of the
considered variable are created.

These new variables are used also to create new instances of the model,
hence to perform different simulations, one for each instance of the model.
The result of the simulation is shown in Figure 7.1.

Three-dimensional charts are provided by a deep proofreading of Surface
Plotter 1.30B21, originally written by Yanto Suryono [27]. Indeed the
provided code is a stand-alone Java applet application that shows three-
dimensional charts having in input a defined algebraical formula. I have
worked to extract the graphical part from the applet application, and
embedded it into Dizzy by creating a new JAR package.

7.2 Deadlock Analysis

As already described at the beginning of Chapter 7, deadlock analysis
involves the detection of a null probability in Stochastic Simulation Algo-
rithms. Gillespie [14] has given a detailed description in his paper about

1The original version of this package can be found at the Yanto Suryono’s web site
http://www.fedu.uec.ac.jp/~yanto/java/surface/
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Figure 7.1: Three-dimensional chart of the Michaelis-Menten model, which rep-
resents the behaviour of the species P. The model has been simulated five times
with a different initial concentration of molecules E, from 100 (the standard
condition) to 80.
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this problem, comparing the chemical oscillations between determinis-
tic reaction-rate equations and the first moment of the solution of the
stochastic master equation. These oscillations cause the fast consump-
tion of molecules in some kinetics models, hence the probability that a
reaction occurs in our model becomes null.

In order to alert the user that our model has reached a deadlock state, I
have added a control in each stochastic simulator, to check if the proba-
bility to fire a reaction is null or not. That is, the simulator reports then
it is impossible for any reaction to fire.
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Chapter 8

Concluding Remarks and

Future Works

T HIS paper has described and illustrated the use of three different
methods for calculating the trajectories of chemical reaction models,

the Java framework Dizzy and the work I have produced on that specific
tool.

After a large theoretical overview on Ordinary Differential Equations
(ODEs) and Stochastic Simulation Algorithms (SSAs), focusing on the
main features of these two different classes of simulation, I have intro-
duced Dizzy, the kinetic simulation software developed by the Univer-
sity of Edinburgh for solving chemical reaction models. Indeed these two
chapters have defined the theoretical and the practical side of chemical
kinetics, giving an overview of the main issues faced during the solution
of these chemical kinetics models.

I have shown the Statistical Analysis I have developed and embedded in
Dizzy, coupled with the brand new profiling feature, added in order to
understand which reactions fire during a simulation process. Further-
more I have studied how Stochastic Differential Equations (SDEs) can
deal with chemical reactions in order to compute a well-defined solution.
In order to demonstrate its efficiency and accuracy, the SDE algorithm
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has been tested on different well-known models: the Michaelis-Menten,
the Schlögl and the Lotka-Volterra model. Also two minor works have
been presented, in order to get sensitivity and deadlock analysis.

Comparing Dizzy with other software, I can say that Dizzy is the most
complete software that allows users to solve chemical kinetics reaction
models. It allows users to perform simulations with three different fam-
ilies of simulation methods, and that is a unique peculiarity in the world
of chemical reaction kinetics simulation software.

I have improved the analysis of the results, increasing the level of knowl-
edge and insight obtained from the data produced by the simulators. In
particular the Profile analysis is an important feature to evaluate mod-
els which involve “rare events”, like the GAL yeast pathway: indeed
analysing the Profile chart of this model, we have found some differences
compared to Ramsey’s article [23], as described in Section 5.3.1.

The SDE simulator in particular appears to be a valid alternative to the
most common methods developed to solve some chemical kinetics models,
like Lotka-Volterra. Since I have shown the relation between the SDE
and the traditional SSA algorithms, I can assert that a chemical kinetics
model can be solved using either with SDE or SSA methods, obtaining
the same results. Having defined a sort of equivalence between these
two methods, users can now choose the fastest way to solve any chemical
kinetics models, according to the peculiarities and the distinctive features
of the model.

Several improvements can still be made to the Dizzy framework, namely
in the Stochastic Differential Equation algorithm. Indeed the simulator,
which solves chemical kinetics reactions using this method, is not able
to calculate either a relative or an absolute tolerance yet, in contrast to
the ODE algorithm OdeToJava. This feature can be very useful in the
future to increase the reliability of the algorithm, and also to improve the
efficiency of the simulation method according to the accuracy required.

Another interesting improvement in Dizzy can be obtained by develop-
ing a method to predict the number of simulations to perform in order to
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reach a pre-defined level of accuracy of the final results. As I have previ-
ously described in Section 4.2, Dizzy allows users to define an ensemble
size: this number defines how many simulations of the same chemical
kinetics model Dizzy has to perform before showing the final result. Due
to the fact that some models are hard to solve, because of either the com-
plexity of the chemical system or the chosen algorithm, the ensemble size
should be set with regard by the user, trying to specify the lowest number
possible. It would be very useful if Dizzy could choose the best ensemble
size, according to a desired accuracy requested by the user.

Finally, I can suggest Dizzy should be able to read different kinds of
SBML languages. Currently Dizzy understands only SMBL Level 1 mod-
els, which now has become a quite old standard for chemical models1.
Today Level 2 and brand new Level 3 standards are often used to de-
fine complex chemical kinetics models, and the majority of the chemical
simulators enable users to perform models written with these standards.

Despite this drawback, Dizzy remains a powerful and efficient tool offer-
ing sound analysis methods to users, easing the burden of analysing the
complex chemical models of today and tomorrow.

1Standard Biology Model Language (SBML) specifications can be found at the web-
site http://sbml.org/index.psp
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Appendix A

Yeast model

A.1 Template definitions

#model gal4_indirect_combined_fracsat;
// =================================

// % One Binding Site, Three States

// =================================

#define fracSatThreeStatesOneSite( kfp, krp, kfr, krr, f0,
f1, fracsat )

{
kp = kfp/krp;
kr = kfr/krr;

kpf0 = [ kp∗f0 ];
krf1 = [ kr∗f1 ];

fracsat = [ kpf0 / (1.0 + kpf0 + kpf0∗krf1) ];
}

// ================================

// % Two Binding Sites, Two States

// ================================

#define fracSatThreeStatesTwoSites( kfp, krp, kfr, krr, qr, f0,
f1, fracsat )

{
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kp = kfp/krp;
kr = kfr/krr;

kpf0 = [ kp∗f0 ];
kpf0_2 = [ kpf0∗kpf0 ];

krf1 = [ kr∗f1 ];
krf1_2 = [ qr∗krf1∗krf1 ];

numerator = [ (kpf0_2) +
(2.0 ∗ kpf0) +
(2.0 ∗ kpf0_2 ∗ krf1) ];

fracsat = [ numerator / (numerator +
1.0 +
(kpf0_2 ∗ krf1_2) +
(2.0 ∗ kpf0 ∗ krf1)) ];

}

// ===================================

// % Four Binding Sites, Three States

// ===================================

#define fracSatThreeStatesFourSites( kfp, krp, kfr, krr, qr, f0,
f1, fracsat )

{
kp = kfp/krp;
kr = kfr/krr;

kpf0 = [ kp∗f0 ];
kpf0_2 = [ kpf0∗kpf0 ];
kpf0_3 = [ kpf0_2∗kpf0 ];
kpf0_4 = [ kpf0_3∗kpf0 ];

krf1 = [ kr∗f1 ];
krf1_2 = [ qr∗krf1∗krf1 ];
krf1_3 = [ qr∗krf1_2∗krf1 ];
krf1_4 = [ qr∗krf1_3∗krf1 ];

numerator = [ (4.0 ∗ kpf0 ) +
(12.0 ∗ kpf0_2 ∗ krf1 ) +
(6.0 ∗ kpf0_2 ) +
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(4.0 ∗ kpf0_3 ) +
(12.0 ∗ kpf0_3 ∗ krf1 ) +
(12.0 ∗ kpf0_3 ∗ krf1_2 ) +
( kpf0_4 ) +
(4.0 ∗ kpf0_4 ∗ krf1 ) +
(4.0 ∗ kpf0_4 ∗ krf1_3 ) +
(6.0 ∗ kpf0_4 ∗ krf1_2 ) ];

fracsat = [ numerator / (numerator +
1.0 +
(4.0 ∗ kpf0 ∗ krf1) +
(6.0 ∗ kpf0_2 ∗ krf1_2) +
(4.0 ∗ kpf0_3 ∗ krf1_3) +
(kpf0_4 ∗ krf1_4) )];

}
// ====================================

// % Five Binding Sites, Three States

// ====================================

#define fracSatThreeStatesFiveSites( kfp, krp, kfr, krr, qr, f0,
f1, fracsat )

{
kp = kfp/krp;
kr = kfr/krr;
kpf0 = [ kp∗f0 ];
kpf0_2 = [ kpf0∗kpf0 ];
kpf0_3 = [ kpf0_2∗kpf0 ];
kpf0_4 = [ kpf0_3∗kpf0 ];
kpf0_5 = [ kpf0_4∗kpf0 ];

krf1 = [ kr∗f1 ];
krf1_2 = [ qr∗krf1∗krf1 ];
krf1_3 = [ qr∗krf1_2∗krf1 ];
krf1_4 = [ qr∗krf1_3∗krf1 ];
krf1_5 = [ qr∗krf1_4∗krf1 ];

numerator = [ (5.0 ∗ kpf0 ) +
(10.0 ∗ kpf0_2 ) +
(20.0 ∗ kpf0_2 ∗ krf1 ) +
(30.0 ∗ kpf0_3 ∗ krf1_2 ) +
(30.0 ∗ kpf0_3 ∗ krf1 ) +
(10.0 ∗ kpf0_3 ) +
(5.0 ∗ kpf0_4) +
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(30.0 ∗ kpf0_4 ∗ krf1_2 )+
(20.0 ∗ kpf0_4 ∗ krf1 ) +
(20.0 ∗ kpf0_4 ∗ krf1_3 ) +
( kpf0_5 ) +
(5.0 ∗ kpf0_5 ∗ krf1 ) +
(5.0 ∗ kpf0_5 ∗ krf1_4 ) +
(10.0 ∗ kpf0_5 ∗ krf1_3 ) +
(10.0 ∗ kpf0_5 ∗ krf1_2 ) ];

fracsat = [ numerator / (numerator +
1.0 +
(5.0 ∗ kpf0 ∗ krf1) +
(10.0 ∗ kpf0_2 ∗ krf1_2 ) +
(10.0 ∗ kpf0_3 ∗ krf1_3 ) +
(5.0 ∗ kpf0_4 ∗ krf1_4 ) +
( kpf0_5 ∗ krf1_5 ) ) ];

}

// =============================================

// % Simple Transcription and Translation model

// =============================================

#define yeastGeneFast( fracsat,
mRNA,
ki_mRNA,
kd_mRNA,
prot,
ki_prot,
kd_prot)

{
make_mrna, −> mRNA, [ fracsat ∗ ki_mRNA ];
degrade_mrna, mRNA −> , kd_mRNA;

make_prot, $mRNA −> prot, ki_prot;
degrade_prot, prot −>, kd_prot;
}

A.2 Galactose pathway

molecTomM = 4.65 ∗ 10^(−8); // mM/molecules
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// zero−galactose initial conditions:

GAI = 0.0; // internal galactose

GAE = 0.5 / molecTomM; // external galactose

GA1P = 0.0; // galactose−1−phosphate

UGA = 1490322.0; // UDP−galactose

UGL = 5217204.0; // UDP−glucose

G1 = 1027.0; // Gal1p

G2 = 922.0; // Gal2p

G4 = 7.4; // Gal4p

G7 = 395.0; // Gal7p

G10 = 602.0; // Gal10p

G3 = 3580.0; // Gal3p

G80 = 809.0; // Gal80p

G7d = 92.0; // Gal7p(dimer)

G10d = 213.0; // Gal10p(dimer)

G4d = 5.0; // Gal4p(dimer)

G80d = 384.0; // Gal80p(dimer)

G3i = 0.00; // Gal3p−Galactose complex

G4dG80d = 106.0; // Gal4p−Gal80p complex

G80G3i = 0.0; // Gal80p−Gal3p−galactose

//raffinose condition, steady−state:

R1 = 0.2; // GAL1 mRNA

R2 = 0.26; // GAL2 mRNA

R7 = 0.11; // GAL7 mRNA

R10 = 0.2; // GAL10 mRNA

R3 = 0.75; // GAL3 mRNA

R80 = 0.37; // GAL80 mRNA

// Kinetic Parameters:

alpha_TR = 1.0; // dimensionless

Km_TR = 1.0 / molecTomM; // molecules

k_TR = 4350.0; // min^−1

kcat_GK = 3350.0; // min^−1

Km_GK = 0.6 / molecTomM; // molecules

kcat_TF = 59200.0; // min^−1

Km_ga1p_TF = 4.0 / molecTomM; // molecules

Km_ugl_TF = 0.26 / molecTomM; // molecules
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kcat_EP = 38900.0; // min^−1

Km_uga_EP = 0.22 / molecTomM; // molecules

Keq_EP = 3.5; // dimensionless

Km_ugl_EP = 0.25 / molecTomM; // molecules

q = 30.0; // cooperativity for multiple repressor (G80d) binding

kfp = 0.1;
kfr = 0.1;
krp = 1.14676;
krr = 1.82588;

kdr_struct = 0.0336;
kdr_reg = 0.159193;
kdr_2 = 0.0156;

kir_struct = 1.09;
kir_reg = 1.44385;
kir_2 = 0.52;

kdp_struct = 0.00197;
kdp_reg = 0.003747;
kdp_2 = 0.00197;

kip_struct = 9.92;
kip_reg = 17.9844;
kip_2 = 6.94;

// Metabolic Pathway Velocities:

v_TR = [ k_TR ∗ G2 ∗ (GAE − GAI) /
(Km_TR + GAE + GAI + (alpha_TR∗GAE∗GAI/Km_TR)) ];

// v_TR : molecules/min

v_GK = [ kcat_GK ∗ G1 ∗ GAI / (Km_GK + GAI) ];
// v_GK : molecules/min

v_TF = [ kcat_TF ∗ G7d ∗ GA1P ∗ UGL /
(Km_ga1p_TF∗UGL + Km_ugl_TF∗GA1P + GA1P∗UGL) ];

// v_TF : molecules/min
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v_EP = [ kcat_EP ∗ G10d ∗ (UGA − UGL/Keq_EP)/
(Km_uga_EP + UGA + (UGL∗Km_uga_EP/Km_ugl_EP)) ];

// Reactions:

−> GAI, [ v_TR ];
GAI −>, [ v_GK ];
−> GA1P, [ v_GK ];
GA1P −>, [ v_TF ];

−> UGA, [ v_TF ];
UGA −>, [ v_EP ];
−> UGL, [ v_EP ];
UGL −>, [ v_TF ];

G4 + G4 −> G4d , 0.1;
G4d −> G4 + G4, 1.0;
G7 + G7 −> G7d , 0.1;
G7d −> G7 + G7, 170.2;
G10 + G10 −> G10d , 0.1;
G10d −> G10 + G10, 170.2;
G80 + G80 −> G80d , 0.1;
G80d −> G80 + G80, 170.2;
G3 + GAI −> G3i , 0.00000040;
G3i −> G3 + GAI, 890.0;
G4d + G80d −> G4dG80d , kfr;
G4dG80d −> G4d + G80d, krr;
G80 + G3i −> G80G3i , 0.1;
G80G3i −> G80 + G3i, 0.03023;

#ref fracSatThreeStatesOneSite "oneSite"
(kfp, krp, kfr, krr, G4d, G80d, fracsat_onesite);

#ref fracSatThreeStatesTwoSites "twoSites"
(kfp, krp, kfr, krr, q, G4d, G80d, fracsat_twosites);

#ref fracSatThreeStatesFourSites "fourSites"
(kfp, krp, kfr, krr, q, G4d, G80d, fracsat_foursites);

#ref fracSatThreeStatesFiveSites "fiveSites"
(kfp, krp, kfr, krr, q, G4d, G80d, fracsat_fivesites);

#ref yeastGeneFast "gal7" ( fracsat_twosites, R7,
kir_struct, kdr_struct, G7, kip_struct, kdp_struct );
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#ref yeastGeneFast "gal10" ( fracsat_foursites, R10,
kir_struct, kdr_struct, G10, kip_struct, kdp_struct );

#ref yeastGeneFast "gal1" ( fracsat_foursites, R1,
kir_struct, kdr_struct, G1, kip_struct, kdp_struct );

#ref yeastGeneFast "gal2" ( fracsat_fivesites, R2,
kir_2, kdr_2, G2, kip_2, kdp_2 );

#ref yeastGeneFast "gal3" ( fracsat_onesite, R3,
2.0∗kir_reg, kdr_reg, G3, kip_reg, kdp_reg );

#ref yeastGeneFast "gal80" ( fracsat_onesite, R80,
kir_reg, kdr_reg, G80, kip_reg, kdp_reg );

// G4 creation and decay processees

G4 −> , kdp_reg;
−> G4 , 0.86181;

// dimer decay

G4d −> , kdp_reg;
G7d −> , kdp_struct;
G10d −> , kdp_struct;
G80d −> , kdp_reg;

// other molecular decay processes

G3i −> , kdp_reg;
G4dG80d −> , kdp_reg;
G80G3i −> , kdp_reg;
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