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Abstract

This dissertation presents a survey of the simulation tectes used to study the dy-
namics in time of biological systems. The attention in thegkvs focused on the sim-
ulation performance of the algorithms and on the optimaretithat have been adopted
to overcome the high computational load of exact stochasticilations. Since even
for small biological systems the number of reactions thatganerated can be in the
millions, an explicit modeling of each reaction as in thel&ipie Stochastic Simu-
lation Algorithm (SSA) leads to a high computational loadr Ehis reason it is im-
portant to have an efficient realization of the algorithm.eTinst part of this project
consisted of the extension of Dizzy, an existing chemigalgator, with new formula-
tions of the SSA called the Logarithmic Direct Method (LDNhHge Optimized Direct
Method (ODM) and the Sorting Direct Method (SDM). The exigtsoftware was also
extended with new features for performance analysis andhiimation of the various
algorithms over different biological systems. Three biital examples were selected
and a comparison between the new algorithms and the exiftingulations of the
SSA was made investigating scalability with respect to timalper of reactions.
Starting from the assumption that for many practical appiocns even optimisa-
tions of the SSA are still simply too slow to run without theeuss parallel computing,
the second part of the project focused on approximate msthétese sacrifice the
exactness of the SSA in favor of simulation performancelokoehg the good perfor-
mance results obtained by other two simulators, a hybridrdenistic and stochastic
simulator was implemented in Dizzy. Hybrid methods are dasethe assumption that
the stochasticity of fast reactions involving species vatlarge population becomes
negligible with respect to the dynamics of the system alhguis to approximate the
discrete event simulation of the SSA with a more efficienedatnistic simulation.
Newly developed features of Dizzy were extended and adapi@dier to measure, by
using an histogram distance, the accuracy of the newly dpedl hybrid method. The
final goal of the project was to compare the performance afdh#imulators with the
performance of efficient formulations of the Gillespie $tastic simulation algorithm.
A series of models was used for this analysis and results ev@leated and discussed.
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Chapter 1
Introduction

Over the last decade, developments in high-throughputrewpatal techniques and
the increase of genomic data have supported the systerd-Bppeoach studying bio-
logical systems. Understanding how biological systemkugoa valuable resource for
better comprehension of the biology of disease and for mddeén drug discovery.

It is widely accepted that biological systems can be coms@tlas complex sys-
tems where the interaction of a number of simple but specifictional elements lead
to emergent properties and behaviours. Different appesblave been proposed for
modelling and simulation of such complex systems. Staffiiom the position that,
even if complex, biological systems are deterministic, maatatical models involv-
ing Ordinary Differential Equations (ODE) [18, 14] have hdgstorically proposed
for the simulation of chemical reaction systems. This asialis applicable only for
chemical systems where the population of reactants is Emgevhere dynamics can
be approximated as a continuous system. Indeed, on a sta#dl{sopulation system
these models fail to capture the randomness of the colbdi@tween molecules that
are the basis of all chemical reactions.

A better abstraction that takes into account the stochssind the discreteness of
the system is given by the stochastic simulation algoritB®A) introduced by Gille-
spie in [9, 10]. In contrast with the ODE based approach thadets the evolution in
time of the concentrations as differentiable functions, #5A takes into account the
number of molecules of each species and using a discretg-gveulation, based on
the theory of Markov processes, estimates the evolutiomia bf the system. More
precisely, using Monte Carlo techniques the time of the meattion event is esti-

1



2 Chapter 1. Introduction

mated and, considering the likelihood of occurrence of @aahtion, the next reaction
to occur is selected. A simple algorithm is then used to upta state of the system
according to the state-change vector of the reaction. Tppscach is more precise
than ODE-based models in simulating the evolution of a lglal system, because it
is rigorously based on the Chemical Master Equation (CME)[1. However, a signif-
icant disadvantage is the computational cost of the praesdavolved. Since even for
small biological systems the number of reaction eventsategenerated can be in the
millions, explicit modeling of each reaction as in SSA letals high computational
load. For this reason it is important to have an efficientizatibn of the algorithm.
A number of mathematically equivalent formulations of SS#vér been proposed in
order to reduce the computational cost of simulations. dke formulations focus on
reducing the time needed to locate the next reaction to fines dperation is in fact the
most expensive step of SSA and to reduce its computatiosahoeans that we would
considerably increase the number of reactions that ardaietlper time unit.

However, for many practical applications even optimisagiof the SSA are still
simply too slow to be run without the use of parallel compgtiRor this reason some
approximate methods, which sacrifice the exactness of tlheis&vour of simula-
tion performance, were introduced. Gillespie in [12] pregd the tau-leaping method
which, by using a Poisson approximation, takes time stagetdahan the firing time
of a single event and can “leap” over many fast reactions ppdoximate the stochas-
tic behaviour of the biological system. Subsequently thethad has been improved
in [24] in order to overcome the stability problem of the taaping when simulating
stochastic systems with vastly different timescale reasti The multiscale time na-
ture of many biological systems, known in deterministicgiamions asstiffnesg21],
has also motivated the formulation of hybrid methods thatlzioe the traditional de-
terministic approach with the SSA. In conclusion the MSSA][3vhich relies on the
use of the stochastic partial equilibrium assumption, lEeslyecently formulated and
proposed as an improvement of the hybrid methods.

1.1 Motivations

Computational performance is a significant limiting factidren models with a high
degree of complexity are simulated. For example, an efficidrole cell simulation
is still a difficult task to address in a reasonable time with tse of a typical desk-
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top computer. The exact stochastic simulation of a cellepélan E.Coli, which has
been estimated in [6] to involve between!4@nd 13° events, could require even
years in order to be executed on a single processor comgtdethis reason study-
ing optimisations of the stochastic simulation algorithmith the aim of reducing the
computational load of exact stochastic simulation, is § @etive field.

However, a theoretical performance analysis of the diffefermulations of SSA
is a difficult task to address. The number of operations reguby each formulation
of SSA to find the next firing reaction is in fact strictly reddtto the biological sys-
tem that is being simulated. Thus a general analysis of t@ri#hm should take into
account a test-set of different representative biologigatems. Moreover, even if the
average number of operations required to locate the nestioeas minimized, partic-
ular attention must be paid to the computational cost reguio maintain the possibly
optimized data structures used to store reactions. Reesotts [34] highlight that
the optimised direct method (ODM) is, in most cases, the toestulation of SSA.
This in contrast with the common belief that the Next Reacfibethod (NRM) of
Gibson and Bruck[25] is the fastest implementation of SSgabse it comes with the
best data structures to keep track of the reactions. Thigsisdbecomes even more
difficult when approximate methods like Hybrid Methods [T] br tau-leaping[12]
procedures are considered. Indeed, in this case the tfabetaveen the approxima-
tion introduced and the gain in performance must be takendaotount. In the light
of these results the development of a software with opticheenulation algorithms
and new tools for the performance analysis of the simulat@am be of immense help
as an aid to those attempting to understand stochasticaimubilgorithms or invent
better ones.

1.2 Objectives

The practical aim of this work was to extend Dizzy, an exptaemical simulator,
with novel formulations of the SSA called the Logarithmia&it Method (LDM)[16],
the Optimized Direct Method (ODM)[34] and the Sorting Dirétethod (SDM)[19].
In order to evaluate the efficiency of these algorithms Diwag extended to track the
performance of the algorithms during the simulation. Ttig pf the project resulted
in the implementation in Dizzy of new features for the viszetion of candle stick
graphs expressing the reactions per second of the difffsemulations of the SSA
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over various biological systems. Our objective was to rueséhthree different SSA
formulations on a set of biological models with differenacgon number magnitudes
in order to test the scalability of their performance witbpect to the number of reac-
tions.

Successively, following the good performance resultsiabthby other two sim-
ulation software, BioNets [5] and COPASI [29], we decidednbplement in Dizzy a
hybrid deterministic and stochastic simulator. Our finadlgeas to have a simulation
framework with a wide range of simulators in order to beginiratial performance
analysis. To compare the performance of the exact and th@x@pgate methods of
Dizzy newly developed features of the software were extdiadhel adapted in order to
measure, by using an histogram distance [36], the accuffabg approximated meth-
ods.

We believe that this extension can contribute to furthedission the ongoing anal-
ysis of stochastic simulations of biological systems. Trigect attempts to create a
software framework for performance analysis of differantidation algorithms that
will help in identifying the most appropriate simulatiomalithm for different biolog-
ical scenarios.

1.3 Related work

Several software tools are currently available to simulhéedynamic behaviour of
chemical reaction systems. However, to the best of our kdge@one of them offer a
framework for a quantitative analysis of the performancthefsimulation algorithm.
As mentioned in the previous chapter, due to the high contiput load of SSA,
performance plays an important role when practical exasngte simulated. Various
performance comparisons between formulations of SSA cdoural in the literature.
For example, the performance of the Logarithmic Direct Metis compared in [16]
in terms of reactions per second with the performance of tdwedsrd direct method
and of the optimized direct method. However, these analgsesisually carried out
by implementing ad-hoc code and are evaluated over a snsdibée¢ of biological
examples. Since performance is strongly dependent on tlueenaf the biological
system and on the realization of the SSA, the implementaifoa tool capable of
comparing the performance of different SSA formulationsdamumber of different
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biological systems could be very useful for further perfanoe analysis.

In this research the extension of various different simaitatools like Stochkit
[35], E-Cell [15], BioNets [5], COPASI [29] and Dizzy[31, B@vas considered for
this purpose. Overall Dizzy was chosen due to some of itsaciristics as mentioned
below.

First of all Dizzy comes with a wide range of different simiida algorithms sharing
a common model definition which does not require further rication in order to be
run over the different algorithms. Secondly the modulaigtesf the tool in which
each simulator is an independent part of software that shaith the others a well-
defined interface, facilitates the implementation of bb#hriew simulation algorithms
and the performance analyser. In conclusion, the podgibitiered by Dizzy of cre-
ating reusable templates enables us to test the perfornwdiribe different SSAs on
many biological systems.

1.4 Structure of the dissertation

Including this first introductory chapter which also surseglated works, the thesis
consists of six chapters. The next chapter proceeds towekiebackground material
needed to understand this work. Chapter 3 then presenty,Riwz software which
was extended, and outlines the main step of the implementafihapter 4 introduces
the biological models that have been used to test and eedlnatsoftware. Chapter
5 includes a performance analysis of the simulation algor#t over the biochemical
model presented in the previous chapter and discussesdihiésrebtained. Finally in
Chapter 6 conclusions are drawn and future directions ofvttr& are discussed.






Chapter 2
Background

This chapter reviews the theory underlying the three difietapproaches, determinis-
tic, stochastic and hybrid, that have been used to simuiatdynamics of biochemical

reacting systems. Finally a technique that can be used teuredifferences between
the results of distinct simulation algorithms results isganted.

2.1 Deterministic approach

Taking the assumption that a chemically reacting systerstisrohinistic, such as that
given an initial state always leads to same dynamics, thiigwo in time of a well-
mixed biological system has been traditionally studiedgsi mathematical formalism
in which continuous variables evolve deterministicalljnose mathematical models
usually involve a set of coupled ordinary differential etioias (ODES) that drive the
evolution in time ofX; continuous variables whose values correspond to the piiqula
of S(i =1,...,N) chemical species. The set of coupled ordinary differewiipiation
is known as the reaction rate equations (RRE) and is givehdjormula:

% = fi(Xy,...,Xn)  (i=1,...,N) (2.1)
where thef; terms are functions derived from the reactions that deperti®change
of concentration over time of the reactants. This model leenlshown to work quite
well when the population of the various species are quitgeland for this reason is
usually expressed with; concentration variables that represent ¥pgopulation in
terms of moles per volume. Note that when the population efvidriables is given
by theX; variables expressed in number of molecules, the real véha¢shey assume

7



8 Chapter 2. Background

are considered to be an acceptable approximation as loing asitnber of molecules
is large. In this way the relative error can be neglected. M8maller systems with
concentration larger relative to one are considered thehasiic nature of chemical
reactions cannot be ignored and the deterministic approadt be substituted with
other methods able to capture stochastic fluctuations.

2.2 Exact stochastic simulation methods

This section briefly reviews the Stochastic Simulation Aithon, formally presented
as the Direct Method of Gillespie [9, 10], and its main diffieces with other SSA
formulations such as the Next Reaction Method (NRM) of Gibaod Bruck[25]. The

Stochastic Simulation Algorithm is an exact procedure femerating a realization of
the Chemical Master Equation (CME) [9] and then for compitive evolution in time

of a “well-stirred” chemical reacting system. In generahamical reacting system is
defined by:

e anumber of molecules ™ different chemical speciesS;, ..., Sy}
e aset ofM chemical reaction$Ry, ..., Ry} through which the molecules interact

e The state of the system at a timevhich is expressed by a vectd(t) =
(Xa(t),...,Xn(t)) whereX;(t) denotes the number of molecules of the species
S at timet.

o Each reactior; is defined by two quantities:

— A state-changeectorvj = (v1j,...,Vnj) Wherey;; denotes the change in
the S molecular population caused by oRgreaction.
In other words when reactioR; occurs the system moves from the state
vectorx to state vectox +v;.

— A propensity functiorg;j(x) that, givenX(t) = x, is defined as the proba-
bility that one reactiofr; will occur in the system in the next infinitesimal
time interval[t,t + dt].

In the SSA the system is simplified and is assumed to have datdnslumeQ
and a constant temperature.
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2.2.1 Chemical Master Equation - CME

The mathematical basis for the CME is the probabHity, t|Xo, to).

e P(x,t|Xo,t0) is defined as the probability that, givéity) = Xo, the system will
be in the stat& at timet or equivalentlyX(t) = x.

The CME gives a recursive definition of the time evolutiorPgx, t|xo,to) as follows:

5P(X, t‘Xo, to)

M
5~ 2 [i(X=V)PXx—vt|xo.to) —aj(X)P(x,t[xo.t0)]  (2.2)

=1
The average behaviour &f(t) can be derived from the CME by multiplying by all the
x and then summing over all theobtaining:

M
= Y X)) 23)

If no fluctuation are assumed théw;(X(t))) = v;j(X(t)) and it is possible to rewrite
(2.3) as:

—qr = 2 ViX(®) (2.4)

It can be seen that the equation (2.4) corresponds to the RRE m equation (2.1)
with the termsf; corresponding to the functiorys vij (X(t)). Thus, under the condition
of no fluctuation a way to derive the deterministic approadueh starting from (2.2)
has been shown.

2.2.2 Stochastic Simulation Algorithm - SSA

Since the equation (2.2) corresponds to a set of coupled @@&s be solved analyt-
ically for a few simple examples. Moreover the CME compubes\tariation in time
of the molecular species without taking into account thetdiattons of the chemical
reacting system that is natively stochastic. Indeed th&/aeca solution of the equa-
tion (2.2), in the hypothetical case in which the system l@a#uctuations, gives us a
continuous description of the system.
In contrast the SSA implements a way to compute numericéizeg@ns of (2.2)

which can be used to simulate trajectories<@f). This simulation procedure is said



10 Chapter 2. Background

to beexactbecause it is based on a discrete stochastic simulationesy eégaction
event that occurs in the biological system, thus produa@sglts that do not introduce
approximations to the CME. This leads to a good degree ofracgulbut it is extremely
expensive in terms of computation because the operatiensath computed are pro-
portional to the number of reactions observed.

The mathematical basis used to simulate the trajectori@sésv probability func-
tion P(t, j | x,t) which has the following definition:

e P(1,] | x,t)=the probability that, giveX(t) = x, the next reaction in the system
will be Rj and will occur in the time intervdt +1,t + 14 dt).

The formal definition of this probability is obtained by jawg the probability density
function of an exponential random variable that gives theetio the next reaction
(t) and a random variable that gives the index of the next r@actlThe former has
mean Yap(x) and the latter is a statistically independent integer ramdariable with
probabilitiesa; (x) /ag(x), whereag(x) is defined ag M ; ax(x). The joint probability
density function known as the Next Reaction Density Fumcfic3] is:

1) = ag(x)e 0T 5 ) o oaoxr
P(T,j | X,t) = ag(x)e~ 2T x 20(X) aj(x)e"% (2.5)

Starting from (2.5) several formulations of the SSA havelm®eloped for computing
samples oft and the reaction indek through a Monte Carlo procedure. One of the
first formulations is thé®irect Method[9, 10] in whicht and | are selected using two
random numbers;,r, which are generated from the uniform distribution in thetuni
time interval[0, 1]. The formulas for the generation oand| are the following:

1 1
1= mln(a) (2.6)

j
j = the smallest number suchthi aj/(X) > raap(x) (2.7)
=1

These formulas can be used to iteratively sefjeghdt and make the system ad-
vance to a next state in accordance withvhstate-change vector. In this way numer-
ical realizations ofX(t) can be generated. The pseudocode of the whole algorithm is
given in Figure 2.1.

The high computational load of such algorithms can be trdoettie operations
of the equations (2.6) and (2.7) andSbep 2 of the algorithm. The efficiency of
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1. Initialize the time t=tp and the the system s state Xx=Xp

2. Wth the systemin a state x at tine t, evaluate all the aj(x)
and their sum ag(X)

3. Cenerate values for T and j using (2.6) and (2.7)
4. Fire the next reaction by replacing t«—t+4T1 and X« X+V;

5. Record (x,T) and go to Step 2 or end the sinulation
Figure 2.1: Pseudocode of the Direct Method

these operations is in fact highly dependent on the numbezaaftionsM. Different
formulation of the SSA rely on optimisations of (2.7) andSbép 2 reducing the time
needed to locate the next reaction to fire and the time needgudate the probability
of each reaction. The next sections give a survey of the ngisifisant formulations
of the SSA.

2.2.3 First Reaction Method - FRM

One of the earliest elaborations of the SSA is Hirst Reaction MethodFRM) pre-
sented as an alternative to the Direct Method in [9, 10]. TRMFselects the next
reaction to fire by generating random numbersy, ...,y from the uniform distribu-
tion [0, 1] and computing:

Ini. (j’=1,..,M)

T/ =
i’ aj/(x) I'J/

T and| are selected as follows:

T = the smallest of the;
j = the index of the smallest,

This way of generating and | is in accord with the probability density function (2.5)
however for chemical reacting systems with many reacti@mokls this system is less
efficient than theDirect Method Indeed, generatinlyl uniform random numbers at
every step of the simulation is very time consuming. Thiatgm exhibits a time
complexityO(M) for the operations required to find the indegf the next reaction to
fire and does not optimize the update process propensiterseaith reaction.
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2.2.4 Next Reaction Method - NRM

An improvement in performance has been obtained byNegt Reaction Method
(NRM) presented in [25] by Gibson Bruck. This algorithm ised on the idea that
in general the execution of a reaction affects the propessaf only a small number
of reactions. Starting from this assumption the NRM attesptreduce the number
of operations needed to perform titeep 2 of the SSA by pre-computing, before the
simulation, a reaction dependency graph. This graph carsée 10 update only the
propensities of reactions that have been modified by thditastreaction. This opti-
misation substantially reduces the number of calculatadr ep 2 in most models.
In that regards the selection ofand j in this algorithm is essentially a modification
of the First Reaction Method. As in the FRM tiM: putative next firing times are
computed at each iteration. In addition the NRM reducesithe heeded to locate the
minimal T by keeping the computer): in a binary indexed priority queue. This heap
structure is constructed and maintained so that each paoeetis always earlier than
its daughter nodes. This method is faster than the DM whemtingber of species
N and the number of reactioMd are large. However, one disadvantage of the NRM
is that during execution most of the computational time isdu® maintain the heap
structure and this becomes a limiting factor with very laagd very coupled systems.
The construction and the meaning of the dependency grapbrit wxplaining with
the example in Table 2.1 as reported in [19].

Name | Reaction | Depend on| Affects | Update
R1 A— B A A,B R1,R2
R2 B—C B B,C R2,R3
R3 | C+D—E C,D C,D,E | R3,R4,R6
R4 E—E+F E F RS
RS F—A F AF R1,R5
R6 E—B E B,E R2,R4,R6

The main steps of the Next Reaction Method are summarizeyuré-2.2.

Table 2.1: Example of dependency graph
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1. Initialization

e Ceneration of the dependency graph

e Calculation of propensities and generation of Ty
using M random nunber.

e Each 1y is inserted in the heap structure.

e Get fromthe heap the smallest 1 and fire the related reaction.

2. lterate
e Using the dependency graph update the a’j(x) propensities
that have been nodified after the |ast reaction.
e Regenerate related 1y and insert themin the heap.
o Get fromthe heap the smallest 1y and fire related reaction

Figure 2.2: Pseudocode of the Next Reaction Method

2.2.5 Optimized Direct Method - ODM

The Optimized Direct Method (ODM) enhances the performaridbe DM reducing
the number of operations that are performed to find the @adtiat satisfies (2.7).
The ODM achieves its efficiency by pre-ordering the reactisa that the reactions
that are executed more frequently, those with larger prsipefunctions, are moved
into the first positions in the search order. The assumptiaierlying the pre-ordering
is that most biological systems are made by a small numberegléntly occuring
reactions and a majority of reactions which are fired infeedly. The pre-ordering of
the reactions is determined by executing a pre-simulatian aitial time less than the
whole simulation time. In this way the ODM eliminates the haad of maintaining
a heap data structure while improving the speed of findingnthé reaction to fire.
In practical applications several pre-simulations arededeto determine an optimal
order of the reactions, furthermore this approach relieshenstrict assumption that
the biological system that is analyzed has an initial reactixecution behaviour that
is representative of the whole simulation.

2.2.6 Sorting Direct Method - SDM

The Sorting Direct method (SDM) [19] is another optimisatad the DM that has been
developed in order to address the problem of the costly ipnatation of the ODM.
The main idea of this algorithm is to reduce the cosBidp 2 by moving at each
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iteration the reaction that is fired towards the top of thetiea list. In this way the
next time that this reaction will be fired its average seamghtld will decrease and the
more probable is the reaction the smaller will be its avessgach depth. According
to results presented in [19] in most models this method étehibn a long running
simulation, performance that is substantially better tther of the ODM. This is due
to the fact that as the run continues the ODM could increasavlrage search depth
because the pre-simulation has not effectively predidiedréaction behavior. The
pseudocode of the algorithm is given in Figure 2.3.

1. Generation of the dependency graph

2. Initialise the Search order as the given order of the
reactions

3.Initialise the time t=ty and the systemstate x=Xxg

4. Wth the systemin a state x at tine t, evaluate the
aj(x) modified by the last fired reaction and the sum ag(x)

5. Generate values for 1 and j using (2.6) and (2.7)
6. Fire the next reaction by replacing t«t+1 and X« X+V;j

7. Swap in the Search Order the selected reaction
i’ with the reaction j —1.

8. Record (x,T) and go to Step 4 or end the sinulation.

Figure 2.3: Pseudocode of the Sorting Direct Method

2.2.7 Logarithmic Direct Method - LDM

The ODM and SDM are based on the reduction of the average dejpitch of the
next reaction to fire. Those algorithms are strictly basetheroriginal description of
the Direct Method [9, 10], thus they recalculate each tineeshmmatiorag(x) used

in the equations (2.6) (2.7). Sineg(x) is first calculated in (2.6) and then some of
the propensities;(x) are successively accumulated in the summation in (2.7)esom
propensities are summed almost twice. The assumption démeogarithmic Direct
Method [16] is that the whole recalculation of the teaig(x) can be avoided by keeping

a vector with the partial summation of the terej$x). This vector can be successively
updated, at each step of iteration, only from the point whieesfirst partial summa-
tion has changed. The next reaction to fire can be efficieatdgited by performing a
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binary search, with search key equaltap(x), over the vector containing the partial
summation. In this way the average search depth can be doclogM). The
pseudocode of this method is given in Figure 2.4.

1. Generation of the dependency graph

2. Initialise the vector subtotalwith the
partial summations of the propensities aj(x)

3.Initialise the time t=ty and the system s state x=Xp

4. Wth the systemin a state x at time t
eval uate the aj(x) according to the dependency graph.

5. Recal cul ate the vector subtotalfromfirst point
whi ch has changed according to the dependency graph

6. Cenerate values for T according to (2.6)
usi ng subtota[M] instead of ag(x).

7. Sel ect the next reaction j such that
subtotalj — 1] < rpsubtota[M] < subtotalj]

8. Fire the next reaction by replacing t«t+T1 and X < X+V;

9. Record (x,T) and go to Step 4 or end the simulation.

Figure 2.4: Pseudocode of the Logarithmic Direct Method

2.2.8 Accuracy of SSA formulations

Different formulations of the SSA exhibit different perfoance as well as a different
degree of accuracy. Indeed even if the ODM, the SDM and the Ldd&all derived
from the Direct Method of Gillespie, which is an exact statimsimulation method,
the way in which they order the list of reaction propensitias affect the accuracy
of equation (2.7) in a different way. As discussed in moreaiiét [13], the ODM
and the SDM arrange the reactions in order of decreasinga$ipeopensities and
this can affect the accuracy of the accumulator used in thecken (2.7). Gillespie
in [13] proposed the following example to explain this phe@ma: consider that we
were carryingk decimals in the accumulator in left term of (2.7) and suppbse
the propensity function with the highest search order indéxorders of magnitude
smaller tharay, in this case the reactidRy never fires at all because of the numerical
truncation on the accumulator. In contrast, the LDM is né¢@kd by this accuracy
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problem because it allows an arbitrary order of the propesdiefore the computation
of the vector with the partial summation and successivetinduhe binary search does
not compute any sum.

2.3 Approximated stochastic methods

Approximations of the SSA have been developed in order tocovee the high com-
putational load of an exact discrete event stochastic sitioul. This section presents
three promising techniques, the tau leaping, the Hybridndeétand the MSSA that
have shown to considerably increase the performance ofitelation, yet giving
satisfactory results. To conclude, a simple techniquedaatbe used to measure the
approximation that is introduced by these methods is resew

2.3.1 Tau-leaping method

This method is based on a Poisson approximation that can e arathe occurrence
probability of a reaction when, given a system in a stateat a timet, there exists

a timet > 0 such thataj(x) does not change its value by a significant amount in
the time intervalt,t +1). In this case, considering thaj(x) remains approximately
constant over the timg,t 4 1), the numbers of firings of the reacti®) during the

time intervalt,t + 1) may be expressed by a Poisson random variable with mean and
variancea;(x)tT. When this condition is satisfied by all the reactions it isgible to
write X (t 4+ 1) in the form of the basic tau-leaping formula:

M
X(t+1)=x+ ) Pj(aj(X)1)v] (2.8)
=1

wherex = X(t) and the ternP;j(a(x)1) is a statistically independent Poisson random
variable with mean and varian@g(x)t. As presented in [13], starting from (2.8)
the strategy in Figure 2.5 can be used to generate a stockastilation.Step 1 is

the most difficult part of this process. Estimating an appatp largest leap timeg,
which does not produce a change in the propensity functieatgr than user-specified
parametek, is in fact a difficult task to address. To discuss the detdilsn optimal
estimation oft is beyond the scope of this thesis, for more informationrrefd38].
The tau leaping technique gives very good results when alighctions have similar
time scales. Therefore, in this case the timthat satisfies the leap condition can
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1. Wth the systemin a state x choose a value 1
that satisfies the |eap conditions.

2. for each j+ a sanple kj+ of the Poisson randomvariable a(x)t.

3. update the state x with x+ykjv;
Figure 2.5: Tau-leaping algorithm

be large enough to jump over many fast reactions. Howeveh miany biological
systems which are characterized by having multiple scalésnie behaviour of the
reactions, the original or “explicit” tau-leaping methoeldomes very slow. Indeed in
this case, the time must be restricted to the smallest timescale in order tsfgatie
leap condition. The “implicit” tau-leaping method relievthis problem by replacing
the equation (2.8) with the equation:

X({t+1)=x+ [Pi(aj(x)1) —aj(x)t+a;(X(t+1))1]V] (2.9)

J

M=

The advantage of this formula is that it can be numericallyesbimplicitly for the
statex at timet + T by using Newton’s method. This enhances the stability otaliue
leaping method allowing the use of larger values.ofThe equation (2.9), however,
overdamps the fluctuations of the population of the fastisgethus those populations
must be readjusted by using a technique known as “downsgjiiftMoreover both the
tau-leaping methods canot guarantee that all reactanévakmain positive. Indeed
computing more than one reaction at each step of iteratiotezal to negative values
of molecular numbers when one or more reaction consume the sgactant. Negative
numbers of molecules do not have any biological meaningmodder to address this
problem it is possible to mark some reactions as “criticald éorbid them from firing
more than once per time. This clearly results in a loss ofgperénce.

2.3.2 Hybrid deterministic and stochastic models

Because the computational load of the Stochastic Simul&tigorithm is proportional
to the number of reactions performed, when many moleculé$ast reactions are in-
volved they become quite inefficient. Indeed, even if songh filequency events do
not make a considerable contribution to the dynamics ofyetes, the SSA simulates
every reaction event spending most of the time in simuldasgreactions.
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Several biological systems show a multi-scale behaviowhich fast reactions
quickly reach a stable state and slow reactions drive thamyes of the system. This
becomes a limiting factor for many practical applicatioMoreover, when reactions
involve species with a large population, the stochasticftthose reactions becomes
negligible with respect to the dynamics of the system andlikerete event simula-
tion of the SSA can be replaced by a more efficient deterniénisbdel simulation.
The idea behind Hybrid Methods is to partition the reactiohshe system in two
groups, one corresponding to the reactions that are moogeetly simulated with de-
terministic continuous models and another one correspgniadi reactions that must
be simulated with a discrete event driven stochastic sitimaFinally the simulation
of the whole system can be obtained by combining the resuftireg from the two
approaches.

After a brief review of the approaches that have been usealtiipn the reactions,
this section introduces two methods that have been propnsader to combine de-
terministic and sochastic simulations: the hybrid metHg8pR] and the MSSA [37].

2.3.2.1 Reactions partitions

Determining which fast reactions should be simulated wittegerministic model is
still an open problem. Three different criteria have beeyppsed in order to address
this:

1. Make use of biological insights coming from experimentsxperience.

2. Run a full SSA and by analysing the number of times that ati@ais fired
choose as fast reactions those with the highest averagensiies.

3. Choose during the simulation how to model a reaction baseitie number of
molecules of the reactants and on the reaction propensittitn.

The first criteria can be based on ad-hoc laboratory expeatswe driven by simple
assumptions like modelling the gene regulation parts sistatally and the metabolic
reactions with a continuous deterministic model.

The second criteria is a general purpose approach basec atyttamics of the
system during the simulation time of interest. Its main dragk however is the com-
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putational load required to run one or a few times a full SSfoteethe simulation, but
this is a tolerable condition if one considers that most efdbmputational cost in the
SSA is determined by the execution of many different runs.

The third criteria consists of adaptively choosing durihg simulation how to
model the reactions based on the current population anceanutinent reactions propen-
sities. Since the way in which reactions must be simulateddcohange in time, a
dynamic partition is in theory more flexible and more acaeithan a static partition.
However, a formal and standard threshold for such partitgphas not yet been de-
fined. Two possible measures, one based on the reactant@apopuanother on the
reactions rate, are given in [26]. The main problem is thatlmble measure that
expresses how the stochastic fluctuations of the reactfestahe dynamics of the
system is not yet available. Nonetheless this partitionguipnique is widely used in
many hybrid simulators, like Bionets [5] or COPASI [29], dmals shown to give good
results with many biological models as long as the user-défparameters that define
the threshold are correctly tuned. Recently in [33], somdesnce that can be used
to set these parameters has been identified in the diverdactce (computed as the
sum of the Laypunov exponents) of the system that is coresided possible draw-
back of the dynamic partition method is the computationarbead introduced by the
partitioning process that can possibly result in simuladithat are slower than those
that can be obtained with pure stochastic methods. Thigipamg criteria is also not
compatible with the MSSA method that requires the definitibtihhe reaction partition
a propriin order to compute the stochastic partial equilibrium & tast reactions.

2.3.2.2 Hybrid method

Following [1] the mathematical justification for the hybntethods can be understood
by defining a functiorN;(t) that counts the number of times that a reactiynoc-
curs in the time intervalt,tp). This function can be defined using the following time
transformation:

gi(slt) = [ ay(X(1))ct (2.10)

where a;j(X(t))dt is the probability introduced in Section 2.2 that oRg reaction
will occur in the infinitesimal time interval,t 4 dt) or equivalently, giveril(t) as
the first time in whichR; occurs aftett, thatTj(t) € [t,t +dt). Since the reactions
are assumed to be locally independent it is also trueR(igi(t), Tk(t) € [t,t +dt) =
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aj(X(t))ax(X(t))(dt)2 Usinggj(slt) and considering the following definitions:

1. &k as a series of exponential random variables with parameter 1
thus having?(§ € [x,x+dx) = e *forall x>0, with j=1,...,M andk € N.

2. Sj(n) = Y1 &k

the Poisson procedg (t) can be defined as follows:

0= 3 Lsm=aio) 2.12)

It is then easy to show that for all the reactiopshe probability that exactly one
reaction evenR; occurs in the infinitesimal time intervel is equal to:

PIN; (t +dt) — Nj(t) = 2IX ()] = a3 ((X) (1))t (2.12)

ThusN;j(t) andTj(t) have the same probability law and this implies, accordininéo
definition ofN;j(t), that

the random variabl&;(t) has the same law (gjj‘l(Exp(l)|t) (2.13)

Furthermore it also implies that equation (2.4) that motlesevolution in time of the
number of molecules can be reformulated as:

M
Z vjdN;j(t) (2.14)
The mean of the Poisson procégsis therefore derived as

EIN ()] = EIN() — 0it10))% = [ Elay(x(9)]as

and the relative fluctuation betwedlj(t) andgj(t|to) can be calculated as

VEIN;(t

)—gi(tho)] 1
ENj(

J
t)] ~ VEN(1)]

(2.15)

According to the equation (2.15), when the propenaitys large and the population
of the reactants involved in the reactiBy are not too small, it is possible to approxi-
mate the dynamics of the stochastic part with the tgyhjto) and then to model this
reaction deterministically. In this way, assuming that $lgstem has been partitioned
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in reactions that have to be modelled deterministicallfthvimdexesj € D, and in
reaction that must be modelled stochastically, with indgxe S, the time evolution
equation (2.4) can be reformulated as:

dX(t) = Jgbvja(X(t))dtnL Jgsv,dNJ (t) (2.16)
The equation (2.16) is the basis of the hybrid method. A siiedl version of the

algorithm that can be used to generate numerical realizatd (2.16), by using one
deterministic simulator and one stochastic simulator,emin figure 2.6. This al-

gorithm is a simplification of the underlying theory presshtn this section. Indeed
according to the mathematical theory of the hybrid methadnduthe course of the
deterministic evolution of the hybrid system the valugft|t) of the slow reactions
changes according to the differential equation:

L gy(alt) = ay(X(1), 7 (2.17)
The algorithm given in figure 2.6 instead approximates tbisadviour by executing at
each step of iteration the deterministic simulation fonagtitaken as the minimum time
between the integration time step and the expected timestodkt reaction event. The
stochastic simulation is performed only when the next reaatvent time is smaller
than the integration time step.

2.3.2.3 Multiscale Stochastic Simulation Algorithm - MSSA

The Multiscale Stochastic Simulation Algorithm (MSSA) asenew formulation of
the stochastic partial equilibrium assumption (SPEA) rateo to implement an SSA in
which the propensities of the slow reaction are approxithated the simulation of the
fast reaction is avoided. The assumption behind this ma#ibeht fast reactions, those
that can be simulated deterministically, quickly reachagisastic partial equilibrium
that can be used to generate the approximate propensitiglewfreactions and to
easily perform a SSA.

2.3.2.4 Stochastic partial equilibrium assumption

According to [37] the stochastic partial equilibrium asgtion holds when the fast
reactions of a system quickly reach a state in which theyraeguilibrium. In other
words the distributions of the “fast species”, species whaspulations are changed
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1. Partition the reaction into D determnistic reaction
and S stochastic reactions

2. lnitialise t=tyg and x;= initial values
3. Conput e reaction probabilities at the tim t

4. Conpute the next scheduled tine ty=t+dt of the determnistic
sinulator with & the step of the determnistic simulator

5. Fromthe propensities x conpute the next candidate event tine dt
and set to =t dt

6.1 f(ty<t2)
generate continuous predicted populations xpj on the time t;
set t=1g
el se
generate continuous predicted populations xpj on the time to
fire reaction predicted by the stochastic sinulation
updating xsj set t=t

7. Record (x,t) and go to Step 3 or end the sinulation.

Figure 2.6: Pseudocode of the Hybrid Method

by the fast reactions, are temporarily steady. Assumingtitipa of theR = (RS, R")
reactions of the system iRy = R{,..., R,I,,f fast reactions an&s = Rj, ..., Ry slow
reactions, where the population are changing upon the psijpes and state change

vectors:
f f P I L B
a;(x) =a; (x', %) vj = (Vyj,.,Vyj) ] =1, M (2.18)
f f .
a(x) =al(x',x°) VE= (V5o Vg o Vi W) T =150, Ms (2.19)

where the/isjf = 0 and omitted as the slow reactions cannot modify the fasiespe

We consider a virtual system modified only by the fast reactiorR where pop-
ulations are expressed in time by a vedAdr(t). This system evolves very quickly
and reaches an equilibrium in which the distributionXdf(t) becomes unchanged by
the fast reactions and can vary only by the occurrence ofltve reactions. Indeed,
when a slow reaction is executed the statXbft) is disturbed and a new equilibrium
state is quickly reached by the virtual system. Moreovereuride stochastic partial
equilibrium we assumed that the time required to reach aililegqum state, known

as relaxation periotlelax, becomes negligible if compared with the time scale of the
slow reactions. Thus the virtual system can be considershtain always at the same
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equilibrium, so for all the times the distribution ofXf(t) is equal to the distribution
of X (c0).

2.3.2.5 MSSA algorithm

Using the stochastic partial equilibrium assumption sgcmodified propensities of
the slow reactiona; can be calculated according to the value of the fast spidies).
Successively the same procedure of the SSA can be used tatotrgjectories of the
original system according to the new propensities. The ematitical foundation of
this method is the occurrence probabilfiyof a slow reactiorRJ$ in the time interval
t+T,t+T14dt):

(T, X 06, t) = E(@§(X (1), 3 x! e i EE@XTW 0 (3 20)
that can be rewritten using the stochastic equilibrium mggion on the termX(t)

as:

p(T, x5, 1) = E(@5(X (00),57) x, x%) e TEEX () ) (2.21)

The two difficult steps in this procedure are the resolutibthe partial equilibrium
X () and the estimation of the modified slow reaction propensincfionsX f (co).
Both these processes can be simplified if we assume that thwe vaéues of the distri-
butionX f (o) are a good approximation in order to compute the modifiedgneipies
a?, that in this way can be easily calculated according to theefbllowing cases:

1. a&(x) =aj(x) if aj(x) is independent o

So all the modified propensities of the slow reaction can Ipgessed by only using an
estimation of the averagéX ). This mean can be computed through the resolution of
the algebraic equations of the equilibrium law and of theseovation law applied to
the reactions of the system. The system of non linear equsatian be obtained using

a symbolic computation over the reactions and can be reddlyeising for example
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Netwon’s method. For more details about this matter ref¢87¢. The general pseu-
docode of the MSSA that made use of the modified propenﬁ"fiésgiven in Figure
2.7.
1. Conpute the partial equilibriumfor the fast virtual system
Update the fast variables Xf=Xf(w)
2. Calcuate the nodified slow propensities & and their sumaj

3. Generate two random nunbers rq and r»
fromthe uniformdistributionin the unit tinme interval [0,1]

4. Generate values for Tt and j as in (2.6) and (2.7)
using instead the nodified propensities g

5. Fire the next reaction by replacing t«t+4+T1 and X« X+V;

6. Record (x,T) and go to Step 2 or end the sinulation

Figure 2.7: Pseudocode of the MSSA

2.4 Approximation measurement

When approximate methods are used, the estimation of drem@mes of interest. A
good error measure that is representative even when kessgbtems are considered
is the probability density functions distance presente[8&j as the density distance
area. Usually in a distribution distance error estimatinraaalytical solution of the
distributions is not available, for this reason the disttibns are estimated from the
histograms of a large number of samples where as the numisangbles increases
the distribution estimation becomes more accurate. Tddurincrease the accuracy
of the difference estimation the self distance coming frame of the Monte Carlo
methods can be used in comparison with the distance betweedidtribution of the
two different methods. The self distance expresses thiststat fluctuations of the
Monte Carlo simulation, thus if the difference between tisributions of the two
methods is smaller than their self distance it not possthéssume that the distribution
of two samples are different. A drawback of this method isabrputational cost that
exponentially increases when the number of samples isaeerk Since for stochastic
simulations a sample corresponds to the result of a singlata selected time point
this estimation procedure requires a high computatioraad ko perform several runs
and reach a good estimation of the distributions.
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2.4.1 Probability density function estimation

The probability density function of a discrete random \Valieax :
= Z P(X =X)8(X —X) (2.22)
X

can rarely be analytically solved in practical examplesweler, if a large number of
samples is available it can be approximated by an histoguattibnhy constructed
as follows. Consider the interval= (Xmin, Xmax) in which all the sample values are
bounded and divide it ihy intervals, withi =1, ...,K defined as follows:

(i — 1) (Xmax— Xmin) (i)(xmax—xmin)]

li = [Xmin+ K s Xmin+ K

and consider the functioq(x, l;) defined as:

X(X,li)Z{ 1 ifxeli;-

0 otherwise;

the histogram functionisk (I;) that approximatey (x) can be defined as:
K N
li) = N—z (Xj, i) (2.23)

Each functiorhy (1;) measures the average density functioxXah the intervall;. The
summation terrTZj:]_X(Xj, i) counts the sample points which belong to the intekval
Dividing this by N, the number okg, ..., xy samples, and the terbyK an approxima-
tion of the probability density function in the intervalis obtained. So as the number
of intervalsK increase$iy tends topy.

2.4.2 Histogram Density Distance

Once the probability density functions of two sets of sampleandY are estimated,
using the same number of intervadds their distance can be measured by the simple

formula:

_ < |hx (1) =hy (1)L
Di(X,Y) = i; < (2.24)
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that with an explicit expression of the tetmq andhy can be rewritten as:

; M i i
ZJZJ —1X(Xj, | ZJ—l)I\(/ny )| (2.25)

Equation (2.25) shows that the distance value is strondgcted by the number of

intervalsK, and no difference will be measuredidf= 1 while ask,N,M grow the
distance will tend to the real density area distance of tleedistributions. Therefore
the density area distance increases as the number of ilstéreeeases and this allows
us to introduce a degree of tolerance in the distance meagureing the parameter
K.

2.4.2.1 Self Distance

As the self distance of a random variable expresses its astichfluctuation it must
be considered when the distribution distance of two randanables is measured.
According to [36] the Self Distance is defined as the distrdudistance of two set
of samplesXy andYy that independently follow the same distribution. As intnodd
in this section this distance can be measured using for ebeatimp histogram distance
between two sets of samples of the same distribution. Howewder to have a good
self distance estimation the mean and the variance of diffas between many pairs
of samples set should be considered. Thus, if the numbengdlea is large in the case
of stochastic simulation algorithms a very expensive camamn is required to have a
good approximation of the self distance. In order to avoid fimoblem an estimated
bound for the average self distance can be considered. loase of the histogram

distance a good estimation is:
2K1 1
T Ntw
whereN andM are the number of samples Xf; andY y.

(2.26)

This estimation was presented in [36] and has been provesldaggood approximation
as long as the number of samphkandM are large. In conclusion when the histogram
distance between two samples obtained from two differemitgl€arlo algorithms is
less than the self distance bound no conclusion can be maitie difference between
the two distributions. In other words using the self diseahound in comparison with
the histogram difference between the two set of samplespossible to ensure that
the difference that is measured is due to the Monte Carlomdstand not to stochastic
fluctuations.
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Dizzy extension

This project involved the extension of Dizzy [31], an exigtiopen source chemical
stochastic simulator, with three new exact stochastic kitimn algorithms and an ap-
proximate hybrid deterministic and stochastic algorithBizzy was chosen among
other existing software thanks to its object oriented madatchitecture which made
the implementation process easier. This chapter intraDczy and outlines the main
steps of the implementation process. Particular attemgigaid here to the efficiency
of the simulation algorithms. Indeed the whole project isufged on performance
optimizations and analysis of the simulation algorithm&e Thapter is organized as
follows: the first section is a brief presentation of the grigsoftware and its capabil-

ities, the second section discusses the implementati@aisief the newly developed

exact SSA formulations, the third section is focused onti@émentation of the hy-

brid method and the fourth and last section presents theemmgrtation of new tools

for performance analysis.

3.1 Introduction to Dizzy

Dizzy is a chemical kinetics simulation software packagelemented in Java that
was originally developed by Stephen Ramsey at the InstituBystem Biology. This
project extends a modified version of Dizzy that is being twed by Laboratory
for Foundations of Computer Science at the University ohdrgh. Dizzy allows the
user to simulate, using different simulation methods, &aetion kinetics of interacting
species. The software is able to write and read models insesolbthe SBML Level
1 format and in the Chemical Model Definition Language (CMP&)very intuitive
language in which models can be directly specified usingypizhe modified version

27
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of Dizzy currently supports the following simulation algbms:
Deterministic

e adeterministic (ODE-based) algorithm for simulating cleathreaction kinetics
based on the Runge-Kutta method for the resolution of thesysf ODESs using
both adaptive and fixed steps.

e a deterministic algorithm that uses the library ODEtoJavralie resolution of
the system of ODESs using both adaptive and fixed steps.

e an algorithm that solves a stochastic differential equatiodel using the Euler-
Maruyama method.

Stochastic
e The Gillespie stochastic algorithm
e The Gibson-Bruck stochastic algorithm
e The explicit tau leaping algorithm
e The implicit tau leaping algorithm

Different parameters can be specified on the basis of thedfypenulation algorithm
that is used. When deterministic simulation algorithmswesed the user can specify
the timestep of the integrator that solves the system of Oddilsthe maximum error
allowed for the integration. If during the simulation thesgm time step makes the
integrator exceed the specified maximum error a messagspkayed and the simu-
lation is cancelled. When stochastic simulation algorgrare used Dizzy allows the
user to specify the stochastic ensenble size, which exgsdebe number of runs, and
a confidence interval related to the results of the simuiatid@he following graphical
output can be visualized as result of a simulation:

¢ A table with the values of the requested concentrationsdoh&ime point

e A plot with the average concentrations of the observed sgeai time, where
the average is calculated as the average of the concensatiained from all
the runs.

e A plot with concentrations in time for each single run.
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¢ An histogram visualizing the average number of firings ofréctions with the
average calculated as the average of the total number ajdirin

For further details refer to [30].

3.1.1 Reaction Rates

The way in which Dizzy computes the reaction rates from thhaqpaters that are spec-
ified in the model is particularly relevant for the implematian of our extensions. A
reaction rate in Dizzy can be defined in two ways: using a{nifhethod or by spec-
ifying a custom expression.

The first is the default mode and consists of the simple spatibin of the rate as
a numeric parameter. This is interpreted either as the astichrate constant, which
expresses the numeric reaction probability density pdrtume (when using SSA), or
as the kinetic constant for the reactions (when solving QDHsthe first case Dizzy
automatically calculates the reaction rate by multiplyihg stochastic constant rate
with the number of distinct combinations of reactant molesuwhich depends on the
kind of reaction that is considered and on the populatiorhefarious species. For
example if we are considering a bimolecular reaction e S, — the reaction rate,
or reaction propensity, is calculated as presented in [9¢diyputingc;S|S) where
cj is the stochastic constant aBdrepresents the number of molecules of the species
S. In the second case instead the reaction rate is calculatélteakinetic constant
parameter multiplied by the concentrations with exporatiatn for the stoichiometry.
For example for the reaction2+ S, — the reaction rate is calculated Iaﬁsl]z[sz]
wherek; is the kinetic rate an¢] is the concentration of the specigs

Using “custom expression” mode an expression that will leelus order to calcu-
late the reaction rate can be specified by the user. Thisreealiows the user to create
custom reaction rate expressions involving symbols, awetiic operators, and simple
built-in mathematical functions that define how the reactiate varies.

With regard to our implementation it is important to undeglithat irrespective
of how Dizzy deals with rate calculations the same constaiet that is used for the
reaction rate calculation of the stochastic simulationgedufor the reaction rate of
the deterministic simulation with ODEs. The way in whichesatare calculated is
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decided upon the type of simulator that is used, stochastaeterministic, and by
the default all the populations are considered as expraasedmber of molecules.
Furthermore in order to increase the performance, wheimasbic simulation are per-
formed and species populations are large some approxinsadie made to calculate
the stochastic rate. For example the reactiSpé’% P whose rate should be calculated
asc; w is calculated as; @. From the computational point of view this
could seem a minor optimizations but considering that eviéminva small model the
function that calculates the rates can be called millioriroés during the simulation
time is considerably reduced within a tolerable approxiomeif populations are large.

In conclusion when the species populations are expressatbliecules the dy-
namics of the population coming from the ODE will represdr tdynamics of the
expectation value of the molecules in a stochastic sinarladicross a large number
of runs. It must be noticed that in ODEs the number of molecaotaild assume real
values that do not have biological meaning but again if lqgeulations are used this
can be considered a good approximation.

3.1.2 Software architecture

The first part of the project was focused on an initial analgsithe software archi-
tecture. The analysis was carried out by putting togethirimation coming from
the analysis of the source code and from the javadoc docatemiof the classes.
This analysis allowed us to construct the object map of Dimzgrder to ensure that
our extension would have not affected the existing funetiies and would ensure
the extension conforms to the existing software architectuA simplified version
of the Object map of Dizzy is reported in figure 3.1. The sirmgdi Class Diagram
is divided in two parts, the upper part whose classes arelynaontained in the
or g. syst ensbi ol ogy. chempackage is the hierarchical object map of simulators, the
lower part whose classes, mainly contained indhg. syst ensbi ol ogy. chem app,
represent the GUI objects and the classes that are usedaesgrand visualize results
coming from simulations. The two parts communicate throtnghinterface 1Simula-
tor which provides an abstraction for the current simulattmwing simply calling the
methodsi nul at e.
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The implementation of the three new exact stochastic sitionlalgorithms con-
sisted of modifications to the packagey. syst ensbi ol ogy. chemwhich was adapted
with some minor modification and extended with three newsdasThe hybrid method
implementation and the development of tools for perforneaartalysis focuses on both
the packagesr g. syst enshi ol ogy. chemandor g. syst ensbi ol ogy. chem app. Fur-
ther detail about the implementation is given in the follogvsection.
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3.2 SSA formulations implementation

This section presents the three new classes which have bg#emented in order
to develop the optimized SSA formulations based on the Divithod of Gillespie.
The main methods of the classes are discussed and a classndlidogit shows where
the classes have been placed inside the existing softwehemture is presented.
The next subsection describes some preliminary modificatd the existing sotware
structure which were done in order to facilitate the implatagon of the three new
algorithms.

3.2.1 Preliminary modifications

Currently Dizzy comes with two exact stochastic simulatédgorithms: the Direct
Method of Gillespie and the Next Reaction method of GibsoncRBr Our extension
was focused on optimizations based on the former methodeVvewn order to in-
crease the performance of the new algorithms some useturésaalready present in
the Next Reaction Method were used. Indeed, as presentedtioms 2.2.4 a consid-
erable improvement of the performance simulation can beioéd by recalculating
at each step of iteration only the propensities of the readtiat have been modified
by the last executed reaction. The Dizzy Direct Method mdates at each iteration
all the reaction propensities wasting time in order to iirpropensities that have not
been modified because the last executed event did not adfer¢actant populations.
The Next Reaction Method implemented in Dizzy avoids thisbpem by computing
before the simulation a reactions dependency graph thatipubrrespondence each
reaction with the reactancts that are altered by its exegutDuring the simulation
the Next Reaction Method uses the information coming froendiapendency graph in
order to recalculate only the propensities that have clthridye created a class named
DependencyG aphCr eat or that using the code present in the Next Reaction Method
computes the reaction dependency of a model given as inpatedisting Next Reac-
tion Method was modified to use this class and similar featwere developed for the
three new algorithms. The code of the dependency graphocreas extended in or-
der to compute the index of the first reaction (with respethéoreaction array order)
which is modified by the execution of another reaction. Thisctionality was suc-
cessively used in order to implement the Logarithmic Ditdethod class. The class
diagram related to this modification is shown in Figure 3.Bere the new classes are
highlighted in red and the classes that have been modifieldi& b
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3.2.2 Optimized Direct Method - ODM

The class that implements the ODM exteisdsul at or St ochast i cBase and its two
main methods areni ti al i ze andi t er at e. The first method is the most important of
the class since it implements the functionalities regaytie pre-ordering of reactions
based on a pre-simulation. In more detail, when this metBozhiled one or more
stochastic pre-simulations are run using the originaltrea©rder and during the pre-
simulation the number of times that a reaction is fired isreéed. Based on the average
number of times that a reaction is fired a vector of orderedti@a indexes, called
or der Sear ch, is constructed by using a simple quick sort algorithm pented by
the clasQui ckSort in theorg. syst ensbi ol ogy. uti|. This vector is used at each
step of iteration in the methad er at e in order to find the reaction that satisfies the
equation (2.7). The search time is then reduced becausegtaom reactions with the
higher propensities the probability to find the reaction tadisfies (2.7) in a short time
is increased. An example of the pre-ordering that is intetre the optimized direct
method for the Galactose model [23] is given in figure 3.2 . Uiber can specify the
number of pre-simulations and the percentage of simuldiioe, with respect to the
total time, which are used to infer the optimal order of reaxs. The Class Diagram
of the class is shown in figure 3.3.
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3.2.3 Sorting Direct Method - SDM

The implementation of the SDM class follows the pseudocodgure 2.3. Similarly

to the Optimized Direct Method class a vector caltedier Sear ch containing the

search order is used to find the reaction that satisfies (2rv}his case the order
is adjusted at each step of iteration without running pneagations. Each time that
a reaction is fired the adjustment is performed by shiftisgndex by one position
towards the search direction. The Class Diagram of the @dagsown in figure 3.3.

3.2.4 Logarithmic Direct Method - LDM

The implementation of the SDM class follows the pseudocadeure 2.4. As with
the other algorithms the class contains the two methodsi al i ze andi terat e.
Additionally here a method callechoosel ndexof Next Reacti on has been imple-
mented which performs the optimized search of the reaciaming the initialization
the vectorsi r st React i onMbdi fi ed andAr r ayAggr egat ePr ob are initialized. The
first vector is filled with the information coming from the damlency graph creator
and contains for each reaction the index of the first readtan is modified by its
execution. The second vector is initialized with the padianmation of the reaction
propensities such that:

ArrayAggregat eProb[i ] :zijZOAr rayAggregat eProb[j]

During the simulation at each step of iteration the indexhef mext reaction satisfy-
ing (2.7) is efficiently located calling the methotioosel ndexof Next React i on to
perform a binary search over the vector ayAggr egat eProb[ i ] . Once the index of
the next reactiorj is found the reaction is fired and the arv&yr ayAggr egat ePr ob
containing the partial summation of the reaction propé&ssis refreshed starting from
the indexFi r st React i onModi fi ed[ j] . The Class Diagram of the class is shown in
figure 3.3.

3.3 Hybrid Method implementation

A series of different implementations of the hybrid methaVédn been proposed in
the literature [32] [17] [1]. Those algorithms mainly diffen the way with which
the synchronization between the deterministic simulatm stochastic simulator is



36 Chapter 3. Dizzy extension

performed. Hybrid methods are based on an alternation oitibes between the
stochastic part and the deterministic part. While, acemydd the SSA algorithm,
no stochastic reaction events occur, the hybrid algoriteepk simulating the fast re-
actions by running the deterministic simulator which usesrdegration algorithm.
When a stochastic event is registered the integration ugéldebODE solver must be
stopped and the slow stochastic reaction has to be fired.eSsigely after an appro-
priate refresh of the populations the hybrid simulation jpasteed with the integration
and start again the whole process. The best way to synclerdinéztwo parts was
probably proposed in [1] where using the time transfornmatindroduced in the equa-
tion (2.10) a hybrid simulation was implemented whose irdty stops according to
the value of the terng;(t|t). However few currently existing ODE solvers are able
to stop within a user specified control event baseddn|t). For this reason we de-
cided to start a first implementation by combining the deteistic simulation and
the stochastic simulation following the general framewpr&posed in [20]. These
methods perform the hybrid simulation by simply taking atreatep of iteration the
minimum time step between the ODE solver and the stochasktneaction event.
If the deterministic time step is the minimum time only thdedministic simulator
is used otherwise both the simulators are used accordirfgetstbchastic next reac-
tion event time. The hybrid method of this project was impdeed following the
algorithm presented in [32]. This algorithm simulates tlygainics of a model using
one deterministic simulator and one stochastic simulatdrigerates according to the
pseudocode presented in Figure 2.6. A description of théeimgntation follows.
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3.3.1 Implementation steps

The implementation of the hybrid method consisted of thiagsp

1. Definition of the general architecture of the simulataing into account differ-
ent stochastic and deterministic simulators

2. Implementation of the reactions partition
3. Implementation of the main class of the simulator divided:

e adaptation of the existing simulators
e Implementation of the simulator initialization

e Synchronization between the stochastic and the deterticiaigorithm

3.3.1.1 General architecture

Following the architecture presented in [20] an arbitrauynber of different stochas-
tic and deterministic simulators can be used together ieraim implement a hybrid
simulation algorithm. Our design choice was to use, as ptedan [32], only one de-
terministic simulator and one stochastic simulator. Basethitial promising results
of the newly developed Logarithmic Direct Method we decitiedise this algorithm
in order to compute the deterministic regime of the hybridhmod. The LDM showed
good performance which is independent of the ordering afti@as, moreover it is not
affected by the accuracy problem presented in section.Z=8the choice of the de-
terministic simulator Dizzy offered either the use of aijuns based on Runge Kutta
implemented as native classes of Dizzy or the use of the nawernul external library
ODEtoJava. Our first choice was to use the deterministic lsitounatively included
in Dizzy because this was an easier way to implement the sgnation between the
stochastic and the deterministic simulator. Similar totladl other Dizzy simulators,
this ODE-solver had a method calleter at e that was suitable for the implementa-
tion of the hybrid simulation. However first results showkdttthis ODE-solver was
too slow and prone to accuracy and stability numerical goisl. For this reason the
library ODEtoJava was successively selected and adapiategrate with the hybrid
simulator. An ODEtoJava integrator based on the Runge atid ldlgorithm [3] with
adaptive step was used. This integration algorithm is a atetf the Runge-Kutta
family with a more convenient error estimation. Figure 3unsarizes our design
choices.
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Hybrid Simulation

- lterative fashion time advancing

- minimum step selected from

Logarithmic Direct Method

Runge Kutta ODEtoJava Integrator

Figure 3.4: Hybrid Method design choices

3.3.1.2 Reactions partition

As introduced in section 3.3.1.2 to decide an optimal partiof the reactions it is
still an open problem. Typically, the partition can be madébe the simulation in a
static way and according to biological insights coming frerperiment or empirical
observation on pre-simulations, or in a dynamic way durirggimulation process by
observing reaction rates and reactants population. Sicoasolidated theory for the
dynamic partitioning has not yet been defined, we decidechfdement a graphical
framework to help the user during the static partitioningisinew software framework
allows the user to execute a number of full stochastic pratsitions and to observe,
by using histograms, the average number of times the reectice fired. Indeed, as
discussed in [37], a good empirical way that can be used tiitiparthe system is
to select as fast reactions those that are most frequergly. fifo decide how many
reactions are to be considered as fast reactions is lefietaghr. By clicking on the
histogram corresponding to one reaction the user can vieuds$ rate and reactants
and can add it to the deterministic regime. A screenshoteftaphical tool that was
developed to perform the partition is shown in figure 3.5. TlassCat egor yPl ot of
the Java library JFreeChart with a modified version oBdreRender er class was used
to implement the histogram selection. This graphic intsfallows the user to choose
the deterministic reactions either by using the selectoatied in the upper part of the
window or by clicking on the corresponding bar in the histogs. Pre-simulations can
be done for a simulation time and a number of times specifieithéyiser and can be
stopped at any time still allowing visualizing the partiesults. Histograms expresses
the average number of times that a reaction is fired duringr&eimulation.
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Figure 3.5: Screenshot of the Hybrid Method partitioner

3.3.1.3 Conformation of the existing classes

The classSi nul at or St ochast i cLDMwas not changed while several modifications
were made to the library ODEtoJava. In particular the clagdementing the Runge-
Kutta method, was partially rewritten for iterative simtida. In its original form
this class was in fact providing a main simulation methodecal out i ne that im-
plemented the whole simulation process. This structure measuitable for the it-
erative simulation of the Hybrid Method, therefore we deddo modify the class
splitting the method out i ne in four different methods:i ni tial i zeSi mul ati on,
conput eNext Ti mestep,iterate,iterateConstant.

The method ni ti al i zeSi nul ati on provides the initializations of the main data
structures that are used during the simulation. ddrgut eNext Ti nest ep made use
of event location features already present in the ODEtodagses in order to return
the next putative time step of the integration algorithm.mare detail a control to
check the presence of discontinuities, or events, duriegcthrent time step is per-
formed. As the discontinuities represent special regidtisedODE where behaviours
can change, if an event is found, the event time is returnateastime step, other-
wise the current adaptive time step is returned. This allagsv have a more reliable
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simulation. The methodt er at e as the name suggests implements one iteration of
the integration algorithm and evaluates, based on an estonation, the validity of
the obtained results. If one iteration does not producealvidiresults the time step is
reduced and the method is called again until valid resudsohtained. The method

I t erat eConst ant executes a number of iterations until a time in the given putn
when performing constant step integration.

This modification resulted in a new OdeToJava class c&llé&dr i pl eMbd. In or-
der to use this newly developed class a new class céileal at or CdeToJavasSi npl e
that extends the Dizzy classmul at or was implemented. This class follows the im-
plementation of the existing Dizzy classes that use the @ik external library.
The main methods of the class qreepar eFor Ext er nal Si nul ati on, which is used
to initialize the clas€r kTri pl eMod with a biological model, and four methods the
methods of thé&r kTri pl eMbd class. The class diagram of the new OdeToJava deter-
ministic simulator with an iterative simulation is shownfigure 3.6.

3.3.1.4 Implementation of the simulator main class

The next step of the Hybrid Method implementation was thestiggment of the main
class associated to the simulator. The class c&lledl at or Hybr i d extends the class

Si nul at or and conforms to the general Dizzy structure of the simuatibrerefore
implementing the two methodsiti al i ze andsi nul at e that can be called through
the interfacd Si mul at or. The new class contains one instance of the Logarithmic
Direct Method simulator and one instance of the modifiedrd@tgstic simulator. A
description of the main methods of this new class follows.

The methodset Reacti onsPartitions is called upon reaction partitioning with
the graphical tool presented in section 3.3.1.2. This ntetlegeives as input two
vectors ofReact i on objects that respectively represent reactions that musirbe
ulated stochastically and reactions that must be simuldéterministically. These
vectors are used to construct two models containing all geziss of the original
model but having only the reactions specified by the vectdlese two sub-models
are used to initialize the stochastic simulator and therdetestic simulator that form
the hybrid simulator. When the deterministic simulatorrigialized an array called
det erm ni sti cSpeci esis constructed. This array contains the index of all the igsec
that are modified during the deterministic simulation andsed to refresh, after one
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deterministic iteration, only the stochastic simulata@ps that have changed and that
are relevant for the dynamics of the stochastic simulation.

The methodsi nul at e is the core part of the hybrid simulation. During the sim-
ulation the hybrid simulator adaptively calls and synclzes the stochastic and the
deterministic regime. The implementation of the simuldtdows the pseudocode in
figure 2.6, where at each step of iteration the next time dtéppdddeToJava integrator
and the next reaction event of the Logarithmic Direct MethoeElcomputed. If the for-
mer is smaller than the latter an iteration with the deterstimsimulator is performed,
otherwise an iteration with the stochastic algorithm iq@ened. After each iteration
appropriate refresh of the species concentrations is peef® in both the regimes.
In particular when a deterministic iteration is chosen thecges of the stochastic
simulator, whose indexes are contained in the vedeber m ni sti cSpeci es, are
refreshed using a method calleddat eSt ochast i cPopul ati on. In contrast, if a
stochastic iteration is chosen, an initial determinigticigation up to the next stochas-
tic event time is performed and the stochastic species &eshed using the method
updat eSt ochast i cPopul at i on. Successively the putative next reaction event is fired
and both deterministic and stochastic species are reflest@rding to the reaction
that was fired. At each step of the iteration concentratidnesaand the actual time
are stored in order to plot the results. The class diagrarheohéw class is presented
in figure 3.6.
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pStopTime:double,
p:S;mu1atorParameters.

+getArrayspecies(): double[]
+setTimeStep(timeStep:double)

SimulatorStochasticLDM

+iterate(): double
+getTimeNextReactioEvent(...): doubl

ErkTripleMod

+ErkTripleMod(function:ODE, tspan:Span,...)
+initializeSimulation()
+computeNextTimestep(): double

———1 +iterate(pNewDynamicSymbolValues:double[]): boolean

<<0OdeToJava>>

Figure 3.6: Class Diagram of the Hybrid Method
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3.4 Performance analysis tools

In order to evaluate performance of the newly developed Isitots some useful fea-
tures for comparison of the simulators over different bjadal examples were imple-
mented. The developed tools can be divided in two categdaes for the analysis of

exact simulation methods and tools for the comparison Etva@proximate methods
and exact methods.

3.4.1 Performance analysis of exact simulations

When comparisons between exact simulators are made thesegpative performance
measures are the average number of fired reactions per sacdrde average search
depth length required for reaction locations. Simple giegdhvisualization of these
measures was implemented as result of one simulation. Mgraghs can be visual-
ized by ticking checkboxes in the simulation launcher windéfter this an intuitive
way to merge and compare these graphs was implemented.

The reaction per second measurement was implemented dogpdotr each sim-
ulation run, the time required for the simulation and the benof fired reactions. At
the end of the whole simulation an average of all the ratiesfber of reactions/time”
is computed. The obtained value is the average number disaaper second that are
fired and is visualized in a histogram implemented using thss€at egor yPl ot of
the free Java library JFreeChart [28]. The histogram shbeseactions per second,
the name of the simulated model and the name of the simuladdhias been used.
Histograms resulting from different simulations can be geedrusing the right-click
contextual menu as shown in figure 3.7. Results are mergethimgand grouped with
respect to the models. In this way it is easy to compare thieqmeance of different
simulators over different biological models.

Considering that finding the next reaction is one of the megeénsive steps of the
SSA, the average search depth required to locate the nestioredo fire is a good
measure that can help in evaluating the performance ofrdifteSSAs. Indeed, the
majority of the SSAs formulations are based on improvemttratisaim to reduce the
time required to locate the next putative reaction. Havirvegdossibility to measure the
average search depth can help in understanding how the SS$¥asdwith a particu-
lar biological model. This measure however does not taleaostount other steps of
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Figure 3.7: Screenshot of the reactions per second histograms

the simulation, like random number and next time generatioerefore it is not itself
representative of the whole performance simulation. Foh&SA available in Dizzy
code used to measure the average search depth was impldm&h&way in which
this measurement is made is highly dependent on the sironlatgorithm. In more
detail for the ODM, the SDM and the DM the average search deptieasured as the
number of sums that are performed within the operations o&ton (2.7), while for
the LDM the measure corresponds to the search depth of theylsearch performed
on the vector of aggregate propensities functions as presemn figure 2.4. The av-
erage search depth was not measured for the NRM of Gibsork Bezause for this
method the number of operations required to locate the eextion is virtually equal
to one. Most of the time in the NRM is in fact spent in maintagihe heap-like struc-
ture that allows us to obtain the next reaction to fire with aitaury cost. The average
search depth is recorded every time that a reaction is firedglthe simulation, the
behaviour of the average search depth during the simul&itnally visualized in a
chart developed using the clasél! ot of the free Java library JFreeChart [28]. These
graphs can be merged using the the right-click contextualnas presented in figure
3.8.

3.4.2 Performance analysis of approximate simulations

An estimation of the accuracy of the results obtained usiffgrdnt stochastic sim-
ulation methods should consider the distance between a&#bins of the population
distributions. Distributions can be estimated from thédgsams of a large number
of samples and distances can be measured, as presentetdan et as the density
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Figure 3.8: Screenshot of average search depth graphs

difference area in comparison with an estimation of the disffance. The self dis-
tance expresses the stochastic fluctuations of a singleeMoeatio method and can be
calculated as the density difference area between distiitgiof samples. A reliable
distribution estimation is usually based on a large numbegalizations, which require
a high computational load to be generated. For this reasomaufa that computes a
bound for the average self distance can be used to avoid datignal complexity.
This formula is a distribution indipendent common boundahhilepends only from
the number of samples and the number of intervals used tmastithe probability
density functions. A new graphical interface that can belusecompute density dis-
tance areas between approximate and exact simulationsevakgded. This new tool
can be used to configure and run approximate and exact somulabd to compare
possible errors introduced by approximate methods. Intijgeawhen a density area
distance estimation is performed, two stochastic simtdadce configured to simulate
for the same number of runs. The user can select a time poiitiich the histogram
distance is computed. Within this time point, results carfrom all the simulation
runs are stored and succesively used to estimate poputhsitsibutions. Distribution
estimations are visualized using histograms. The softwaleulates the numerical
values of the distances between the approximate methadbdisdn and the exact
method distribution. When this difference is larger thae #stimated self-distance
bound an error is measured, otherwise errors cannot beeddscause it is impossi-
ble to separate the difference from stochastic fluctationthis case, a more accurate
estimation is required and can be performed either by usiagya number of samples
or by increasing the number of intervals. The whole estiomgprocess is summarized
in figure 3.10.
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Our tool allows the user to perform analysis specifing défersimulators and pa-
rameters and to consider particular species of the bicdbgnodel. An example of a
typical output and a screenshot of the main window assatiaith the tool are shown
in figure 3.9. The upper part of the window is used to selecafiigoximate and the
exact simulator, a panel on the left allows the user to séfecspecies that are con-
sidered for the density distance area estimation. The aepainel is used to define
the parameters of the simulation and the number of intetlialsare used to construct
the histograms. Histograms express the likelyhood of @awe of population values
within the intervals at a specified time point, while plotsgay differences between
the average behaviour of the populations over the wholelaiion time.

Histogram Distance Error Estimation
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Figure 3.9: Screenshot of the error estimator tool and its typichal output
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Chapter 4
Biological models

This chapter presents three biological models which weed ts evaluate the perfor-
mance and correctness of the new simulation algorithms.s& kleree models were
used to evaluate the performance of exact stochastic siomi@gorithms. Having a
different scale of reactions such models are in fact pddibusuitable to study the
scalability of the various algorithms as the number of rieastincreases. The sec-
ond model with modified parameters was also used for a firstatran of the newly
developed hybrid method. For each model a brief explanaifahe dynamics and
description of expected results are given.

4.1 Michaelis Menten

The first and simplest model is a model of the enzymatic reactionsidered by
Michaelis and Menten for their famous kinetic model. The eldd the abstraction
of a simple enzymatic reaction formed by three reactionstiitiva substrat& has to
bind with the enzym& in order to react and produce the final prodctn our model
the binding between the enzyme and the substrate is releevgltie the transforma-
tion of substrate in product is considered to be definitiveis very simple model is
made by only three reactions:

1. S+E—ES
2. ES—E+S

3. ES— P+E

with initial number of molecule& = 100,S= 100,ES= 0 andP = 0.
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1. This reaction represents the formation of the compound éatvgubstrate and en-
zyme. In our model this reaction was set to have a stochadgaof 1.

2. This reaction expresses the unbinding of the compound eexauhstrat& Sinto its
two components substraand enzymé. In our model this reaction has a stochastic
rate of 01

3. This is the reaction that produces the final prodRitly consuming the substrag
and releasing the enzyme in its free foEmIn our model this reaction has a stochastic
rate of Q01.

The expected dynamics of this system, with rates and coratemis specified
above, follows the graph in figure 4.1. It can be seen thatasithulation proceeds
the concentration of the enzyme-substrate compd&@duickly reaches in less than
1 seconds a threshold that represents the fact that allébeefizyméE is bound with
the substrat&. Indeed, at the same time the concentration of the enZyrard the
substraté&decrease almost to zero. SuccessiBigeps decreasing while the concen-
tration of E starts to increase representing the fact that aBikgroduced the enzyme
E isreleased inits free form. It should be seen that the cdreteom of P andE in fact
increases following the same law. In the meanwhile the aoinagon ofE Sdecreases
as it is consumed by the reactions 2 and 3. The whole systeshesaquilibrium at
around 500 seconds because all the subs&hses been converted in produt

L T
esesssnrune
i trssssssassrrnneen

1Y PP PP SRR 2= T
00 01 02 03 04 05 06 07 08 03 10

Figure 4.1: Expected dynamics for the Michaelis Menten model
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4.2 GAL4 system of Yeast - GAL

This model, included in the original release of Dizzy andsisting of28 reactions,
abstracts the regulation of the production of various stma¢ control metabolic genes
in yeast as response to the presence of external galactbeaoncentration of exter-
nal galactose is a parameter of the model and can be eithdrdixean vary in time
according to a specified rate. As reported in [8] this biadagsystem senses the the
presence of external galactose and switches on a seriestefr@g which control the
galactose metabolic pathway. As the concentration of g@dadncreases the concen-
tration of activatedcAL4 proteins increases while for lower concentration of galse
more GAL8O are activated. Former proteins promote the expressidbAtf genes
while latter proteins act as a repressor @AL genes binding witlGAL4 proteins
and deactivating them. When the concentration of galagtozero, activate@ALS0
proteins are enough in order to keep the expressi@wif genes at a low level by de-
activating most of th&AL4 proteins. The system regulates the presence of metabolic
genes also upon the presence of internal galactose. lieganAL3 proteins, which
act as a repressor f@AL80 proteins, are activated when the concentration of iatern
galactose increases. In this way when internal galactogetuced the system will
repress the repress@®AL80 and the expression &AL genes will increase again. All
the feedbacks do not act using single proteins of the petai@ntioned above rather
they act on dimers, lik&3D or G80D, with a specific rate of creation and destruction.
Details of this metabolic pathway are beyond the scope efftoject, for more infor-
mation refer to the original ODE model presented in [27] . @llghis pathway was
particularly suitable for our analysis for two reasons:tfifsall it is a good example of
a native Dizzy model with a medium number of reactions, sedlyotne different time
scale of the feedbacks makes the probability of reactioms@h drastically during
the simulation and this was a perfect example to test paspiigldiction problems for
methods like the ODM that are based on prediction over aiimite-simulation time.
Morover, increasing the presence of external galactosertbdel was also appropriate
for a hybrid deterministic and stochastic simulation, mietails about this matter are
given in section 5.2.

The main reactions of this model, including the first two teaxs that expresses
the time varying concentration of external galactose, lzeddllowing:

1. — galactose[lOe*ZO%] wheret is the current time and the total time
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2. galactose— [0.1]

3. G4D-DNA3+galactose— G3-RNA+ G4D-DNA3t-galactose
4. G3-protein+ G3-protein— G3D-free

5. G3D-free— G3-protein+ G3-protein

6. G3-RNA— G3-protein

7. G3D-free+ G80D-free— G3D-G80D

8. G80D-freet- G4D-DNA3— G80D-G4D-DNA3

The expected dynamics of this system follows the graphs urdiglt can be seen
that when thegalactoseincreasesGAL4 proteins quickly promote the production of
GALS3 as expressed by the fast increase in concentrati@bf— DNA3. When the
concentration ofjalactosestarts to decrease moBALS0 proteins inhibit the creation
of GAL3 and this is represented by the competitive bindinG®&® with G4D — DNA3
as the complexs80D — G4D — DNA3. Successively th&AL3 proteins that were pro-
duced at the beginning inhibits tl&80 proteins forming the complex3D — G80D.
From the graph in figure 4.2 it can be seen that these threephappen within a two
different time scale.

T si0 1000 1500 2,000 000 3,500 4,000 4500 s L0001, i
Time
-+ G4D_DNA3 = Gap_agop = GBOD_G4D_DNA3

Figure 4.2: From left to right the dynamics of G4D-DNA3, G3D-G80D and G80D-G4D-
DNA3. The population of G4D-DNAS reaches the maximum value approximately in two
seconds while the populations of G3D-G80D and G80D-G4D-DNAS3 reach it at around
5000 seconds

This model was fistly simulated with an initial amount of oneletule ofgalactose
varying in time according to reaction 1 and reaction 2. Ssivedy in order to test the
hybrid method the same model was simulated with a constamttation of 100000
molecules ofyalactose This modification makes the reactions 3, 4, 5 and 6 fire very
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frequently. Therfore these reactions are more efficentalylated with a deterministic
simulation.

4.3 EGF receptors signal pathways - Shoeberl

The third model is a very detailed computational model presiin [22] which is
based on the epidermal growth factor (EGF) receptor sigathvpay model introduced
in [4]. This model involve18reactions an@3 species that form the signaling path-
way that is activated when an extracellular signal is reaxilgy the cell. When the
signal is received the activation of the MAP kinase caschdeugh the kinases Raf,
MEK and ERK-1/2 follows. This example was used to evaluategérformance of
the novel developed algorithms when the number of reaci®rery large. For this
reasons we will not focus on the details of this model whicimptexity is prohibitive,
for more details refer to [22] [4].






Chapter 5
Results

In order to evaluate the usability and the correctness ¢f that new simulators and the
performance analysis tools, different simulations andyamaof the models presented
in the previous chapter were performed. This chapter igldiviin two sections, the
first focuses on simulations made using SSAs formulatioes the Michaelis Menten,
the GAL and the EGF Shoeberl model, while the second focuses dnitial analysis
of the Hybrid simulator using the GAL model with modified paxeters. Each section
starts with a survey of the techniques that were used to ateathe obtained results.

5.1 Exact simulations results

The LDM, the SDM and the ODM were run in comparison with thesérg stochastic
simulation algorithms of Gillespie and Gibson Bruck. Siatidn were performed
considering three model with different scale number oftieas:

e The Michaelis Menten model - 3 reactions
e The GAL model - 28 reactions
e The EGF Shoeberl model - 218 reactions
For each model two different analysis were performed:

e Comparison of the computational performance of the allgor#t by using reac-
tions per second histograms.

¢ Critical evaluation of the performance comparing averagech depth graphs.
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Our simulations were parametrized with respect to the strarl time and the num-
ber of runs and when the ODM was used also with respect to gasiprulation time

and the number of pre-simulations. For each example we geavitable that puts in
correspondence parameters with average times requiregtfiarm one run. We also
provide a predicted simulation time for a number of 15.008srun this way we hope
to highlight how small performance differences within agsénsimulation become
statistically relevant when larger number of stochasticusation are considered. Ex-
periments were run on an Intel Centrino with two 1.83Ghz ames and 2GB of Ram.
This section proceeds presenting the results that werénebtrom the three models.

5.1.1 Michaelis Menten

The Michaelis Menten enzymatic model was simulated for E¥®sds for a number
of 1000 run. All the existing exact simulators were used &ed?DM was configured
in order to perform one pre-simulation of 10 seconds. Theamesimulation times
are given in table 5.1.1, while the average search depthvimatfor each SSA for-
mulation is shown in figure 5.1. The average search deptheoGibhson Bruck NRM
was ignored because it is always unitary.

Method | Run time (ms) | Time for 15000 run (seconds)
DM 5.035ms 75.52s
NRM 5.174ms 77.61s
LDM 4.781ms 71.71s
ODM 5.038ms 75.57s
SDM 4.773ms 71.59s

Table 5.1: Execution times of the SSAs on the Michaelis Menten model

The results in table show similar executions for all the rodth Indeed as expected
no big differences are measured when small examples likditigaelis Menten model
are considered. However, within these small differences;ion times are in accord
with the expected results. In particular as we expected R&INf Gibson Bruck is
the slowest method because the computational overheaitlititebduces to create and
maintain the heap structure is larger than the gain in pedoce coming from its uni-
tary search depth. Nonetheless this small differencesddoeilinfluenced more from
the current computer state rather than from algorithms. Aemeliable performance
measure is the average search depth presented in figuretbsigraph shows that all
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the simulators give very similar results, but here we cao atgice a general reduction
of the average search depth, and then an increasing of tfepance, as the simula-
tion continues. This reduction can be traced to the factabahe simulation proceeds
the reaction that is used to create the prodiydhat is the first reaction in the search
order, becomes more and more probable. Thus in all the methedaverage search
depth decrease almost to zero representing that no opesatie required in order to
locate the next reaction to fire. Within this general positikend the Direct Method
shows to have slightly lower average search depth valuesisedhe original reaction
order is the best order therefore, if no operations are pedd in order to arrange the
reactions, the best performance are obtained.
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Figure 5.1: Average search depths for the Michaelis Menten model

5.1.2 GAL

The GAL4 Yeast system model was simulated for 1000 secondsriamber of 1000
run. The ODM pre-simulation was run for the 10% of the whoteeti The average
simulation run times are given in table 5.2 and the averagecbalepth behaviour for
each SSA formulation is shown in figure 5.2.

In contrast with the Michealis Menten simulation, timesaepd in table 5.2 show a
big difference between the methods. In particular the difiee between the run time
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Method | Run time (ms) | Time for 15000 run (hours)
DM 2027.52ms 9h 12min
NRM 797.43ms 3h 19min
LDM 562.79ms 2h 21min
ODM 562.27ms 2h 20min
SDM 562.50ms 2h 21min

Table 5.2: Execution times of the SSAs on the GAL model

of the Direct Method and the run time of other methods is magaifcative. The
ODM, SDM, and LDM are more than 4 times faster than the DM bseas the num-
ber of reactions increases the performance scalabilityesfd¢ methods becomes more
effective. Differences are also registered between theutian time of the NRM and
the other methods. In a medium size example like the GAL mtigetomputational
overhead of the NRM becomes in fact more evident decreasengthole performance
of this method. Performance of the LDM, the ODM and the SDMvay similar but

if the attention is focused on the average search deptheadtie differences are regis-
tered. The reason for this discrepancy is trade off betweeneduction of the average
search depth and the introduction of additional computatiéoad for an optimized
next reaction location, that in a medium size example playsrportant role. The
graph in figure 5.2 shows in fact that these three algorithetste in a very different
way. In more detail the LDM exhibits a slow average searchtdépat remains al-
most constant arourldg,(28) = 4.8 because of the binary search that is used to locate
the next reaction to fire. Therefore as expected, when bigelels are considered
the LDM shows reliable performance that is independent emtimber of reactions.
The SDM is, with this particular example, the method that thessmallest average
serach depth values. As discussed in section 4.2, GAL med#bn probabilities
considerably vary during the simulation thus the progxesadjustment of the order
of reactions in SDM leads to a good degree of efficiency. Ferséime reason the
ODM, which was configured in order to sort the reactions wépect of the reaction
propensities of the first 10 seconds of simulation, showsvarage serach depth that
drastically increases, even surpassing that of the DM, esithulation proceeds. A
surprising result is that, even if the average search dejptheoODM is larger than
the average search depth of the DM for more than one half ddithalation, the best
overall performance is reached by the ODM. The reason feratld behaviour is the
trade-off between average search depth optimizationstendamputational overhead
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introduced that within this particular example advantagese a method like the ODM
that predicts a good reaction ordering for the first half & simulation time without
introducing overhead during the simulation. Morover evdrewthe average search
depth of the ODM is worse than that of the DM the optimized ctiraethod has bet-
ter performance thanks to the optimal way that it uses t@eséfreactants population
according to the dependency graph.

Average Search Depth

22.5

20.0

1753

15.0

12.8

Average search depth

7.5
5.0

. ™
2.5

0.0

0 100 200 300 400 500 600 700 800 900 1,000
Time

|fsorting—direct optimized-direct logarithmic-direct —gillespie-directl

Figure 5.2: Average search depths for the GAL model

5.1.3 EGF Shoeberl

This huge model, because of its high computational load, siasilated for 1 sec-
ond for a number of only 100 run. The ODM was firstly configuregérform one
pre-simulation on the 10% of the whole time and successiielyerform two pre-
simulations of the whole simulation time. The average satioh run times are given
in table 5.1.3 and the average search depth behaviours ¢or @8A formulation is
shown in figure 5.5. A more detailed comparison between tbeage search depth of
the ODM, the LDM and the SDM is presented in figure 5.4.

First of all looking at the results in the table it can be sd®t in contrast with
the results of the GAL model the NRM of Gibson Bruck has an eten run time
that is comparable with those of the LDM, the ODM, and the LDiMleed, with this
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Method | Run time (ms) | Time for 15000 run (hours)
DM 13254.44ms 55h 13min
NRM 585.61ms 2h 43min
LDM 525.27ms 2h 18min
ODM 514.93ms 2h 9min
ODM* 511.26ms 2h 8min
SDM 521.28ms 2h 10min

Table 5.3: Execution times of the SSAs on the EGF Shoeberl model

huge model the overhead needed to maintain the heap lilastetbecomes negligible
with respect to the gain in performance reached with theamndverage search depth.
However as expected, without taking in consideration thed@iMethod, this algo-
rithm is the slowest SSAs. The execution times in the tabtevséiso that the direct
method is twenty times slower than other algorithms, so ps&ed when the number
of reactions increases the gap between optimized SSAs andNhbecomes larger.
Performance of the LDM, the SDM and the ODM are slightly difet but in general
remain of the same order. As usual a more detailed compas&ohe done by looking
at the average search depths in figure 5.5. As in the exectitn@s a big difference
is shown between the DM and the other methods. Similarly@dGAL example the
LDM has performance that is independent of the number ofticgesc and is almost
constant arountbg,(218) = 7.8 because of the binary search. The SDM rapidly con-
verges to an optimal reaction order and has the smalleshgeesearch depth values.
The ODM, when run configured according to a pre-simulatiod@¥o of the whole
time, has performance similar to that registered in the GAangple. The average
search depth increases as the simulation proceeds bebausattion order that was
predicted with the pre-simulation becomes less effectidewever, with this model
the average search depth of the ODM remains always lowerthlieaaverage search
depth of the DM and remains around values similar to thoseeoDM and the LDM.
In this example, in contrast with the GAL example, the dyraaf the initial 10%
of the simulation are representative of the dynamics of thelevsimulation. For this
reason on the EGF Shoeberl model the ODM is the method withdkeperformance.
Thus from our analysis results that is better to do a pre-sitimm and to pre-order the
reactions avoiding the introduction of computational éx&d during the simulation,
used to order the reactions (SDM) or to find the reaction fdc@M).

In the light of this result we run the ODM using two pre-sintidas of the whole
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Figure 5.3: Average search depths for the EGF Shoeberl model

simulation time in order to see how much would have been thiepeance gain. As
expected the average search depth is noticably reducedgtapund values similar to
those of the SDM as shown in figure , however the number ofimecper second was
similar to the number registered using a pre-simulatiorhef20% of the simulation
as shown in . This highlights that when a model has reactiobatilities that do not
vary too much in time a simple ODM configured with a pre-sintiolaof the 10% of
the whole simulation is the best choice.
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Figure 5.4: On the left average search depths of the ODM, the LDM, the SDM, for the
EGF Shoeberl model, on the right the same graph with the ODM configured for a 100%
pre-simulation time.
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Figure 5.5: Reactions per second of the ODM with pre-simulation of 100% of the simu-
lation time

5.1.4 General considerations

Results obtained by simulating the Michaelis Menten, thé.@Ad the Shoeberl model
show that the LDM, the SDM and the ODM are, in general, moreiefii than the DM
and the NRM. Performance was studied considering two mesgsilne average number
of reactions that are fired per second and the average segptin d\nalysis based on
the former highlights that within biological systems witlsraall number of reactions,
like the Michaelis Menten model, all the algorithms exhgimilar performance. As
the number of reactions increases, the DM becomes quitevghile the other methods
show good performance scalability. The NRM is, in genetalysr than the LDM, the
SDM and the ODM, in particular when middle sized examplescaresidered, where
the computational overhead introduced to maintain the Hikagstructure affects the
performance more. Our analysis also confirmed the residtepted in [34] that show
that the ODM is in general one of the best formulation of thé S&nalysis based
on the average search depth showed that even when the aseagd depth of the
ODM increases during the simulation, due to wrong predidiof the optimal order
of reactions, the number of reactions computed per secotiteb®DM is greater than
that of other methods. This occurs because the ODM doestnadlirce computational
overhead to the SSA. Taking into account only the averagelseapth, the best results
are reached by the SDM and the LDM that have stable and relgdmd performance
during the entire simulation time. Figure 5.6 summarisesrthbmber of reactions
per second that were obtained using the various simulatgorithms over the three



5.1. Exact simulations results 63

biological models.
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5.2 Approximate simulations results

In order to evaluate the performance and the accuracy of ybachsimulator two
measures were considered in comparison with an exact dionula

¢ the average run time
¢ the density area distance

The first was the only measure considered to compare the datignal performance
of the hybrid method with other exact simulators. Measuiesthe number of firing
per second or the average search depth are in fact not rapatge in the context of
reactions modelled deterministically. The second measlloeved us to investigate
the approximation that is introduced by the hybrid metho@mvbome of the reactions
are modelled deterministically. The GAL example with a hgginstant number of
galactose was used for the simulation. This example isldeitar our purpose because
it exhibits a clear partition of the reactions. As shown irufigy 5.7 there are four
reactions that are fired more frequently.

5,000,000 -

4,500,000

4,000,000
U A G4D-DNA3 +galactose — G3-RNA + G4D-DNA3+galactose

3,500,000
- B Gi-protein + G3-protein — G3D-free
3,000,000 i
2,500,000 C G3D-free — G3-protein + G3-protein
GRCLE D G3-RNA — G3-pratein
1,500,000

1,000,000

500,000

o A A A AT A
[ Mumber of times that a reaction is fired| DCBA

Figure 5.7: Fast reactions in the GAL model

The hybrid method was parametrised by changing the numltefministically
simulated reactions and by changing the integration sted as both the initial in-
tegration step and the step used for the constant step atitmgiof the ODE-solver.
Simulations highlighted the trade-off between the gainamputational performance
and the loss of exactness. All the simulations were perfdroseng the Logarithmic
Direct Method as a reference for exact simulations. Thisitor was chosen among
all the other exact simulators for two reasons. First ofielas stable computational
performance that allowed us to concentrate more on the npeafaice of the hybrid
method. Secondly, since the hybrid method uses the LogaigtBirect Method as
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internal stochastic simulator, this was a natural choiceotopare the execution time
of the two methods. This section proceeds presenting tltsdbat were obtained.

5.2.1 Simulating four deterministic reactions

In our first experiment, we configured the hybrid method toudate all the four re-
actions, introduced in figure 5.7, in a deterministic way.c@ese of the high com-
putational complexity, the modified GAL example was simethfor only five sec-
onds. The fifth second was selected as time point for therdiffee estimation. One
thousand realisations were used for distribution estongtand histograms were con-
structed considering ten intervals. According to equaid@®, a theoretical bound for
the average self-distance was calculated:

20, 1 1
\/?(—1000—% —1000) =0.11284 (5.1)

Several species were selected for the estimation of thetyeliféerence area between
the results obtained from a full stochastic simulation i LDM and those obtained
using the Hybrid Method. Figure 5.8 shows the histogrameesponding to the dis-
tribution estimations for the speci€¥4-RNAand a plot highlighting the difference
between the average population<f-RNA
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Figure 5.8: Differences between populations of G4-RNA measured at 5 seconds in the
GAL model (Hybrid Method configured with four deterministic reactions)

The estimated density distance area for the sp&deRNAand the execution times
are reported in the table 5.4. For all the species, we oldaangensity distance area
similar to the one obtained fd@&4-RNA Thus, considering that all the distances are
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Method Run time (ms) | 1000 runs time | Density distance area
LDM 1253.155ms 20min
Hybrid Method 11.342ms 11 sec 0.10606

Table 5.4: Execution times and the estimated density distance area for G4-RNA in the
GAL model (Hybrid Method configured with two deterministic reactions)

smaller than the average self distance bound in equati@éhr{b.approximations were
registered with this degree of accuracy. In conclusion,hyierid method achieved
comparable with those obtained with an exact stochasticlaion but almost one
hundred times faster.

5.2.2 Simulating two deterministic reactions

In the previous experiment, because of the high computatimad of the simula-
tions, only one thousand realisations were consideredtima&® the distributions of
the species. However, using this number of realisationsehalistance bound used to
evaluate the promising performance results of the hybrithotewas very large. For
this reason, we repeated a similar experiment configuriadnyforid method to simu-
late only the two fastest reactioAsandB (presented in figure 5.7) in a deterministic
way. With this experiment we measured a smaller densitgpdes area suggesting that
the real self distance may be smaller. Indeed, as the nunflgeterministic reaction
decreases, we expect the approximation introduced by thadhgnethod to reduce
and the simulation time to increase. The time point of oketéya, the number of in-
tervals and the number of realisations were kept unchanfeetefore, the estimated
self distance was still the one presented in equation (&fgphical outputs relative to
theG4-RNAare reported in figure 5.9 while the density distance aredtanexecution
times are presented in the table 5.5.

Method Run time (ms) | 1000 runs time | Density distance area
LDM 1271.608 21min
Hybrid Method| ~ 174.09 3min 0.044998

Table 5.5: Execution times and the estimated density distance area for G4-RNA in the
GAL model (Hybrid Method configured with two deterministic reactions)

For all the species, results were in line with the expectetbpaance. Density
difference area values still lie inside the estimated sistfatice and are reduced by
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Figure 5.9: Differences between populations of G4-RNA measured at 5 seconds in the
GAL model (Hybrid Method configured with two deterministic reactions)

almost one order of magnitude. The execution time of theiblyimethod increases
by a factor of ten but the method remains more than seven tiaster than a full
stochastic exact simulation. In conclusion, the hybridhmodthas shown, in both the
experiments a very good performance conforming with prececesults [1, 32].






Chapter 6
Conclusions and future work

This project focused on the extension of Dizzy, an existingnsical stochastic sim-
ulator, with three new efficient formulations of the Gillésgtochastic simulation al-
gorithm and a hybrid deterministic and stochastic simulaf@atures for the perfor-
mance analysis of simulators were developed in order to eoenfne computational
performance and the efficiency of the algorithms. The aimhefproject was to de-
velop a software framework that would be useful to invesdégand compare different
simulators over various biological models. To the best af knowledge, none of
the existing simulation software includes a wide range wiuators and tools for the
computational performance analysis and error measurenh@piproximate and exact
stochastic simulators. The need for a tool to compare thimqmeance of different
simulation algorithms is motivated by the high computadidoad of stochastic simu-
lations which made the simulation of many biological systeaohibitive without the
use of parallel computing. Stochastic simulation algonstare currently the only way
to obtain exact simulations of biological models. For tleagon one is usually con-
cerned about finding the best trade-off between performandesimulation exactness
with a particular model.

In the first part of this project, we showed how the new featmfeDizzy can help
in evaluating the scalability of different exact stochasimulation algorithms as the
number of reactions increases. In particular, we comparedperformance of the
different formulations of the Stochastic Simulation Algbom over three biological
models with a different scale of reactions. The comparisas made by consider-
ing the average number of reactions fired per second and &rage/search depth to
find the next reaction. Our results highlight that the newdyeloped LDM, SDM and

69
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ODM have generally a better performance than the NRM and e @ur analysis
shows that in most cases the ODM is the best formulation o58w while the NRM,
not considering the DM, is the simulator with the pooresfqrenance. The average
search depth in comparison with number of reactions pemsksbows that the com-
putational overhead that is introduced to improve the neattion location can play
an important role on the whole simulation performance. éajeven if the NRM of
Gibson Buck has the best data structure to find the next oeaidifire, the time that it
spends to maintain this data structure noticeably inceettmeexecution time, in par-
ticular when middle sized examples, like the GAL model, anesidered. For the same
reason the ODM which does not introduce any additional cdatfmnal load during
the simulation often gives the best results. Using our amshye also confirmed the
general good performance of the SDM, as presented in [3d]ttanreliability of the
LDM as introduced in [16].

However, we found that with big models, like the Shoeberl elpodr with mod-
els of verystiff systems, where a small subset of reactions are fired verydruty,
even efficient formulations of the SSA were too slow to be @ ireasonable time
using a typical desktop computer. In this case, approximathods that sacrifice
the exactness of stochastic simulation algorithm in favoperformance should be
used. We developed an approximate hybrid deterministictoahastic simulator that
accelerates the simulation by modelling some of the fastticazs in a deterministic
manner. In order to evaluate this newly developed algoritferimplemented a tool
that can be used to estimate the error introduced by an appaitx method with re-
spect to results obtained from an exact stochastic sinoulatThis new part of the
software, based on comparison between estimated prdipat®insity functions of the
species populations, offers both a graphical and a numevepato compare perfor-
mance of approximate simulators with performance of exiactilstors. These new
features were used to test the hybrid method on the GAL modklam high initial
concentration of galactose that makes four of the reactiomvery frequently. The
hybrid method was firstly configured to model all the four teats deterministically
and subsequently to model only the two fastest reactionsdeterministic way. In
both cases simulations gave very good results that foll@ptipulation distributions
computed by exact simulation algorithms and that can barmdadasaving, in the best
case, more than the 90% of the execution time.
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6.0.3 Hybrid Method numerical stability problems

Our implementation of the hybrid method relies on the usexisdtimg stochastic and
deterministic simulators currently available in Dizzy. \Wecountered a number of
difficulties during the development of the hybrid method dogroblems in imple-
menting the synchronisation between the stochastic arditieeministic regime while
keeping the deterministic ODE-solver numerically staldheleed, when a large num-
ber of concentrations and large reaction rates are comsigdas in very stiff systems,
ODE-solvers suffer from numerical stability problems ie fhhase of error estimation
used to adapt the integration step. Our first implementiothefhybrid method was
using an ODE-solver originally included in Dizzy with an atige step integration
algorithm based on the Runge Kutta method. A first evaluatfdhe hybrid simulator
showed numerous numerical accuracy problems and genemappdormance, not in
line with the good results presented in [1, 32], that wereedeling on the not opti-
mal implementation of the integration algorithm includeddizzy. For this reason,
we opted for the more reliable and powerful external ODEtaJirary that provides
several integration algorithms. The second version of stieid method used an adap-
tive step Runge Kutta integration algorithm offered by tkiemal ODEtoJava library.
This modification allowed us to avoid most of the numericabgity problems affect-
ing the previous version but was not increasing the oveoaliputational performance
because the adaptive step was set to be too small duringagiorul We resolved this
problem by modifying the ODEtoJava integrator to integkaith with an adaptive and
a constant integration step. More details about this madiéo are presented in ap-
pendix B.

6.0.4 Future work

The most difficult part in the hybrid method implementatioasithe synchronisation
between the deterministic simulator and the stochastialsitor. Accuracy and sim-
ulation performance strongly depend on this operation anginprove it means to
considerably improve the reliability of the hybrid simwatA natural evolution of the
current project is to develop a hybrid method, as presentfld,ithat synchronises the
two regimes considering the evolution of the propensitfdb® slow reactions during
the deterministic simulation. This method requires theafsen integration algorithm
able to stop upon a control event on the slow reaction prapessa feature that is usu-
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ally not supported in already existing ODE-solvers. So teeetbpment of this new
Hybrid Algorithm would require a further modification of tli@DEtoJava integration
algorithm.

Owing to time restriction, only a relatively small numberperformance analyses
were made in this project. Using the newly developed franmkviar the performance
comparison of different simulators, several other analgain be made in the future.
Within this context, however, a big limitation is the incoatibility of Dizzy with the
SBML level 2 standard [2] which is currently used by most medeailable on the
Internet. Therefore, performing analysis on a wide rangbiological models will
require the extension of Dizzy in order to read SBML level il This will allow us
to investigate more about the performance of the newly dgesl algorithms.

6.0.5 Final observations

The extended version of Dizzy is a first example of softwaaeniework for the per-
formance comparison of different stochastic simulatiggoathms. It allows the user
to test the appropriateness and the efficiency of the sionglater different biological
systems by using different performance metrics. In comafysve believe that this
software can give a valuable contribution to the ongoingyamms on computational
performance and optimisations of stochastic simulatigor@hms.



Appendix A
Glossary

CME - Chemical Master Equation

DM - Direct Method

FRM - First Reaction Method

LDM - Logarithmic Direct Method

MSSA - Multiscale Stochastic Simulation Algorithm
NRM - Next Reaction Method

ODM - Optimized Direct Method

ODE - Ordinary differential equation

SDM - Sorting Direct Method

RRE - Reaction Rate equation

SSA- Stochastic Simulation Algorithm
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Appendix B
ODEtoJava modifications

The Hybrid Method development required the modificationhef tlasser kTri pl e
provided by the ODEtoJava library. This class implementsiage Kutta integration
algorithm with a dynamic adaptation of the integration st€ur modification was
focused on two aspects:

e Conformation of the software to an iterative-based intégna
¢ Implementation of a method for a constant step integration

The first modification was required in order to allow the hglaigorithm to adaptively
perform an iteration with the deterministic simulator otiwihe stochastic simulator.
The second modification was motivated by an excessive neduct the integration
step registered when the algorithm was used to integrate tine thext stochastic event
time. Since this operation is performed only when the tim#hefnext stochastic event
is less than the next predicted optimal integration timis, phoblem was solved, intro-
ducing a tolerable error, by integrating with a constanp ste to the next stochastic
event time. The constant step used corresponds to thd integration step specified
by the user.

The modification resulted in a new class calledkTri pl eMbd. This class can

iterate both by using a constant integration step and bysthg@n optimal integration
step according to an error estimation.
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