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Abstract

In the last decade, models of biochemical interactionse &bdescribe the time evo-
lution of biomolecular systems, have been the subject okaging interest. The use
of such models has helped to understand the dynamics ofgitalgorocesses and to
accelerate drug discovery, moving part of the experimeaots the laboratory to the
computer. But models are nothing but a representation, proapnation of the real
biological system, therefore they require to be analysetvatidated. The analysis
of the modelsn silico may lead to the discovery of properties that can be tested and
validated inin vitro experiments.

When modeling, one of the main issues is the tuning and threcadentification
of the parameters of the model. There are factors in a biowamodel, such as ki-
netic constants and initial concentration of the speciesled, that require a specific
investigation, in order to assert their role within the syst

Sensitivity Analysis (SA) provides the techniques thatlsamised to identify those
parameters that are the most influential to the outcome afibael. In this disserta-
tion we present a survey about the current SA techniques tosadalyse models of
biochemical reactions and we introduce new methods th&grmtapt to the analysis
of models that present bifurcation points and bistabil@pllowing the lead of ear-
lier related work, we take in account three different categgoof SA (local, global and
screening methods) and analyse the aspects and purposehaffehem. The focus is
mainly on the differences between the classical approatiased on time evolutions
of the systems computed withrdinary Differential Equationsand the novel tech-
niques, based on time evolutions computed with multiple mirtheStochastic Simu-
lation Algorithm An example of sensitivity analysis of a real pathway, theRKA is
then provided.

Finally, we show how these techniques have been impleméni2dzy, a software
that provides tools for the simulation and analysis of medébiochemical reactions.
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Chapter 1
Introduction

In recent years, Systems Biology has received an increasimoynt of attention from
different scientific fields, such as Mathematics, Stasstied Computer Science. This
has happened and is still happening, because the datatedlieche experiments of
these last productive years is giving to biologists a newvd loh challenge. Discov-
ering new genes or new pathways, correlations between gsnssmething that can
nowadays be done or suggested by the use of statisticalitesor algorithms that
require multidisciplinary competencies. Moreover, expentsin silico are becoming
more and more popular, particularly to model complex systemmen supported with
adequate theoretical foundations and/or mathematicafgro

As suggested in [23], there are two main disciplines thatigdhr counterpose
themselves.Bioinformatics that identifies, catalogues and characterizes the compo-
nents of a cell, an&ystems Biologyhat studies how the components work and behave
together through time.

Moreover, Computational Systems Biology [12] providedd¢@mnd techniques that
can be used to implement an silico representation of the intracellular dynamics
which are the subject of the study. The resulting model Wit be used to improve
the understanding of the system, simulating possible n&riar perturbations and val-
idating them with further experiments. The idea is that tloelel should suggest new
experiments and that the experiments should improve theemod

The most widely used techniques used for this purpose atgaorebased biochem-
ical models. These kinds of models are defined by a set ofioeacilong with the rate
at which these reactions may occur. This information, abeitg the initial concen-
tration or number of molecules of the species involved, mugi to describe the time
evolution of the modelled system. The two methods that gfteisent themselves as

1



2 Chapter 1. Introduction

a choice are th&eneral Mass Actio(iGMA) [22], and theStochastic Simulation Al-
gorithmof Gillespie [8, 9, 7]. The former is computationally cheap#ile the latter
is considered more descriptive and able, in some casesptareamore complex dy-
namics. However, it is difficult to identif@ priori which method would be the most
appropriate in a specific case [22].

Once a model is built, the next step is to identify its projesrand to verify that
these properties belong also to the original real system.

1.1 Why sensitivity analysis

Modeling biochemical reactions requires a large numbenocdimeters that are usually
difficult to infer from experimental data. The parametersasme mainly interested in
obtaining are initial concentrations and kinetics valuge latter in particular are
computed using statistical techniques or found by just early trying to reproduce
the results obtained im vitro experiments. This leads to uncertainty about the true
value of these parameters.

Sensitivity analysis (SA) allows us to see how much a paramafluences the
model. If the model is robust with respect to some parametergan be more relaxed
about their real value, because they will not greatly affeot further analysis. It is
also important to quantify this influence, in order to untkend whether one parameter
is more important than others. If a parameter expresseasgsinfluence on the model
results, it is then recommended to identify more preciselina more reliable way
its real value. SA has shown also to be useful to identify prigs and reinforce the
understanding of the analysed system [19].

Sensitivity analysis tools for ordinary differential egioas models (ODE models)
have already been developed and widely used. Usually theyda global SA tech-
niques that can be directly applied to ODE models, considehe steady-state as the
output to analyse. An example is the Systems Biology Too[BpxXSBToolbox) for
MATLAB [1] that includes steady-state parameter SA andguand amplitude pa-
rameter SA. Conversely, our focus will be on SA of stochastadels, in particular
of the Chemical Master Equatio{CME) of Gillespie [8, 9, 7] and its Monte Carlo
SimulationStochastic Simulation Algorithf8SA). Some techniques aiming in this
direction have been proposed only recently [11], thus ghiiil a branch of SA that
leaves room for new ideas. In particular, new sensitivitameges that better adapt to
the highly stochastic nature of certain biological models be proposed and tested.
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In this dissertation we take a measure that has been alraadgmed, thdis-
togram distancgd5], and we use it as a building block for novel SA methods. The
histogram distance is an approximate way to compute therdiite between two sets
of stochastic simulations. Therefore, the sensitivity suea that makes use of it, can
be considered taking into account an approximation of th&e@ivderlying the values
of the stochastic simulations.

Finally, the possibility to immediately implement the tinedan Dizzy, a software
tool for the simulation and analysis of biochemical mod&lg]] makes this work us-
able by modellers in the short term.

1.2 Content of the dissertation

In the next chapter we begin with the background needed iardodunderstand the
work. This includes some concepts of biology, modeling beaical models, a short
presentation of Dizzy and a survey of the current SA techesgaomehow related or
applicable to the analysis of this kind of models. In Chatere introduce the novel
approaches, comparing them to the classical procedur&3hdpter 4 the application
of the discussed techniques to a real example is presentedeover, in Appendix A
we show how this work has been implemented in Dizzy.






Chapter 2

Background

2.1 Basic biological concepts

This dissertation concerns models of biochemical intevastand we will later discuss
some real biological examples. Therefore, we wish our ne&mde familiar with
concepts such as enzyme, signaling pathway or phosphorylaf his first section
is indeed a brief guide to those biological concepts thatréaeler will meet in later
chapters.

Moreover, it is important to understand the charactegstite components and the
properties of the systems we wish to model. Our referencethi® section are [16]
and [13].

2.1.1 Forces guiding molecular interactions

In molecular biology there are many kinds of forces that erfice the interactions
between molecules or atoms, causing, for example, atonwno $olid structures or
molecules join with a temporary weak bond. The ones that$are of main interest
are covalent bonds, ionic bonds, hydrogen bonds, hydraphoteractions and Van
der Waals forces.

Covalent bonds: this is a strong bond between atoms, where they share eisctro
that are in their outermost shell. Atoms tend to establisralemt bonds in order to
reach an energetic stability. When they are linked togethtr covalent bonds they
are called molecules. This is the strongest kind of bondsning that it requires a
relative large amount of energy to be broken. It can be doobtaple if the number
of shared electrons is more than one, a situation that makdsound even more solid.

5



6 Chapter 2. Background

Moreover, if the shared electrons spend more time in on@mnegfi the molecule, the
bond is said to bpolar. An example of a polar covalent bond is the molecule of water,
H>0, that is negatively charged close to the atom of oxygen arsitipely charged
close to the atoms of hydrogen.

lonic bonds: when an atom, instead of sharing, loses or gains an electrbe;
comes anon, i.e. an electron that is positively or negatively chargeds of opposite
charge may be attracted to one another leading to the fawmatielectrostatic bonds.
Although these bonds are not as strong as covalent bongsstiheequire a consid-
erable amount of energy to be broken. An example is the ictierabetween sodium
(Na) and chlorine (Cl): an electron is transferred from threrfer to the latter generat-
ing the ions Na and CI" that are holden together by the ionic bond.

Hydrogen bonds: hydrogen atoms with a positive partial charge that are béond
oxygen or nitrogen (as ikl>,O or NH3) are able to interact with free electron pairs of
atoms with a negative partial charge. These are charge baseakctions that are rela-
tively weak and that usually can be broken by just raisingéneperature. Hydrogen
bonds are present in many biological structures, such as (@séxyribonucleic acid)
or folded proteins, and biological processes, such as eaagtivity.

Hydrophobic interactions: water is electrically polarized and is able to form hy-
drogen bonds, so hydrophobic molecules are usually norr paddecules that are
repelled byH,O that bonds together. An example of these interactions iscéhe
lular membrane that is formed by molecules that are made gfdaophobic and a
hydrophilic part.

Van der Waals forces: these are forces generated by temporary difference of
charge within a molecule, caused by momentary inequaiititree distribution of elec-
trons in a covalent bound. That molecule has a dipole indugéds bipolarity may
also induce dipoles in close molecules. These forces caither attractive or repul-
sive and they may generate very weak bonds, even weaker ydaogen bonds. Van
der Waals repulsions have an important influence on the lplessonformations of a
molecule.

2.1.2 Proteins

We cannot talk about proteins without briefly introducing tentral dogmaof molec-
ular biology. The DNA (deoxyribonucleic acid) is that maldethat in every cell con-
tains the information about how to construct and syntheslizéose buildings blocks
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Figure 2.1: Schematic representation of an enzymatic reaction.

that let the cell function properly, the proteins. This imf@tion is coded as a sequence
of bases: adenine, thymine, guanine and cytosine. Whenteipreeds to be built,
the process of transcription copies the necessary part & DM a strand of RNA
(ribonucleic acid). Then, in the process of translatioe, RNA binds to a molecule
called ribosome and the information present in the RNA isluseconstruct a chain
of amino acids, linked together through covalent bonds eAtfhat, this chain folds,
thanks to bonds and forces acting on it, leading to the firgbstof the protein.

Proteins fulfill numerous important functions in the cetrh being just part of
the cellular structure to having roles in the metabolismhaf ¢ell or in the delivery
of signals. The main characteristic of proteins, that eemithem to have so many
different functions, is their ability to bind other moleeslspecifically and tightly. The
regions in the protein where other molecules may bind atedabinding sites These
regions are defined by their shape and by the chemical prepdiat surround them,
allowing only very specific molecules to bind. Proteins clo &ind to other proteins
or be integrated into membranes. When a protein binds tdhanotolecule, it can also
change some of its properties and abilities to bind.

Enzymes.An enzyme is a protein whose role is to catalyze, i.e. to acatd, a bio-
chemical reaction. Enzymes allow reactions that are ndymafavorable in nature to
take place, lowering their activation energy. We will calbstrateshe molecules that
take part of catalyzed reactions gmdductsthe molecules that are generated. Usually
enzymes are very specific as to which reactions they catajamplementary shape,
charge and hydrophilic/hydrophobic characteristics ayemes and substrates are re-
sponsible for this specificity. Figure 2.1 sketches a pdéssignamics of enzymatic
activity.

Phosphorylation. Phosphorylation is a biochemical reaction in which a phagph
group links through a covalent bond to a molecule. This uguatreases the energy
of the resulting molecule, that changes some of its praggeetihd may become active.
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Many proteins or enzymes, for example in signaling pathwagse a poor activity
until they are phosphorylated and begin to perform impartanctions. Two cate-
gories of enzymes regulate the phosphorylation of a matedhkekinasethat adds a
phosphate group and thhosphatasethat removes it (dephosphorylation). Usually,
this kind of reactions depends on the presence of ATP (adent$phosphate), that
can be considered one of the most diffuse kinds of energggtan the cell.

2.1.3 Metabolic and signaling pathways

The metabolism of a cell is a highly organized process, thailves thousands of re-
actions that are catalyzed by enzymes and whose ultimatésgogrovide everything
the cell needs to survive and reproduce. Metabolism prewhergy and material for
building and maintaining the cell. So, metabolic pathwags®tworks of biochemical
interactions that provide mainly mass and energy transfer.

A signaling pathway, instead, is a sequence of biochemmtatactions that leads
to the transmission of external signals from outside tadi@she cell and to the move-
ment of information inside the cell. Examples of signalsf@wemones, pheromones,
heat, cold, light or even the appearance or concentratiangsh of substances such
as glucose, K or Ca". The interpretation of these external signals triggersctie
response.

Other differences are that metabolic pathways can be detedwiven the en-
zymes involved, while it is difficult to have a precise ideatloé organization of a
signaling pathway, because it is in general complex and yt assemble dynamically
depending on the signal. Moreover, in metabolism the enayoneentration is in gen-
eral much lower than the substrate concentration, whilegimading processes they are
frequently in the same order of magnitude.

2.2 Modelling biochemical interactions

Metabolism or signaling networks can be modelled and studredifferent levels of
abstraction. It is possible to concentrate on the propedighe individual reactions
as well as studying the system as a whole, perturbing it asgérging the change
in behaviour. In this section we will describe techniquesdu® model a biological
system at a reaction level. This means that, usually, thevkettye of the reactions,
the species involved and the rate at which these reactiang ecenough to describe,
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and so to model, the time evolution of the system.

2.2.1 The Law of Mass Action

The law of mass action, introduced in the 19th century [1@jtes that the reaction
rate is proportional to the probability of a collision of tteactants. This probability is
then proportional to the concentration of the reactantstaadnolecularity, i.e. how
many copies of a reactants are involved in the reaction.

For example, the rate of the reaction

S+S=2P
can be formulated as
v=v, -V =Kk [S][S]—k [P
wherev is the rate v, is the rate of only the forward reaction, is the rate of
the backward reaction arld andk_ are the proportionality factors, calldgnetics
or rate constant The symbol:-| denotes the concentration of the species expressed in

moles per liter (mol L~1). The dynamics of the concentrations of the species can be
described by th©rdinary Differential Equation$§ODES)

d d
g[sﬂ = &[52] =-V
a[P] =2V

The value of the concentrations 8f, S andP through time are obtained by inte-
gration of these ODEs.

2.2.2 Generalized Mass Action

In this section we generalize and formalize the conceptehvive introduced in the
previous section.

Modelling intracellular dynamics in a quantitative wayc@ncerned with the esti-
mation through time of the concentration or of the number ofeoules ofN different
speciesS which can interact usinlyl possible biochemical reactiofy
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_ Ku
Rt laSpua) +heSpua) + -+ lH'—uSP(H:Lu) e

whereL,, is the number of reactant species involve®jn|,j is the stoichiometric
coefficient of the reactant specigg,, j), Ku:szilluj denotes the molecularity of the
reactionRy, and the indexp (|, j) selects thos§ participating inRy,.

Assuming a constant temperature and that diffusion in thieiséast, such that
we can assume a homogeneously distributed mixture in a fiskeineV, the General
Mass Action(GMA) model of the system can be defined Ryordinary differential
equations (ODE) as follows:

5 M b L
5lS1= 2 vk [ Syl 1=1.2.N (2.1)

where thek,’s are rate constants ang, denotes the change in molecules$f
resulting from a singl&, reaction.[S] is the concentration of the specig&sind its unit
is usually mol per liter, mol/L. As described in [22], the ihamatical representation
2.1 of a biochemical network does not account for noise orstates, neither does
it consider measurement noise. For this reason, GMA is afédled a deterministic
approach. ThéS] are, however, the most probable value.

There are however some situations in which a GMA model is bi&t @ represent
all the characteristics of a system. The differential eigmatormalism implicitly as-
sumes a continuous variation in concentration of reactamisa deterministic dynam-
ics, assumptions that cannot be valid with very low conegiutns (such as regulatory
molecules).

2.2.3 Chemical Master Equation

When the number of molecules of a species reduces to few, wartther method
is often considered more suitable. This istachastic approaclwhere we wish to
determine for each molecular spec&she probabilityP(#S(t) = n;) that at timet
there aren; molecules (with & denoting the number of molecules of the spe&gs
For N molecular species, letc NN denote theN dimensional state vecton,, € ZN
are the step changes occurring for elementary reactiorex@adbyp. If Sis anN
dimensional variable, we writB(#S= n)=P;(t). Describing the changes in random
variableS, we consider the following two state transitions:
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n_
n—vy W)

n aﬂ N+ vy
The first denotes a transition from another state to the statee second denotes
moving away from the state Most importanta,(n—vy,) is referred to as thpropen-
sity function of the reactiorR,, that is the probability per unit time, of a changg
occurring, given that we are in the state v,.
With these definitions we can define tBaemical Master Equatio(CME) [8, 9,
7]

M
) _ 3l iPra-vy (6~ APt 2.2)

p=1

This equation describes the probabilities of moving in artbe staten. For each
staten we have then a differential-difference equation of thisdkiithis equation has
been derived using physical assumptions about the pratyahdat the single molecules
have to collide and therefore react. In particular Gillesgerived the parametegdt,
the average probability that a particular combinatiorRgpfreactants molecules will
react accordingly in the next infinitesimal time intervtl In fact, the propensity
functionay(n) is the product ot, andhy(n), the number of distinct combinations of
Ry reactant molecules, dt is called thestochastic rate constant

It is interesting to remark that it has been proved that tlie® correspondence
betweerc, and the GMA rate constaky; [22]:

(% Y B
Cu= (W) ‘Dl(hu!) (2.3)

whereNj, is the Avogadro number and is the cell volume. This allows to pass
from one method to the other as soon as eithan k, has been identified from exper-
imental data.

2.2.4 Stochastic Simulation Algorithm

A major difficulty with the CME is that its analytical solutias usually intractable. For
this reason, Gillespie developed t8&ochastic Simulation AlgorithgsSA), a Monte
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Carlo simulation of the CME. A single simulation represeorie exact possible evolu-
tion of the system, while a set of thousands of these sinmurattan be used to identify
an underlying probability function that is an approximatuaf the CME.

This algorithm proceeds with a loop in which, at every itenat two parameters
are randomly taken from previously defined probability mlsttions: the time of the
next reaction and which reaction will occur next. In ordecctimpute these values,
the joint probability that reactioR, will be the next reaction and will occur in the
infinitesimal time intervalt,t 4 &), given(#S= n), is computed:

P(T,un,t) = au(n)e*aO(”)T (2.4)

whereao(n)=3 ' ; au(n).
Starting from 2.4, the probabilities of the next reactiom &ne time of the next
reaction can be obtained:

P(t|n,t) = ag(n)e @t 1>0

P(jlt,n,t) = % u=1,...,M

From these distributions, random Monte Carlo samples cataken using two
uniform random numbeng andr; from [0, 1]. T is given by:

1= %In (%) (2.5)

The indexu of the selected reaction is the smallest integéfLiiM] such that
1]
Z ay(n) > raap(n) (2.6)

=1

Once these two values are computed, the system is updatedjddd selected,,
to n andt summed td.

2.2.5 Logarithmic Direct Method

During the dissertation we will face the problem of compiotaél complexity, even
for very simple models. In order to save computational timmégster, although still
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exact, version of SSA has been adopted. In general, we veilthesoriginal SSA and,
when specified, theogarithmic Direct MethodLDM) [14].

Locating the next reaction to fire is the computationally trexgpensive step of
the SSA. In LDM, this step can be reduced fr@(M) to O(logM). In the original
methodag is computed and in a second time the next reaction is detethsnamming
one by one they, so this sum is computed almost twice. In LDM, while compgtin
ap, a list is kept, with all the partial sums, from the smallesthe largest, ; then the
next reaction is identified performing a binary search onligte This way, the value
in the list such that (2.6) is satisfied can be foun®ithogM).

2.2.6 Michaelis-Menten kinetics

We introduce now a model of enzymatic reactions that is wsttildished in the field
of systems biology [4, 13]. This applies to the following ®ys:

E+sies ke Eip

whereE is the enzymeS s the substrate:Sis the temporary enzyme-substrate
complex andP is the product of the reaction. Characteristics of this nhede that
the process is considered irreversible, i.e. the produnt@abecome a substrate, and
that the enzyme is not affected by the reactions and can lukagsgn after it leaves
the substrate or the product. Under determined assumptlosparameter can be
identified with few simple experiments.

These are the ODEs of the model, following the GMA:

9 ki [E) Sk [ES
TS kBl 19 (K atk) [ES
% = —ki-[E]- [+ (k1+ko) - [ES
SR

This system of ODEs can be simplified using further assumpti®ne of these is
that we consider the conversionBfandSinto ESand vice versa much faster than the
decomposition oESinto E andP (ki,k_1 > ko, thequasi equilibriumassumption).
The other assumption is that during the course of the rescticstate is reached where
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the concentration dE Sremains constant. This is called theasi steady-stat@ssump-
tion, due to the fact that we consider the concentrations®ifritermediatesHS) to
reach equilibrium much faster than those of the product abdtsate. This means that

we assume:

dEY
“at 0

That leads to the simplification:

_ k[E][§ _ [E][§

whereKmy, = (k_1+k2) /k1 is called theMichaelis constantGiven the quasi equilib-
rium assumption we have thiét, = k_1/k;. Then, noticing that the total concentration
of enzyme[E;qt] is equal in every moment to the sum of the concentrationseofrée
enzymelE| and of the enzyme-substrate comp|E¥,

ES— ([Etot] —Kr[nES)[S] — [ES% = [Etot] — [ETS = <

- 1
[Ea <1+ ﬁ) — [Etot] —— [ES = [Etot]@ = [Etot]m.

At this point we obtain that the velocity of the productionPis given by

% =ko[ES = k2 [Etot]

S _ VowdlS
S +Km  [§+Km

whereVmax (also writterk®®) is the maximum velocity of the production Bf given
by ko[Etot]. The parameteidmaxandKy, can be easily estimated with few experiments.

2.3 Sensitivity analysis of biochemical models

Sensitivity Analysi§SA) studies the relationships between the inputs and thgutsi
of model, often regardless of the particular model whiches $ubject of the analy-
sis. We explain now what we mean when we talk about SA apptiedaction based
biochemical models.

Figure 2.2 shows an example of the time evolution of a biogbainsystem with
four species. These species have the role of the outpublesiaf the model. When
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Figure 2.2: Examples of time evolution of a biochemical model computed with ODE (on
the left) and with SSA (on the right). This model is the Michaelis/Menten model of the

enzymatic reaction which will be presented in Section 3.2.2.

we wish to perform a sensitivity analysis of this model, wecheo choose a time point
at which to read the output value. In the case of an ODE modsélected output
(species) at a selected time assumes a precise and unigee €alanging one or more
parameters of the model may lead to a different output va&nethe other hand, in the
case of stochastic simulations, the output of a selecteciespat a selected time can
be considered to be the collection of the outputs given bysiimellations. This set of
values, if it has enough points, will at this point reveal thmelerlying distribution of
the output.

One of the basic operations that can be done during a setysaivalysis, is to
compute the difference between the output of a model and ditgub of the same
model where one or more parameters have been perturbede Wilslis possible in
ODE models, itis not so clear when facing stochastic siniat One simple solution
is to take as output the mean of the values coming from thelations. However, this
solution can lead to a loss of information: taking the mearaveeassuming a normal
distribution and we are even neglecting the variance. Aagroplossibility is the use
of a distribution distance or histogram distance [5], thdth a sufficient number of
simulations, is able to identify more precisely the diffece in the outcome of the
model (see Section 2.3.1).
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2.3.1 Histogram distance

The use of histogram distance in analysing the outcome oficgabased models has
been introduced with the purpose of quantifying how well gpraximate version
of the SSA is able to emulate the original [5]. In the conteixsensitivity analysis,
it can instead be used to quantify the output difference ofodehproduced by the
perturbation of its parameters.

It is computed as follows:

M .
Zﬂzj —1X(Xj, 1) Zj—l)'\(/fylﬂll)‘. 2.7)

whereX andY are two sets of numberg,is the number of histogram columns

or intervals that divide the range of the output variablas the cardinality of the set
X andM is the cardinality of the seX, x; andy; are elements of the se¥sandY
respectively and the functigareturns 1 if the elemen; belongs to the interval O
otherwise.l; is thei-th interval in the range, that goes fromin + (
whereL = Xmax— Xmin-

An interesting measure is then thelf distancegiven byDy (X, X'). This is nothing

but repeating the same experiment twice, with the same dess) and then comput-
ing the histogram distance between the two sets of numbaeltiresfrom the simu-
lations. Perturbations in the parameters that generatesalf distances that are less
than or very close to the self distance will be consideredambtve an influence, or, at
least, we can say that we cannot distinguish any effecingrisom the perturbation.

2.3.2 Sensitivity analysis classification

According to [20], sensitivity analysis (SA) techniques dee classified as:

¢ local methods: they concentrate the analysis around a particular pointen t
parameter space. For examptegal one at a timeindelementary one at a time
approaches belong to this class;

¢ global methods: these techniques try to explore the entire space of the param
eters or, at least, explore the subspace that is believeahtaia the real value
of the parameters and that represents their uncertaintgmpbes of members
of this class areariance basednethods, but also OAT methods replicated ran-
domly in the space.
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e screening methods:these methods are used to select the most important pa-
rameters when the complexity of the model is problematicher rumber of
parameters intractable. The main idea of these methodsiighity should be
computationally cheap and give the idea of which parametmnsoe fixed (low
importance), even if the information that can be achievegoisr. They are a
tradeoff between information and algorithm complexity.c®the most influen-
tial parameters have been identified, it is then possibl@pdyaa more informa-
tive and computationally expensive technique. An examptb@se techniques
is theMorris’ method[21, 20].

This classification is not rigid. For example, many scregmirethods can be con-
sidered global or local. Moreover, the last class is charasd by the goal of the
analysis (screening) and the other two by how the analypisriermed and the factors
treated.

The logic behind this classification follows a wider pointvwéw. With the need
to analyse a complex model, with hundreds of reactions anahpeters, we would
like to have a gradual approach that allows us to achieverodgrmation with cheap
computational power at the beginning and very precise im&ion with high com-
putational effort only at the end. This way we can begin witlo@l analysis that
gives us a preliminary feedback around which are believeattthe nominal values
of the parameters. In a second phase we can proceed withemsayenethod, which
allows us to fix some parameters leading to a dimensionadyction of the model
and the selection of a small set of parameters that can bedeved dominant. The
final step would be the application of a global and most infatime technique only on
the selected parameters, in order to limit the computatitma needed to perform the
analysis.

2.3.3 One at a time methods

The classical and most widely used SA is e at a timgOAT) approach: a parame-
ter is perturbed (usually by 1%) and the changes in the ontgasured. Alternatively
it is possible to compute the derivative of the output witpect to each parameter to
obtain its sensitivity coefficient:

oy (p)
op;

Sj =
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wherey;j(p) is the j-th output of the model that depends on the parametergpand
is thei-th parameter.

It is critical to understand exactly what is meant by eachdloh sensitivity mea-
sure. For example if we chose as sensitivity measure thelsioyiput difference
(ElementaryOAT, EOAT) we can state that varying a varialxeby 1% of its value
influences the output more than varying another variabley 1% of its value. This
can be useful when a different order of magnitude of the patars is involved. The
derivative based measure allows a slightly different stat&: varying a variablg by
a fixed value influences the output more than varying anotheaex; by the same
fixed value. These are very general techniques and one shiodgls be careful about
the answer one is looking for when perturbing a specific model

In the study of biochemical systems, these methods reprééseprevalent practice
when analyzing ODE models. Other more complex and inforreatnalysis has been
proposed [21]. However, all these analyses are not direqtplicable to stochastic
models, such as CME [9], whose output is defined gsobability density function
(pdf) over the number of molecules for each species. The teeednsider the entire
pdf as the output to analyze is even more evident in the asabtydistable systems.
These present at a certain time a pdf that is not normal, atfpilesents instead two
distinct peaks of likelihood (an example is the Schlogl eidd1, 5]). In this partic-
ular context an analysis cannot make any assumptions ondfheegulting from the
model. In this regard, SA of stochastic systems has beemttgdatroduced [11].
Here, the change in the output value is quantified in termgstfiblution distance, or
more preciselyhistogram distancgs], computed by comparing approximations of the
pdfs constructed from several runs of the SSA (see Sectih)2.

S= D(Xnvxpi)

whereX, is arandom variable(r.v.) with nominal pdf =f(x,p) and Xy, is a r.v.
with perturbed pdf =f (x, p1, ..., pi + Api, ..., Pk). Also this distance can be divided by
Ap;, leading to a correspondent derivative based approach.

Together, these approaches can be classifieded OAT Sensitivity Analysis and
they hold only if the model is linear with respect to the pagtens. If we can assume
that varying only one parameter at a time affects the outptiteomodel in a propor-
tional way, then these techniques are enough to quantifynihuet/output influence.
However, often, this assumption is not valid for biologisgstems, a fact that makes
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Local OAT not effective enough to give a complete view of taationships between
parameters and output and also between the parametersetiemsThey can in any
case be considered useful mainly because they are congnaiyicheap, a key fea-
ture when dealing with thousands of stochastic simulafiand because they can give
a first idea of the sensitivity indices.

2.3.4 Morris’ method

This method [20] can be classified as one at a time (OAT), lscdwses as a basic
step the local OAT approach, and global, because the expstioovers the entire
space over which the factors are believed to vary. Morrisnedes the main effect of a
factor by computing a numberof local measures, at different random poix4s..., X,

in the parameter space, and then taking their average. ddhises the dependence on
the specific point that a local experiment has.

When applying this method, a computationally expensiveehsdassumed, or a
model with a large number of factors. The goal is to determihieh factors have (a)
negligible effects, (b) linear and additive effects, orifon linear interaction effects.
This will help to apply later the most appropriate global s@wity analysis only on
the relevant parameters.

The k-dimensional factor vectox has componentg; that havep values in the
set{0, 1/(p—1), 2/(p—1),..., 1}. The region of experimentatiof is then ak-
dimensionalp-level grid (Figure 2.3). In practice, the values sampledlrare then
rescaled to generate the actual values of the parameteasgdes! from a specific pa-
rameter range. Lek be a predetermined multiple of p — 1). Then Morris defines
theelementary effeaif theith factor at a given point as:

y<xl7 s X +A7 ,Xk> —y(X)

di(x) = A

wherex is any value i selectedsuch that the perturbed poimt+ A is still in Q.
After samplingr times, the result will be a distributioy of elementary effects. The
characterization of this distribution through its meaand standard deviatiam gives
useful information about the influence of tite input on the output. A high mean
indicates a factor with an important overall influence on dhigout; a high standard
deviation indicates either a factor interacting with otfa@tors or a factor whose effect
is nonlinear. As it can be seen, the information acquiredotsemough to be more
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Figure 2.3: Example of a grid in the Morris method. In this case we have two parameters
(k=2) and a grid level of five (p = 5), so the maximum possible combinations are
52 = 25, The black dots are two possible random points, while the circles are other
points computed during the algorithm iterations. In this case, an implementation that
wants to save computational time would not recompute the point that has been circled

twice.

precise in the analysis, but is enough to suggest which patgamhave little influence
and can be fixed and which technique should be used in a fuattadysis. If an ele-
mentary effect has low mean and low standard deviation, #ma¢hat the output is not
influenced by the corresponding parameter; it can then bé @ixat least neglected for
purposes of dimensionality reduction. If an elementargafhas high mean but low
standard deviation, it means that the output is influencetthéygorresponding param-
eter and that the influence is always the same; this meanththatodel is linear with
respect to that parameter and that this parameter is no¢idéd by others. Finally, if
an elementary effect has high mean and high standard dmv;dhis would require a
more complex analysis to understand if the model is simphjinear with respect to
the corresponding parameter or if the influence of this patamis controlled itself by
the value of other parameters. In this regard it may well la¢ plarameters that seem
not influential at all with respect to the output of the model mstead relevant to the
effect of other parameters.
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Figure 2.4: An example of a possible deterministic model f(X1,X2) =Y that depends

on the factors X1 and Xo is shown, along with examples of conditional expectations.

2.3.5 Variance-based methods

Variance-based methods are those sensitivity analysi {&hniques that use the
variance of the conditional expectatiQiCE) as a measure of importance of the input
factors. The goal in these methods is to estimate the VCE ploerg the space
made by all the possible values of the parameters. Appligdrtiinary Differential
Equationg ODE) chemical models, the most famous techniquesanelation ratio,
Sobol’, and Fourier amplitude sensitivity td8AST) [20, 21, 6].

Probability theory states that:

VI[Y] =WI[E[Y|X]] + Ex[V[Y|X]] (2.8)

where the two components of the variance decompositionaledcthe variance
of conditional expectation (VCE) and the residual part. Téren Vy[E[Y|X]] is the
variance of the conditional expectation 6f conditioned orx, which is a suitable
measure of the importance »f identifying the part of the variance &f due tox. If
we had that all the variance ¥fis matched by the VCE of we could say that is the
only parameter (or set of parameters) that influences tleomey.

The variance of the conditional expectation is given by:

W(EIY[X] = [ (EIYIX] - EIY])?pe(x)cx 2.9)

whereE[Y|x] = ['ypyx(y)dy. Here the integral is substituted with the sum over all
the possible values of sampled from the range af

In order to help to visualize this concept, a simple exampéedeterministic model
is shown in Figure 2.4.
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So far, the simplest possible technique to compute thatevhhs been imple-
mented. Similarly to Figure 2.4, the parameter space has &mpled through the
use of a grid. After having collected all the results, theditbanal expectations are
estimated fixing a parameter to its possible values in thet ghis can be expected,
increasing the grid level and the number of parameters, [ogitnm complexity in-
creases exponentially. On the other hand, a complete analythe influence of the
parameters on the output and on the other parameters igiprbvi

Let Sc be then-th order sensitivity index, witkk € N". It corresponds to the VCE
fixing the factors inx minus the sensitivity indices relative to all the possildenbina-
tions of the factors ix. For exampleS;» is given byWCEj2 - § - S andS;»3is given
byVCE23- Si2- Si13- $3- S - S - S3. The VCE relative toc, wherex contains all
the factors, is nothing bt |Y].

Following [6] the sensitivity measure that is the most dul#ato determine the
influence of a parameter on the output of the model isTthtal Sensitivity IndeXTSI)
or simplyTS. This is defined as the sum of all the sensitivity indices twattaini in
X. For exampleT § is given byS; + So.

2.3.6 Sensitivity analysis of discrete stochastic systems

In a recent publication [11], new sensitivity measures beter adapt to the analysis
of systems described by chemical master equations (CMEs)lbeen proposed. The
authors have been maybe the first ones to highlight the needdensitivity measure
that is specifically designed to consider not just a singlaevas an output, but the
entire CME. The key idea is that the probability density fimt of the CME, that
describes the probabilitiy,(t) of the species of a system to be at a certain amount at
timet (see Section 2.2.3), can be approximated leymulative distribution function
f, obtained using stochastic simulation algorithm (SSAlizatons.

Four measures have been proposed. One is based on simphtideof the CME:

_of  f(n,xj +A4%)) — f(n,xj — AX;j)
X 2AX;

that is called centered difference approximation. Thisese-at-a-time approach

S (2.10)

that represents the influence of a paramgfeon the probability that, at timg the
number of molecules of the speci§ds equal tan; for all i.

The other three measures are based ofristeer Information MatriXFIM). Notic-
ing that sensitivity indices such as:
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_ dlogf(n,t)

Sj(n,t) 5;

are closely related to the score function in informatiorotlyebeing the gradient
of the log-likelihood function. The FIM

J = E[(Vnlogf)(vnlogf)T]

defines therefore the lower bound on the uncertainty in tharpeater estimates ac-
cording to the Cramer-Rao inequality

Vy >J 1

The gradients are computed approximatively using equ&tibd, but another pos-
sibility is to assume that the density functidérfollows a multivariate gaussian distri-
bution. The three sensitivity measures are the FIM diageleahents, eigenvalues and
the inverse of the diagonal elements/gf

These methods have shown to have some improvements witbctespthe clas-
sical methods, though they are of difficult interpretatidiis in particular not clear
which is the information that is included in each sensiiuitdex.






Chapter 3

Sensitivity analysis of stochastic

simulations of biochemical reactions

In this chapter we introduce two new sensitivity measura$ \wa present them as
variants of the Morris’ method and the variance-based amroespectively. When
doing this, we compare these new techniques with theirrmalgiersions.

See Appendix A for the details about the software that has bsed to compute the
results and that has been extended with tools that implethem¢chniques introduced
in this chapter. Every parameter that refers to a partideleiique or algorithm can
be used to reproduce the results using this software to@mHrow on, when we
refer to results obtained with ODE or deterministic methadsimplicitly intend that
they are obtained using the 5/4 Dormand-Prince ODE solvidr adaptive step-size.
Moreover, when we refer to results obtained with stochastiulations, we implicitly
intend that we used the original SSA, if not otherwise stated

3.1 Local methods

We procede now with the analysis and the comparision of thealLone-at-a-time
methods presented in Section 2.3.3.

The analysis of these basic approaches is necessary bebaysee the building
blocks of any more complex technique. For this reason, kdafdroducing the other
methods which are the subject of this dissertation, we nestidw the kind of results
that can be achieved by these basic approaches.

25
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Figure 3.1: In the figure on the left, the time evolution of the output variable X of the
Schlégl ODE model is shown. This is obtained with the nominal value of the parameters,
as stated in the text. In the figure on the right, the time evolution of X changing only
the initial number of molecules of X from 247 (nominal) to 250 is instead shown. The

behaviour seems to completely change.

3.1.1 The Schl 6gl model

The prototype Schlogl model [11, 5] has been considerednibst suitable model to
show the differences between usual Local OAT approachesh&nohe based on his-
togram distance. It is defined as follows:

A+2X 23X,
3X & A4 2X,
BX X,
X % B,

whereA andB are kept constant (buffered). The propensity functionsibéégpie’s
CME (see Section 2.2.3) are:

a; = ki AX(X —1)/2,

az = koX (X —1)(X —2)/6,
ag = k3B,

ag = kX,



3.1. Local methods 27
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Figure 3.2: Evolution of the output variable X in 50 distinct runs of SSA of Gillespie on
the Schldgl model. This shows the real behaviour of the system, in a more informative

way with respect to the ODE model.

and the nominal values of the parameters are set as follows:

Xo = 247
A=1-10,
B=2-1C°,
ki =3-1077,
ko =1-10"%,
ks=1-1073,
ks =3.5.

The nominal parameter values are set close to a bifurcatart,pvhere a small
perturbation in them can lead to completely different ressnlthe ODE time evolution,
as can be seen in Figure 3.1.

With this particular set of parameters, also the time ewotubf the stochastic
simulations presents singular behaviours: the differans will follow either one of
two possible behaviours, as can be observed in Figure 3.2.

With the goal of describing the behaviour of this system, Omé&dels, or the
simple average oK from different stochastic simulations could be inapprafariif
not misleading. The use of estimated distributions can Insidered a more suitable
choice.
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3.1.2 Local Sensitivity Analysis of the Schl  6gl model

Three LOAT Sensitivity Analysis have been applied to thel&glhmodel:Local OAT
(ODE), Local OAT (Gillespie averageandLocal OAT (Gillespie Density)rhey differ
in the way the distance is calculated and the method usedhipute the time evolution
of the system.

e Local OAT (ODE): difference computed between the output resulting from the
ODE model. Performing the analysis more than once will leati¢ same result,
due to the deterministic nature of the ODEs.

e Local OAT (Gillespie average) : Many stochastic simulations are computed
here, so the result may change from analysis to analysiacimglits variation
if the number of stochastic simulations increases. Thidyaigis performed
exactly in the same way as the previous one. Instead of the QUbgut, the
average of the simulations output is used.

e Local OAT (Gillespie Density): Also in this case, the Gillespie’s SSA is used
to compute the evolution of the system. In this analysis teogram distance
is used instead of the simple difference.

All the three analysis are performed perturbing each patenby 1% of its nom-
inal value one at a time, from a nominal set of parameters.hénrésult, both the
Elementary OAT (just distance) and the derivative (distadiwided by the perturba-
tion) are computed. In all the cases, the evolution of théesysvas computed from
time zero to 20 seconds, performing the analysis at that timed. This allowed the
system to reach a stable point. ODE time evolution was coetpwith the simulator
ODE — RK5 — fixed, the 5th order Runge-Kutta algorithm, with fixed time stege(s
Dizzy manual). Gillespie’s direct method was used to penfthe stochastic simula-
tions and the number of simulations was 5000. When dealitiyistogram distance,
two cases were considered, with 50 and 100 histogram colusmasving the same
sensitivity indices. Table 3.1 and Figures 3.3 and 3.4 sli@iotutcome of the analy-
sis.

3.1.3 Discussion

Given the difference in the order of magnitude of the paransaif the Schldogl model,
we may be more interested in the relative perturbation. lierreason we consider the
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LOAT ODE LOAT Gillespie Ave|LOAT Gillespie Density
Paramgdist.[rank deriv. rankidist. rank deriv.rank dist.[rank deriv.| rank
ki |503] 1 |2el1l 1 |57 | 3 |2el0] 1 [0.32 2 |1le8| 1
ky (007 7 | 7e4| 3 |69 1 | 7e7| 2 |0.16 4 | 2e5| 2
ks |486] 3 | 5e7| 2 |84 5 |8e5| 3 [0.09 5 |93| 3
ks |21 6 | 61| 5 |17 | 4 |485| 4 |0.24 3 | 6.9 4
Xo |485/ 5 |196| 4 |67.5 2 |27.3| 5 |0.08 6 [0.033 5
A |503 2 | 05| 6 |45 6 |5e-3] 6 032 1 |3e-4| 6
B |486| 4 |0.24| 7 (298 7 |1le-3| 7 |0.08§ 7 |4e-5 7

Table 3.1: Result of the three local one at a time Sensitivity Analysis described in the
text. The time of the analysis is 20 seconds with a perturbation of 1%. In the Gillespie
density column, the histogram distance is computed with 50 histogram columns and
5000 runs. The histogram self distance for X is 0.068. ODE fractional value 0.001.
Results obtained using the simulator Dizzy [17]. A more comprehensible visualization
of this Table can be found in Figure 3.3 for the derivative approach and in Figure 3.4 for

the distance approach.

simple output difference a more interesting sensitivitfex than the derivative and we
will discuss that first.

In Table 3.1 the first interesting observation is that ODE @il spie Density pro-
cedures share common results. They both showkhpatoduces the same variation
asA and thatks produces the same variationAsindeed, we know thdt; andA are
related, because they could have been considered a singl@gt@r (see propensity
function definitions) and this fact has been captured by tiayais. The same rea-
soning holds folkks andB. On the other hand, an important and expected difference
appears in th&g influence: with ODE, the output variation induced by the pdration
of Xp is comparable with the one &i andks, showing high sensitivity. This is due
to the crossing of the bifurcation point. The Gillespie Dgnsiethod shows instead a
low value of histogram distance for the same perturbatievealing it far less influen-
tial thank;. This latter method can easily proved to be the correct onsohgidering
Figure 3.5, where the histograms of the distributiorXoét time 20, generated with
nominal and perturbed parameter values, nearly coincidihe figure can also be ob-
served how the perturbation kf influences the outcome of the stochastic simulations.
Moreover ks, along withB, has been discovered to be not particularly influentiakwit
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Figure 3.3: Visualization of the results in Table 3.1 obtained with the three methods

using the derivative approach. No particular difference is present, the results are not

particularly meaningful.
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Figure 3.4: Visualization of the results in Table 3.1 obtained with the three methods

using the distance approach. These results are discussed in the text.

a histogram distance close to the self distance.

The Gillespie Average approach seems instead inconsisté&hbut any pattern
that could be explained.

To conclude the discussion of the results we can notice hewdéhivative approach
presents more or less the same order of importance of thenptees in all three cases.
This is due mainly to their different order of magnitude and meaningless in regard
to the sensitivity of the system. It is clear that, at leaghis contest, a parameter that
is estimated to be of the order of 10and a parameter that is estimated to be of the
order of 16 are not directly comparable.

According to the results of this first part, from now on, welwilefer the simple
distance, specifying the relative perturbation in perageat
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Figure 3.5: Values of output X of the stochastic simulations at time 20. On the left with
nominal parameter values (HO) and Xg perturbed by 1% (H1). On the right with nominal
parameter values (H0) and ky perturbed by 1% (H1). Each histogram is obtained from

5000 samples grouped in 50 columns.

3.2 Screening methods

In this section we apply and study the Morris’'method (sedi&e@.3.4) in two differ-
ent version: an adapted version of the original algorithat thakes use of the output
of ODEs and a novel approach, based on the original methodpddified in order to
use the information captured by sets of stochastic sinarati

3.2.1 Implementation of Morris’ method

Given our previous experience with the local OAT sensitiahalysis, we make use
of two differentelementary effectone based on simple difference of the output of
a ODE model and the other one based on histogram distancdpmftewf stochastic
simulations. Moreover we consider the possibility of hgunultiple outputs:

dij (X) =Y (X, .., Xi + 4, ..., %) — Yj(X)
dij () = D(Y},Y])

where in generatl;j is the local influence of thith input on thejth output of the
model. Considering a certain fixed tirhé which the analysis is performey, is the
outcome of the outpugtat that time and is the vector of parameter¥; is therandom
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variable(r.v.) of the outcome of th¢th output at time distributed following the pdf
f(yj,x) ande’ is the r.v. of the outcome of thgh output at the same time distributed
following the pdf f (yj,x1,...,Xi +4,...,Xc). D is the histogram distance as defined in
[5].

In order for these two measures to have meaning, we slighlyifired the method
to have perturbations that are always comparable. The saargechosen as displace-
ment from a nominal value that is proportion&l}0%) to that value. In thp-level grid
we allow only unitary perturbations (not multiples of(p — 1) but exactly ¥(p—1)
every time). This way, every difference corresponds to #reespercentage in pertur-
bation with respect to the parameter nominal value, tha¢mdral in the grid (Figure
2.3).

A couple of further simple improvements have been impleeeniThe first one
concerns the random points generation: it consists of theriion of ataboo listused
to prevent a random point in the grid being selected twica.réindom point is already
present in the list, another is immediately chosen. Therskone is adynamic pro-
grammingapproach that allows us to save computational time. Naitiat a point
in the grid once perturbed is still a point in the grid, it magppen that the model
output corresponding to some points risks being computézket(gee Figure 2.3). In
our implementation, every result of a simulation of the maslstored and reloaded if
a point in the grid is required a second time.

3.2.2 The Michaelis/Menten model

As in the previous Chapter, we pass now to the applicatiomisfrhethod, to better
show its characteristics. For this reason we now introdoedtichaelis/Menten model
of the enzymatic reaction. This is a very simple model anoladlus to show that, at
least for a small number of simple reactions, the resultainbtl with the classical
method and the version with histogram distance provideogimais results. Once the
base cases are coherent, we can analyse the Schlogl meteltdhe differences with
the new approach.

The model is defined as follows:

S+EXES
ES®ZE+S
ES®p
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Figure 3.6: Example of time evolution of Michaelis/Menten model computed with ODE.

The propensity functions of Gillespie’s CME are:
a1 = enzymesubstratecombine<E x S,
ap = enzymesubstrateseparate<ES

az = makeproduct«ES

and the nominal values of the parameters are set as follows:

Eo =100
S = 100,
ES=0,
Po=0,

enzymesubstratecombine= 1,
enzymesubstrateseparate= 1,
makeproduct= 1.

The time evolution of this system is shown in Figure 3.6.

3.2.3 Morris’ Methods on Michaelis/Menten model

A new version of the already presented Morris’ Method hasleplemented to make
use of the histogram distance [5]. The method is identicdhéoanalogous one for
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Elementary effects in Michaelis model (ODE)
Params mearnstandard dey. rank
S 2.27 0.30 1
enzymesubstratecombing 0.76 0.07 3
makeproduct 0.08 0.006 4
enzymesubstrateseparate0.05 0.002 5
Eo 2.16 0.30 2

Table 3.2: Result of the Morris’ method on Michaelis model. Time evolution is computed
with ODE and the effect is measured as the difference in the output ES The adopted
parameters are 1000 random points (r), grid level 5 (p), time of the analysis 0.04s,

+10% from nominal value, ODE fractional value 0.001.

ODEs: a random repetition of Local Sensitivity Analysis Ine fparameter space. Us-
ing histogram distance this allows us to collect informatdout how the histograms
(stochastic simulations) vary when the parameters expl@mapace of their possible
values. A first application has been performed on the simpbh&élis/Menten model,
with results shown in Table 3.2 and 3.3 (visualizations gure 3.7). The first impor-
tant thing we notice is how the two analysis give the exacteseasult. Both identify
the initial concentrations of and S as the most influential parameters, the kinetic
enzymesubstratecombineas relevant, and the other kinetics as not particularlyinflu
ential. This shows the correctness of the new approach lmskigtogram distance in
analysing a simple and well known model.

Moreover, it can be seen that the precision of the approashdban histogram
distance is particularly good in this case. Because the@dmain distance is an ap-
proximation to the distance between the underlying distidms, it is necessary to use
and interpret the results carefully. In this case we obsgte Table 3.3) that the self
distance is low and defined with good precision (low standi@sdation as well). This
is mainly due to the number of stochastic simulations (10di0@led in 50 columns)
that assures a good enough approximation. As a consequeeasn state that the
initial concentrations oE andS have always the same influence on the distribution of
E Sand that this influence does not depend on the value of othamgders. The same
can be said foenzymesubstratecombine though its influence is clearly inferior. Not
influential are insteathake productandenzymesubstratese paratesince the values
of their indices are very close to the average histograndsstiince.
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Elementary effects in Michaelis model (Gillespie density)
Params mearnstandard dey. rank
S 0.52 0.06 1
enzymesubstratecombine 0.18 0.02 3
make product 0.03 0.008 4
enzymesubstrateseparate0.03 0.008 5
Eo 0.49 0.07 2

Table 3.3: Result of the Morris’ method on Michaelis model. Time evolution is com-
puted with Gillespie’s direct method and the effect is measured as the difference in the
histograms of ES The adopted parameters are 100 random points (r), grid level 5 (p),
time of the analysis 0.04s, +10% from nominal value, 10000 simulations and number
of histogram columns 50. The average histogram self distance of the random points
was 0.026 with std. dev. 0.006.

3.2.4 Morris’ Methods on Schl 6gl model

The two screening methods have been applied also to thetypet&chlogl model
(see Section 3.1.1). Table 3.4 shows the outcome of the sinalyth ODEs used to
determine the time evolution of the system. The averageasitany effect has the role
of ordering the parameters from the most to the least inflaetiowever, the elevated
standard deviation of all the parameters sensitivitiesandkis classification difficult
and reveals that the model is likely to be nonlinear with eespo the parameters and
strong dependency between the parameters is also likelyist eFurther analysis
is necessary to confirm and quantify dependencies and iséiestand this analysis
would likely involve all the factors.

Table 3.5 shows Morris’ method applied using histogramadtise. Before dis-
cussing the results, we need to put forward the circumstérate due to computa-
tional complexity, we had to limit the precision of the arsa$y Instead of using 10000
stochastic simulations for each experiment and 100 randants as in the analysis
of the Michaelis/Menten model, this time we reduced the &tmns to 1000 and the
random points to 40. The impact of this can be observed imatelgion the average
histogram self distance, that is at least five times grehtar in the case of the anal-
ysis of the Michaelis/Menten model. It is then important &abin mind that all the
conclusions are up to the level of precision that is givenHeydverage self distance.
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Michaelis Average Elementary Effects (ODE). Michaelis Average Elementary Effects (Gillespie Density).
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Figure 3.7: Visualization of the average elementary effects of the factors
of the Michaelis model, along with their standard deviations. The data is
taken from Tables 3.2 and 3.3. Abbreviations of the names of the fac-
tors are: escis enzymesubstratecombing mp is makeproduct and ess is
enzymesubstrateseparate

Observing Table 3.5 we can at this point say that, with theetiirapproximations, the
initial number of molecules of the speci¥ds a factor that appears to be not influenc-
ing the value of the species at time 10 seconds. We can also see that the product
ksB has a weak influence and that this influence does not chantieutety as other
parameters change (relatively low standard deviationg dther three parameteks,

ks andk; A show instead that they have a significant influence, spgdigl, and their
relative larger standard deviation implies non linearity aorrelations that require
further and more specialized analysis.

Figure 3.8 highlights some differences between the resiilise two approaches.
The most significant one is certainly the reduction of thatre¢ standard deviation
that helps us to be more confident when stating which factershe& most important
and which require to be further analysed.

Finally, it is interesting to notice how this analysis coetek the previous per-
formed local OAT analysis (recall Table 3.1). Thanks to #malysis we are sure that
there is more to investigate about the relationships betastors and output.

3.3 Global methods

In this chapter we present and study an alternative methdbetamne described in
Section 2.3.5 for computing theriance of the conditional expectation



3.3. Global methods

37

Param

k1A
ko
k3B
Ka
Xo

Elementary effects in Schlogl model (ODE)
smean|standard dey. rank
137.74 210.24 1
40.99| 116.77 3
28.13| 108.08 5
107.78 201.60 2
29.41| 116.40 4

Table 3.4: Result of Morris’ method on the Schdgl model. Time evolution is computed

with ODEs and the effect is measured as the difference in the output X. The adopted

parameters are 1000 random points (r), grid level 5 (p), time of the analysis 10s, +5%

from nominal value, ODE fractional value 0.001.

Elementary effects in Schlogl model (Gillespie Density)
Paramsmeanstandard dey. rank
kiA 10.649 0.199 1
k» 10.317 0.160 3
ksB [0.214 0.055 4
ks 10.451 0.124 2
Xp 10.159 0.037 5

Table 3.5: Result of the Morris’ method on the Schogl model. Time evolution is com-

puted with the logarithmic direct method and the effect is measured as the difference

in the histograms of X. The adopted parameters are 40 random points (r), grid level 5

(p), time of the analysis 10s, +-5% from nominal value, 1000 simulations and number of

histogram columns 50. The average histogram self distance of the random points was
0.141 with std. dev. 0.025.
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Schlogl Average Elementary Effects (ODE). Schlogl Average Elementary Effects (Gillespie Density).
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Figure 3.8: Visualization of the average elementary effects of the factors of the Schlogl

model, along with their standard deviations. The data is taken from Tables 3.4 and 3.5.
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Figure 3.9: A possible model whose output is a probability distribution is shown. A

conditional expectation can be obtained using a set of distributions.

3.3.1 Variance-based methods for simulations of biochemic al re-

actions

The possibility of developing analogous techniques thatenzse of the histogram
distance has been investigated. The idea is that we can ¢ertipuvariance of the
conditional expectation introducing the conceptnoéan of histogramand the his-
togram distance.

Figure 3.9 shows a possible model whose outputpsodability density function
(pdf). Using Monte Carlo simulations, we can obtain a setdfigs that we can assume
to be generated by using that pdf. This pdf can be approxonageng a histogram
function [5]. The definition of mean is nothing but that valwbich minimizes the
sum of the differences between each value and the mean. Stogtam that minimizes
the sum of histogram distances between itself and eachgnistois nothing but the
histogram that collects all the points of all the histogrdasscan intuitively be seen by
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Figure 3.10: First order sensitivity indices as defined in the text for the initial concen-
trations & (S1), Eg (S2) and their combined effect (S12). Indices are shown with in-
creasing grid level. Although the index S12 appears to be not coherent, clear analogies
are present in the two methods relative to the indices S1 and S2. Time of the analy-
sis 0.04s, fractional step size of ODE method 0.001, number of stochastic simulations

10000, number of histogram columns 50.

looking at how the histogram distance is computed, Secti8ri® Using this concept
it has been possible to implement a version of the variansedaethods also with
the histogram distance. The weak point so far is that a matheah proof of Equation
(2.8) has not been provided and the intuition is that it is vadid. However, other
results (see next Section) show how this technique is soptis have some good
foundations, providing results that appear to be coheréhtthve classical approach.

3.3.2 Application to Michaelis/Menten model

Applying the two methods to the Michaelis/Menten model ledhe results shown in
Figure 3.10. This test has been considered useful as a fingpgg into the correct-
ness of the new approach. In both the approaches, the first sethsitivity indices
S1 and S2 (relative to the facto® and Eg respectively) maintain the same relative
importance. The index relative to the combination of thedexxS12 shows instead a
different behaviour in the two cases. On the other hand, ifoe& at the results in
terms of total sensitivity indices S, andT S, we can say that the results are perfectly
compatible. In both the cas@sS; is always greater thahS.

These preliminary results have led to further investigetioThe variance-based
analysis has been extended also to a third paramateyesubstratecombing, that
in previous analysis showed to have some influence on the Imddee first-order
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Figure 3.11: First order sensitivity indices as defined in the text for the initial concentra-
tions § (S1), enzymesubstratecombine(S2), Eq (S3) and various combined effects.
Indices are shown with increasing grid level. Same parameters of the results in Figure
3.10.

sensitivity indices, based on the decomposition of vagaace shown in Figure 3.11.
The results based on classical analysis still show the @sdielative t6S; andEg as
the most important. Observing the results of the new aproae notice that they
are coherent with the analysis performed on only two parareeEven the behaviour
of the index corresponding to the combination of the fackysnd S is replicated,
suggesting this not to be just chance.

Finally, also in this case, from the point of view of the tadahsitivity indices, the
results of the two techniques are analogous.

3.3.3 Application to Schl 6gl model

The variance-based analysis has been applied to the $ombdigl, both with the clas-
sical and the new approach. The analysis has been perforamsidering a subset
of three parameters, selected as the most important faatmisg from a previous
analysis with the Morris’ method (Table 3.5). The factomslar, ki A andks.

The results of the analysis of the two variance based appesaare shown in
Table 3.6. We notice that the order of importance of the tpaameters is the same,
according to the total sensitivity indices. Differencesthe first and second order
sensitivity indices may be due to the relative weaker imgrase thak, seems to have
in the classical analysis. Indeed, sensitivities invalvy, like S;3 or S3 are weaker
in the classical analysis.
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VCE with histogram distan¢® CE with ODES

index sensitivity rank sensitivityl rank
S 0.244 2 21278 | 2
S 0.325 1 30366 | 1
S | 0.064 5 4028 5
Si2 | 0.086 4 10033 | 3
Si3 | 0.008 7 299 7
S3 | 0.086 3 456 6
Sip3| 0.054 6 8969 4
TS| 0.392 2 40580 | 2
TS| 0.551 1 49826 1
TS| 0.213 3 13752 | 3

Table 3.6: Variance-based sensitivity analysis of Schlégl model. First-order sensitivity
indices relative to the factors ks (1), k1A (2) and k» (3) and other combined effects are
shown. The last three rows show the total sensitivity indices. Time of the analysis 10s,
grid level 5, fractional step size of ODE method 0.001, number of stochastic simulations

1000, number of histogram columns 50.






Chapter 4

Sensitivity analysis of the
mitogen-activated protein kinase
(MAPK) cascades

4.1 Introduction to MAPK

When speaking about the mitogen-activated protein kingd#d?K) cascades [15, 13]
we mean one or more signaling pathways that share a partmaamon structure.

MAPK cascades consist usually of three levels, where theasig transmitted
from one level to another through the phosphorylation of rrake that, once acti-
vated, phosphorylates the kinase at the next level downabeade (Figure 4.1). The
MAPK protein that triggers the cell response usually needset activated through a
two-site phosphorylation. The catalyst for this reactioa IMAPKK (MAPK kinase)
molecule and, at the upper level, the same role belongs to RRKAX (MAPKK Ki-
nase) molecule. The last molecule in this model is the MKP BMkinase phosphatase)
which dephosphorylates, and so deactivates, the MAPK mldec

Usually, the phosphorylation of a MAPK is on two distinctesitand we can dis-
tinguish between a form phosporylated on the tyrosine aaaitioalone (MpY) and a
form phosphorylated on the theronine aminoacid alone (Mphgse two operations
can be performed by one single MAPKK, in one single collision more likely, in
two. It is also possible that two MAPKK enzymes are needed, tbat catalyzes the

phosphorylation on the tyrosine and the other that catalffmephosphorylation on the
theronine.

43
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Incoming signal
9s19 MAPKKK

MAPKK-PP

MAPK-PP Signal transmission

Figure 4.1: Structure of a MAPK cascade. At each level, the enzyme that catalyzes the

reaction in the next level is activated by a two-site phosphorylation.

4.2 MAPK model

The model of MAPK that we introduce in this section has beas@nted in [15]. We
consider a single level of the MAPK cascade presented in t&é@qus section, with
only one MAPK kinase and without making any distinction be¢éw MAPK phospho-
rylated on tyrosine or theronine. In any case, the modelistssf a two step double
phosphorylation (Figure 4.2). From now on, talking aboig tine level of the MAPK
cascade, we use M, Mp and Mpp as the unphosphorylated, mosppbrylated and
biphosphorylated forms of MAPK.

The original model is written as a system@idinary Differential Equation$ODES)
that describes the evolution of the concentration of M, Mg lsipp in time. The rate at
which these concentrations change is obtained using assunmsfrom the Michaelis-
Menten kinetics (see Section 2.2.6). We use the same setiafieqs, but with number
of molecules instead of concentrations. This proceduren®ct if we assume that the
product of the cell volume and the Avogadro number is equél to

The system in Figure 4.2 is defined by the following enzymeagactions:

M +MAPKK " M-MAPKK ¥ Mp+MAPKK,

M p+MAPKK % Mp-MAPKK X Mpp,
Mpp+MKP3 " Mpp-MKP3™2 Mp-MKP3"™ % Mp+ MKP3,

Mp+MKP3 "% Mp-MKP3 ™ M-MKP3"%® M+ MKP3.

Notice how, in the first two lines, phosphorylation and proddissociation are
considered a single step, while, in the last two lines, dephorylation and product
release are two distinct steps.

This system can be reduced to only four reactions, undergsgnaptions of con-
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MAPKK

Figure 4.2: Model of a level of the MAPK cascade. M, Mp and Mpp stand for the
unphosphorylated, monophosphorylated and biphosphorylated forms of MAPK.

stant number of ATP/ADP molecules and protein-protein dengs at steady-state.
These are the resulting reactions:

M 5 Mp,
Mp -3 Mpp,
Mpp -2 Mp,
Mpﬁ M,

where the rateg; are given by the following equations:

k§at- MAPKK- M /Km

V1 = 9
1T (1 M/Kg + Mp/Kip)
Kt MAPKK - Mp/Knp

V - 9
27 (1+M/Kg + Mp/Kep)
kS - MKP3-Mpp/Kms

V3 = ,
3= (1+Mpp/Kng + Mp/Kms + M/Krs)
K. MKP3- Mp/ K

Vg = .
4= 1+ Mpp/Kig + Mp/Krng + M /Krrg)

In these expressions MAPKK and MKP3 are the total amount déoubes of the
two enzymes and are considered constant through time. Trhanabvalues of the pa-
rameters and the relationship with the kinetics of the elgarg enzymatic reactions
are as follows:

keat = k, = 0.01,
kSt = K, = 15,
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Figure 4.3: Time evolution of the Mpp molecule of the MAPK model computed with
ODEs is shown. In the figure on the left, the model has the nominal parameter values
described in the text. In the figure on the right, the initial number of molecules of the

phosphatase MKP3 is incremented by 5%.

Kmi = (k-1 +k2)/ky =50,

K = (k-3+ka)/ks =500

K$3t = hy/(1+hyp/hg) = 0.084,

k3 = hs- (14 hs/hg+h_3- (h_4+hs)/(h3-hg)) 1 = 0.06,
Kmg = (h-1+hz)/(h1+hy-hy/hg) =22,

Kma = (h-a+hs) - (ha- (1+hs/hg+h_3- (h_4+hs)/(h3-hg))) "1 =18,
Kms = (he/h_g) = 78,

Mo = 200,

Mpo =0,

Mppo = 300,

MAPKK1g = 50,

MKP3y =100

The particularity of these parameter values is that theyckrge to a bifurcation
point. As it can be seen in Figure 4.3, the perturbation ofrarpater value can lead
to a radical change in the behaviour of the ODE time evolubicthe double phospho-
rylated MAPK (Mpp). Again, as it was for the Schlogl modeé¢son 3.1.1), a set of
runs of theStochastic Simulation Algorithg8SA) (Section 2.2.4) shows that the real
behaviour of the system with the nominal parameters is acehoétween two stable
systems (see Figure 4.4). Moreover, thanks to [15], we kiaithis system, with the
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Figure 4.4: Time evolution of the M pp molecule of the MAPK model computed with
the stochastic simulation algorithm (SSA) and the nominal parameters value in the text.
These 40 runs of SSA show how the evolution of the system may lead to two different

stable systems.

stated parameters, presents three steady-states, thamwasider three attractors
for the stochastic simulations. This situation is confirnbgdthe already mentioned
graph of the time evolution of Mpp in Figure 4.4, where, altb the choice appears
to be between two attractors, this choice is delayed for some that are likely to be

influenced by a central attractor.

4.3 Sensitivity analysis

In this section we apply both the classical approach andettteniques we developed
in Chapter 3 to the presented MAPK model. We will proceed witomparison of the

methods throughout the analysis. Our choice is to measatafiuence of the factors,
kinetics and initial number of molecules, on the amount aofilde phosphorylated

MAPK (Mpp). To do so, we choose the time of the analysis to b@028econds.

This time, as revealed in Figure 4.4, is at the core of theahbietween the two

possible behaviours of the system and is within the limitswfpossibilities in terms

of computational power, when using the SSA.
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Mapk indices Local OAT with ODE at time 2000s.
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Figure 4.5: Local OAT sensitivity analysis of the MAPK model at time 2000 seconds.
The result of classical analysis is shown in the first graph, while the result of the analysis
based on histogram distance is shown in the graph below. ODE time evolution is com-
puted with fractional step size of 0.0001, while we used 10000 stochastic simulations
and 50 histogram columns in the novel approach. The perturbation of each parameter

has been of 5%. The histogram self distance is 0.1.

4.3.1 Local one-at-a-time analysis

As a first step in the sensitivity analysis of the MAPK modeg performed a local
one-at-a-time (OAT) analysis. As we have seen in SectiorB2it3consists in the per-
turbation of one of the factors at a time and in the measurenfahe corresponding
output change with respect to the original model. We useddifferent measures:
the simple difference of the values of Mpp at time 2000 sesayeherated using the
ODE based time evolution; the histogram distance betweeséls of values of Mpp
at time 2000 seconds collected using stochastic simukati@ith this first and com-
putationally cheap analysis, we can have an idea of theaetevof the factors in the
immediate surrounding of the factor nominal values. Howeave have to bear in mind
that without a global analysis we cannot be certain of thdizapons that may arise
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Figure 4.6: Histograms that collect the values of Mpp obtained using 10000 stochastic
simulations. Each histogram is divided in 50 columns. On the left, all the histograms re-
sulting from the one-at-a-time (OAT) analysis, one for each factor perturbed, are shown.
On the right, a second OAT analysis with only the histograms relative to the perturba-
tions of the initial amount of MAPKK and MKP3 are shown. The histograms labeled
with nominal parameters are those generated with the values of the parameters stated

in the text.

from perturbing more than one factor simultaneously. Tass information cannot be
neglected when trying to assert the influence of a factor emtbdel.

The results of the local one-at-a-time analysis are showiguare 4.5. The thirteen
factors are listed in the graphs from the most relevant toleast. We can notice
that the relative order of importance is not particularlfeefed by the method used
for the analysis. However, with the first approach it appdaas just the amount of
phosphatase MKP3 is the most relevant factor, while withsdsgond approach, the
intuition is that both the amount of kinase MAPKK and phospka MKP3 are the
most relevant factors, above all the others.

This last statement can be proved to be correct, at leassitottal analysis, show-
ing the histograms generated using the results of the sttclsamulations of the per-
turbed models. Figure 4.6 highlights that the initial amafiMAPKK and MKP3 are
both the most influential factors. Moreover, they play thersgest role in the choice
between the two possible stable systems. They have oppokate since increasing
the amount of one of the two enzymes leads to opposite chdicissindeed not sur-
prising that the condition of bistability is guided by thght proportion in the amount
of enzymes that catalyze the reactions.
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Mapk Average Elementary Effects, Morris’ method with ODE at time 2000s.
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Figure 4.7: The result of the Morris’ method applied to the MAPK model. ODE inte-
gration uses a fractional step size of 0.0001. Result obtained with a grid level of 5 and
an average over 1000 random points. In the approach based on histogram distance,
1000 runs of SSA, 50 columns and 40 random points have been used and the average
histogram distance is 0.15 with standard deviation of 0.061. The parameters vary within

+ 10% of their nominal value.

4.3.2 Screening with Morris’ methods

Before we proceed to a more detailed analysis, we wish to s®ening method
to identify and then exclude those factors that are cledwylé¢ast influential. Once
we have isolated only a small part of most influential fagteve can proceed with
computationally expensive techniques that can providertbst detailed analysis. To
do so, we use the techniques we developed in Section 3.2 bagkd Morris’ method

(Section 2.3.4). As we have seen, we consider a range ofpp@saiues for each factor
and then we sample in the vector space generated by all tlsébfsombinations of

values of all the factors. This sampling is done randomly #andugh the use of a
grid. We use here a grid level of five, meaning that each oftiieeen parameters can
assume one of five possible values. For each random poirtteels the grid of all
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the possible combinations of values, a local OAT analysgeisormed. The indices
resulting from that are thelementary effecthat are local with respect to that random
point. Averaging over all these local analyses reveals dré¢he degree of importance
of a parameter is constant or changes when the other factsusn@ other values. The
results of the Morris’ method applied to the MAPK model arewh in Figure 4.7.

Also in this case we compare the results obtained with a nddtiat uses the time
evolution computed with ODE and a method that uses time &eoleomputed with
SSA. The ODE based approach highlights that, although the mfluential param-
eters are confirmed to be the initial amount of MAPKK and MKR® elementary
effects of the factors are extremely variable. In this case difficult to say which
factors we want to include in the detailed global analy$isg exclude MAPKK and
MKP3. The important standard deviation of the elementaifigoes is certainly due to
a correlation between the factors and the non linearity®@htlodel output with respect
to the parameters.

Again, before discussing the results obtained with the Mamethod based on his-
togram distance, we need to put forward the fact that we hichiithe accuracy of the
analysis, due to the high computational complexity of tligoathms and the limited
computational power of our means. Each experiment is mad@@d stochastic sim-
ulations, number that leads to a relatively high histograthdistance of 0.150, with
also a standard deviation of 0.061. However, we have alrsadyg in the local OAT
analysis that the self distance can be considerable evérthdtmore accurate preci-
sion of 10000 stochastic simulations (self distance of €eg, Figure 4.5). Therefore,
it appears that the point in time where we perform our analiggparticularly unstable,
with high stochasticity and indecision from the single rabsut which stable system
to choose. We can then assume that we have two factors thatHeraccuracy of our
results: a limited number of stochastic simulations and@ngt stochasticity already
present in the model.

The results of the Morris’ method based on histogram digtasbown in Figure
4.7, confirm the high non linearity of the model and the in¢ansinfluence of the
parameters on the amount of double phosphorylated MAPKna 2000 seconds.
On the other hand, this method appears to achieve a mores@reformation with
respect to the ODE based analysis. First of all, many paemhétave reduced the
standard deviation of their elementary effect. We can beernonfident when stating
that some factors are less influential than others. Moreaowvés more evident the
strong influence that is attributed to the initial amounttwé £nzymes MAPKK and
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Variance-based with ODE¢ariance-based with histogram distance
index sensitivity rank sensitivity rank
S | 15695.65 1 0.350 2
S |15308.66 2 0.332 3
S1» | 5631.88 3 0.811 1

Table 4.1: First and second order sensitivity indices relative to the factors MAPKKg (1)
and MKP3j (2) of the MAPK model and their combined effect (12), obtained computing
the variance of the conditional expectation. The fractional step size used in the ODE
integration is 0.0001, the number of stochastic simulations used is 5000 and the number

of histogram columns is 50. The parameters vary within &= 10% of their nominal value.

MKP3. Finally, this second analysis assigns a differerd tolthe factordMppy and
Mo. Here, they appear to have a stronger average sensitivdygh this sensitivity
may vary considerably (large standard deviation), showistyong dependence on the
value of the other parameters.

4.3.3 Global analysis with variance decomposition

Thanks to the screening that we practiced in the previousoseaeve can now apply
a global and more informative method to a reduced set of patensitaken from the
factors of the MAPK model. The factors that proved to be thestidluential are the
initial number of molecules of MAPKK and MKP3, so we investig their influence as
single parameters and their combined effect. For this mepee used the techniques
developed in Section 3.3. Again, a method based on diffeien€ outputs of ODEs
and one based on histogram distances of executions of SSéoapared. These
measures consider the variance of the output: while thedbfatuses on the variance
of the ODE output, the latter estimates the variance in tegidution approximated
by histograms. In both cases, the quantity of the varianeaisidue to each parameter
is identified. The results can be found in Table 4.1.

In both the approaches, the initial amount of MAPKK and MKP&gent the same
level of importance, with the former that is slightly mordlirential. The difference
lies in the importance that is given to the combined effedheftwo factors. While
with the first approach the combined effect is consideraddg than the single effects,
with the second approach it appears that the two parametensae linked. Changing
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Figure 4.8: Distribution of the values of Mpp from 2000 stochastic simulations at time
2000 seconds, with simultaneous perturbation of MAPKK and MKP3. Above, from left
to right: number of molecules of the enzymes decreased by 20%, 10% and with their
nominal value. Below, from left to right: number of molecules of the enzymes increased
by 10%, 20% and 30%.

them together leads to a stronger influence with respect heaata-time change.

The visualizations in Figure 4.8 help to prove the connectind reciprocal influ-
ence of the factors of this model. In this figure one can sddlleacombined perturba-
tion of MAPKK and MKP3 leads to a variation of the distributiof the set of values
obtained with the stochastic simulations. Although the mefathese values appears
to be the same, the distributions seem to pass from a compddiaegely gaussian
shaped (on the left) to a more irregular one, which begindhtavsthe two peaks of
the bistability. This observations can be interpreted asstmple fact that increasing
the amount of enzymes accelerates the process, allowingvthstable choices to be
reached sooner. Other interesting visualizations aresthmoBigure 4.9, where we can
observe that the ODE integration fails to interpret the Htgithasticity and indecision
present in the system at time 2000 seconds. However, albsiodse, incrementing or
decreasing the quantity of enzymes accelerates or slowsdlakiction of MAPK-PP

(Mpp).
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Figure 4.9: Time evolution of the double phosphorylated MAPK (Mpp) with ODE for
2000 seconds, with simultaneous perturbation of MAPKK and MKP3. Above, from left
to right: number of molecules of the enzymes decreased by 20%, 10% and with their
nominal value. Below, from left to right: number of molecules of the enzymes increased
by 10%, 20% and 30%.

4.3.4 Discussion

In this section we showed an example of how a sensitivityymmabf a model of bio-
chemical reactions can be performed using the tools so falal@ged. As a first result,
we have shown how global analysis such as the Morris’ methstaind the variance
decomposition after, are necessary and have to be usedtifydée relationship be-
tween the factors. If we had to rely only on a local analysiswould just accept the
order of importance given in Figure 4.5. However, thankshi further application
of a global screening method (Figure 4.7), we have been aldeate that this order
of importance may vary if we change the value of more than tofaat once. This
suggested, if not demanded, a further and more informatiggy/ais concerning those
factors that seemed the most influential and dependent aotltlees. In this case, we
showed the intuitive relationship between the enzymes MKARIKd MKP3, whose
simultaneous increment accelerates the system and whogerpons play the main
role in the bistability of the system.

As a second but not less important result, the comparisomdaest classical and
novel approaches highlighted how, when dealing with bistalgstems near a bifur-
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cation point, it becomes necessary to have a sensitivitlysisaool that takes into
account the distribution behind a set of stochastic sirmariat Although the analytical
analysis of the ODEs is fundamental to identify the bifu@atpoints and the multi-
ple steady-states, ODE integrations cannot model the tanegrin the time evolution
of the system close to those bifurcation points (comparer€ig.3 with Figure 4.4).
In this situation of high stochasticity, a more suitabless&vity analysis is one that
takes into account the variations between sets of stoctsstulations rather than the
simple output of a ODE integration. Here, for example, weehesen how a modified
version of the Morris’ method, identified some propertiext the classical version was
not able to capture (Figure 4.7).






Chapter 5
Conclusions

In this dissertation we followed a very precise path. Finst,described the kinds of
model we wanted to analyse and we identifshsitivity analysigSA) as a tool to
collect information and understand properties of theseatsodThen, classical and
novel techniques were presented and compared. Our goabwasw how the SA of
models of biochemical reactions can be performed with teegmt means, understand
when these give poor or misleading results and investigate methods that better
adapt in such cases.

One of the first conclusions that we verified when we appliedt&hniques has
been the need for a global analysis that highlights theioglships between the factors
of the model. If we assume that all the factors are uncert@imma range of possible
values, a local approach (such as the local one-at-a-tgrja¥i able to capture sensi-
tivity indices that are conditioned on the choice of the nwethvalues. If we want to
qguantify the influence of the factors on the output of the nhade correctly identify
the role that these factors play, it is necessary to estimbhegher the influence of a
parameter changes when the other parameters assume dtres, va&. whether the
factors influence the sensitivity of other factors. This asgible only if the analysis
takes into account the entire space made by all the possibibioations of values of
the parameters. As we have seen, two methods that suctgssfulto this are the
Morris’ method and the variance-based approach.

Since the beginning, during our analyses, we highlighted tvalinary differential
equations(ODE) integrations cannot model the uncertainty in the tamelution of
the system close to bifurcation points. Using the more mfative set of stochastic
simulations we showed that in this situation the choice ta/ben two possible evolu-
tions, but this cannot be interpreted by ODEs, that for didimican compute only one
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of them for a set of possible parameters. For this reason we ¢@nsidered models
with bifurcation points as those models that may be diffibailbe analysed using the
classical SA approaches, that usually assume the timetewolof the system to be
computed using ODEs. Because of the capability of stoahastiulations of captur-
ing these fenomena, we pursued the development of SA tasdmitpat make use of
them.

Another and maybe the most important result is that we haweodstrated that
the proposed novel techniques lead to more precise resifigagpect to the classi-
cal ones, at least in bistable systems with parametersast th a bifurcation point.
We indeed proved that there is a need for sensitivity aralysasures that take into
account the variations between sets of stochastic simuoktiather than the simple
output of ODE integration. We are confident in stating that thchniques we pre-
sented are a good starting point in this direction. Moreower application to a real
example, the MAPK signaling pathway, validated our hypseése giving also a more
complete and wider view about the effectiveness of develpgensitivity measures
that are specific and that can overcome the limitations opteeent ones.

Finally, a fact that shouldn’t be underestimated is thattteehod we analysed in
this work, both the classical and the novel ones, are inidgnd the measure that they
compute or estimate have a clear and intuitive meaning. i$l@es advantage with re-
spect to other proposed sensitivity measures like the casdoorFisher information
matrix (FIM) that still need a precise interpretation.

5.1 Future Work

We consider our work as a first step, a glimpse into the creati@ branch of sensi-
tivity analysis that is dedicated to analyse models whase &volution is computed
with set of stochastic simulations. The way that has bedoveld was the adapta-
tion of present techniques and we believe that other teclesiqan be adapted as well.
However, many methods make use of analytical simplificatiwhose validity may be
difficult if not impossible to be proved when passing from GIB sets of stochastic
simulations.

As we have seen throughout the dissertation, the main isssibéden the compu-
tational complexity of the methods, specially when usiragkastic simulations. For
large models, with many species and many factors also uddigs®nay lead to a time
of the analsis extremely long and unaffordable. Moreovegnrder to have accurate
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estimations of the density distance between sets of stbclsaaulations, often an ele-
vated number of simulations is required (usually 10000).tRis reason it is important
to work on decreasing the computational complexity of thes¢hods. A first idea is
to use approximated and faster versions of the stochastigdaiion algorithm (SSA)
of Gillespie. Doing this, it would be important to verify winer introducing approxi-
mations in the computation of the evolution of the systeradntes errors also in the
sensitivity measures and whether these errors are ndgligib






Appendix A

Extending Dizzy with a tool for

sensitivity analysis

A.1 Dizzy: atool for modeling biochemical interactions

This section introduces Dizzy [17], a software tool for miate biochemical interac-
tions, either with general mass action ODEs or stochastialsitions.

High-level description languagesCiting from the Dizzy user manual [18]: “Dizzy
is a chemical kinetics simulation software package implaedin Java. It provides a
model definition environment and various simulation engiioe evolving a dynamical
model from specified initial data.” In Dizzy a text editor izgent, where it is possi-
ble to describe a model with an high level language calledmical Model Definition
Language(CMDL). This allows us to have a model definition that is indegent of
the method that will be used in a second stage to model theswalation. Figure A.1
shows an example of CMDL for the Michaelis model of enzymagiaction that we
introduced in Section 3.2.2. CMDL can also be converte8ytstems Biology Markup
Languagg2] (SBML), the most widely used high-level description darage for bio-
logical models, and a SBML file can be imported in Dizzy as well

Simulation engines. The simulation engines implemented in Dizzy are either
stochastic or deterministic: the SSA in its original vemnsaend other versions (like
LDM) that improve the computational complexity of the alglom; approximate ver-
sions of the SSA, that improve the complexity but lose theattaristic of being exact
Monte Carlo simulations of the CME (we will not discuss thbsee, because we do
not use them in this dissertation); deterministic (ODEeo@salgorithms for simulat-
ing chemical reaction kinetics, like the 5th-order RungtK algorithm with fixed or
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CMDL of the Michaelis model

E =100; parameter definitions

S =100;

P=0;

ES = 0; name of the reaction

K1 =1: reaction
1=t te explicit declarati
K2 = 1; ‘/ rate explicit declaration

enzyme_substrate_combine, E + S -> ES, [K1*E*S];
enzyme_subtrate_separate, ES -> E + S, [k-1*ES];
make_product, ES -> E + P, [K2*ES];

Figure A.1: Example of a CMDL file: the Michaelis/Menten model. Here the reaction
rate is computed explicitly, because it is surrounded by [-]. Without the square brackets,
Dizzy would have interpreted the value as the kinetic constant or the stochastic rate
constant, depending on the selected simulator (deterministic or stochastic). In that

case, the reaction rate would have been computed automatically by Dizzy.

adaptive step-size and the 5/4 Dormand-Prince ODE solvbragiaptive step-size.

A.2 The extension

In this section we briefly present the part of the Dizzy toaltthas been implemented.
Here we show and comment some screenshots of the tool.

In Figure A.2, the already existing interface of the simaitag shown. In this panel
it is possible to select the algorithm to be used to compugdithe evolution of the
system. Parameters that are generic (such us the end tirhe ahalysis) and param-
eters that are specific of one method (such us the numberaffagtic simulations for
the stochastic simulators) can be tuned by using this exterfOn the bottom, a list of
outputs of the simulation is available as a set of checkhofesa little extension we
introduced the checkbox “Histogram” that produces, at te & a set of stochastic
simulations, an histogram like the one shown in Figure Al8shistogram groups the
outputs of the simulations at the last time point in fortywsohs.

Playing with the simulator is extremely useful before udimg sensitivity analysis
tools. This helps the modeler to become familiar with the elpagnderstanding which
time points are the most interesting and having a first idgae@tomputational time
of the single simulations.

The sensitivity analysis tools are available under the ni€oals” and then “Anal-
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- Eifaays SlniviliRa e Ba@
model name: [mapk.cmdi]
controller: simulators: start: [0.0| stop: 2000 view symbols:

M

number of rasults points: 100 Mp
Mpp

stochastic ensemble size: 1000

confidence interval Galphay: 005
change params:
- etz |
l l select all

output:  table [ | average chart [] all runs chart candlestick chart [] profile [ ] Reac/sec [| SearchDepth [ | Histogram

[ | secs remaining: 11,0599

Figure A.2: Simulator interface of the Dizzy tool.

ysis”. Three different panels have been created, one fdr Eatinique implemented:
local one-at-a-time, screening with Morris’ method andasace-based. However, the
structure of these panels is the basically the same, so weham just one of them
(see Figure A.4). On the left of the panel, inputs and outpugslisted and can be
selected. This way, it is possible to limit the analysis omtythose factors that one is
interested in. The central part of the interface is the omkodged to the tuning of the
parameters, either of the simulators or of the analysiff.itéecombobox allows the
choice between the different versions of the sensitivigiygsis, that can be based on
output difference of ODEs or average of stochastic simaatior on histogram dis-
tance of sets of stochastic simulations. For the threemessie used the same names
introduced in Section 3.1.2, that are ODEs, Gillespie ayet@nd Gillespie density.
On the right of the panel, informative labels and controtdms are present. Once the
analysis starts, the time at which it began is shown, as lerajmastimation of the time
necessary to conclude, based on the first simulation thatfenmed.

Once the analysis is concluded, the sensitivity indicesa@hdr information spe-
cific of the analysis are shown in a table such as the one inr&igb. This is a
sortable table, i.e. it allows to sort the rows just clickomgthe title of the column that
one wants to use as the criteria of sorting. Moreover, ndiesitethe analysis, such as
histogram self distances or total sensitivity indices,sdr@wn in the space right below
the table.
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Figure A.3: Histogram generated when using the checkbox “Histogram” in the simulator

interface, in Figure A.2.
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Figure A.4: Example of a panel for a sensitivity analysis.
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ocal OAT with ODE-RKS-fixed. Analysis at time 200.0 seconds.

Figure A.5: Table with sensitivity indices, generate by the analysis tool.
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Appendix B

Models written in Chemical Model

Definition Language (CMDL)

Michaelis model

#model "m chaelis";

E = 100;
S = 100;
P=0

ES = 0;

enzyme_substrate_conbi ne, E+S->ES 1;
enzyme_substrate separate, ES -> E + S 1;
make product, ES -> E + P, 1;

Schl dgl model

#nodel nyschl ogl ;

X=247,
k1A=0. 03;
k2=0. 0001;
k3B=200;
k4=3.5;
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al, -> X, [KIA*X*(X-1)/2]:
a2, X ->, [K2*X(X-1)*(X-2)/6]:
a3, -> X, [K3B:

ad, X ->, [K&*X:

MAPK model

#nodel "mapk";

N =1,

M = 0*N

M= 200*N;

Mpp = 300*N;
MAPKK1 = 50*N;
MAPKK2 = 1*N,
MKP3 = 100*N;

klcat = 0.01;
kml = 50;
k2cat = 15;
km2 = 500;
k3cat = 0.084;
kn8 = 22;
kdcat = 0.06;
kmd = 18;

knmb = 78;

vl, M-> M, [(klcat*MAPKK1*M kni)/(1+M kml+Mp/knR)];

v2, Mp -> Mp, [(k2cat* MAPKKL* Mo/ kn2)/ ( 1+M kml+Mp/ knR) ] ;

v3, Mp -> M, [(k3cat*MKP3*Mop/ knB)/ ( 1+Mop/ knB+Mo/ kmd+M knb) | ;
vd, M -> M [(kdcat*MKP3*Mp/ kmd) / ( 1+Mpp/ knB+Mo/ knd+M knb) |
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