




Abstract

In the last decade, models of biochemical interactions, able to describe the time evo-

lution of biomolecular systems, have been the subject of increasing interest. The use

of such models has helped to understand the dynamics of biological processes and to

accelerate drug discovery, moving part of the experiments from the laboratory to the

computer. But models are nothing but a representation, an approximation of the real

biological system, therefore they require to be analysed and validated. The analysis

of the modelsin silico may lead to the discovery of properties that can be tested and

validated inin vitro experiments.

When modeling, one of the main issues is the tuning and the correct identification

of the parameters of the model. There are factors in a biochemical model, such as ki-

netic constants and initial concentration of the species involved, that require a specific

investigation, in order to assert their role within the system.

Sensitivity Analysis (SA) provides the techniques that canbe used to identify those

parameters that are the most influential to the outcome of themodel. In this disserta-

tion we present a survey about the current SA techniques usedto analyse models of

biochemical reactions and we introduce new methods that better adapt to the analysis

of models that present bifurcation points and bistability.Following the lead of ear-

lier related work, we take in account three different categories of SA (local, global and

screening methods) and analyse the aspects and purposes of each of them. The focus is

mainly on the differences between the classical approaches, based on time evolutions

of the systems computed withOrdinary Differential Equations, and the novel tech-

niques, based on time evolutions computed with multiple runs of theStochastic Simu-

lation Algorithm. An example of sensitivity analysis of a real pathway, the MAPK, is

then provided.

Finally, we show how these techniques have been implementedin Dizzy, a software

that provides tools for the simulation and analysis of models of biochemical reactions.
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Chapter 1

Introduction

In recent years, Systems Biology has received an increasingamount of attention from

different scientific fields, such as Mathematics, Statistics and Computer Science. This

has happened and is still happening, because the data collected in the experiments of

these last productive years is giving to biologists a new kind of challenge. Discov-

ering new genes or new pathways, correlations between genes, is something that can

nowadays be done or suggested by the use of statistical techniques or algorithms that

require multidisciplinary competencies. Moreover, experimentsin silico are becoming

more and more popular, particularly to model complex systems, when supported with

adequate theoretical foundations and/or mathematical proofs.

As suggested in [23], there are two main disciplines that partially counterpose

themselves.Bioinformatics, that identifies, catalogues and characterizes the compo-

nents of a cell, andSystems Biology, that studies how the components work and behave

together through time.

Moreover, Computational Systems Biology [12] provides tools and techniques that

can be used to implement anin silico representation of the intracellular dynamics

which are the subject of the study. The resulting model will then be used to improve

the understanding of the system, simulating possible variants or perturbations and val-

idating them with further experiments. The idea is that the model should suggest new

experiments and that the experiments should improve the model.

The most widely used techniques used for this purpose are reaction-based biochem-

ical models. These kinds of models are defined by a set of reactions along with the rate

at which these reactions may occur. This information, alongwith the initial concen-

tration or number of molecules of the species involved, is enough to describe the time

evolution of the modelled system. The two methods that oftenpresent themselves as

1



2 Chapter 1. Introduction

a choice are theGeneral Mass Action(GMA) [22], and theStochastic Simulation Al-

gorithmof Gillespie [8, 9, 7]. The former is computationally cheaper while the latter

is considered more descriptive and able, in some cases, to capture more complex dy-

namics. However, it is difficult to identifya priori which method would be the most

appropriate in a specific case [22].

Once a model is built, the next step is to identify its properties and to verify that

these properties belong also to the original real system.

1.1 Why sensitivity analysis

Modeling biochemical reactions requires a large number of parameters that are usually

difficult to infer from experimental data. The parameters weare mainly interested in

obtaining are initial concentrations and kinetics values.The latter in particular are

computed using statistical techniques or found by just randomly trying to reproduce

the results obtained inin vitro experiments. This leads to uncertainty about the true

value of these parameters.

Sensitivity analysis (SA) allows us to see how much a parameter influences the

model. If the model is robust with respect to some parameters, we can be more relaxed

about their real value, because they will not greatly affectany further analysis. It is

also important to quantify this influence, in order to understand whether one parameter

is more important than others. If a parameter expresses strong influence on the model

results, it is then recommended to identify more precisely or in a more reliable way

its real value. SA has shown also to be useful to identify properties and reinforce the

understanding of the analysed system [19].

Sensitivity analysis tools for ordinary differential equations models (ODE models)

have already been developed and widely used. Usually they provide global SA tech-

niques that can be directly applied to ODE models, considering the steady-state as the

output to analyse. An example is the Systems Biology Toolbox[3] (SBToolbox) for

MATLAB [1] that includes steady-state parameter SA and period and amplitude pa-

rameter SA. Conversely, our focus will be on SA of stochasticmodels, in particular

of the Chemical Master Equation(CME) of Gillespie [8, 9, 7] and its Monte Carlo

SimulationStochastic Simulation Algorithm(SSA). Some techniques aiming in this

direction have been proposed only recently [11], thus this is still a branch of SA that

leaves room for new ideas. In particular, new sensitivity measures that better adapt to

the highly stochastic nature of certain biological models can be proposed and tested.
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In this dissertation we take a measure that has been already presented, thehis-

togram distance[5], and we use it as a building block for novel SA methods. The

histogram distance is an approximate way to compute the difference between two sets

of stochastic simulations. Therefore, the sensitivity measure that makes use of it, can

be considered taking into account an approximation of the CME underlying the values

of the stochastic simulations.

Finally, the possibility to immediately implement the theory in Dizzy, a software

tool for the simulation and analysis of biochemical models [17], makes this work us-

able by modellers in the short term.

1.2 Content of the dissertation

In the next chapter we begin with the background needed in order to understand the

work. This includes some concepts of biology, modeling biochemical models, a short

presentation of Dizzy and a survey of the current SA techniques, somehow related or

applicable to the analysis of this kind of models. In Chapter3 we introduce the novel

approaches, comparing them to the classical procedures. InChapter 4 the application

of the discussed techniques to a real example is presented. Moreover, in Appendix A

we show how this work has been implemented in Dizzy.





Chapter 2

Background

2.1 Basic biological concepts

This dissertation concerns models of biochemical interactions and we will later discuss

some real biological examples. Therefore, we wish our reader to be familiar with

concepts such as enzyme, signaling pathway or phosphorylation. This first section

is indeed a brief guide to those biological concepts that thereader will meet in later

chapters.

Moreover, it is important to understand the characteristics, the components and the

properties of the systems we wish to model. Our references for this section are [16]

and [13].

2.1.1 Forces guiding molecular interactions

In molecular biology there are many kinds of forces that influence the interactions

between molecules or atoms, causing, for example, atoms to form solid structures or

molecules join with a temporary weak bond. The ones that for us are of main interest

are covalent bonds, ionic bonds, hydrogen bonds, hydrophobic interactions and Van

der Waals forces.

Covalent bonds: this is a strong bond between atoms, where they share electrons

that are in their outermost shell. Atoms tend to establish covalent bonds in order to

reach an energetic stability. When they are linked togetherwith covalent bonds they

are called molecules. This is the strongest kind of bonds, meaning that it requires a

relative large amount of energy to be broken. It can be doubleor triple if the number

of shared electrons is more than one, a situation that makes the bound even more solid.

5



6 Chapter 2. Background

Moreover, if the shared electrons spend more time in one region of the molecule, the

bond is said to bepolar. An example of a polar covalent bond is the molecule of water,

H2O, that is negatively charged close to the atom of oxygen and positively charged

close to the atoms of hydrogen.

Ionic bonds: when an atom, instead of sharing, loses or gains an electron,it be-

comes anion, i.e. an electron that is positively or negatively charged.Ions of opposite

charge may be attracted to one another leading to the formation of electrostatic bonds.

Although these bonds are not as strong as covalent bonds, they still require a consid-

erable amount of energy to be broken. An example is the interaction between sodium

(Na) and chlorine (Cl): an electron is transferred from the former to the latter generat-

ing the ions Na+ and Cl− that are holden together by the ionic bond.

Hydrogen bonds: hydrogen atoms with a positive partial charge that are boundto

oxygen or nitrogen (as inH2O or NH3) are able to interact with free electron pairs of

atoms with a negative partial charge. These are charge basedinteractions that are rela-

tively weak and that usually can be broken by just raising thetemperature. Hydrogen

bonds are present in many biological structures, such as DNA(deoxyribonucleic acid)

or folded proteins, and biological processes, such as enzyme activity.

Hydrophobic interactions: water is electrically polarized and is able to form hy-

drogen bonds, so hydrophobic molecules are usually non polar molecules that are

repelled byH2O that bonds together. An example of these interactions is thecel-

lular membrane that is formed by molecules that are made of a hydrophobic and a

hydrophilic part.

Van der Waals forces: these are forces generated by temporary difference of

charge within a molecule, caused by momentary inequalitiesin the distribution of elec-

trons in a covalent bound. That molecule has a dipole induced. This bipolarity may

also induce dipoles in close molecules. These forces can be either attractive or repul-

sive and they may generate very weak bonds, even weaker than hydrogen bonds. Van

der Waals repulsions have an important influence on the possible conformations of a

molecule.

2.1.2 Proteins

We cannot talk about proteins without briefly introducing thecentral dogmaof molec-

ular biology. The DNA (deoxyribonucleic acid) is that molecule that in every cell con-

tains the information about how to construct and synthesizeall those buildings blocks
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Figure 2.1: Schematic representation of an enzymatic reaction.

that let the cell function properly, the proteins. This information is coded as a sequence

of bases: adenine, thymine, guanine and cytosine. When a protein needs to be built,

the process of transcription copies the necessary part of DNA into a strand of RNA

(ribonucleic acid). Then, in the process of translation, the RNA binds to a molecule

called ribosome and the information present in the RNA is used to construct a chain

of amino acids, linked together through covalent bonds. After that, this chain folds,

thanks to bonds and forces acting on it, leading to the final shape of the protein.

Proteins fulfill numerous important functions in the cell, from being just part of

the cellular structure to having roles in the metabolism of the cell or in the delivery

of signals. The main characteristic of proteins, that enables them to have so many

different functions, is their ability to bind other molecules specifically and tightly. The

regions in the protein where other molecules may bind are called binding sites. These

regions are defined by their shape and by the chemical properties that surround them,

allowing only very specific molecules to bind. Proteins can also bind to other proteins

or be integrated into membranes. When a protein binds to another molecule, it can also

change some of its properties and abilities to bind.

Enzymes.An enzyme is a protein whose role is to catalyze, i.e. to accelerate, a bio-

chemical reaction. Enzymes allow reactions that are normally unfavorable in nature to

take place, lowering their activation energy. We will callsubstratesthe molecules that

take part of catalyzed reactions andproductsthe molecules that are generated. Usually

enzymes are very specific as to which reactions they catalyze. Complementary shape,

charge and hydrophilic/hydrophobic characteristics of enzymes and substrates are re-

sponsible for this specificity. Figure 2.1 sketches a possible dynamics of enzymatic

activity.

Phosphorylation. Phosphorylation is a biochemical reaction in which a phosphate

group links through a covalent bond to a molecule. This usually increases the energy

of the resulting molecule, that changes some of its properties and may become active.
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Many proteins or enzymes, for example in signaling pathways, have a poor activity

until they are phosphorylated and begin to perform important functions. Two cate-

gories of enzymes regulate the phosphorylation of a molecule: thekinasethat adds a

phosphate group and thephosphatase, that removes it (dephosphorylation). Usually,

this kind of reactions depends on the presence of ATP (adenosine triphosphate), that

can be considered one of the most diffuse kinds of energy storage in the cell.

2.1.3 Metabolic and signaling pathways

The metabolism of a cell is a highly organized process, that involves thousands of re-

actions that are catalyzed by enzymes and whose ultimate goal is to provide everything

the cell needs to survive and reproduce. Metabolism provides energy and material for

building and maintaining the cell. So, metabolic pathways are networks of biochemical

interactions that provide mainly mass and energy transfer.

A signaling pathway, instead, is a sequence of biochemical interactions that leads

to the transmission of external signals from outside to inside the cell and to the move-

ment of information inside the cell. Examples of signals arehormones, pheromones,

heat, cold, light or even the appearance or concentration change of substances such

as glucose, K+ or Ca+. The interpretation of these external signals triggers thecell

response.

Other differences are that metabolic pathways can be determined given the en-

zymes involved, while it is difficult to have a precise idea ofthe organization of a

signaling pathway, because it is in general complex and it may assemble dynamically

depending on the signal. Moreover, in metabolism the enzymeconcentration is in gen-

eral much lower than the substrate concentration, while in signaling processes they are

frequently in the same order of magnitude.

2.2 Modelling biochemical interactions

Metabolism or signaling networks can be modelled and studied on different levels of

abstraction. It is possible to concentrate on the properties of the individual reactions

as well as studying the system as a whole, perturbing it and observing the change

in behaviour. In this section we will describe techniques used to model a biological

system at a reaction level. This means that, usually, the knowledge of the reactions,

the species involved and the rate at which these reactions occur is enough to describe,
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and so to model, the time evolution of the system.

2.2.1 The Law of Mass Action

The law of mass action, introduced in the 19th century [10], states that the reaction

rate is proportional to the probability of a collision of thereactants. This probability is

then proportional to the concentration of the reactants andthe molecularity, i.e. how

many copies of a reactants are involved in the reaction.

For example, the rate of the reaction

S1+S2 ⇄ 2P

can be formulated as

v = v+−v− = k+ · [S1] · [S2]−k− · [P]2,

wherev is the rate,v+ is the rate of only the forward reaction,v− is the rate of

the backward reaction andk+ andk− are the proportionality factors, calledkinetics

or rate constant. The symbol[·] denotes the concentration of the species expressed in

moles per liter (mol· L−1). The dynamics of the concentrations of the species can be

described by theOrdinary Differential Equations(ODEs)

d
dt

[S1] =
d
dt

[S2] =−v

d
dt

[P] = 2v.

The value of the concentrations ofS1, S2 andP through time are obtained by inte-

gration of these ODEs.

2.2.2 Generalized Mass Action

In this section we generalize and formalize the concepts which we introduced in the

previous section.

Modelling intracellular dynamics in a quantitative way, isconcerned with the esti-

mation through time of the concentration or of the number of molecules ofN different

speciesSi which can interact usingM possible biochemical reactionsRµ
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Rµ : lµ1Sp(µ,1) + lµ2Sp(µ,2) + ...+ lµLµSp(µ,Lµ)
kµ
−→ ...

whereLµ is the number of reactant species involved inRµ, lµ j is the stoichiometric

coefficient of the reactant speciesSp(µ, j), Kµ=∑
Lµ
j=1 lµ j denotes the molecularity of the

reactionRµ and the indexp(µ, j) selects thoseSi participating inRµ.

Assuming a constant temperature and that diffusion in the cell is fast, such that

we can assume a homogeneously distributed mixture in a fixed volumeV, theGeneral

Mass Action(GMA) model of the system can be defined byN ordinary differential

equations (ODE) as follows:

δ
δt

[Si] =
M

∑
µ=1

νµikµ

Lµ

∏
j=1

[Sp(µ, j)]
lµ j i = 1,2, ...,N (2.1)

where thekµ’s are rate constants andνµ denotes the change in molecules ofSi

resulting from a singleRµ reaction.[Si] is the concentration of the speciesSi and its unit

is usually mol per liter, mol/L. As described in [22], the mathematical representation

2.1 of a biochemical network does not account for noise on thestates, neither does

it consider measurement noise. For this reason, GMA is oftencalled a deterministic

approach. The[Si ] are, however, the most probable value.

There are however some situations in which a GMA model is not able to represent

all the characteristics of a system. The differential equation formalism implicitly as-

sumes a continuous variation in concentration of reactantsand a deterministic dynam-

ics, assumptions that cannot be valid with very low concentrations (such as regulatory

molecules).

2.2.3 Chemical Master Equation

When the number of molecules of a species reduces to few units, another method

is often considered more suitable. This is astochastic approachwhere we wish to

determine for each molecular speciesSi the probabilityP(#Si(t) = ni) that at timet

there areni molecules (with #Si denoting the number of molecules of the speciesSi).

For N molecular species, letn∈ N
N denote theN dimensional state vector.νµ ∈ Z

N

are the step changes occurring for elementary reactions indexed byµ. If S is anN

dimensional variable, we writeP(#S= n)=Pn(t). Describing the changes in random

variableS, we consider the following two state transitions:



2.2. Modelling biochemical interactions 11

n−νµ
aµ(n−νµ)
−→ n

n
aµ(n)
−→ n+νµ.

The first denotes a transition from another state to the staten; the second denotes

moving away from the staten. Most important,aµ(n−νµ) is referred to as thepropen-

sity function of the reactionRµ, that is the probability per unit time, of a changeνµ

occurring, given that we are in the staten−νµ.

With these definitions we can define theChemical Master Equation(CME) [8, 9,

7]:

δPn(t)
δt

=
M

∑
µ=1

[aµ(n−νµ)P(n−νµ)(t)−aµ(n)Pn(t)]. (2.2)

This equation describes the probabilities of moving in or out the staten. For each

staten we have then a differential-difference equation of this kind. This equation has

been derived using physical assumptions about the probability that the single molecules

have to collide and therefore react. In particular Gillespie derived the parametercµdt,

the average probability that a particular combination ofRµ reactants molecules will

react accordingly in the next infinitesimal time intervaldt. In fact, the propensity

functionaµ(n) is the product ofcµ andhµ(n), the number of distinct combinations of

Rµ reactant molecules.cµdt is called thestochastic rate constant.

It is interesting to remark that it has been proved that thereis a correspondence

betweencµ and the GMA rate constantkµ [22]:

cµ =

(

kµ

(NAV)Kµ−1

)

·
Lµ

∏
j=1

(lµ j!) (2.3)

whereNA is the Avogadro number andV is the cell volume. This allows to pass

from one method to the other as soon as eithercµ or kµ has been identified from exper-

imental data.

2.2.4 Stochastic Simulation Algorithm

A major difficulty with the CME is that its analytical solution is usually intractable. For

this reason, Gillespie developed theStochastic Simulation Algorithm(SSA), a Monte
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Carlo simulation of the CME. A single simulation representsone exact possible evolu-

tion of the system, while a set of thousands of these simulations can be used to identify

an underlying probability function that is an approximation of the CME.

This algorithm proceeds with a loop in which, at every iteration, two parameters

are randomly taken from previously defined probability distributions: the time of the

next reaction and which reaction will occur next. In order tocompute these values,

the joint probability that reactionRµ will be the next reaction and will occur in the

infinitesimal time interval[t, t +δt), given(#S= n), is computed:

P(τ,µ|n, t) = aµ(n)e−a0(n)τ (2.4)

wherea0(n)=∑M
µ=1aµ(n).

Starting from 2.4, the probabilities of the next reaction and the time of the next

reaction can be obtained:

P(τ|n, t) = a0(n)e−a0(n)τ τ≥ 0

P( j|τ,n, t) =
aµ(n)

a0(n)
µ= 1, ...,M

From these distributions, random Monte Carlo samples can betaken using two

uniform random numbersr1 andr2 from [0,1]. τ is given by:

τ =
1

a0(n)
ln

(

1
r1

)

(2.5)

The indexµ of the selected reaction is the smallest integer in[1,M] such that

µ

∑
µ′=1

aµ′(n) > r2a0(n) (2.6)

Once these two values are computed, the system is updated adding the selectedνµ

to n andτ summed tot.

2.2.5 Logarithmic Direct Method

During the dissertation we will face the problem of computational complexity, even

for very simple models. In order to save computational time,a faster, although still



2.2. Modelling biochemical interactions 13

exact, version of SSA has been adopted. In general, we will use the original SSA and,

when specified, theLogarithmic Direct Method(LDM) [14].

Locating the next reaction to fire is the computationally most expensive step of

the SSA. In LDM, this step can be reduced fromO(M) to O(logM). In the original

method,a0 is computed and in a second time the next reaction is determined summing

one by one theaµ, so this sum is computed almost twice. In LDM, while computing

a0, a list is kept, with all the partial sums, from the smallest to the largest, ; then the

next reaction is identified performing a binary search on thelist. This way, the value

in the list such that (2.6) is satisfied can be found inO(logM).

2.2.6 Michaelis-Menten kinetics

We introduce now a model of enzymatic reactions that is well established in the field

of systems biology [4, 13]. This applies to the following system:

E +S
k1,k−1
←→ ES

k2−→ E +P

whereE is the enzyme,S is the substrate,ES is the temporary enzyme-substrate

complex andP is the product of the reaction. Characteristics of this model are that

the process is considered irreversible, i.e. the product cannot become a substrate, and

that the enzyme is not affected by the reactions and can be used again after it leaves

the substrate or the product. Under determined assumptions, the parameterski can be

identified with few simple experiments.

These are the ODEs of the model, following the GMA:

d[S]

dt
=−k1 · [E] · [S]+k−1 · [ES]

d[ES]
dt

= k1 · [E] · [S]− (k−1+k2) · [ES]

d[E]

dt
=−k1 · [E] · [S]+(k−1+k2) · [ES]

d[P]

dt
= k2 · [ES]

This system of ODEs can be simplified using further assumptions. One of these is

that we consider the conversion ofE andSinto ESand vice versa much faster than the

decomposition ofES into E andP (k1,k−1≫ k2, thequasi equilibriumassumption).

The other assumption is that during the course of the reactions a state is reached where
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the concentration ofESremains constant. This is called thequasi steady-stateassump-

tion, due to the fact that we consider the concentrations of the intermediates (ES) to

reach equilibrium much faster than those of the product and substrate. This means that

we assume:

d[ES]
dt

= 0

That leads to the simplification:

[ES] =
k1[E][S]

k−1+k2
=

[E][S]

Km
,

whereKm=(k−1+k2)/k1 is called theMichaelis constant. Given the quasi equilib-

rium assumption we have thatKm
∼= k−1/k1. Then, noticing that the total concentration

of enzyme[Etot] is equal in every moment to the sum of the concentrations of the free

enzyme[E] and of the enzyme-substrate complex[ES],

[ES] =
([Etot]− [ES])[S]

Km
=⇒ [ES]

Km

[S]
= [Etot]− [ES] =⇒

[ES]

(

1+
Km

[S]

)

= [Etot] =⇒ [ES] = [Etot]
1

1+ Km
[S]

= [Etot]
[S]

[S]+Km
.

At this point we obtain that the velocity of the production ofP is given by

d[P]

dt
= k2[ES] = k2[Etot]

[S]

[S]+Km
=

Vmax[S]

[S]+Km

whereVmax(also writtenkcat) is the maximum velocity of the production ofP, given

by k2[Etot]. The parametersVmaxandKm can be easily estimated with few experiments.

2.3 Sensitivity analysis of biochemical models

Sensitivity Analysis(SA) studies the relationships between the inputs and the outputs

of model, often regardless of the particular model which is the subject of the analy-

sis. We explain now what we mean when we talk about SA applied to reaction based

biochemical models.

Figure 2.2 shows an example of the time evolution of a biochemical system with

four species. These species have the role of the output variables of the model. When
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Figure 2.2: Examples of time evolution of a biochemical model computed with ODE (on

the left) and with SSA (on the right). This model is the Michaelis/Menten model of the

enzymatic reaction which will be presented in Section 3.2.2.

we wish to perform a sensitivity analysis of this model, we need to choose a time point

at which to read the output value. In the case of an ODE model, aselected output

(species) at a selected time assumes a precise and unique value. Changing one or more

parameters of the model may lead to a different output value.On the other hand, in the

case of stochastic simulations, the output of a selected species at a selected time can

be considered to be the collection of the outputs given by thesimulations. This set of

values, if it has enough points, will at this point reveal theunderlying distribution of

the output.

One of the basic operations that can be done during a sensitivity analysis, is to

compute the difference between the output of a model and the output of the same

model where one or more parameters have been perturbed. While this is possible in

ODE models, it is not so clear when facing stochastic simulations. One simple solution

is to take as output the mean of the values coming from the simulations. However, this

solution can lead to a loss of information: taking the mean weare assuming a normal

distribution and we are even neglecting the variance. Another possibility is the use

of a distribution distance or histogram distance [5], that,with a sufficient number of

simulations, is able to identify more precisely the difference in the outcome of the

model (see Section 2.3.1).
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2.3.1 Histogram distance

The use of histogram distance in analysing the outcome of reaction based models has

been introduced with the purpose of quantifying how well an approximate version

of the SSA is able to emulate the original [5]. In the context of sensitivity analysis,

it can instead be used to quantify the output difference of a model produced by the

perturbation of its parameters.

It is computed as follows:

Dk(X,Y) =
k

∑
i=1
|
∑N

j=1 χ(x j , Ii)

N
−

∑M
j=1 χ(y j , Ii)

M
|. (2.7)

whereX andY are two sets of numbers,k is the number of histogram columns

or intervals that divide the range of the output variable,N is the cardinality of the set

X andM is the cardinality of the setY, x j andy j are elements of the setsX andY

respectively and the functionχ returns 1 if the elementx j belongs to the intervalIi , 0

otherwise.Ii is thei-th interval in the range, that goes fromxmin+
(i−1)L

k to xmin+ iL
k ,

whereL = xmax−xmin.

An interesting measure is then theself distance, given byDk(X,X′). This is nothing

but repeating the same experiment twice, with the same parameters, and then comput-

ing the histogram distance between the two sets of number resulting from the simu-

lations. Perturbations in the parameters that generate values of distances that are less

than or very close to the self distance will be considered notto have an influence, or, at

least, we can say that we cannot distinguish any effect arising from the perturbation.

2.3.2 Sensitivity analysis classification

According to [20], sensitivity analysis (SA) techniques can be classified as:

• local methods: they concentrate the analysis around a particular point in the

parameter space. For example,local one at a timeandelementary one at a time

approaches belong to this class;

• global methods: these techniques try to explore the entire space of the param-

eters or, at least, explore the subspace that is believed to contain the real value

of the parameters and that represents their uncertainty. Examples of members

of this class arevariance basedmethods, but also OAT methods replicated ran-

domly in the space.
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• screening methods:these methods are used to select the most important pa-

rameters when the complexity of the model is problematic or the number of

parameters intractable. The main idea of these methods is that they should be

computationally cheap and give the idea of which parameterscan be fixed (low

importance), even if the information that can be achieved ispoor. They are a

tradeoff between information and algorithm complexity. Once the most influen-

tial parameters have been identified, it is then possible to apply a more informa-

tive and computationally expensive technique. An example of these techniques

is theMorris’ method[21, 20].

This classification is not rigid. For example, many screening methods can be con-

sidered global or local. Moreover, the last class is characterized by the goal of the

analysis (screening) and the other two by how the analysis isperformed and the factors

treated.

The logic behind this classification follows a wider point ofview. With the need

to analyse a complex model, with hundreds of reactions and parameters, we would

like to have a gradual approach that allows us to achieve rough information with cheap

computational power at the beginning and very precise information with high com-

putational effort only at the end. This way we can begin with alocal analysis that

gives us a preliminary feedback around which are believed tobe the nominal values

of the parameters. In a second phase we can proceed with a screening method, which

allows us to fix some parameters leading to a dimensionality reduction of the model

and the selection of a small set of parameters that can be considered dominant. The

final step would be the application of a global and most informative technique only on

the selected parameters, in order to limit the computational time needed to perform the

analysis.

2.3.3 One at a time methods

The classical and most widely used SA is theOne at a time(OAT) approach: a parame-

ter is perturbed (usually by 1%) and the changes in the outputmeasured. Alternatively

it is possible to compute the derivative of the output with respect to each parameter to

obtain its sensitivity coefficient:

Si j =
δy j(p)

δpi
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wherey j(p) is the j-th output of the model that depends on the parameters andpi

is thei-th parameter.

It is critical to understand exactly what is meant by each kind of sensitivity mea-

sure. For example if we chose as sensitivity measure the simple output difference

(ElementaryOAT, EOAT) we can state that varying a variablexi by 1% of its value

influences the output more than varying another variablex j by 1% of its value. This

can be useful when a different order of magnitude of the parameters is involved. The

derivative based measure allows a slightly different statement: varying a variablexi by

a fixed value influences the output more than varying another variablex j by the same

fixed value. These are very general techniques and one shouldalways be careful about

the answer one is looking for when perturbing a specific model.

In the study of biochemical systems, these methods represent the prevalent practice

when analyzing ODE models. Other more complex and informative analysis has been

proposed [21]. However, all these analyses are not directlyapplicable to stochastic

models, such as CME [9], whose output is defined as aprobability density function

(pdf) over the number of molecules for each species. The needto consider the entire

pdf as the output to analyze is even more evident in the analysis of bistable systems.

These present at a certain time a pdf that is not normal, but that presents instead two

distinct peaks of likelihood (an example is the Schlögl model [11, 5]). In this partic-

ular context an analysis cannot make any assumptions on the pdf resulting from the

model. In this regard, SA of stochastic systems has been recently introduced [11].

Here, the change in the output value is quantified in terms of distribution distance, or

more precisely,histogram distance[5], computed by comparing approximations of the

pdfs constructed from several runs of the SSA (see Section 2.3.1).

Si = D(Xn,Xpi)

whereXn is a random variable(r.v.) with nominal pdf = f (x,p) andXpi is a r.v.

with perturbed pdf =f (x, p1, ..., pi +∆pi , ..., pk). Also this distance can be divided by

∆pi , leading to a correspondent derivative based approach.

Together, these approaches can be classified asLocal OAT Sensitivity Analysis and

they hold only if the model is linear with respect to the parameters. If we can assume

that varying only one parameter at a time affects the output of the model in a propor-

tional way, then these techniques are enough to quantify theinput/output influence.

However, often, this assumption is not valid for biologicalsystems, a fact that makes
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Local OAT not effective enough to give a complete view of the relationships between

parameters and output and also between the parameters themselves. They can in any

case be considered useful mainly because they are computationally cheap, a key fea-

ture when dealing with thousands of stochastic simulations, and because they can give

a first idea of the sensitivity indices.

2.3.4 Morris’ method

This method [20] can be classified as one at a time (OAT), because it uses as a basic

step the local OAT approach, and global, because the experiment covers the entire

space over which the factors are believed to vary. Morris estimates the main effect of a

factor by computing a numberr of local measures, at different random pointsx1, ...,xr

in the parameter space, and then taking their average. This reduces the dependence on

the specific point that a local experiment has.

When applying this method, a computationally expensive model is assumed, or a

model with a large number of factors. The goal is to determinewhich factors have (a)

negligible effects, (b) linear and additive effects, or (c)non linear interaction effects.

This will help to apply later the most appropriate global sensitivity analysis only on

the relevant parameters.

The k-dimensional factor vectorx has componentsxi that havep values in the

set {0, 1/(p− 1), 2/(p− 1), ..., 1}. The region of experimentationΩ is then ak-

dimensionalp-level grid (Figure 2.3). In practice, the values sampled inΩ are then

rescaled to generate the actual values of the parameters as sampled from a specific pa-

rameter range. Let∆ be a predetermined multiple of 1/(p−1). Then Morris defines

theelementary effectof the ith factor at a given pointx as:

di(x) =
y(x1, ...,xi +∆, ...,xk)−y(x)

∆

wherex is any value inΩ selectedsuch that the perturbed pointx+∆ is still in Ω.

After samplingr times, the result will be a distributionFi of elementary effects. The

characterization of this distribution through its meanµ and standard deviationσ gives

useful information about the influence of theith input on the output. A high mean

indicates a factor with an important overall influence on theoutput; a high standard

deviation indicates either a factor interacting with otherfactors or a factor whose effect

is nonlinear. As it can be seen, the information acquired is not enough to be more
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Figure 2.3: Example of a grid in the Morris method. In this case we have two parameters

(k = 2) and a grid level of five (p = 5), so the maximum possible combinations are

52 = 25. The black dots are two possible random points, while the circles are other

points computed during the algorithm iterations. In this case, an implementation that

wants to save computational time would not recompute the point that has been circled

twice.

precise in the analysis, but is enough to suggest which parameters have little influence

and can be fixed and which technique should be used in a furtheranalysis. If an ele-

mentary effect has low mean and low standard deviation, it means that the output is not

influenced by the corresponding parameter; it can then be fixed or at least neglected for

purposes of dimensionality reduction. If an elementary effect has high mean but low

standard deviation, it means that the output is influenced bythe corresponding param-

eter and that the influence is always the same; this means thatthe model is linear with

respect to that parameter and that this parameter is not influenced by others. Finally, if

an elementary effect has high mean and high standard deviation, this would require a

more complex analysis to understand if the model is simply nonlinear with respect to

the corresponding parameter or if the influence of this parameter is controlled itself by

the value of other parameters. In this regard it may well be that parameters that seem

not influential at all with respect to the output of the model are instead relevant to the

effect of other parameters.
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Figure 2.4: An example of a possible deterministic model f (x1,x2) = Y that depends

on the factors x1 and x2 is shown, along with examples of conditional expectations.

2.3.5 Variance-based methods

Variance-based methods are those sensitivity analysis (SA) techniques that use the

variance of the conditional expectation(VCE) as a measure of importance of the input

factors. The goal in these methods is to estimate the VCE by exploring the space

made by all the possible values of the parameters. Applied toOrdinary Differential

Equations(ODE) chemical models, the most famous techniques arecorrelation ratio,

Sobol’, and Fourier amplitude sensitivity test(FAST) [20, 21, 6].

Probability theory states that:

V[Y] = Vx[E[Y|x]]+Ex[V[Y|x]] (2.8)

where the two components of the variance decomposition are called the variance

of conditional expectation (VCE) and the residual part. Theterm Vx[E[Y|x]] is the

variance of the conditional expectation ofY, conditioned onx, which is a suitable

measure of the importance ofx, identifying the part of the variance ofY due tox. If

we had that all the variance ofY is matched by the VCE ofx we could say thatx is the

only parameter (or set of parameters) that influences the outcomeY.

The variance of the conditional expectation is given by:

Vx[E[Y|x]] =
Z

(E[Y|x]−E[Y])2px(x)dx (2.9)

whereE[Y|x] =
R

ypY|x(y)dy. Here the integral is substituted with the sum over all

the possible values ofx sampled from the range ofx.

In order to help to visualize this concept, a simple example of a deterministic model

is shown in Figure 2.4.
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So far, the simplest possible technique to compute that value has been imple-

mented. Similarly to Figure 2.4, the parameter space has been sampled through the

use of a grid. After having collected all the results, the conditional expectations are

estimated fixing a parameter to its possible values in the grid. As can be expected,

increasing the grid level and the number of parameters, the algorithm complexity in-

creases exponentially. On the other hand, a complete analysis of the influence of the

parameters on the output and on the other parameters is provided.

Let Sx be then-th order sensitivity index, withx ∈ N
n. It corresponds to the VCE

fixing the factors inx minus the sensitivity indices relative to all the possible combina-

tions of the factors inx. For example,S12 is given byVCE12 - S1 - S2 andS123 is given

by VCE123 - S12 - S13 - S23 - S1 - S2 - S3. The VCE relative tox, wherex contains all

the factors, is nothing butV[Y].

Following [6] the sensitivity measure that is the most suitable to determine the

influence of a parameter on the output of the model is theTotal Sensitivity Index(TSI)

or simplyTSi . This is defined as the sum of all the sensitivity indices thatcontaini in

x. For example,TS1 is given byS1 + S12.

2.3.6 Sensitivity analysis of discrete stochastic systems

In a recent publication [11], new sensitivity measures thatbetter adapt to the analysis

of systems described by chemical master equations (CMEs) have been proposed. The

authors have been maybe the first ones to highlight the need for a sensitivity measure

that is specifically designed to consider not just a single value as an output, but the

entire CME. The key idea is that the probability density function of the CME, that

describes the probabilityPn(t) of the species of a system to be at a certain amount at

time t (see Section 2.2.3), can be approximated by acumulative distribution function

f , obtained using stochastic simulation algorithm (SSA) realizations.

Four measures have been proposed. One is based on simple derivative of the CME:

Sj =
δ f
δx j

=
f (n,x j +∆x j)− f (n,x j −∆x j)

2∆x j
(2.10)

that is called centered difference approximation. This is aone-at-a-time approach

that represents the influence of a parameterx j on the probability that, at timet, the

number of molecules of the speciesSi is equal toni for all i.

The other three measures are based on theFisher Information Matrix(FIM). Notic-

ing that sensitivity indices such as:
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Sj(n, t) =
δlog f (n, t)

δx j

are closely related to the score function in information theory, being the gradient

of the log-likelihood function. The FIM

J = E[(▽nlog f )(▽nlog f )T ]

defines therefore the lower bound on the uncertainty in the parameter estimates ac-

cording to the Cramer-Rao inequality

Vx ≥ J−1.

The gradients are computed approximatively using equation2.10, but another pos-

sibility is to assume that the density functionf follows a multivariate gaussian distri-

bution. The three sensitivity measures are the FIM diagonalelements, eigenvalues and

the inverse of the diagonal elements ofVx.

These methods have shown to have some improvements with respect to the clas-

sical methods, though they are of difficult interpretation.It is in particular not clear

which is the information that is included in each sensitivity index.





Chapter 3

Sensitivity analysis of stochastic

simulations of biochemical reactions

In this chapter we introduce two new sensitivity measures and we present them as

variants of the Morris’ method and the variance-based approach respectively. When

doing this, we compare these new techniques with their original versions.

See Appendix A for the details about the software that has been used to compute the

results and that has been extended with tools that implementthe techniques introduced

in this chapter. Every parameter that refers to a particulartechnique or algorithm can

be used to reproduce the results using this software tool. From now on, when we

refer to results obtained with ODE or deterministic methods, we implicitly intend that

they are obtained using the 5/4 Dormand-Prince ODE solver with adaptive step-size.

Moreover, when we refer to results obtained with stochasticsimulations, we implicitly

intend that we used the original SSA, if not otherwise stated.

3.1 Local methods

We procede now with the analysis and the comparision of the Local one-at-a-time

methods presented in Section 2.3.3.

The analysis of these basic approaches is necessary becausethey are the building

blocks of any more complex technique. For this reason, before introducing the other

methods which are the subject of this dissertation, we need to show the kind of results

that can be achieved by these basic approaches.

25
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Figure 3.1: In the figure on the left, the time evolution of the output variable X of the

Schlögl ODE model is shown. This is obtained with the nominal value of the parameters,

as stated in the text. In the figure on the right, the time evolution of X changing only

the initial number of molecules of X from 247 (nominal) to 250 is instead shown. The

behaviour seems to completely change.

3.1.1 The Schl ögl model

The prototype Schlögl model [11, 5] has been considered themost suitable model to

show the differences between usual Local OAT approaches andthe one based on his-

togram distance. It is defined as follows:

A+2X
a1→ 3X,

3X
a2→ A+2X,

B
a3→ X,

X
a4→ B,

whereA andB are kept constant (buffered). The propensity functions of Gillespie’s

CME (see Section 2.2.3) are:

a1 = k1AX(X−1)/2,

a2 = k2X(X−1)(X−2)/6,

a3 = k3B,

a4 = k4X,
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Figure 3.2: Evolution of the output variable X in 50 distinct runs of SSA of Gillespie on

the Schlögl model. This shows the real behaviour of the system, in a more informative

way with respect to the ODE model.

and the nominal values of the parameters are set as follows:

X0 = 247

A = 1 ·105,

B = 2 ·105,

k1 = 3 ·10−7,

k2 = 1 ·10−4,

k3 = 1 ·10−3,

k4 = 3.5.

The nominal parameter values are set close to a bifurcation point, where a small

perturbation in them can lead to completely different results in the ODE time evolution,

as can be seen in Figure 3.1.

With this particular set of parameters, also the time evolution of the stochastic

simulations presents singular behaviours: the different runs will follow either one of

two possible behaviours, as can be observed in Figure 3.2.

With the goal of describing the behaviour of this system, ODEmodels, or the

simple average ofX from different stochastic simulations could be inappropriate if

not misleading. The use of estimated distributions can be considered a more suitable

choice.
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3.1.2 Local Sensitivity Analysis of the Schl ögl model

Three LOAT Sensitivity Analysis have been applied to the Schlögl model:Local OAT

(ODE), Local OAT (Gillespie average)andLocal OAT (Gillespie Density). They differ

in the way the distance is calculated and the method used to compute the time evolution

of the system.

• Local OAT (ODE): difference computed between the output resulting from the

ODE model. Performing the analysis more than once will lead to the same result,

due to the deterministic nature of the ODEs.

• Local OAT (Gillespie average) : Many stochastic simulations are computed

here, so the result may change from analysis to analysis, reducing its variation

if the number of stochastic simulations increases. This analysis is performed

exactly in the same way as the previous one. Instead of the ODEoutput, the

average of the simulations output is used.

• Local OAT (Gillespie Density): Also in this case, the Gillespie’s SSA is used

to compute the evolution of the system. In this analysis the histogram distance

is used instead of the simple difference.

All the three analysis are performed perturbing each parameter by 1% of its nom-

inal value one at a time, from a nominal set of parameters. In the result, both the

Elementary OAT (just distance) and the derivative (distance divided by the perturba-

tion) are computed. In all the cases, the evolution of the system was computed from

time zero to 20 seconds, performing the analysis at that finaltime. This allowed the

system to reach a stable point. ODE time evolution was computed with the simulator

ODE−RK5− f ixed, the 5th order Runge-Kutta algorithm, with fixed time step (see

Dizzy manual). Gillespie’s direct method was used to perform the stochastic simula-

tions and the number of simulations was 5000. When dealing with histogram distance,

two cases were considered, with 50 and 100 histogram columns, showing the same

sensitivity indices. Table 3.1 and Figures 3.3 and 3.4 show the outcome of the analy-

sis.

3.1.3 Discussion

Given the difference in the order of magnitude of the parameters of the Schlögl model,

we may be more interested in the relative perturbation. For this reason we consider the
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LOAT ODE LOAT Gillespie Ave LOAT Gillespie Density

Paramsdist. rank deriv. rank dist. rank deriv. rank dist. rank deriv. rank

k1 503 1 2e11 1 57 3 2e10 1 0.32 2 1e8 1

k2 0.07 7 7e4 3 69 1 7e7 2 0.16 4 2e5 2

k3 486 3 5e7 2 8.4 5 8e5 3 0.09 5 9e3 3

k4 2.1 6 61 5 17 4 485 4 0.24 3 6.9 4

X0 485 5 196 4 67.5 2 27.3 5 0.08 6 0.033 5

A 503 2 0.5 6 4.5 6 5e-3 6 0.32 1 3e-4 6

B 486 4 0.24 7 2.98 7 1e-3 7 0.08 7 4e-5 7

Table 3.1: Result of the three local one at a time Sensitivity Analysis described in the

text. The time of the analysis is 20 seconds with a perturbation of 1%. In the Gillespie

density column, the histogram distance is computed with 50 histogram columns and

5000 runs. The histogram self distance for X is 0.068. ODE fractional value 0.001.

Results obtained using the simulator Dizzy [17]. A more comprehensible visualization

of this Table can be found in Figure 3.3 for the derivative approach and in Figure 3.4 for

the distance approach.

simple output difference a more interesting sensitivity index than the derivative and we

will discuss that first.

In Table 3.1 the first interesting observation is that ODE andGillespie Density pro-

cedures share common results. They both show thatk1 produces the same variation

asA and thatk3 produces the same variation asB. Indeed, we know thatk1 andA are

related, because they could have been considered a single parameter (see propensity

function definitions) and this fact has been captured by the analysis. The same rea-

soning holds fork3 andB. On the other hand, an important and expected difference

appears in theX0 influence: with ODE, the output variation induced by the perturbation

of X0 is comparable with the one ofk1 andk3, showing high sensitivity. This is due

to the crossing of the bifurcation point. The Gillespie Density method shows instead a

low value of histogram distance for the same perturbation, revealing it far less influen-

tial thank1. This latter method can easily proved to be the correct one byconsidering

Figure 3.5, where the histograms of the distribution ofX at time 20, generated with

nominal and perturbed parameter values, nearly coincide. In the figure can also be ob-

served how the perturbation ofk1 influences the outcome of the stochastic simulations.

Moreover,k3, along withB, has been discovered to be not particularly influential, with
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Figure 3.3: Visualization of the results in Table 3.1 obtained with the three methods

using the derivative approach. No particular difference is present, the results are not

particularly meaningful.
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Figure 3.4: Visualization of the results in Table 3.1 obtained with the three methods

using the distance approach. These results are discussed in the text.

a histogram distance close to the self distance.

The Gillespie Average approach seems instead inconsistent, without any pattern

that could be explained.

To conclude the discussion of the results we can notice how the derivative approach

presents more or less the same order of importance of the parameters in all three cases.

This is due mainly to their different order of magnitude and it is meaningless in regard

to the sensitivity of the system. It is clear that, at least inthis contest, a parameter that

is estimated to be of the order of 10−5 and a parameter that is estimated to be of the

order of 103 are not directly comparable.

According to the results of this first part, from now on, we will prefer the simple

distance, specifying the relative perturbation in percentage.
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Figure 3.5: Values of output X of the stochastic simulations at time 20. On the left with

nominal parameter values (H0) and X0 perturbed by 1% (H1). On the right with nominal

parameter values (H0) and k1 perturbed by 1% (H1). Each histogram is obtained from

5000 samples grouped in 50 columns.

3.2 Screening methods

In this section we apply and study the Morris’method (see Section 2.3.4) in two differ-

ent version: an adapted version of the original algorithm that makes use of the output

of ODEs and a novel approach, based on the original method, but modified in order to

use the information captured by sets of stochastic simulations.

3.2.1 Implementation of Morris’ method

Given our previous experience with the local OAT sensitivity analysis, we make use

of two differentelementary effects, one based on simple difference of the output of

a ODE model and the other one based on histogram distance of outputs of stochastic

simulations. Moreover we consider the possibility of having multiple outputs:

di j (x) = y j(x1, ...,xi +∆, ...,xk)−y j(x)

di j (x) = D(Yj ,Y′j )

where in generaldi j is the local influence of theith input on thejth output of the

model. Considering a certain fixed timet in which the analysis is performed,y j is the

outcome of the outputj at that time andx is the vector of parameters.Yj is therandom
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variable(r.v.) of the outcome of thejth output at timet distributed following the pdf

f (y j ,x) andY′j is the r.v. of the outcome of thejth output at the same time distributed

following the pdf f (y j ,x1, ...,xi + ∆, ...,xk). D is the histogram distance as defined in

[5].

In order for these two measures to have meaning, we slightly modified the method

to have perturbations that are always comparable. The ranges are chosen as displace-

ment from a nominal value that is proportional (±10%) to that value. In thep-level grid

we allow only unitary perturbations (not multiples of 1/(p−1) but exactly 1/(p−1)

every time). This way, every difference corresponds to the same percentage in pertur-

bation with respect to the parameter nominal value, that is central in the grid (Figure

2.3).

A couple of further simple improvements have been implemented. The first one

concerns the random points generation: it consists of the insertion of ataboo listused

to prevent a random point in the grid being selected twice. Ifa random point is already

present in the list, another is immediately chosen. The second one is adynamic pro-

grammingapproach that allows us to save computational time. Noticing that a point

in the grid once perturbed is still a point in the grid, it may happen that the model

output corresponding to some points risks being computed twice (see Figure 2.3). In

our implementation, every result of a simulation of the model is stored and reloaded if

a point in the grid is required a second time.

3.2.2 The Michaelis/Menten model

As in the previous Chapter, we pass now to the application of this method, to better

show its characteristics. For this reason we now introduce the Michaelis/Menten model

of the enzymatic reaction. This is a very simple model and allows us to show that, at

least for a small number of simple reactions, the results obtained with the classical

method and the version with histogram distance provide analogous results. Once the

base cases are coherent, we can analyse the Schlögl model toshow the differences with

the new approach.

The model is defined as follows:

S+E
a1→ ES,

ES
a2→ E +S,

ES
a3→ P,



3.2. Screening methods 33

Figure 3.6: Example of time evolution of Michaelis/Menten model computed with ODE.

The propensity functions of Gillespie’s CME are:

a1 = enzymesubstratecombine∗E∗S,

a2 = enzymesubstrateseparate∗ES,

a3 = makeproduct∗ES,

and the nominal values of the parameters are set as follows:

E0 = 100

S0 = 100,

ES0 = 0,

P0 = 0,

enzymesubstratecombine= 1,

enzymesubstrateseparate= 1,

makeproduct= 1.

The time evolution of this system is shown in Figure 3.6.

3.2.3 Morris’ Methods on Michaelis/Menten model

A new version of the already presented Morris’ Method has been implemented to make

use of the histogram distance [5]. The method is identical tothe analogous one for
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Elementary effects in Michaelis model (ODE)

Params meanstandard dev. rank

S0 2.27 0.30 1

enzymesubstratecombine 0.76 0.07 3

makeproduct 0.08 0.006 4

enzymesubstrateseparate0.05 0.002 5

E0 2.16 0.30 2

Table 3.2: Result of the Morris’ method on Michaelis model. Time evolution is computed

with ODE and the effect is measured as the difference in the output ES. The adopted

parameters are 1000 random points (r), grid level 5 (p), time of the analysis 0.04s,

±10% from nominal value, ODE fractional value 0.001.

ODEs: a random repetition of Local Sensitivity Analysis in the parameter space. Us-

ing histogram distance this allows us to collect information about how the histograms

(stochastic simulations) vary when the parameters explorethe space of their possible

values. A first application has been performed on the simple Michaelis/Menten model,

with results shown in Table 3.2 and 3.3 (visualizations in Figure 3.7). The first impor-

tant thing we notice is how the two analysis give the exact same result. Both identify

the initial concentrations ofE and S as the most influential parameters, the kinetic

enzymesubstratecombineas relevant, and the other kinetics as not particularly influ-

ential. This shows the correctness of the new approach basedon histogram distance in

analysing a simple and well known model.

Moreover, it can be seen that the precision of the approach based on histogram

distance is particularly good in this case. Because the histogram distance is an ap-

proximation to the distance between the underlying distributions, it is necessary to use

and interpret the results carefully. In this case we observe(still Table 3.3) that the self

distance is low and defined with good precision (low standarddeviation as well). This

is mainly due to the number of stochastic simulations (10000divided in 50 columns)

that assures a good enough approximation. As a consequence,we can state that the

initial concentrations ofE andShave always the same influence on the distribution of

ESand that this influence does not depend on the value of other parameters. The same

can be said forenzymesubstratecombine, though its influence is clearly inferior. Not

influential are insteadmakeproductandenzymesubstrateseparate, since the values

of their indices are very close to the average histogram selfdistance.
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Elementary effects in Michaelis model (Gillespie density)

Params meanstandard dev. rank

S0 0.52 0.06 1

enzymesubstratecombine 0.18 0.02 3

makeproduct 0.03 0.008 4

enzymesubstrateseparate0.03 0.008 5

E0 0.49 0.07 2

Table 3.3: Result of the Morris’ method on Michaelis model. Time evolution is com-

puted with Gillespie’s direct method and the effect is measured as the difference in the

histograms of ES. The adopted parameters are 100 random points (r), grid level 5 (p),

time of the analysis 0.04s, ±10% from nominal value, 10000 simulations and number

of histogram columns 50. The average histogram self distance of the random points

was 0.026 with std. dev. 0.006.

3.2.4 Morris’ Methods on Schl ögl model

The two screening methods have been applied also to the prototype Schlögl model

(see Section 3.1.1). Table 3.4 shows the outcome of the analysis with ODEs used to

determine the time evolution of the system. The average elementary effect has the role

of ordering the parameters from the most to the least influential. However, the elevated

standard deviation of all the parameters sensitivities makes this classification difficult

and reveals that the model is likely to be nonlinear with respect to the parameters and

strong dependency between the parameters is also likely to exist. Further analysis

is necessary to confirm and quantify dependencies and sensitivities and this analysis

would likely involve all the factors.

Table 3.5 shows Morris’ method applied using histogram distance. Before dis-

cussing the results, we need to put forward the circumstancethat, due to computa-

tional complexity, we had to limit the precision of the analysis. Instead of using 10000

stochastic simulations for each experiment and 100 random points, as in the analysis

of the Michaelis/Menten model, this time we reduced the simulations to 1000 and the

random points to 40. The impact of this can be observed immediately on the average

histogram self distance, that is at least five times greater than in the case of the anal-

ysis of the Michaelis/Menten model. It is then important to bear in mind that all the

conclusions are up to the level of precision that is given by the average self distance.
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Figure 3.7: Visualization of the average elementary effects of the factors

of the Michaelis model, along with their standard deviations. The data is

taken from Tables 3.2 and 3.3. Abbreviations of the names of the fac-

tors are: esc is enzymesubstratecombine, mp is makeproduct and ess is

enzymesubstrateseparate.

Observing Table 3.5 we can at this point say that, with the current approximations, the

initial number of molecules of the speciesX is a factor that appears to be not influenc-

ing the value of the speciesX at time 10 seconds. We can also see that the product

k3B has a weak influence and that this influence does not change particularly as other

parameters change (relatively low standard deviation). The other three parameters,k2,

k4 andk1A show instead that they have a significant influence, specially k1A, and their

relative larger standard deviation implies non linearity and correlations that require

further and more specialized analysis.

Figure 3.8 highlights some differences between the resultsof the two approaches.

The most significant one is certainly the reduction of the relative standard deviation

that helps us to be more confident when stating which factors are the most important

and which require to be further analysed.

Finally, it is interesting to notice how this analysis completes the previous per-

formed local OAT analysis (recall Table 3.1). Thanks to thisanalysis we are sure that

there is more to investigate about the relationships between factors and output.

3.3 Global methods

In this chapter we present and study an alternative method tothe one described in

Section 2.3.5 for computing thevariance of the conditional expectation.
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Elementary effects in Schlögl model (ODE)

Paramsmean standard dev. rank

k1A 137.74 210.24 1

k2 40.99 116.77 3

k3B 28.13 108.08 5

k4 107.78 201.60 2

X0 29.41 116.40 4

Table 3.4: Result of Morris’ method on the Schögl model. Time evolution is computed

with ODEs and the effect is measured as the difference in the output X. The adopted

parameters are 1000 random points (r), grid level 5 (p), time of the analysis 10s, ±5%

from nominal value, ODE fractional value 0.001.

Elementary effects in Schlögl model (Gillespie Density)

Paramsmeanstandard dev. rank

k1A 0.649 0.199 1

k2 0.317 0.160 3

k3B 0.214 0.055 4

k4 0.451 0.124 2

X0 0.159 0.037 5

Table 3.5: Result of the Morris’ method on the Schögl model. Time evolution is com-

puted with the logarithmic direct method and the effect is measured as the difference

in the histograms of X. The adopted parameters are 40 random points (r), grid level 5

(p), time of the analysis 10s,±5% from nominal value, 1000 simulations and number of

histogram columns 50. The average histogram self distance of the random points was

0.141 with std. dev. 0.025.
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Figure 3.8: Visualization of the average elementary effects of the factors of the Schlögl

model, along with their standard deviations. The data is taken from Tables 3.4 and 3.5.

Figure 3.9: A possible model whose output is a probability distribution is shown. A

conditional expectation can be obtained using a set of distributions.

3.3.1 Variance-based methods for simulations of biochemic al re-

actions

The possibility of developing analogous techniques that make use of the histogram

distance has been investigated. The idea is that we can compute the variance of the

conditional expectation introducing the concept ofmean of histogramsand the his-

togram distance.

Figure 3.9 shows a possible model whose output is aprobability density function

(pdf). Using Monte Carlo simulations, we can obtain a set of values that we can assume

to be generated by using that pdf. This pdf can be approximated using a histogram

function [5]. The definition of mean is nothing but that valuewhich minimizes the

sum of the differences between each value and the mean. The histogram that minimizes

the sum of histogram distances between itself and each histogram is nothing but the

histogram that collects all the points of all the histograms(as can intuitively be seen by
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Figure 3.10: First order sensitivity indices as defined in the text for the initial concen-

trations S0 (S1), E0 (S2) and their combined effect (S12). Indices are shown with in-

creasing grid level. Although the index S12 appears to be not coherent, clear analogies

are present in the two methods relative to the indices S1 and S2. Time of the analy-

sis 0.04s, fractional step size of ODE method 0.001, number of stochastic simulations

10000, number of histogram columns 50.

looking at how the histogram distance is computed, Section 2.3.1). Using this concept

it has been possible to implement a version of the variance based methods also with

the histogram distance. The weak point so far is that a mathematical proof of Equation

(2.8) has not been provided and the intuition is that it is notvalid. However, other

results (see next Section) show how this technique is supposed to have some good

foundations, providing results that appear to be coherent with the classical approach.

3.3.2 Application to Michaelis/Menten model

Applying the two methods to the Michaelis/Menten model led to the results shown in

Figure 3.10. This test has been considered useful as a first glimpse into the correct-

ness of the new approach. In both the approaches, the first order sensitivity indices

S1 and S2 (relative to the factorsS0 andE0 respectively) maintain the same relative

importance. The index relative to the combination of the factors S12 shows instead a

different behaviour in the two cases. On the other hand, if welook at the results in

terms of total sensitivity indicesTS1 andTS2, we can say that the results are perfectly

compatible. In both the casesTS1 is always greater thanTS2.

These preliminary results have led to further investigations. The variance-based

analysis has been extended also to a third parameter (enzymesubstratecombine), that

in previous analysis showed to have some influence on the model. The first-order
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Figure 3.11: First order sensitivity indices as defined in the text for the initial concentra-

tions S0 (S1), enzymesubstratecombine(S2), E0 (S3) and various combined effects.

Indices are shown with increasing grid level. Same parameters of the results in Figure

3.10.

sensitivity indices, based on the decomposition of variance, are shown in Figure 3.11.

The results based on classical analysis still show the indices relative toS0 andE0 as

the most important. Observing the results of the new approach, we notice that they

are coherent with the analysis performed on only two parameters. Even the behaviour

of the index corresponding to the combination of the factorsE0 andS0 is replicated,

suggesting this not to be just chance.

Finally, also in this case, from the point of view of the totalsensitivity indices, the

results of the two techniques are analogous.

3.3.3 Application to Schl ögl model

The variance-based analysis has been applied to the Schlögl model, both with the clas-

sical and the new approach. The analysis has been performed considering a subset

of three parameters, selected as the most important factorsarising from a previous

analysis with the Morris’ method (Table 3.5). The factors arek4, k1A andk2.

The results of the analysis of the two variance based approaches are shown in

Table 3.6. We notice that the order of importance of the threeparameters is the same,

according to the total sensitivity indices. Differences inthe first and second order

sensitivity indices may be due to the relative weaker importance thatk2 seems to have

in the classical analysis. Indeed, sensitivities involving k2, like S13 or S23 are weaker

in the classical analysis.
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VCE with histogram distanceVCE with ODEs

index sensitivity rank sensitivity rank

S1 0.244 2 21278 2

S2 0.325 1 30366 1

S3 0.064 5 4028 5

S12 0.086 4 10033 3

S13 0.008 7 299 7

S23 0.086 3 456 6

S123 0.054 6 8969 4

TS1 0.392 2 40580 2

TS2 0.551 1 49826 1

TS3 0.213 3 13752 3

Table 3.6: Variance-based sensitivity analysis of Schlögl model. First-order sensitivity

indices relative to the factors k4 (1), k1A (2) and k2 (3) and other combined effects are

shown. The last three rows show the total sensitivity indices. Time of the analysis 10s,

grid level 5, fractional step size of ODE method 0.001, number of stochastic simulations

1000, number of histogram columns 50.





Chapter 4

Sensitivity analysis of the

mitogen-activated protein kinase

(MAPK) cascades

4.1 Introduction to MAPK

When speaking about the mitogen-activated protein kinase (MAPK) cascades [15, 13]

we mean one or more signaling pathways that share a particular common structure.

MAPK cascades consist usually of three levels, where the signal is transmitted

from one level to another through the phosphorylation of a kinase that, once acti-

vated, phosphorylates the kinase at the next level down the cascade (Figure 4.1). The

MAPK protein that triggers the cell response usually needs to be activated through a

two-site phosphorylation. The catalyst for this reaction is a MAPKK (MAPK kinase)

molecule and, at the upper level, the same role belongs to a MAPKKK (MAPKK ki-

nase) molecule. The last molecule in this model is the MKP (MAP kinase phosphatase)

which dephosphorylates, and so deactivates, the MAPK molecule.

Usually, the phosphorylation of a MAPK is on two distinct sites and we can dis-

tinguish between a form phosporylated on the tyrosine aminoacid alone (MpY) and a

form phosphorylated on the theronine aminoacid alone (MpT). These two operations

can be performed by one single MAPKK, in one single collision, or, more likely, in

two. It is also possible that two MAPKK enzymes are needed, one that catalyzes the

phosphorylation on the tyrosine and the other that catalyzes the phosphorylation on the

theronine.

43
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Figure 4.1: Structure of a MAPK cascade. At each level, the enzyme that catalyzes the

reaction in the next level is activated by a two-site phosphorylation.

4.2 MAPK model

The model of MAPK that we introduce in this section has been presented in [15]. We

consider a single level of the MAPK cascade presented in the previous section, with

only one MAPK kinase and without making any distinction between MAPK phospho-

rylated on tyrosine or theronine. In any case, the model consists of a two step double

phosphorylation (Figure 4.2). From now on, talking about this one level of the MAPK

cascade, we use M, Mp and Mpp as the unphosphorylated, monophosphorylated and

biphosphorylated forms of MAPK.

The original model is written as a system ofOrdinary Differential Equations(ODEs)

that describes the evolution of the concentration of M, Mp and Mpp in time. The rate at

which these concentrations change is obtained using assumptions from the Michaelis-

Menten kinetics (see Section 2.2.6). We use the same set of equations, but with number

of molecules instead of concentrations. This procedure is correct if we assume that the

product of the cell volume and the Avogadro number is equal to1.

The system in Figure 4.2 is defined by the following enzymaticreactions:

M +MAPKK
k1,k−1
↔ M-MAPKK

k2→Mp+MAPKK,

Mp+MAPKK
k3,k−3
↔ Mp-MAPKK

k4→Mpp,

Mpp+MKP3
h1,h−1
↔ Mpp-MKP3

h2→Mp-MKP3
h3,h−3
↔ Mp+MKP3,

Mp+MKP3
h4,h−4
↔ Mp-MKP3∗

h5→M-MKP3
h6,h−6
↔ M +MKP3.

Notice how, in the first two lines, phosphorylation and product dissociation are

considered a single step, while, in the last two lines, dephosphorylation and product

release are two distinct steps.

This system can be reduced to only four reactions, under the assumptions of con-
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Figure 4.2: Model of a level of the MAPK cascade. M, Mp and Mpp stand for the

unphosphorylated, monophosphorylated and biphosphorylated forms of MAPK.

stant number of ATP/ADP molecules and protein-protein complexes at steady-state.

These are the resulting reactions:

M
v1→Mp,

Mp
v2→Mpp,

Mpp
v3→Mp,

Mp
v4→M,

where the ratesvi are given by the following equations:

v1 =
kcat

1 ·MAPKK·M/Km1

(1+M/Km1+Mp/Km2)
,

v2 =
kcat

2 ·MAPKK·Mp/Km2

(1+M/Km1+Mp/Km2)
,

v3 =
kcat

3 ·MKP3 ·Mpp/Km3

(1+Mpp/Km3+Mp/Km4 +M/Km5)
,

v4 =
kcat

4 ·MKP3 ·Mp/Km4

(1+Mpp/Km3+Mp/Km4 +M/Km5)
.

In these expressions MAPKK and MKP3 are the total amount of molecules of the

two enzymes and are considered constant through time. The nominal values of the pa-

rameters and the relationship with the kinetics of the elementary enzymatic reactions

are as follows:

kcat
1 = k2 = 0.01,

kcat
2 = k4 = 15,
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Figure 4.3: Time evolution of the Mpp molecule of the MAPK model computed with

ODEs is shown. In the figure on the left, the model has the nominal parameter values

described in the text. In the figure on the right, the initial number of molecules of the

phosphatase MKP3 is incremented by 5%.

Km1 = (k−1 +k2)/k1 = 50,

Km2 = (k−3 +k4)/k3 = 500,

kcat
3 = h2/(1+h2/h3) = 0.084,

kcat
4 = h5 · (1+h5/h6+h−3 · (h−4+h5)/(h3 ·h4))

−1 = 0.06,

Km3 = (h−1+h2)/(h1+h1 ·h2/h3) = 22,

Km4 = (h−4+h5) · (h4 · (1+h5/h6+h−3 · (h−4+h5)/(h3 ·h4)))
−1 = 18,

Km5 = (h6/h−6) = 78,

M0 = 200,

Mp0 = 0,

Mpp0 = 300,

MAPKK10 = 50,

MKP30 = 100.

The particularity of these parameter values is that they areclose to a bifurcation

point. As it can be seen in Figure 4.3, the perturbation of a parameter value can lead

to a radical change in the behaviour of the ODE time evolutionof the double phospho-

rylated MAPK (Mpp). Again, as it was for the Schlögl model (Section 3.1.1), a set of

runs of theStochastic Simulation Algorithm(SSA) (Section 2.2.4) shows that the real

behaviour of the system with the nominal parameters is a choice between two stable

systems (see Figure 4.4). Moreover, thanks to [15], we know that this system, with the
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Figure 4.4: Time evolution of the Mpp molecule of the MAPK model computed with

the stochastic simulation algorithm (SSA) and the nominal parameters value in the text.

These 40 runs of SSA show how the evolution of the system may lead to two different

stable systems.

stated parameters, presents three steady-states, that we can consider three attractors

for the stochastic simulations. This situation is confirmedby the already mentioned

graph of the time evolution of Mpp in Figure 4.4, where, although the choice appears

to be between two attractors, this choice is delayed for someruns, that are likely to be

influenced by a central attractor.

4.3 Sensitivity analysis

In this section we apply both the classical approach and the techniques we developed

in Chapter 3 to the presented MAPK model. We will proceed witha comparison of the

methods throughout the analysis. Our choice is to measure the influence of the factors,

kinetics and initial number of molecules, on the amount of double phosphorylated

MAPK (Mpp). To do so, we choose the time of the analysis to be 2000 seconds.

This time, as revealed in Figure 4.4, is at the core of the choice between the two

possible behaviours of the system and is within the limits ofour possibilities in terms

of computational power, when using the SSA.
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Figure 4.5: Local OAT sensitivity analysis of the MAPK model at time 2000 seconds.

The result of classical analysis is shown in the first graph, while the result of the analysis

based on histogram distance is shown in the graph below. ODE time evolution is com-

puted with fractional step size of 0.0001, while we used 10000 stochastic simulations

and 50 histogram columns in the novel approach. The perturbation of each parameter

has been of 5%. The histogram self distance is 0.1.

4.3.1 Local one-at-a-time analysis

As a first step in the sensitivity analysis of the MAPK model, we performed a local

one-at-a-time (OAT) analysis. As we have seen in Section 2.3.3, it consists in the per-

turbation of one of the factors at a time and in the measurement of the corresponding

output change with respect to the original model. We used twodifferent measures:

the simple difference of the values of Mpp at time 2000 seconds generated using the

ODE based time evolution; the histogram distance between the sets of values of Mpp

at time 2000 seconds collected using stochastic simulations. With this first and com-

putationally cheap analysis, we can have an idea of the relevance of the factors in the

immediate surrounding of the factor nominal values. However, we have to bear in mind

that without a global analysis we cannot be certain of the implications that may arise
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Figure 4.6: Histograms that collect the values of Mpp obtained using 10000 stochastic

simulations. Each histogram is divided in 50 columns. On the left, all the histograms re-

sulting from the one-at-a-time (OAT) analysis, one for each factor perturbed, are shown.

On the right, a second OAT analysis with only the histograms relative to the perturba-

tions of the initial amount of MAPKK and MKP3 are shown. The histograms labeled

with nominal parameters are those generated with the values of the parameters stated

in the text.

from perturbing more than one factor simultaneously. This last information cannot be

neglected when trying to assert the influence of a factor on the model.

The results of the local one-at-a-time analysis are shown inFigure 4.5. The thirteen

factors are listed in the graphs from the most relevant to theleast. We can notice

that the relative order of importance is not particularly affected by the method used

for the analysis. However, with the first approach it appearsthat just the amount of

phosphatase MKP3 is the most relevant factor, while with thesecond approach, the

intuition is that both the amount of kinase MAPKK and phosphatase MKP3 are the

most relevant factors, above all the others.

This last statement can be proved to be correct, at least in this local analysis, show-

ing the histograms generated using the results of the stochastic simulations of the per-

turbed models. Figure 4.6 highlights that the initial amount of MAPKK and MKP3 are

both the most influential factors. Moreover, they play the strongest role in the choice

between the two possible stable systems. They have oppositeroles, since increasing

the amount of one of the two enzymes leads to opposite choices. It is indeed not sur-

prising that the condition of bistability is guided by the right proportion in the amount

of enzymes that catalyze the reactions.
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Figure 4.7: The result of the Morris’ method applied to the MAPK model. ODE inte-

gration uses a fractional step size of 0.0001. Result obtained with a grid level of 5 and

an average over 1000 random points. In the approach based on histogram distance,

1000 runs of SSA, 50 columns and 40 random points have been used and the average

histogram distance is 0.15 with standard deviation of 0.061. The parameters vary within

± 10% of their nominal value.

4.3.2 Screening with Morris’ methods

Before we proceed to a more detailed analysis, we wish to use ascreening method

to identify and then exclude those factors that are clearly the least influential. Once

we have isolated only a small part of most influential factors, we can proceed with

computationally expensive techniques that can provide themost detailed analysis. To

do so, we use the techniques we developed in Section 3.2 basedon the Morris’ method

(Section 2.3.4). As we have seen, we consider a range of possible values for each factor

and then we sample in the vector space generated by all the possible combinations of

values of all the factors. This sampling is done randomly andthrough the use of a

grid. We use here a grid level of five, meaning that each of the thirteen parameters can

assume one of five possible values. For each random point selected in the grid of all
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the possible combinations of values, a local OAT analysis isperformed. The indices

resulting from that are theelementary effectsthat are local with respect to that random

point. Averaging over all these local analyses reveals whether the degree of importance

of a parameter is constant or changes when the other factors assume other values. The

results of the Morris’ method applied to the MAPK model are shown in Figure 4.7.

Also in this case we compare the results obtained with a method that uses the time

evolution computed with ODE and a method that uses time evolution computed with

SSA. The ODE based approach highlights that, although the most influential param-

eters are confirmed to be the initial amount of MAPKK and MKP3,the elementary

effects of the factors are extremely variable. In this case it is difficult to say which

factors we want to include in the detailed global analysis, if we exclude MAPKK and

MKP3. The important standard deviation of the elementary effects is certainly due to

a correlation between the factors and the non linearity of the model output with respect

to the parameters.

Again, before discussing the results obtained with the Morris’ method based on his-

togram distance, we need to put forward the fact that we had tolimit the accuracy of the

analysis, due to the high computational complexity of the algorithms and the limited

computational power of our means. Each experiment is made of1000 stochastic sim-

ulations, number that leads to a relatively high histogram self distance of 0.150, with

also a standard deviation of 0.061. However, we have alreadyseen in the local OAT

analysis that the self distance can be considerable even with the more accurate preci-

sion of 10000 stochastic simulations (self distance of 0.1,see Figure 4.5). Therefore,

it appears that the point in time where we perform our analysis is particularly unstable,

with high stochasticity and indecision from the single runsabout which stable system

to choose. We can then assume that we have two factors that limit the accuracy of our

results: a limited number of stochastic simulations and a strong stochasticity already

present in the model.

The results of the Morris’ method based on histogram distance, shown in Figure

4.7, confirm the high non linearity of the model and the inconstant influence of the

parameters on the amount of double phosphorylated MAPK at time 2000 seconds.

On the other hand, this method appears to achieve a more precise information with

respect to the ODE based analysis. First of all, many parameters have reduced the

standard deviation of their elementary effect. We can be more confident when stating

that some factors are less influential than others. Moreover, it is more evident the

strong influence that is attributed to the initial amount of the enzymes MAPKK and
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Variance-based with ODEsVariance-based with histogram distance

index sensitivity rank sensitivity rank

S1 15695.65 1 0.350 2

S2 15308.66 2 0.332 3

S12 5631.88 3 0.811 1

Table 4.1: First and second order sensitivity indices relative to the factors MAPKK0 (1)

and MKP30 (2) of the MAPK model and their combined effect (12), obtained computing

the variance of the conditional expectation. The fractional step size used in the ODE

integration is 0.0001, the number of stochastic simulations used is 5000 and the number

of histogram columns is 50. The parameters vary within ± 10% of their nominal value.

MKP3. Finally, this second analysis assigns a different role to the factorsMpp0 and

M0. Here, they appear to have a stronger average sensitivity, though this sensitivity

may vary considerably (large standard deviation), showinga strong dependence on the

value of the other parameters.

4.3.3 Global analysis with variance decomposition

Thanks to the screening that we practiced in the previous section, we can now apply

a global and more informative method to a reduced set of parameters taken from the

factors of the MAPK model. The factors that proved to be the most influential are the

initial number of molecules of MAPKK and MKP3, so we investigate their influence as

single parameters and their combined effect. For this purpose we used the techniques

developed in Section 3.3. Again, a method based on differences of outputs of ODEs

and one based on histogram distances of executions of SSA arecompared. These

measures consider the variance of the output: while the former focuses on the variance

of the ODE output, the latter estimates the variance in the distribution approximated

by histograms. In both cases, the quantity of the variance that is due to each parameter

is identified. The results can be found in Table 4.1.

In both the approaches, the initial amount of MAPKK and MKP3 present the same

level of importance, with the former that is slightly more influential. The difference

lies in the importance that is given to the combined effect ofthe two factors. While

with the first approach the combined effect is considerably less than the single effects,

with the second approach it appears that the two parameters are more linked. Changing
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Figure 4.8: Distribution of the values of Mpp from 2000 stochastic simulations at time

2000 seconds, with simultaneous perturbation of MAPKK and MKP3. Above, from left

to right: number of molecules of the enzymes decreased by 20%, 10% and with their

nominal value. Below, from left to right: number of molecules of the enzymes increased

by 10%, 20% and 30%.

them together leads to a stronger influence with respect to a one-at-a-time change.

The visualizations in Figure 4.8 help to prove the connection and reciprocal influ-

ence of the factors of this model. In this figure one can see that the combined perturba-

tion of MAPKK and MKP3 leads to a variation of the distribution of the set of values

obtained with the stochastic simulations. Although the mean of these values appears

to be the same, the distributions seem to pass from a compact and largely gaussian

shaped (on the left) to a more irregular one, which begins to show the two peaks of

the bistability. This observations can be interpreted as the simple fact that increasing

the amount of enzymes accelerates the process, allowing thetwo stable choices to be

reached sooner. Other interesting visualizations are those in Figure 4.9, where we can

observe that the ODE integration fails to interpret the highstochasticity and indecision

present in the system at time 2000 seconds. However, also in this case, incrementing or

decreasing the quantity of enzymes accelerates or slows theproduction of MAPK-PP

(Mpp).
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Figure 4.9: Time evolution of the double phosphorylated MAPK (Mpp) with ODE for

2000 seconds, with simultaneous perturbation of MAPKK and MKP3. Above, from left

to right: number of molecules of the enzymes decreased by 20%, 10% and with their

nominal value. Below, from left to right: number of molecules of the enzymes increased

by 10%, 20% and 30%.

4.3.4 Discussion

In this section we showed an example of how a sensitivity analysis of a model of bio-

chemical reactions can be performed using the tools so far developed. As a first result,

we have shown how global analysis such as the Morris’ method first and the variance

decomposition after, are necessary and have to be used to identify the relationship be-

tween the factors. If we had to rely only on a local analysis, we would just accept the

order of importance given in Figure 4.5. However, thanks to the further application

of a global screening method (Figure 4.7), we have been able to state that this order

of importance may vary if we change the value of more than a factor at once. This

suggested, if not demanded, a further and more informative analysis concerning those

factors that seemed the most influential and dependent on theothers. In this case, we

showed the intuitive relationship between the enzymes MAPKK and MKP3, whose

simultaneous increment accelerates the system and whose proportions play the main

role in the bistability of the system.

As a second but not less important result, the comparison between classical and

novel approaches highlighted how, when dealing with bistable systems near a bifur-
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cation point, it becomes necessary to have a sensitivity analysis tool that takes into

account the distribution behind a set of stochastic simulations. Although the analytical

analysis of the ODEs is fundamental to identify the bifurcation points and the multi-

ple steady-states, ODE integrations cannot model the uncertainty in the time evolution

of the system close to those bifurcation points (compare Figure 4.3 with Figure 4.4).

In this situation of high stochasticity, a more suitable sensitivity analysis is one that

takes into account the variations between sets of stochastic simulations rather than the

simple output of a ODE integration. Here, for example, we have seen how a modified

version of the Morris’ method, identified some properties that the classical version was

not able to capture (Figure 4.7).





Chapter 5

Conclusions

In this dissertation we followed a very precise path. First,we described the kinds of

model we wanted to analyse and we identifiedsensitivity analysis(SA) as a tool to

collect information and understand properties of these models. Then, classical and

novel techniques were presented and compared. Our goal was to show how the SA of

models of biochemical reactions can be performed with the present means, understand

when these give poor or misleading results and investigate new methods that better

adapt in such cases.

One of the first conclusions that we verified when we applied SAtechniques has

been the need for a global analysis that highlights the relationships between the factors

of the model. If we assume that all the factors are uncertain within a range of possible

values, a local approach (such as the local one-at-a-time) is just able to capture sensi-

tivity indices that are conditioned on the choice of the nominal values. If we want to

quantify the influence of the factors on the output of the model and correctly identify

the role that these factors play, it is necessary to estimatewhether the influence of a

parameter changes when the other parameters assume other values, i.e. whether the

factors influence the sensitivity of other factors. This is possible only if the analysis

takes into account the entire space made by all the possible combinations of values of

the parameters. As we have seen, two methods that successfully aim to this are the

Morris’ method and the variance-based approach.

Since the beginning, during our analyses, we highlighted how ordinary differential

equations(ODE) integrations cannot model the uncertainty in the timeevolution of

the system close to bifurcation points. Using the more informative set of stochastic

simulations we showed that in this situation the choice is between two possible evolu-

tions, but this cannot be interpreted by ODEs, that for definition can compute only one

57



58 Chapter 5. Conclusions

of them for a set of possible parameters. For this reason we have considered models

with bifurcation points as those models that may be difficultto be analysed using the

classical SA approaches, that usually assume the time evolution of the system to be

computed using ODEs. Because of the capability of stochastic simulations of captur-

ing these fenomena, we pursued the development of SA techniques that make use of

them.

Another and maybe the most important result is that we have demonstrated that

the proposed novel techniques lead to more precise results with respect to the classi-

cal ones, at least in bistable systems with parameters set close to a bifurcation point.

We indeed proved that there is a need for sensitivity analysis measures that take into

account the variations between sets of stochastic simulations rather than the simple

output of ODE integration. We are confident in stating that the techniques we pre-

sented are a good starting point in this direction. Moreover, the application to a real

example, the MAPK signaling pathway, validated our hypotheses, giving also a more

complete and wider view about the effectiveness of developing sensitivity measures

that are specific and that can overcome the limitations of thepresent ones.

Finally, a fact that shouldn’t be underestimated is that themethod we analysed in

this work, both the classical and the novel ones, are intuitive and the measure that they

compute or estimate have a clear and intuitive meaning. Thisis an advantage with re-

spect to other proposed sensitivity measures like the ones based onFisher information

matrix (FIM) that still need a precise interpretation.

5.1 Future Work

We consider our work as a first step, a glimpse into the creation of a branch of sensi-

tivity analysis that is dedicated to analyse models whose time evolution is computed

with set of stochastic simulations. The way that has been followed was the adapta-

tion of present techniques and we believe that other techniques can be adapted as well.

However, many methods make use of analytical simplifications whose validity may be

difficult if not impossible to be proved when passing from ODEs to sets of stochastic

simulations.

As we have seen throughout the dissertation, the main issue has been the compu-

tational complexity of the methods, specially when using stochastic simulations. For

large models, with many species and many factors also using ODEs may lead to a time

of the analsis extremely long and unaffordable. Moreover, in order to have accurate
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estimations of the density distance between sets of stochastic simulations, often an ele-

vated number of simulations is required (usually 10000). For this reason it is important

to work on decreasing the computational complexity of thesemethods. A first idea is

to use approximated and faster versions of the stochastic simulation algorithm (SSA)

of Gillespie. Doing this, it would be important to verify whether introducing approxi-

mations in the computation of the evolution of the system intoduces errors also in the

sensitivity measures and whether these errors are negligible.





Appendix A

Extending Dizzy with a tool for

sensitivity analysis

A.1 Dizzy: a tool for modeling biochemical interactions

This section introduces Dizzy [17], a software tool for modeling biochemical interac-

tions, either with general mass action ODEs or stochastic simulations.

High-level description languages.Citing from the Dizzy user manual [18]: “Dizzy

is a chemical kinetics simulation software package implemented in Java. It provides a

model definition environment and various simulation engines for evolving a dynamical

model from specified initial data.” In Dizzy a text editor is present, where it is possi-

ble to describe a model with an high level language calledChemical Model Definition

Language(CMDL). This allows us to have a model definition that is independent of

the method that will be used in a second stage to model the timeevolution. Figure A.1

shows an example of CMDL for the Michaelis model of enzymaticreaction that we

introduced in Section 3.2.2. CMDL can also be converted toSystems Biology Markup

Language[2] (SBML), the most widely used high-level description language for bio-

logical models, and a SBML file can be imported in Dizzy as well.

Simulation engines. The simulation engines implemented in Dizzy are either

stochastic or deterministic: the SSA in its original version and other versions (like

LDM) that improve the computational complexity of the algorithm; approximate ver-

sions of the SSA, that improve the complexity but lose the characteristic of being exact

Monte Carlo simulations of the CME (we will not discuss thesehere, because we do

not use them in this dissertation); deterministic (ODE-based) algorithms for simulat-

ing chemical reaction kinetics, like the 5th-order Runge-Kutta algorithm with fixed or
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Figure A.1: Example of a CMDL file: the Michaelis/Menten model. Here the reaction

rate is computed explicitly, because it is surrounded by [·]. Without the square brackets,

Dizzy would have interpreted the value as the kinetic constant or the stochastic rate

constant, depending on the selected simulator (deterministic or stochastic). In that

case, the reaction rate would have been computed automatically by Dizzy.

adaptive step-size and the 5/4 Dormand-Prince ODE solver with adaptive step-size.

A.2 The extension

In this section we briefly present the part of the Dizzy tool that has been implemented.

Here we show and comment some screenshots of the tool.

In Figure A.2, the already existing interface of the simulator is shown. In this panel

it is possible to select the algorithm to be used to compute the time evolution of the

system. Parameters that are generic (such us the end time of the analysis) and param-

eters that are specific of one method (such us the number of stochastic simulations for

the stochastic simulators) can be tuned by using this interface. On the bottom, a list of

outputs of the simulation is available as a set of checkboxes. As a little extension we

introduced the checkbox “Histogram” that produces, at the end of a set of stochastic

simulations, an histogram like the one shown in Figure A.3. This histogram groups the

outputs of the simulations at the last time point in forty columns.

Playing with the simulator is extremely useful before usingthe sensitivity analysis

tools. This helps the modeler to become familiar with the model, understanding which

time points are the most interesting and having a first idea ofthe computational time

of the single simulations.

The sensitivity analysis tools are available under the menu“Tools” and then “Anal-
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Figure A.2: Simulator interface of the Dizzy tool.

ysis”. Three different panels have been created, one for each technique implemented:

local one-at-a-time, screening with Morris’ method and variance-based. However, the

structure of these panels is the basically the same, so we canshow just one of them

(see Figure A.4). On the left of the panel, inputs and outputsare listed and can be

selected. This way, it is possible to limit the analysis onlyon those factors that one is

interested in. The central part of the interface is the one dedicated to the tuning of the

parameters, either of the simulators or of the analysis itself. A combobox allows the

choice between the different versions of the sensitivity analysis, that can be based on

output difference of ODEs or average of stochastic simulations or on histogram dis-

tance of sets of stochastic simulations. For the three versions we used the same names

introduced in Section 3.1.2, that are ODEs, Gillespie average and Gillespie density.

On the right of the panel, informative labels and control buttons are present. Once the

analysis starts, the time at which it began is shown, as long as an estimation of the time

necessary to conclude, based on the first simulation that is performed.

Once the analysis is concluded, the sensitivity indices andother information spe-

cific of the analysis are shown in a table such as the one in Figure A.5. This is a

sortable table, i.e. it allows to sort the rows just clickingon the title of the column that

one wants to use as the criteria of sorting. Moreover, notes about the analysis, such as

histogram self distances or total sensitivity indices, areshown in the space right below

the table.
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Figure A.3: Histogram generated when using the checkbox “Histogram” in the simulator

interface, in Figure A.2.

Figure A.4: Example of a panel for a sensitivity analysis.
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Figure A.5: Table with sensitivity indices, generate by the analysis tool.





Appendix B

Models written in Chemical Model

Definition Language (CMDL)

Michaelis model

#model "michaelis";

E = 100;

S = 100;

P = 0;

ES = 0;

enzyme_substrate_combine, E + S -> ES, 1;

enzyme_substrate_separate, ES -> E + S, 1;

make_product, ES -> E + P, 1;

Schl ögl model

#model myschlogl;

X=247;

k1A=0.03;

k2=0.0001;

k3B=200;

k4=3.5;
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a1, -> X, [k1A*X*(X-1)/2];

a2, X -> , [k2*X*(X-1)*(X-2)/6];

a3, -> X, [k3B];

a4, X -> , [k4*X];

MAPK model

#model "mapk";

N = 1;

Mp = 0*N;

M = 200*N;

Mpp = 300*N;

MAPKK1 = 50*N;

MAPKK2 = 1*N;

MKP3 = 100*N;

k1cat = 0.01;

km1 = 50;

k2cat = 15;

km2 = 500;

k3cat = 0.084;

km3 = 22;

k4cat = 0.06;

km4 = 18;

km5 = 78;

v1, M -> Mp, [(k1cat*MAPKK1*M/km1)/(1+M/km1+Mp/km2)];

v2, Mp -> Mpp, [(k2cat*MAPKK1*Mp/km2)/(1+M/km1+Mp/km2)];

v3, Mpp -> Mp, [(k3cat*MKP3*Mpp/km3)/(1+Mpp/km3+Mp/km4+M/km5)];

v4, Mp -> M, [(k4cat*MKP3*Mp/km4)/(1+Mpp/km3+Mp/km4+M/km5)];
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