

Abstract

This dissertation presents a survey of the simulation techniques used to study the dy-

namics in time of biological systems. The attention in this work is focused on the sim-

ulation performance of the algorithms and on the optimizations that have been adopted

to overcome the high computational load of exact stochasticsimulations. Since even

for small biological systems the number of reactions that are generated can be in the

millions, an explicit modeling of each reaction as in the Gillespie Stochastic Simu-

lation Algorithm (SSA) leads to a high computational load. For this reason it is im-

portant to have an efficient realization of the algorithm. The first part of this project

consisted of the extension of Dizzy, an existing chemical simulator, with new formula-

tions of the SSA called the Logarithmic Direct Method (LDM),the Optimized Direct

Method (ODM) and the Sorting Direct Method (SDM). The existing software was also

extended with new features for performance analysis and visualization of the various

algorithms over different biological systems. Three biological examples were selected

and a comparison between the new algorithms and the existingformulations of the

SSA was made investigating scalability with respect to the number of reactions.

Starting from the assumption that for many practical applications even optimisa-

tions of the SSA are still simply too slow to run without the use of parallel computing,

the second part of the project focused on approximate methods. These sacrifice the

exactness of the SSA in favor of simulation performance. Following the good perfor-

mance results obtained by other two simulators, a hybrid deterministic and stochastic

simulator was implemented in Dizzy. Hybrid methods are based on the assumption that

the stochasticity of fast reactions involving species witha large population becomes

negligible with respect to the dynamics of the system allowing us to approximate the

discrete event simulation of the SSA with a more efficient deterministic simulation.

Newly developed features of Dizzy were extended and adaptedin order to measure, by

using an histogram distance, the accuracy of the newly developed hybrid method. The

final goal of the project was to compare the performance of hibrid simulators with the

performance of efficient formulations of the Gillespie stochastic simulation algorithm.

A series of models was used for this analysis and results wereevaluated and discussed.

iii

Acknowledgements

Many thanks to my supervisor, Stephen Gilmore, for the helpful suggestions on this

project and for reviewing this dissertation. I would like also to thank Andrea Degasperi

and Luca Cacchiani, members of the research group that is working on Dizzy, for their

valuable contribution on the practical aspects of the implementation.

Thanks go also to the staff of the European Master in Informatics of the University

of Trento and of the University of Edinburgh for their help during my MSc and and for

having given me the possibility to study in Edinburgh. Finally I would like to thank

my girlfriend for her support.

iv

Declaration

I declare that this thesis was composed by myself, that the work contained herein is

my own except where explicitly stated otherwise in the text,and that this work has not

been submitted for any other degree or professional qualification except as specified.

(Luciano Marcon)

v

≪ Reasonable people adapt themselves to the world.

Unreasonable people attempt to adapt the world to themselves.

All progress, therefore, depends on unreasonable people≫

George Bernard Shaw

vi

Table of Contents

1 Introduction 1

1.1 Motivations . 2

1.2 Objectives . 3

1.3 Related work . 4

1.4 Structure of the dissertation .. 5

2 Background 7

2.1 Deterministic approach . 7

2.2 Exact stochastic simulation methods 8

2.2.1 Chemical Master Equation - CME 9

2.2.2 Stochastic Simulation Algorithm - SSA 9

2.2.3 First Reaction Method - FRM 11

2.2.4 Next Reaction Method - NRM 12

2.2.5 Optimized Direct Method - ODM 13

2.2.6 Sorting Direct Method - SDM 13

2.2.7 Logarithmic Direct Method - LDM 14

2.2.8 Accuracy of SSA formulations 15

2.3 Approximated stochastic methods16

2.3.1 Tau-leaping method . 16

2.3.2 Hybrid deterministic and stochastic models 17

2.4 Approximation measurement . 24

2.4.1 Probability density function estimation 25

2.4.2 Histogram Density Distance 25

3 Dizzy extension 27

3.1 Introduction to Dizzy . 27

3.1.1 Reaction Rates . 29

vii

3.1.2 Software architecture . 30

3.2 SSA formulations implementation33

3.2.1 Preliminary modifications 33

3.2.2 Optimized Direct Method - ODM 34

3.2.3 Sorting Direct Method - SDM 35

3.2.4 Logarithmic Direct Method - LDM 35

3.3 Hybrid Method implementation . 35

3.3.1 Implementation steps . 38

3.4 Performance analysis tools . 44

3.4.1 Performance analysis of exact simulations 44

3.4.2 Performance analysis of approximate simulations 45

4 Biological models 49

4.1 Michaelis Menten . 49

4.2 GAL4 system of Yeast - GAL . 51

4.3 EGF receptors signal pathways - Shoeberl 53

5 Results 55

5.1 Exact simulations results . 55

5.1.1 Michaelis Menten . 56

5.1.2 GAL . 57

5.1.3 EGF Shoeberl . 59

5.1.4 General considerations . 62

5.2 Approximate simulations results 64

5.2.1 Simulating four deterministic reactions 65

5.2.2 Simulating two deterministic reactions 66

6 Conclusions and future work 69

6.0.3 Hybrid Method numerical stability problems 71

6.0.4 Future work . 71

6.0.5 Final observations . 72

A Glossary 73

B ODEtoJava modifications 75

Bibliography 77

viii

List of Figures

2.1 Pseudocode of the Direct Method . 11

2.2 Pseudocode of the Next Reaction Method13

2.3 Pseudocode of the Sorting Direct Method 14

2.4 Pseudocode of the Logarithmic Direct Method 15

2.5 Tau-leaping algorithm . 17

2.6 Pseudocode of the Hybrid Method 22

2.7 Pseudocode of the MSSA . 24

3.1 Dizzy Class Diagram . 32

3.2 Optimized pre-ordering of reactions in the ODM 34

3.3 New SSA formulations Class Diagram 37

3.4 Hybrid Method design choices . 39

3.5 Screenshot of the Hybrid Method partitioner 40

3.6 Class Diagram of the Hybrid Method 43

3.7 Screenshot of the reactions per second histograms 45

3.8 Screenshot of average search depth graphs 46

3.9 Screenshot of the error estimator tool and its typichal output 47

3.10 Density difference distance area estimation 48

4.1 Expected dynamics for the Michaelis Menten model 50

4.2 From left to right the dynamics ofG4D-DNA3, G3D-G80DandG80D-

G4D-DNA3. The population ofG4D-DNA3 reaches the maximum

value approximately in two seconds while the populations ofG3D-

G80DandG80D-G4D-DNA3reach it at around 5000 seconds 52

5.1 Average search depths for the Michaelis Menten model 57

5.2 Average search depths for the GAL model59

5.3 Average search depths for the EGF Shoeberl model 61

ix

5.4 On the left average search depths of the ODM, the LDM, the SDM, for

the EGF Shoeberl model, on the right the same graph with the ODM

configured for a 100% pre-simulation time. 61

5.5 Reactions per second of the ODM with pre-simulation of 100% of the

simulation time . 62

5.6 From left to right: reactions per second in the MichaelisMenten model,

the GAL model and the Shoeberl model. 63

5.7 Fast reactions in the GAL model . 64

5.8 Differences between populations ofG4-RNAmeasured at 5 seconds

in the GAL model (Hybrid Method configured with four deterministic

reactions) . 65

5.9 Differences between populations ofG4-RNAmeasured at 5 seconds

in the GAL model (Hybrid Method configured with two deterministic

reactions) . 67

x

List of Tables

2.1 Example of dependency graph . 12

5.1 Execution times of the SSAs on the Michaelis Menten model. 56

5.2 Execution times of the SSAs on the GAL model58

5.3 Execution times of the SSAs on the EGF Shoeberl model 60

5.4 Execution times and the estimated density distance areafor G4-RNA

in the GAL model (Hybrid Method configured with two deterministic

reactions) . 66

5.5 Execution times and the estimated density distance areafor G4-RNA

in the GAL model (Hybrid Method configured with two deterministic

reactions) . 66

xi

Chapter 1

Introduction

Over the last decade, developments in high-throughput experimental techniques and

the increase of genomic data have supported the system-based approach studying bio-

logical systems. Understanding how biological systems work is a valuable resource for

better comprehension of the biology of disease and for model-driven drug discovery.

It is widely accepted that biological systems can be considered as complex sys-

tems where the interaction of a number of simple but specific functional elements lead

to emergent properties and behaviours. Different approaches have been proposed for

modelling and simulation of such complex systems. Startingfrom the position that,

even if complex, biological systems are deterministic, mathematical models involv-

ing Ordinary Differential Equations (ODE) [18, 14] have been historically proposed

for the simulation of chemical reaction systems. This analysis is applicable only for

chemical systems where the population of reactants is largeand where dynamics can

be approximated as a continuous system. Indeed, on a small-scale population system

these models fail to capture the randomness of the collisions between molecules that

are the basis of all chemical reactions.

A better abstraction that takes into account the stochasticity and the discreteness of

the system is given by the stochastic simulation algorithm (SSA) introduced by Gille-

spie in [9, 10]. In contrast with the ODE based approach that models the evolution in

time of the concentrations as differentiable functions, the SSA takes into account the

number of molecules of each species and using a discrete-event simulation, based on

the theory of Markov processes, estimates the evolution in time of the system. More

precisely, using Monte Carlo techniques the time of the nextreaction event is esti-

1

2 Chapter 1. Introduction

mated and, considering the likelihood of occurrence of eachreaction, the next reaction

to occur is selected. A simple algorithm is then used to update the state of the system

according to the state-change vector of the reaction. This approach is more precise

than ODE-based models in simulating the evolution of a biological system, because it

is rigorously based on the Chemical Master Equation (CME)[11, 7]. However, a signif-

icant disadvantage is the computational cost of the procedures involved. Since even for

small biological systems the number of reaction events thatare generated can be in the

millions, explicit modeling of each reaction as in SSA leadsto a high computational

load. For this reason it is important to have an efficient realization of the algorithm.

A number of mathematically equivalent formulations of SSA have been proposed in

order to reduce the computational cost of simulations. All these formulations focus on

reducing the time needed to locate the next reaction to fire. This operation is in fact the

most expensive step of SSA and to reduce its computational cost means that we would

considerably increase the number of reactions that are simulated per time unit.

However, for many practical applications even optimisations of the SSA are still

simply too slow to be run without the use of parallel computing. For this reason some

approximate methods, which sacrifice the exactness of the SSA in favour of simula-

tion performance, were introduced. Gillespie in [12] proposed the tau-leaping method

which, by using a Poisson approximation, takes time steps larger than the firing time

of a single event and can “leap” over many fast reactions and approximate the stochas-

tic behaviour of the biological system. Subsequently this method has been improved

in [24] in order to overcome the stability problem of the tau-leaping when simulating

stochastic systems with vastly different timescale reactions. The multiscale time na-

ture of many biological systems, known in deterministic simulations asstiffness[21],

has also motivated the formulation of hybrid methods that combine the traditional de-

terministic approach with the SSA. In conclusion the MSSA [37], which relies on the

use of the stochastic partial equilibrium assumption, has been recently formulated and

proposed as an improvement of the hybrid methods.

1.1 Motivations

Computational performance is a significant limiting factorwhen models with a high

degree of complexity are simulated. For example, an efficient whole cell simulation

is still a difficult task to address in a reasonable time with the use of a typical desk-

1.2. Objectives 3

top computer. The exact stochastic simulation of a cell cycle of an E.Coli, which has

been estimated in [6] to involve between 1014 and 1016 events, could require even

years in order to be executed on a single processor computer.For this reason study-

ing optimisations of the stochastic simulation algorithmswith the aim of reducing the

computational load of exact stochastic simulation, is a very active field.

However, a theoretical performance analysis of the different formulations of SSA

is a difficult task to address. The number of operations required by each formulation

of SSA to find the next firing reaction is in fact strictly related to the biological sys-

tem that is being simulated. Thus a general analysis of the algorithm should take into

account a test-set of different representative biologicalsystems. Moreover, even if the

average number of operations required to locate the next reaction is minimized, partic-

ular attention must be paid to the computational cost required to maintain the possibly

optimized data structures used to store reactions. Recent results [34] highlight that

the optimised direct method (ODM) is, in most cases, the bestformulation of SSA.

This in contrast with the common belief that the Next Reaction Method (NRM) of

Gibson and Bruck[25] is the fastest implementation of SSA because it comes with the

best data structures to keep track of the reactions. This analysis becomes even more

difficult when approximate methods like Hybrid Methods [1, 17] or tau-leaping[12]

procedures are considered. Indeed, in this case the trade-off between the approxima-

tion introduced and the gain in performance must be taken into account. In the light

of these results the development of a software with optimized simulation algorithms

and new tools for the performance analysis of the simulations can be of immense help

as an aid to those attempting to understand stochastic simulation algorithms or invent

better ones.

1.2 Objectives

The practical aim of this work was to extend Dizzy, an existing chemical simulator,

with novel formulations of the SSA called the Logarithmic Direct Method (LDM)[16],

the Optimized Direct Method (ODM)[34] and the Sorting Direct Method (SDM)[19].

In order to evaluate the efficiency of these algorithms Dizzywas extended to track the

performance of the algorithms during the simulation. This part of the project resulted

in the implementation in Dizzy of new features for the visualization of candle stick

graphs expressing the reactions per second of the differentformulations of the SSA

4 Chapter 1. Introduction

over various biological systems. Our objective was to run these three different SSA

formulations on a set of biological models with different reaction number magnitudes

in order to test the scalability of their performance with respect to the number of reac-

tions.

Successively, following the good performance results obtained by other two sim-

ulation software, BioNets [5] and COPASI [29], we decided toimplement in Dizzy a

hybrid deterministic and stochastic simulator. Our final goal was to have a simulation

framework with a wide range of simulators in order to begin aninitial performance

analysis. To compare the performance of the exact and the approximate methods of

Dizzy newly developed features of the software were extended and adapted in order to

measure, by using an histogram distance [36], the accuracy of the approximated meth-

ods.

We believe that this extension can contribute to further studies on the ongoing anal-

ysis of stochastic simulations of biological systems. Thisproject attempts to create a

software framework for performance analysis of different simulation algorithms that

will help in identifying the most appropriate simulation algorithm for different biolog-

ical scenarios.

1.3 Related work

Several software tools are currently available to simulatethe dynamic behaviour of

chemical reaction systems. However, to the best of our knowedge none of them offer a

framework for a quantitative analysis of the performance ofthe simulation algorithm.

As mentioned in the previous chapter, due to the high computational load of SSA,

performance plays an important role when practical examples are simulated. Various

performance comparisons between formulations of SSA can befound in the literature.

For example, the performance of the Logarithmic Direct Method is compared in [16]

in terms of reactions per second with the performance of the standard direct method

and of the optimized direct method. However, these analysesare usually carried out

by implementing ad-hoc code and are evaluated over a small test-set of biological

examples. Since performance is strongly dependent on the nature of the biological

system and on the realization of the SSA, the implementationof a tool capable of

comparing the performance of different SSA formulations for a number of different

1.4. Structure of the dissertation 5

biological systems could be very useful for further performance analysis.

In this research the extension of various different simulation tools like Stochkit

[35], E-Cell [15], BioNets [5], COPASI [29] and Dizzy[31, 30] was considered for

this purpose. Overall Dizzy was chosen due to some of its characteristics as mentioned

below.

First of all Dizzy comes with a wide range of different simulation algorithms sharing

a common model definition which does not require further modification in order to be

run over the different algorithms. Secondly the modular design of the tool in which

each simulator is an independent part of software that shares with the others a well-

defined interface, facilitates the implementation of both the new simulation algorithms

and the performance analyser. In conclusion, the possibility offered by Dizzy of cre-

ating reusable templates enables us to test the performanceof the different SSAs on

many biological systems.

1.4 Structure of the dissertation

Including this first introductory chapter which also surveys related works, the thesis

consists of six chapters. The next chapter proceeds to review the background material

needed to understand this work. Chapter 3 then presents Dizzy, the software which

was extended, and outlines the main step of the implementation. Chapter 4 introduces

the biological models that have been used to test and evaluate the software. Chapter

5 includes a performance analysis of the simulation algorithms over the biochemical

model presented in the previous chapter and discusses the results obtained. Finally in

Chapter 6 conclusions are drawn and future directions of thework are discussed.

Chapter 2

Background

This chapter reviews the theory underlying the three different approaches, determinis-

tic, stochastic and hybrid, that have been used to simulate the dynamics of biochemical

reacting systems. Finally a technique that can be used to measure differences between

the results of distinct simulation algorithms results is presented.

2.1 Deterministic approach

Taking the assumption that a chemically reacting system is deterministic, such as that

given an initial state always leads to same dynamics, the evolution in time of a well-

mixed biological system has been traditionally studied using a mathematical formalism

in which continuous variables evolve deterministically. Those mathematical models

usually involve a set of coupled ordinary differential equations (ODEs) that drive the

evolution in time ofXi continuous variables whose values correspond to the population

of Si(i = 1, ...,N) chemical species. The set of coupled ordinary differentialequation

is known as the reaction rate equations (RRE) and is given by the formula:

dXi

dt
= fi(X1, ...,XN) (i = 1, ...,N) (2.1)

where thefi terms are functions derived from the reactions that depend on the change

of concentration over time of the reactants. This model has been shown to work quite

well when the population of the various species are quite large and for this reason is

usually expressed withZi concentration variables that represent theXi population in

terms of moles per volume. Note that when the population of the variables is given

by theXi variables expressed in number of molecules, the real valuesthat they assume

7

8 Chapter 2. Background

are considered to be an acceptable approximation as long as the number of molecules

is large. In this way the relative error can be neglected. When smaller systems with

concentration larger relative to one are considered the stochastic nature of chemical

reactions cannot be ignored and the deterministic approachmust be substituted with

other methods able to capture stochastic fluctuations.

2.2 Exact stochastic simulation methods

This section briefly reviews the Stochastic Simulation Algorithm, formally presented

as the Direct Method of Gillespie [9, 10], and its main differences with other SSA

formulations such as the Next Reaction Method (NRM) of Gibson and Bruck[25]. The

Stochastic Simulation Algorithm is an exact procedure for generating a realization of

the Chemical Master Equation (CME) [9] and then for computing the evolution in time

of a “well-stirred” chemical reacting system. In general a chemical reacting system is

defined by:

• a number of molecules ofN different chemical species{S1, ...,SN}

• a set ofM chemical reactions{R1, ...,RM} through which the molecules interact

• The state of the system at a timet which is expressed by a vectorX(t) ≡

(X1(t), ...,XN(t)) whereXi(t) denotes the number of molecules of the species

Si at timet.

• Each reactionRj is defined by two quantities:

– A state-changevectorv j ≡ (v1 j , ...,vN j) wherevi j denotes the change in

theSi molecular population caused by oneRj reaction.

In other words when reactionRj occurs the system moves from the state

vectorx to state vectorx+v j .

– A propensity functiona j(x) that, givenX(t) = x, is defined as the proba-

bility that one reactionRj will occur in the system in the next infinitesimal

time interval[t, t +dt].

In the SSA the system is simplified and is assumed to have a constant volumeΩ
and a constant temperature.

2.2. Exact stochastic simulation methods 9

2.2.1 Chemical Master Equation - CME

The mathematical basis for the CME is the probabilityP(x, t|x0, t0).

• P(x, t|x0, t0) is defined as the probability that, givenX(t0) = x0, the system will

be in the statex at timet or equivalentlyX(t) = x.

The CME gives a recursive definition of the time evolution ofP(x, t|x0, t0) as follows:

δP(x, t|x0, t0)
δt

=
M

∑
j=1

[a j(x−v j)P(x−v j , t | x0, t0)−a j(x)P(x, t | x0, t0)] (2.2)

The average behaviour ofX(t) can be derived from the CME by multiplying by all the

x and then summing over all thex obtaining:

d〈X(t)〉
dt

=
M

∑
j=1
〈v j(X(t))〉 (2.3)

If no fluctuation are assumed then〈v j(X(t))〉= v j(X(t)) and it is possible to rewrite

(2.3) as:

dX(t)
dt

=
M

∑
j=1

v j(X(t)) (2.4)

It can be seen that the equation (2.4) corresponds to the RRE given in equation (2.1)

with the termsfi corresponding to the functions∑ j vi j (X(t)). Thus, under the condition

of no fluctuation a way to derive the deterministic approach model starting from (2.2)

has been shown.

2.2.2 Stochastic Simulation Algorithm - SSA

Since the equation (2.2) corresponds to a set of coupled ODEsit can be solved analyt-

ically for a few simple examples. Moreover the CME computes the variation in time

of the molecular species without taking into account the fluctuations of the chemical

reacting system that is natively stochastic. Indeed the analytical solution of the equa-

tion (2.2), in the hypothetical case in which the system has no fluctuations, gives us a

continuous description of the system.

In contrast the SSA implements a way to compute numerical realizations of (2.2)

which can be used to simulate trajectories ofX(t). This simulation procedure is said

10 Chapter 2. Background

to beexactbecause it is based on a discrete stochastic simulation of every reaction

event that occurs in the biological system, thus producing results that do not introduce

approximations to the CME. This leads to a good degree of accuracy but it is extremely

expensive in terms of computation because the operations that are computed are pro-

portional to the number of reactions observed.

The mathematical basis used to simulate the trajectories isa new probability func-

tion P(τ, j | x, t) which has the following definition:

• P(τ, j | x, t)= the probability that, givenX(t) = x, the next reaction in the system

will be Rj and will occur in the time interval[t + τ, t + τ+dt).

The formal definition of this probability is obtained by joining the probability density

function of an exponential random variable that gives the time to the next reaction

(τ) and a random variable that gives the index of the next reaction. The former has

mean 1/a0(x) and the latter is a statistically independent integer random variable with

probabilitiesa j(x)/a0(x), wherea0(x) is defined as∑M
k=1ak(x). The joint probability

density function known as the Next Reaction Density Function [13] is:

P(τ, j | x, t) = a0(x)e−a0(x)τ×
a j(x)

a0(x)
= a j(x)e−a0(x)τ (2.5)

Starting from (2.5) several formulations of the SSA have been developed for computing

samples ofτ and the reaction indexj through a Monte Carlo procedure. One of the

first formulations is theDirect Method[9, 10] in whichτ and j are selected using two

random numbersr1, r2 which are generated from the uniform distribution in the unit

time interval[0,1]. The formulas for the generation ofτ and j are the following:

τ =
1

a0(x)
ln(

1
r1

) (2.6)

j = the smallest number such that
j

∑
j ′=1

a j ′(x) > r2a0(x) (2.7)

These formulas can be used to iteratively selectj andτ and make the system ad-

vance to a next state in accordance with thev j state-change vector. In this way numer-

ical realizations ofX(t) can be generated. The pseudocode of the whole algorithm is

given in Figure 2.1.

The high computational load of such algorithms can be tracedto the operations

of the equations (2.6) and (2.7) and toStep 2 of the algorithm. The efficiency of

2.2. Exact stochastic simulation methods 11

1. Initialize the time t = t0 and the the system’s state x = x0

2. With the system in a state x at time t, evaluate all the a j(x)
and their sum a0(x)

3. Generate values for τ and j using (2.6) and (2.7)

4. Fire the next reaction by replacing t← t + τ and x← x+v j

5. Record (x,τ) and go to Step 2 or end the simulation

Figure 2.1: Pseudocode of the Direct Method

these operations is in fact highly dependent on the number ofreactionsM. Different

formulation of the SSA rely on optimisations of (2.7) and ofStep 2 reducing the time

needed to locate the next reaction to fire and the time needed to update the probability

of each reaction. The next sections give a survey of the most significant formulations

of the SSA.

2.2.3 First Reaction Method - FRM

One of the earliest elaborations of the SSA is theFirst Reaction Method(FRM) pre-

sented as an alternative to the Direct Method in [9, 10]. The FRM selects the next

reaction to fire by generatingM random numbersr1, ..., rM from the uniform distribu-

tion [0,1] and computing:

τ j ′ =
1

a j ′(x)
ln

1
r j ′

(j ′ = 1, ...,M)

τ and j are selected as follows:

τ = the smallest of theτ j ′

j = the index of the smallestτ j ′

This way of generatingτ and j is in accord with the probability density function (2.5)

however for chemical reacting systems with many reaction channels this system is less

efficient than theDirect Method. Indeed, generatingM uniform random numbers at

every step of the simulation is very time consuming. This algorithm exhibits a time

complexityO(M) for the operations required to find the indexj of the next reaction to

fire and does not optimize the update process propensities after each reaction.

12 Chapter 2. Background

2.2.4 Next Reaction Method - NRM

An improvement in performance has been obtained by theNext Reaction Method

(NRM) presented in [25] by Gibson Bruck. This algorithm is based on the idea that

in general the execution of a reaction affects the propensities of only a small number

of reactions. Starting from this assumption the NRM attempts to reduce the number

of operations needed to perform theStep 2 of the SSA by pre-computing, before the

simulation, a reaction dependency graph. This graph can be used to update only the

propensities of reactions that have been modified by the lastfired reaction. This opti-

misation substantially reduces the number of calculationsof Step 2 in most models.

In that regards the selection ofτ and j in this algorithm is essentially a modification

of the First Reaction Method. As in the FRM theM putative next firing times are

computed at each iteration. In addition the NRM reduces the time needed to locate the

minimalτ j ′ by keeping the computedτ j ′ in a binary indexed priority queue. This heap

structure is constructed and maintained so that each parentnode is always earlier than

its daughter nodes. This method is faster than the DM when thenumber of species

N and the number of reactionsM are large. However, one disadvantage of the NRM

is that during execution most of the computational time is used to maintain the heap

structure and this becomes a limiting factor with very largeand very coupled systems.

The construction and the meaning of the dependency graph is worth explaining with

the example in Table 2.1 as reported in [19].

Name Reaction Depend on Affects Update
R1 A→ B A A,B R1,R2
R2 B→C B B,C R2,R3
R3 C+D→E C,D C,D,E R3,R4,R6
R4 E→E+F E F R5
R5 F→A F A,F R1,R5
R6 E→B E B,E R2,R4,R6

Table 2.1: Example of dependency graph

The main steps of the Next Reaction Method are summarized in Figure 2.2.

2.2. Exact stochastic simulation methods 13

1. Initialization

• Generation of the dependency graph

• Calculation of propensities and generation of τ j ′

using M random number.

• Each τ j ′ is inserted in the heap structure.

• Get from the heap the smallest τ j ′ and fire the related reaction.

2. Iterate

• Using the dependency graph update the a′j(x) propensities
that have been modified after the last reaction.

• Regenerate related τ j ′ and insert them in the heap.

• Get from the heap the smallest τ j ′ and fire related reaction

Figure 2.2: Pseudocode of the Next Reaction Method

2.2.5 Optimized Direct Method - ODM

The Optimized Direct Method (ODM) enhances the performanceof the DM reducing

the number of operations that are performed to find the reaction that satisfies (2.7).

The ODM achieves its efficiency by pre-ordering the reactions so that the reactions

that are executed more frequently, those with larger propensity functions, are moved

into the first positions in the search order. The assumption underlying the pre-ordering

is that most biological systems are made by a small number of frequently occuring

reactions and a majority of reactions which are fired infrequently. The pre-ordering of

the reactions is determined by executing a pre-simulation of an initial time less than the

whole simulation time. In this way the ODM eliminates the overhead of maintaining

a heap data structure while improving the speed of finding thenext reaction to fire.

In practical applications several pre-simulations are needed to determine an optimal

order of the reactions, furthermore this approach relies onthe strict assumption that

the biological system that is analyzed has an initial reaction execution behaviour that

is representative of the whole simulation.

2.2.6 Sorting Direct Method - SDM

The Sorting Direct method (SDM) [19] is another optimisation of the DM that has been

developed in order to address the problem of the costly pre-simulation of the ODM.

The main idea of this algorithm is to reduce the cost ofStep 2 by moving at each

14 Chapter 2. Background

iteration the reaction that is fired towards the top of the reaction list. In this way the

next time that this reaction will be fired its average search depth will decrease and the

more probable is the reaction the smaller will be its averagesearch depth. According

to results presented in [19] in most models this method exhibits, in a long running

simulation, performance that is substantially better thanthat of the ODM. This is due

to the fact that as the run continues the ODM could increase the average search depth

because the pre-simulation has not effectively predicted the reaction behavior. The

pseudocode of the algorithm is given in Figure 2.3.

1. Generation of the dependency graph

2. Initialise the Search order as the given order of the
reactions

3. Initialise the time t = t0 and the system state x = x0

4. With the system in a state x at time t, evaluate the
a j(x) modified by the last fired reaction and the sum a0(x)

5. Generate values for τ and j using (2.6) and (2.7)

6. Fire the next reaction by replacing t← t + τ and x← x+v j

7. Swap in the Search Order the selected reaction
j ′ with the reaction j ′−1.

8. Record (x,τ) and go to Step 4 or end the simulation.

Figure 2.3: Pseudocode of the Sorting Direct Method

2.2.7 Logarithmic Direct Method - LDM

The ODM and SDM are based on the reduction of the average depthsearch of the

next reaction to fire. Those algorithms are strictly based onthe original description of

the Direct Method [9, 10], thus they recalculate each time the summationa0(x) used

in the equations (2.6) (2.7). Sincea0(x) is first calculated in (2.6) and then some of

the propensitiesai(x) are successively accumulated in the summation in (2.7), some

propensities are summed almost twice. The assumption behind the Logarithmic Direct

Method [16] is that the whole recalculation of the terma0(x) can be avoided by keeping

a vector with the partial summation of the termsa j(x). This vector can be successively

updated, at each step of iteration, only from the point wherethe first partial summa-

tion has changed. The next reaction to fire can be efficiently located by performing a

2.2. Exact stochastic simulation methods 15

binary search, with search key equal tor2a0(x), over the vector containing the partial

summation. In this way the average search depth can be reduced to O(logM). The

pseudocode of this method is given in Figure 2.4.

1. Generation of the dependency graph

2. Initialise the vector subtotal with the
partial summations of the propensities a j(x)

3. Initialise the time t = t0 and the system’s state x = x0

4. With the system in a state x at time t
evaluate the a j(x) according to the dependency graph.

5. Recalculate the vector subtotal from first point
which has changed according to the dependency graph

6. Generate values for τ according to (2.6)
using subtotal[M] instead of a0(x).

7. Select the next reaction j such that
subtotal[j−1]≤ r2subtotal[M] < subtotal[j]

8. Fire the next reaction by replacing t← t + τ and x← x+v j

9. Record (x,τ) and go to Step 4 or end the simulation.

Figure 2.4: Pseudocode of the Logarithmic Direct Method

2.2.8 Accuracy of SSA formulations

Different formulations of the SSA exhibit different performance as well as a different

degree of accuracy. Indeed even if the ODM, the SDM and the LDMare all derived

from the Direct Method of Gillespie, which is an exact stochastic simulation method,

the way in which they order the list of reaction propensitiescan affect the accuracy

of equation (2.7) in a different way. As discussed in more detail in [13], the ODM

and the SDM arrange the reactions in order of decreasing sizeof propensities and

this can affect the accuracy of the accumulator used in the search in (2.7). Gillespie

in [13] proposed the following example to explain this phenomena: consider that we

were carryingk decimals in the accumulator in left term of (2.7) and supposethat

the propensity function with the highest search order indexis k orders of magnitude

smaller thanaM, in this case the reactionRM never fires at all because of the numerical

truncation on the accumulator. In contrast, the LDM is not affected by this accuracy

16 Chapter 2. Background

problem because it allows an arbitrary order of the propensities before the computation

of the vector with the partial summation and successively during the binary search does

not compute any sum.

2.3 Approximated stochastic methods

Approximations of the SSA have been developed in order to overcome the high com-

putational load of an exact discrete event stochastic simulation. This section presents

three promising techniques, the tau leaping, the Hybrid Method and the MSSA that

have shown to considerably increase the performance of the simulation, yet giving

satisfactory results. To conclude, a simple technique thatcan be used to measure the

approximation that is introduced by these methods is reviewed.

2.3.1 Tau-leaping method

This method is based on a Poisson approximation that can be made on the occurrence

probability of a reactionj when, given a system in a statex at a timet, there exists

a time τ > 0 such thata j(x) does not change its value by a significant amount in

the time interval[t, t + τ). In this case, considering thata j(x) remains approximately

constant over the time[t, t + τ), the numbers of firings of the reactionRj during the

time interval[t, t + τ) may be expressed by a Poisson random variable with mean and

variancea j(x)τ. When this condition is satisfied by all the reactions it is possible to

write X(t + τ) in the form of the basic tau-leaping formula:

X(t + τ) = x+
M

∑
j=1

Pj(a j(x)τ)v j (2.8)

wherex = X(t) and the termPj(a(x)τ) is a statistically independent Poisson random

variable with mean and variancea j(x)τ. As presented in [13], starting from (2.8)

the strategy in Figure 2.5 can be used to generate a stochastic simulation.Step 1 is

the most difficult part of this process. Estimating an appropriate largest leap timeτ,

which does not produce a change in the propensity function greater than user-specified

parameterε, is in fact a difficult task to address. To discuss the detailsof an optimal

estimation ofτ is beyond the scope of this thesis, for more information refer to [38].

The tau leaping technique gives very good results when all the reactions have similar

time scales. Therefore, in this case the timeτ that satisfies the leap condition can

2.3. Approximated stochastic methods 17

1. With the system in a state x choose a value τ
that satisfies the leap conditions.

2. for each j+ a sample k j+ of the Poisson random variable a(x)τ.

3. update the state x with x+∑ j k jv j

Figure 2.5: Tau-leaping algorithm

be large enough to jump over many fast reactions. However, with many biological

systems which are characterized by having multiple scales in time behaviour of the

reactions, the original or “explicit” tau-leaping method becomes very slow. Indeed in

this case, the timeτ must be restricted to the smallest timescale in order to satisfy the

leap condition. The “implicit” tau-leaping method relieves this problem by replacing

the equation (2.8) with the equation:

X(t + τ) = x+
M

∑
j=1

[Pj(a j(x)τ)−a j(x)τ+a j(X(t + τ))τ]v j (2.9)

The advantage of this formula is that it can be numerically solved implicitly for the

statex at timet + τ by using Newton’s method. This enhances the stability of thetau-

leaping method allowing the use of larger values ofτ. The equation (2.9), however,

overdamps the fluctuations of the population of the fast species, thus those populations

must be readjusted by using a technique known as “down shifting”. Moreover both the

tau-leaping methods canot guarantee that all reactant values remain positive. Indeed

computing more than one reaction at each step of iteration can lead to negative values

of molecular numbers when one or more reaction consume the same reactant. Negative

numbers of molecules do not have any biological meaning and in order to address this

problem it is possible to mark some reactions as “critical” and forbid them from firing

more than once per time. This clearly results in a loss of performance.

2.3.2 Hybrid deterministic and stochastic models

Because the computational load of the Stochastic Simulation Algorithm is proportional

to the number of reactions performed, when many molecules and fast reactions are in-

volved they become quite inefficient. Indeed, even if some high frequency events do

not make a considerable contribution to the dynamics of the system, the SSA simulates

every reaction event spending most of the time in simulatingfast reactions.

18 Chapter 2. Background

Several biological systems show a multi-scale behaviour inwhich fast reactions

quickly reach a stable state and slow reactions drive the dynamics of the system. This

becomes a limiting factor for many practical applications.Moreover, when reactions

involve species with a large population, the stochasticityof those reactions becomes

negligible with respect to the dynamics of the system and thediscrete event simula-

tion of the SSA can be replaced by a more efficient deterministic model simulation.

The idea behind Hybrid Methods is to partition the reactionsof the system in two

groups, one corresponding to the reactions that are more efficiently simulated with de-

terministic continuous models and another one corresponding to reactions that must

be simulated with a discrete event driven stochastic simulation. Finally the simulation

of the whole system can be obtained by combining the result coming from the two

approaches.

After a brief review of the approaches that have been used to partition the reactions,

this section introduces two methods that have been proposedin order to combine de-

terministic and sochastic simulations: the hybrid method [1, 32] and the MSSA [37].

2.3.2.1 Reactions partitions

Determining which fast reactions should be simulated with adeterministic model is

still an open problem. Three different criteria have been proposed in order to address

this:

1. Make use of biological insights coming from experiments or experience.

2. Run a full SSA and by analysing the number of times that a reaction is fired

choose as fast reactions those with the highest average propensities.

3. Choose during the simulation how to model a reaction basedon the number of

molecules of the reactants and on the reaction propensity function.

The first criteria can be based on ad-hoc laboratory experiments or driven by simple

assumptions like modelling the gene regulation parts stochastically and the metabolic

reactions with a continuous deterministic model.

The second criteria is a general purpose approach based on the dynamics of the

system during the simulation time of interest. Its main drawback however is the com-

2.3. Approximated stochastic methods 19

putational load required to run one or a few times a full SSA before the simulation, but

this is a tolerable condition if one considers that most of the computational cost in the

SSA is determined by the execution of many different runs.

The third criteria consists of adaptively choosing during the simulation how to

model the reactions based on the current population and on the current reactions propen-

sities. Since the way in which reactions must be simulated could change in time, a

dynamic partition is in theory more flexible and more accurate than a static partition.

However, a formal and standard threshold for such partitioning has not yet been de-

fined. Two possible measures, one based on the reactants population, another on the

reactions rate, are given in [26]. The main problem is that a reliable measure that

expresses how the stochastic fluctuations of the reaction affect the dynamics of the

system is not yet available. Nonetheless this partitioningtechnique is widely used in

many hybrid simulators, like Bionets [5] or COPASI [29], andhas shown to give good

results with many biological models as long as the user-defined parameters that define

the threshold are correctly tuned. Recently in [33], some evidence that can be used

to set these parameters has been identified in the divergencefactor (computed as the

sum of the Laypunov exponents) of the system that is considered. A possible draw-

back of the dynamic partition method is the computational overhead introduced by the

partitioning process that can possibly result in simulations that are slower than those

that can be obtained with pure stochastic methods. This partitioning criteria is also not

compatible with the MSSA method that requires the definitionof the reaction partition

a propri in order to compute the stochastic partial equilibrium of the fast reactions.

2.3.2.2 Hybrid method

Following [1] the mathematical justification for the hybridmethods can be understood

by defining a functionNj(t) that counts the number of times that a reactionRj oc-

curs in the time interval[t, t0). This function can be defined using the following time

transformation:

g j(s|t) =

Z s

t
a j(X(τ))dτ (2.10)

wherea j(X(t))dt is the probability introduced in Section 2.2 that oneRj reaction

will occur in the infinitesimal time interval[t, t + dt) or equivalently, givenTj(t) as

the first time in whichRj occurs aftert, that Tj(t) ∈ [t, t + dt). Since the reactions

are assumed to be locally independent it is also true thatP(Tj(t),Tk(t) ∈ [t, t + dt) =

20 Chapter 2. Background

a j(X(t))ak(X(t))(dt)2. Usingg j(s|t) and considering the following definitions:

1. ξ jk as a series of exponential random variables with parameter 1

thus havingP(ξ ∈ [x,x+dx]) = e−x for all x≥ 0, with j = 1, ...,M andk∈ N.

2. Sj(n) = ∑n
k=1 ξ jk

the Poisson processNj(t) can be defined as follows:

Nj(t) =
∞

∑
n=1

1{Sj (n)≤g j (t|t0)} (2.11)

It is then easy to show that for all the reactionsj the probability that exactly one

reaction eventRj occurs in the infinitesimal time intervaldt is equal to:

P[Nj(t +dt)−Nj(t) = 1|X(t)] = a j((X)(t))dt (2.12)

ThusNj(t) andTj(t) have the same probability law and this implies, according tothe

definition ofNj(t), that

the random variableTj(t) has the same law ofg−1
j (Exp(1)|t) (2.13)

Furthermore it also implies that equation (2.4) that modelsthe evolution in time of the

number of molecules can be reformulated as:

X(t) =
M

∑
j=1

v jdNj(t) (2.14)

The mean of the Poisson processNj is therefore derived as

E[Nj(t)] = E[(Nj(t)−g j(t|t0))
2] =

Z t

0
E[a j(X(s))]ds

and the relative fluctuation betweenNj(t) andg j(t|t0) can be calculated as

√
E[(Nj(t)−g j(t|t0))2]

E[Nj(t)]
=

1√
E[Nj(t)]

(2.15)

According to the equation (2.15), when the propensitya j is large and the population

of the reactants involved in the reactionRj are not too small, it is possible to approxi-

mate the dynamics of the stochastic part with the termg j(t|t0) and then to model this

reaction deterministically. In this way, assuming that thesystem has been partitioned

2.3. Approximated stochastic methods 21

in reactions that have to be modelled deterministically, with indexesj ∈ D, and in

reaction that must be modelled stochastically, with indexes j ∈ S, the time evolution

equation (2.4) can be reformulated as:

dX(t) = ∑
j∈D

v ja(X(t))dt+ ∑
j∈S

v jdNj(t) (2.16)

The equation (2.16) is the basis of the hybrid method. A simplified version of the

algorithm that can be used to generate numerical realizations of (2.16), by using one

deterministic simulator and one stochastic simulator, is given in figure 2.6. This al-

gorithm is a simplification of the underlying theory presented in this section. Indeed

according to the mathematical theory of the hybrid method during the course of the

deterministic evolution of the hybrid system the value ofg j(τ|t) of the slow reactions

changes according to the differential equation:

d
dτ

g j(τ|t) = a j(X(τ),τ) (2.17)

The algorithm given in figure 2.6 instead approximates this behaviour by executing at

each step of iteration the deterministic simulation for a time taken as the minimum time

between the integration time step and the expected time to the next reaction event. The

stochastic simulation is performed only when the next reaction event time is smaller

than the integration time step.

2.3.2.3 Multiscale Stochastic Simulation Algorithm - MSSA

The Multiscale Stochastic Simulation Algorithm (MSSA) uses a new formulation of

the stochastic partial equilibrium assumption (SPEA), in order to implement an SSA in

which the propensities of the slow reaction are approximated and the simulation of the

fast reaction is avoided. The assumption behind this methodis that fast reactions, those

that can be simulated deterministically, quickly reach a stochastic partial equilibrium

that can be used to generate the approximate propensities ofslow reactions and to

easily perform a SSA.

2.3.2.4 Stochastic partial equilibrium assumption

According to [37] the stochastic partial equilibrium assumption holds when the fast

reactions of a system quickly reach a state in which they are in equilibrium. In other

words the distributions of the “fast species”, species whose populations are changed

22 Chapter 2. Background

1. Partition the reaction into D deterministic reaction
and S stochastic reactions

2. Initialise t = t0 and xi = initial values

3. Compute reaction probabilities at the time t

4. Compute the next scheduled time t1 = t +δt of the deterministic
simulator with δt the step of the deterministic simulator

5. From the propensities xi compute the next candidate event time dt
and set t2 = t +dt

6. if(t1 < t2)
generate continuous predicted populations xD,i on the time t1
set t = t1

else
generate continuous predicted populations xD,i on the time t2
fire reaction predicted by the stochastic simulation
updating xS,i set t = t2

7. Record (x, t) and go to Step 3 or end the simulation.

Figure 2.6: Pseudocode of the Hybrid Method

by the fast reactions, are temporarily steady. Assuming a partition of theR= (Rs,Rf)

reactions of the system inRf = Rf
1, ...,Rf

M f fast reactions andRs = Rs
1, ...,R

s
Ms slow

reactions, where the population are changing upon the propensities and state change

vectors:

af
j (x) = af

j (x
f ,xs) vf

j = (vf f
1 j , ...,v

f f
Nf j) j = 1, ..,M f (2.18)

as
j(x) = as

j(x
f ,xs) vs

j = (vf s
1 j , ...,v

f s
Nf j ,v

ss
1 j , ...,v

ss
Ns j) j = 1, ..,Ms (2.19)

where thevs f
i j = 0 and omitted as the slow reactions cannot modify the fast species.

We consider a virtual systemV modified only by the fast reactionsRf where pop-

ulations are expressed in time by a vectorX̂ f (t). This system evolves very quickly

and reaches an equilibrium in which the distribution ofX̂ f (t) becomes unchanged by

the fast reactions and can vary only by the occurrence of the slow reactions. Indeed,

when a slow reaction is executed the state ofX̂ f (t) is disturbed and a new equilibrium

state is quickly reached by the virtual system. Moreover under the stochastic partial

equilibrium we assumed that the time required to reach an equilibrium state, known

as relaxation periodτrelax, becomes negligible if compared with the time scale of the

slow reactions. Thus the virtual system can be considered toremain always at the same

2.3. Approximated stochastic methods 23

equilibrium, so for all the timest the distribution ofX̂ f (t) is equal to the distribution

of X̂ f (∞).

2.3.2.5 MSSA algorithm

Using the stochastic partial equilibrium assumption specially modified propensities of

the slow reactionsas
j can be calculated according to the value of the fast speciesX̂ f (∞).

Successively the same procedure of the SSA can be used to compute trajectories of the

original system according to the new propensities. The mathematical foundation of

this method is the occurrence probabilityp′ of a slow reactionRs
j in the time interval

[t + τ, t + τ+dt):

p′(τ, j|xf ,xs, t) = E(as
j(X

f (τ),xs)|xf ,xs)e−
R t+τ
t E(as

0(X
f (µ),xs)|xf ,xs)dµ (2.20)

that can be rewritten using the stochastic equilibrium assumption on the termsX f (t)

as:

p′(τ, j|xf ,xs, t) = E(as
j(X

f (∞),xs)|xf ,xs)e−τE(as
0(X

f (∞),xs)|xf ,xs) (2.21)

The two difficult steps in this procedure are the resolution of the partial equilibrium

X̂ f (∞) and the estimation of the modified slow reaction propensity functionsX̂ f (∞).

Both these processes can be simplified if we assume that the mean values of the distri-

butionX̂ f (∞) are a good approximation in order to compute the modified propensities

as
j , that in this way can be easily calculated according to the five following cases:

1. as
j(x) = as

j(x) if as
j(x) is independent ofxf

2. as
j(x) = cs

j〈X̂
f

i 〉 if as
j(x) = cs

jx
f
i

3. as
j(x) = cs

jx
s
i′〈X̂

f
i 〉 if as

j(x) = cs
jx

s
i′x

f
i

4. as
j(x) =

cs
j

2 〈X̂
f

i (X̂ f
i −1)〉 ≈

cs
j

2 〈[X̂
f

i]2〉 if as
j(x) =

cs
j

2 xf
i (xf

i −1)

5. as
j(x) = cs

j〈X̂
f

i X̂ f
i′ 〉 if as

j(x) = cs
jx

f
i xf

i′

So all the modified propensities of the slow reaction can be expressed by only using an

estimation of the average〈X̂ f 〉. This mean can be computed through the resolution of

the algebraic equations of the equilibrium law and of the conservation law applied to

the reactions of the system. The system of non linear equations can be obtained using

a symbolic computation over the reactions and can be resolved by using for example

24 Chapter 2. Background

Netwon’s method. For more details about this matter refer to[37]. The general pseu-

docode of the MSSA that made use of the modified propensitiesas
j is given in Figure

2.7.

1. Compute the partial equilibrium for the fast virtual system.
Update the fast variables X f = X̂ f (∞)

2. Calcuate the modified slow propensities as
j and their sum as

0

3. Generate two random numbers r1 and r2

from the uniform distribution in the unit time interval [0,1]

4. Generate values for τ and j as in (2.6) and (2.7)
using instead the modified propensities as

j

5. Fire the next reaction by replacing t← t + τ and x← x+v j

6. Record (x,τ) and go to Step 2 or end the simulation

Figure 2.7: Pseudocode of the MSSA

2.4 Approximation measurement

When approximate methods are used, the estimation of errorsbecomes of interest. A

good error measure that is representative even when bistable systems are considered

is the probability density functions distance presented in[36] as the density distance

area. Usually in a distribution distance error estimation an analytical solution of the

distributions is not available, for this reason the distributions are estimated from the

histograms of a large number of samples where as the number ofsamples increases

the distribution estimation becomes more accurate. To further increase the accuracy

of the difference estimation the self distance coming from one of the Monte Carlo

methods can be used in comparison with the distance between the distribution of the

two different methods. The self distance expresses the statistical fluctuations of the

Monte Carlo simulation, thus if the difference between the distributions of the two

methods is smaller than their self distance it not possible to assume that the distribution

of two samples are different. A drawback of this method is thecomputational cost that

exponentially increases when the number of samples is increased. Since for stochastic

simulations a sample corresponds to the result of a single run at a selected time point

this estimation procedure requires a high computational load to perform several runs

and reach a good estimation of the distributions.

2.4. Approximation measurement 25

2.4.1 Probability density function estimation

The probability density function of a discrete random variableX:

pX(x) = ∑
x

P(X = x)δ(X−x) (2.22)

can rarely be analytically solved in practical examples. However, if a large number of

samples is available it can be approximated by an histogram functionhX constructed

as follows. Consider the intervalI = (xmin,xmax) in which all the sample values are

bounded and divide it inIi intervals, withi = 1, ...,K defined as follows:

Ii = [xmin+
(i−1)(xmax−xmin)

K
,xmin+

(i)(xmax−xmin)

K
]

and consider the functionχ(x, Ii) defined as:

χ(x, Ii) =

{
1 if x∈ Ii;

0 otherwise;

the histogram functionshX(Ii) that approximatepX(x) can be defined as:

hX(Ii) =
K

NL

N

∑
j=1

χ(x j , Ii) (2.23)

Each functionhX(Ii) measures the average density function ofX in the intervalIi. The

summation term∑N
j=1 χ(x j , Ii) counts the sample points which belong to the intervalIi .

Dividing this byN, the number ofx1, ...,xN samples, and the termL/K an approxima-

tion of the probability density function in the intervalIi is obtained. So as the number

of intervalsK increaseshX tends topX .

2.4.2 Histogram Density Distance

Once the probability density functions of two sets of samples X andY are estimated,

using the same number of intervalsK, their distance can be measured by the simple

formula:

Dk(X,Y) =
K

∑
i=1

|hX(Ii)−hY(Ii)|L
K

(2.24)

26 Chapter 2. Background

that with an explicit expression of the termhX andhY can be rewritten as:

Dk(X,Y) =
K

∑
i=1
|
∑N

j=1 χ(x j , Ii)

N
−

∑M
j=1χ(y j , Ii)

M
| (2.25)

Equation (2.25) shows that the distance value is strongly affected by the number of

intervalsK, and no difference will be measured ifK = 1 while asK,N,M grow the

distance will tend to the real density area distance of the two distributions. Therefore

the density area distance increases as the number of intervals increases and this allows

us to introduce a degree of tolerance in the distance measureby tuning the parameter

K.

2.4.2.1 Self Distance

As the self distance of a random variable expresses its stochastic fluctuation it must

be considered when the distribution distance of two random variables is measured.

According to [36] the Self Distance is defined as the distribution distance of two set

of samplesXN andYM that independently follow the same distribution. As introduced

in this section this distance can be measured using for example the histogram distance

between two sets of samples of the same distribution. However in order to have a good

self distance estimation the mean and the variance of differences between many pairs

of samples set should be considered. Thus, if the number of samples is large in the case

of stochastic simulation algorithms a very expensive computation is required to have a

good approximation of the self distance. In order to avoid this problem an estimated

bound for the average self distance can be considered. In thecase of the histogram

distance a good estimation is: √
2K
π

(
1
N

+
1
M

) (2.26)

whereN andM are the number of samples ofXN andYM.

This estimation was presented in [36] and has been proved to be a good approximation

as long as the number of samplesN andM are large. In conclusion when the histogram

distance between two samples obtained from two different Monte Carlo algorithms is

less than the self distance bound no conclusion can be made onthe difference between

the two distributions. In other words using the self distance bound in comparison with

the histogram difference between the two set of samples it ispossible to ensure that

the difference that is measured is due to the Monte Carlo methods and not to stochastic

fluctuations.

Chapter 3

Dizzy extension

This project involved the extension of Dizzy [31], an existing open source chemical

stochastic simulator, with three new exact stochastic simulation algorithms and an ap-

proximate hybrid deterministic and stochastic algorithm.Dizzy was chosen among

other existing software thanks to its object oriented modular architecture which made

the implementation process easier. This chapter introduces Dizzy and outlines the main

steps of the implementation process. Particular attentionis paid here to the efficiency

of the simulation algorithms. Indeed the whole project is focused on performance

optimizations and analysis of the simulation algorithms. The chapter is organized as

follows: the first section is a brief presentation of the existing software and its capabil-

ities, the second section discusses the implementation details of the newly developed

exact SSA formulations, the third section is focused on the implementation of the hy-

brid method and the fourth and last section presents the implementation of new tools

for performance analysis.

3.1 Introduction to Dizzy

Dizzy is a chemical kinetics simulation software package implemented in Java that

was originally developed by Stephen Ramsey at the Instituteof System Biology. This

project extends a modified version of Dizzy that is being developed by Laboratory

for Foundations of Computer Science at the University of Edinburgh. Dizzy allows the

user to simulate, using different simulation methods, the reaction kinetics of interacting

species. The software is able to write and read models in a subset of the SBML Level

1 format and in the Chemical Model Definition Language (CMDL), a very intuitive

language in which models can be directly specified using Dizzy. The modified version

27

28 Chapter 3. Dizzy extension

of Dizzy currently supports the following simulation algorithms:

Deterministic

• a deterministic (ODE-based) algorithm for simulating chemical reaction kinetics

based on the Runge-Kutta method for the resolution of the system of ODEs using

both adaptive and fixed steps.

• a deterministic algorithm that uses the library ODEtoJava for the resolution of

the system of ODEs using both adaptive and fixed steps.

• an algorithm that solves a stochastic differential equation model using the Euler-

Maruyama method.

Stochastic

• The Gillespie stochastic algorithm

• The Gibson-Bruck stochastic algorithm

• The explicit tau leaping algorithm

• The implicit tau leaping algorithm

Different parameters can be specified on the basis of the typeof simulation algorithm

that is used. When deterministic simulation algorithms areused the user can specify

the timestep of the integrator that solves the system of ODEsand the maximum error

allowed for the integration. If during the simulation the given time step makes the

integrator exceed the specified maximum error a message is displayed and the simu-

lation is cancelled. When stochastic simulation algorithms are used Dizzy allows the

user to specify the stochastic ensenble size, which expresses the number of runs, and

a confidence interval related to the results of the simulations. The following graphical

output can be visualized as result of a simulation:

• A table with the values of the requested concentrations for each time point

• A plot with the average concentrations of the observed species in time, where

the average is calculated as the average of the concentrations obtained from all

the runs.

• A plot with concentrations in time for each single run.

3.1. Introduction to Dizzy 29

• An histogram visualizing the average number of firings of thereactions with the

average calculated as the average of the total number of firings.

For further details refer to [30].

3.1.1 Reaction Rates

The way in which Dizzy computes the reaction rates from the parameters that are spec-

ified in the model is particularly relevant for the implementation of our extensions. A

reaction rate in Dizzy can be defined in two ways: using a built-in method or by spec-

ifying a custom expression.

The first is the default mode and consists of the simple specification of the rate as

a numeric parameter. This is interpreted either as the stochastic rate constant, which

expresses the numeric reaction probability density per unit time (when using SSA), or

as the kinetic constant for the reactions (when solving ODEs). In the first case Dizzy

automatically calculates the reaction rate by multiplyingthe stochastic constant rate

with the number of distinct combinations of reactant molecules, which depends on the

kind of reaction that is considered and on the population of the various species. For

example if we are considering a bimolecular reaction likeS1 +S2→ the reaction rate,

or reaction propensity, is calculated as presented in [9] bycomputingc jSn
1Sn

2 where

c j is the stochastic constant andSn
i represents the number of molecules of the species

Si. In the second case instead the reaction rate is calculated as the kinetic constant

parameter multiplied by the concentrations with exponentiation for the stoichiometry.

For example for the reaction 2S1 + S2→ the reaction rate is calculated ask j [S1]
2[S2]

wherek j is the kinetic rate and[Si] is the concentration of the speciesSi .

Using “custom expression” mode an expression that will be used in order to calcu-

late the reaction rate can be specified by the user. This feature allows the user to create

custom reaction rate expressions involving symbols, arithmetic operators, and simple

built-in mathematical functions that define how the reaction rate varies.

With regard to our implementation it is important to underline that irrespective

of how Dizzy deals with rate calculations the same constant rate that is used for the

reaction rate calculation of the stochastic simulation is used for the reaction rate of

the deterministic simulation with ODEs. The way in which rates are calculated is

30 Chapter 3. Dizzy extension

decided upon the type of simulator that is used, stochastic or deterministic, and by

the default all the populations are considered as expressedin number of molecules.

Furthermore in order to increase the performance, when stochastic simulation are per-

formed and species populations are large some approximations are made to calculate

the stochastic rate. For example the reaction 3S1
c j
−→P whose rate should be calculated

asc j
Sn

1∗(S
n
1−1)∗(Sn

1−2)
6 is calculated asc j

(Sn
1)

3

6 . From the computational point of view this

could seem a minor optimizations but considering that even within a small model the

function that calculates the rates can be called million of times during the simulation

time is considerably reduced within a tolerable approximation if populations are large.

In conclusion when the species populations are expressed inmolecules the dy-

namics of the population coming from the ODE will represent the dynamics of the

expectation value of the molecules in a stochastic simulation across a large number

of runs. It must be noticed that in ODEs the number of molecules could assume real

values that do not have biological meaning but again if largepopulations are used this

can be considered a good approximation.

3.1.2 Software architecture

The first part of the project was focused on an initial analysis of the software archi-

tecture. The analysis was carried out by putting together information coming from

the analysis of the source code and from the javadoc documentation of the classes.

This analysis allowed us to construct the object map of Dizzyin order to ensure that

our extension would have not affected the existing functionalities and would ensure

the extension conforms to the existing software architecture. A simplified version

of the Object map of Dizzy is reported in figure 3.1. The simplified Class Diagram

is divided in two parts, the upper part whose classes are mainly contained in the

org.systemsbiology.chem package is the hierarchical object map of simulators, the

lower part whose classes, mainly contained in theorg.systemsbiology.chem.app,

represent the GUI objects and the classes that are used to process and visualize results

coming from simulations. The two parts communicate throughthe interface ISimula-

tor which provides an abstraction for the current simulatorallowing simply calling the

methodsimulate.

3.1. Introduction to Dizzy 31

The implementation of the three new exact stochastic simulation algorithms con-

sisted of modifications to the packageorg.systemsbiology.chemwhich was adapted

with some minor modification and extended with three new classes. The hybrid method

implementation and the development of tools for performance analysis focuses on both

the packagesorg.systemsbiology.chemandorg.systemsbiology.chem.app. Fur-

ther detail about the implementation is given in the following section.

32
C

hapter
3.

D
izzy

extension

Figure 3.1: Dizzy Class Diagram

3.2. SSA formulations implementation 33

3.2 SSA formulations implementation

This section presents the three new classes which have been implemented in order

to develop the optimized SSA formulations based on the Direct Method of Gillespie.

The main methods of the classes are discussed and a class diagram that shows where

the classes have been placed inside the existing software architecture is presented.

The next subsection describes some preliminary modifications of the existing sotware

structure which were done in order to facilitate the implementation of the three new

algorithms.

3.2.1 Preliminary modifications

Currently Dizzy comes with two exact stochastic simulationalgorithms: the Direct

Method of Gillespie and the Next Reaction method of Gibson Bruck. Our extension

was focused on optimizations based on the former method, however in order to in-

crease the performance of the new algorithms some useful features already present in

the Next Reaction Method were used. Indeed, as presented in section 2.2.4 a consid-

erable improvement of the performance simulation can be obtained by recalculating

at each step of iteration only the propensities of the reaction that have been modified

by the last executed reaction. The Dizzy Direct Method recalculates at each iteration

all the reaction propensities wasting time in order to refresh propensities that have not

been modified because the last executed event did not alter their reactant populations.

The Next Reaction Method implemented in Dizzy avoids this problem by computing

before the simulation a reactions dependency graph that puts in correspondence each

reaction with the reactancts that are altered by its execution. During the simulation

the Next Reaction Method uses the information coming from the dependency graph in

order to recalculate only the propensities that have changed. We created a class named

DependencyGraphCreator that using the code present in the Next Reaction Method

computes the reaction dependency of a model given as input. The existing Next Reac-

tion Method was modified to use this class and similar features were developed for the

three new algorithms. The code of the dependency graph creator was extended in or-

der to compute the index of the first reaction (with respect tothe reaction array order)

which is modified by the execution of another reaction. This functionality was suc-

cessively used in order to implement the Logarithmic DirectMethod class. The class

diagram related to this modification is shown in Figure 3.3, where the new classes are

highlighted in red and the classes that have been modified in blue.

34 Chapter 3. Dizzy extension

3.2.2 Optimized Direct Method - ODM

The class that implements the ODM extendsSimulatorStochasticBase and its two

main methods areinitialize anditerate. The first method is the most important of

the class since it implements the functionalities regarding the pre-ordering of reactions

based on a pre-simulation. In more detail, when this method is called one or more

stochastic pre-simulations are run using the original reaction order and during the pre-

simulation the number of times that a reaction is fired is recorded. Based on the average

number of times that a reaction is fired a vector of ordered reaction indexes, called

orderSearch, is constructed by using a simple quick sort algorithm performed by

the classQuickSort in theorg.systemsbiology.util. This vector is used at each

step of iteration in the methoditerate in order to find the reaction that satisfies the

equation (2.7). The search time is then reduced because starting from reactions with the

higher propensities the probability to find the reaction that satisfies (2.7) in a short time

is increased. An example of the pre-ordering that is inferred by the optimized direct

method for the Galactose model [23] is given in figure 3.2 . Theuser can specify the

number of pre-simulations and the percentage of simulationtime, with respect to the

total time, which are used to infer the optimal order of reactions. The Class Diagram

of the class is shown in figure 3.3.

Figure 3.2: Optimized pre-ordering of reactions in the ODM

3.3. Hybrid Method implementation 35

3.2.3 Sorting Direct Method - SDM

The implementation of the SDM class follows the pseudocode in figure 2.3. Similarly

to the Optimized Direct Method class a vector calledorderSearch containing the

search order is used to find the reaction that satisfies (2.7).In this case the order

is adjusted at each step of iteration without running pre-simulations. Each time that

a reaction is fired the adjustment is performed by shifting its index by one position

towards the search direction. The Class Diagram of the classis shown in figure 3.3.

3.2.4 Logarithmic Direct Method - LDM

The implementation of the SDM class follows the pseudocode in figure 2.4. As with

the other algorithms the class contains the two methodsinitialize anditerate.

Additionally here a method calledchooseIndexofNextReaction has been imple-

mented which performs the optimized search of the reaction.During the initialization

the vectorsFirstReactionModified andArrayAggregateProb are initialized. The

first vector is filled with the information coming from the dependency graph creator

and contains for each reaction the index of the first reactionthat is modified by its

execution. The second vector is initialized with the partial summation of the reaction

propensities such that:

ArrayAggregateProb[i]=∑i
j=0ArrayAggregateProb[j]

During the simulation at each step of iteration the index of the next reaction satisfy-

ing (2.7) is efficiently located calling the methodchooseIndexofNextReaction to

perform a binary search over the vectorArrayAggregateProb[i]. Once the index of

the next reactionj is found the reaction is fired and the arrayArrayAggregateProb

containing the partial summation of the reaction propensities is refreshed starting from

the indexFirstReactionModified[j]. The Class Diagram of the class is shown in

figure 3.3.

3.3 Hybrid Method implementation

A series of different implementations of the hybrid method have been proposed in

the literature [32] [17] [1]. Those algorithms mainly differ in the way with which

the synchronization between the deterministic simulator and stochastic simulator is

36 Chapter 3. Dizzy extension

performed. Hybrid methods are based on an alternation of iterations between the

stochastic part and the deterministic part. While, according to the SSA algorithm,

no stochastic reaction events occur, the hybrid algorithm keeps simulating the fast re-

actions by running the deterministic simulator which uses an integration algorithm.

When a stochastic event is registered the integration used by the ODE solver must be

stopped and the slow stochastic reaction has to be fired. Successively after an appro-

priate refresh of the populations the hybrid simulation canproceed with the integration

and start again the whole process. The best way to synchronize the two parts was

probably proposed in [1] where using the time transformation introduced in the equa-

tion (2.10) a hybrid simulation was implemented whose integrator stops according to

the value of the termg j(τ|t). However few currently existing ODE solvers are able

to stop within a user specified control event based ong j(τ|t). For this reason we de-

cided to start a first implementation by combining the deterministic simulation and

the stochastic simulation following the general frameworkproposed in [20]. These

methods perform the hybrid simulation by simply taking at each step of iteration the

minimum time step between the ODE solver and the stochastic next reaction event.

If the deterministic time step is the minimum time only the deterministic simulator

is used otherwise both the simulators are used according to the stochastic next reac-

tion event time. The hybrid method of this project was implemented following the

algorithm presented in [32]. This algorithm simulates the dynamics of a model using

one deterministic simulator and one stochastic simulator and iterates according to the

pseudocode presented in Figure 2.6. A description of the implementation follows.

3.3.
H

ybrid
M

ethod
im

plem
entation

37

Figure 3.3: New SSA formulations Class Diagram

38 Chapter 3. Dizzy extension

3.3.1 Implementation steps

The implementation of the hybrid method consisted of three parts:

1. Definition of the general architecture of the simulator taking into account differ-

ent stochastic and deterministic simulators

2. Implementation of the reactions partition

3. Implementation of the main class of the simulator dividedinto:

• adaptation of the existing simulators

• Implementation of the simulator initialization

• Synchronization between the stochastic and the deterministic algorithm

3.3.1.1 General architecture

Following the architecture presented in [20] an arbitrary number of different stochas-

tic and deterministic simulators can be used together in order to implement a hybrid

simulation algorithm. Our design choice was to use, as presented in [32], only one de-

terministic simulator and one stochastic simulator. Basedon initial promising results

of the newly developed Logarithmic Direct Method we decidedto use this algorithm

in order to compute the deterministic regime of the hybrid method. The LDM showed

good performance which is independent of the ordering of reactions, moreover it is not

affected by the accuracy problem presented in section 2.2.8. For the choice of the de-

terministic simulator Dizzy offered either the use of algorithms based on Runge Kutta

implemented as native classes of Dizzy or the use of the more powerful external library

ODEtoJava. Our first choice was to use the deterministic simulator natively included

in Dizzy because this was an easier way to implement the synchronization between the

stochastic and the deterministic simulator. Similar to allthe other Dizzy simulators,

this ODE-solver had a method callediterate that was suitable for the implementa-

tion of the hybrid simulation. However first results showed that this ODE-solver was

too slow and prone to accuracy and stability numerical problems. For this reason the

library ODEtoJava was successively selected and adapted tointegrate with the hybrid

simulator. An ODEtoJava integrator based on the Runge and Kutta algorithm [3] with

adaptive step was used. This integration algorithm is a method of the Runge-Kutta

family with a more convenient error estimation. Figure 3.4 summarizes our design

choices.

3.3. Hybrid Method implementation 39

Figure 3.4: Hybrid Method design choices

3.3.1.2 Reactions partition

As introduced in section 3.3.1.2 to decide an optimal partition of the reactions it is

still an open problem. Typically, the partition can be made before the simulation in a

static way and according to biological insights coming fromexperiment or empirical

observation on pre-simulations, or in a dynamic way during the simulation process by

observing reaction rates and reactants population. Since aconsolidated theory for the

dynamic partitioning has not yet been defined, we decided to implement a graphical

framework to help the user during the static partitioning. This new software framework

allows the user to execute a number of full stochastic pre-simulations and to observe,

by using histograms, the average number of times the reactions are fired. Indeed, as

discussed in [37], a good empirical way that can be used to partition the system is

to select as fast reactions those that are most frequently fired. To decide how many

reactions are to be considered as fast reactions is left to the user. By clicking on the

histogram corresponding to one reaction the user can visualize its rate and reactants

and can add it to the deterministic regime. A screenshot of the graphical tool that was

developed to perform the partition is shown in figure 3.5. TheclassCategoryPlot of

the Java library JFreeChart with a modified version of theBarRenderer class was used

to implement the histogram selection. This graphic interface allows the user to choose

the deterministic reactions either by using the selector located in the upper part of the

window or by clicking on the corresponding bar in the histograms. Pre-simulations can

be done for a simulation time and a number of times specified bythe user and can be

stopped at any time still allowing visualizing the partial results. Histograms expresses

the average number of times that a reaction is fired during thepre-simulation.

40 Chapter 3. Dizzy extension

Figure 3.5: Screenshot of the Hybrid Method partitioner

3.3.1.3 Conformation of the existing classes

The classSimulatorStochasticLDM was not changed while several modifications

were made to the library ODEtoJava. In particular the class implementing the Runge-

Kutta method, was partially rewritten for iterative simulation. In its original form

this class was in fact providing a main simulation method called routine that im-

plemented the whole simulation process. This structure wasnot suitable for the it-

erative simulation of the Hybrid Method, therefore we decided to modify the class

splitting the methodroutine in four different methods:initializeSimulation,

computeNextTimestep, iterate,iterateConstant.

The methodinitializeSimulation provides the initializations of the main data

structures that are used during the simulation. ThecomputeNextTimestep made use

of event location features already present in the ODEtoJavaclasses in order to return

the next putative time step of the integration algorithm. Inmore detail a control to

check the presence of discontinuities, or events, during the current time step is per-

formed. As the discontinuities represent special regions of the ODE where behaviours

can change, if an event is found, the event time is returned asnext time step, other-

wise the current adaptive time step is returned. This allowsus to have a more reliable

3.3. Hybrid Method implementation 41

simulation. The methoditerate as the name suggests implements one iteration of

the integration algorithm and evaluates, based on an error estimation, the validity of

the obtained results. If one iteration does not produce reliable results the time step is

reduced and the method is called again until valid results are obtained. The method

iterateConstant executes a number of iterations until a time in the given in input

when performing constant step integration.

This modification resulted in a new OdeToJava class calledErkTripleMod. In or-

der to use this newly developed class a new class calledSimulatorOdeToJavaSimple

that extends the Dizzy classSimulator was implemented. This class follows the im-

plementation of the existing Dizzy classes that use the OdeToJava external library.

The main methods of the class areprepareForExternalSimulation, which is used

to initialize the classErkTripleMod with a biological model, and four methods the

methods of theErkTripleMod class. The class diagram of the new OdeToJava deter-

ministic simulator with an iterative simulation is shown infigure 3.6.

3.3.1.4 Implementation of the simulator main class

The next step of the Hybrid Method implementation was the development of the main

class associated to the simulator. The class calledSimulatorHybrid extends the class

Simulator and conforms to the general Dizzy structure of the simulators, therefore

implementing the two methodsintialize andsimulate that can be called through

the interfaceISimulator. The new class contains one instance of the Logarithmic

Direct Method simulator and one instance of the modified deterministic simulator. A

description of the main methods of this new class follows.

The methodsetReactionsPartitions is called upon reaction partitioning with

the graphical tool presented in section 3.3.1.2. This method receives as input two

vectors ofReaction objects that respectively represent reactions that must besim-

ulated stochastically and reactions that must be simulateddeterministically. These

vectors are used to construct two models containing all the species of the original

model but having only the reactions specified by the vectors.These two sub-models

are used to initialize the stochastic simulator and the deterministic simulator that form

the hybrid simulator. When the deterministic simulator is initialized an array called

deterministicSpecies is constructed. This array contains the index of all the species

that are modified during the deterministic simulation and isused to refresh, after one

42 Chapter 3. Dizzy extension

deterministic iteration, only the stochastic simulator species that have changed and that

are relevant for the dynamics of the stochastic simulation.

The methodsimulate is the core part of the hybrid simulation. During the sim-

ulation the hybrid simulator adaptively calls and synchronizes the stochastic and the

deterministic regime. The implementation of the simulatorfollows the pseudocode in

figure 2.6, where at each step of iteration the next time step of the OdeToJava integrator

and the next reaction event of the Logarithmic Direct Methodare computed. If the for-

mer is smaller than the latter an iteration with the deterministic simulator is performed,

otherwise an iteration with the stochastic algorithm is performed. After each iteration

appropriate refresh of the species concentrations is performed in both the regimes.

In particular when a deterministic iteration is chosen the species of the stochastic

simulator, whose indexes are contained in the vectordeterministicSpecies, are

refreshed using a method calledupdateStochasticPopulation. In contrast, if a

stochastic iteration is chosen, an initial deterministic simulation up to the next stochas-

tic event time is performed and the stochastic species are refreshed using the method

updateStochasticPopulation. Successively the putative next reaction event is fired

and both deterministic and stochastic species are refreshed according to the reaction

that was fired. At each step of the iteration concentration values and the actual time

are stored in order to plot the results. The class diagram of the new class is presented

in figure 3.6.

3.3.
H

ybrid
M

ethod
im

plem
entation

43

Figure 3.6: Class Diagram of the Hybrid Method

44 Chapter 3. Dizzy extension

3.4 Performance analysis tools

In order to evaluate performance of the newly developed simulators some useful fea-

tures for comparison of the simulators over different biological examples were imple-

mented. The developed tools can be divided in two categories: tools for the analysis of

exact simulation methods and tools for the comparison between approximate methods

and exact methods.

3.4.1 Performance analysis of exact simulations

When comparisons between exact simulators are made the representative performance

measures are the average number of fired reactions per secondand the average search

depth length required for reaction locations. Simple graphical visualization of these

measures was implemented as result of one simulation. The new graphs can be visual-

ized by ticking checkboxes in the simulation launcher window. After this an intuitive

way to merge and compare these graphs was implemented.

The reaction per second measurement was implemented computing, for each sim-

ulation run, the time required for the simulation and the number of fired reactions. At

the end of the whole simulation an average of all the ratios “number of reactions/time”

is computed. The obtained value is the average number of reactions per second that are

fired and is visualized in a histogram implemented using the classCategoryPlot of

the free Java library JFreeChart [28]. The histogram shows the reactions per second,

the name of the simulated model and the name of the simulator that has been used.

Histograms resulting from different simulations can be merged using the right-click

contextual menu as shown in figure 3.7. Results are merged together and grouped with

respect to the models. In this way it is easy to compare the performance of different

simulators over different biological models.

Considering that finding the next reaction is one of the most expensive steps of the

SSA, the average search depth required to locate the next reaction to fire is a good

measure that can help in evaluating the performance of different SSAs. Indeed, the

majority of the SSAs formulations are based on improvementsthat aim to reduce the

time required to locate the next putative reaction. Having the possibility to measure the

average search depth can help in understanding how the SSAs behave with a particu-

lar biological model. This measure however does not take into account other steps of

3.4. Performance analysis tools 45

Figure 3.7: Screenshot of the reactions per second histograms

the simulation, like random number and next time generation, therefore it is not itself

representative of the whole performance simulation. For each SSA available in Dizzy

code used to measure the average search depth was implemented. The way in which

this measurement is made is highly dependent on the simulation algorithm. In more

detail for the ODM, the SDM and the DM the average search depthis measured as the

number of sums that are performed within the operations of equation (2.7), while for

the LDM the measure corresponds to the search depth of the binary search performed

on the vector of aggregate propensities functions as presented in figure 2.4. The av-

erage search depth was not measured for the NRM of Gibson Bruck because for this

method the number of operations required to locate the next reaction is virtually equal

to one. Most of the time in the NRM is in fact spent in maintaining the heap-like struc-

ture that allows us to obtain the next reaction to fire with an unitary cost. The average

search depth is recorded every time that a reaction is fired during the simulation, the

behaviour of the average search depth during the simulationis finally visualized in a

chart developed using the classXYPlot of the free Java library JFreeChart [28]. These

graphs can be merged using the the right-click contextual menu as presented in figure

3.8.

3.4.2 Performance analysis of approximate simulations

An estimation of the accuracy of the results obtained using different stochastic sim-

ulation methods should consider the distance between estimations of the population

distributions. Distributions can be estimated from the histograms of a large number

of samples and distances can be measured, as presented in section 2.4, as the density

46 Chapter 3. Dizzy extension

Figure 3.8: Screenshot of average search depth graphs

difference area in comparison with an estimation of the selfdistance. The self dis-

tance expresses the stochastic fluctuations of a single Monte Carlo method and can be

calculated as the density difference area between distributions of samples. A reliable

distribution estimation is usually based on a large number of realizations, which require

a high computational load to be generated. For this reason a formula that computes a

bound for the average self distance can be used to avoid computational complexity.

This formula is a distribution indipendent common bound which depends only from

the number of samples and the number of intervals used to estimate the probability

density functions. A new graphical interface that can be used to compute density dis-

tance areas between approximate and exact simulations was developed. This new tool

can be used to configure and run approximate and exact simulators and to compare

possible errors introduced by approximate methods. In practice when a density area

distance estimation is performed, two stochastic simulators are configured to simulate

for the same number of runs. The user can select a time point inwhich the histogram

distance is computed. Within this time point, results coming from all the simulation

runs are stored and succesively used to estimate populationdistributions. Distribution

estimations are visualized using histograms. The softwarecalculates the numerical

values of the distances between the approximate method distribution and the exact

method distribution. When this difference is larger than the estimated self-distance

bound an error is measured, otherwise errors cannot be derived because it is impossi-

ble to separate the difference from stochastic fluctations.In this case, a more accurate

estimation is required and can be performed either by using alarge number of samples

or by increasing the number of intervals. The whole estimation process is summarized

in figure 3.10.

3.4. Performance analysis tools 47

Our tool allows the user to perform analysis specifing different simulators and pa-

rameters and to consider particular species of the biological model. An example of a

typical output and a screenshot of the main window associated with the tool are shown

in figure 3.9. The upper part of the window is used to select theapproximate and the

exact simulator, a panel on the left allows the user to selectthe species that are con-

sidered for the density distance area estimation. The central panel is used to define

the parameters of the simulation and the number of intervalsthat are used to construct

the histograms. Histograms express the likelyhood of occurence of population values

within the intervals at a specified time point, while plots display differences between

the average behaviour of the populations over the whole simulation time.

Figure 3.9: Screenshot of the error estimator tool and its typichal output

48 Chapter 3. Dizzy extension

Figure 3.10: Density difference distance area estimation

Chapter 4

Biological models

This chapter presents three biological models which were used to evaluate the perfor-

mance and correctness of the new simulation algorithms. These three models were

used to evaluate the performance of exact stochastic simulation algorithms. Having a

different scale of reactions such models are in fact particularly suitable to study the

scalability of the various algorithms as the number of reactions increases. The sec-

ond model with modified parameters was also used for a first evaluation of the newly

developed hybrid method. For each model a brief explanationof the dynamics and

description of expected results are given.

4.1 Michaelis Menten

The first and simplest model is a model of the enzymatic reaction considered by

Michaelis and Menten for their famous kinetic model. The model is the abstraction

of a simple enzymatic reaction formed by three reactions in which a substrateShas to

bind with the enzymeE in order to react and produce the final productP. In our model

the binding between the enzyme and the substrate is reversible while the transforma-

tion of substrate in product is considered to be definitive. This very simple model is

made by only three reactions:

1. S+E −→ ES

2. ES−→ E +S

3. ES−→ P+E

with initial number of moleculesE = 100,S= 100,ES= 0 andP = 0.

49

50 Chapter 4. Biological models

1. This reaction represents the formation of the compound between substrate and en-

zyme. In our model this reaction was set to have a stochastic rate of 1.

2. This reaction expresses the unbinding of the compound enzyme-substrateESinto its

two components substrateSand enzymeE. In our model this reaction has a stochastic

rate of 0.1

3. This is the reaction that produces the final productP by consuming the substrateS

and releasing the enzyme in its free formE. In our model this reaction has a stochastic

rate of 0.01.

The expected dynamics of this system, with rates and concentrations specified

above, follows the graph in figure 4.1. It can be seen that as the simulation proceeds

the concentration of the enzyme-substrate compoundESquickly reaches in less than

1 seconds a threshold that represents the fact that all the free enzymeE is bound with

the substrateS. Indeed, at the same time the concentration of the enzymeE and the

substrateSdecrease almost to zero. SuccessivelySkeeps decreasing while the concen-

tration ofE starts to increase representing the fact that as theP is produced the enzyme

E is released in its free form. It should be seen that the concentration ofP andE in fact

increases following the same law. In the meanwhile the concentration ofESdecreases

as it is consumed by the reactions 2 and 3. The whole system reaches equilibrium at

around 500 seconds because all the substrateShas been converted in productP.

Figure 4.1: Expected dynamics for the Michaelis Menten model

4.2. GAL4 system of Yeast - GAL 51

4.2 GAL4 system of Yeast - GAL

This model, included in the original release of Dizzy and consisting of28 reactions,

abstracts the regulation of the production of various structural control metabolic genes

in yeast as response to the presence of external galactose. The concentration of exter-

nal galactose is a parameter of the model and can be either fixed or can vary in time

according to a specified rate. As reported in [8] this biological system senses the the

presence of external galactose and switches on a series of proteins which control the

galactose metabolic pathway. As the concentration of galactose increases the concen-

tration of activatedGAL4 proteins increases while for lower concentration of galactose

more GAL80 are activated. Former proteins promote the expression ofGAL genes

while latter proteins act as a repressor forGAL genes binding withGAL4 proteins

and deactivating them. When the concentration of galactoseis zero, activatedGAL80

proteins are enough in order to keep the expression ofGALgenes at a low level by de-

activating most of theGAL4 proteins. The system regulates the presence of metabolic

genes also upon the presence of internal galactose. In particularGAL3 proteins, which

act as a repressor forGAL80 proteins, are activated when the concentration of internal

galactose increases. In this way when internal galactose isproduced the system will

repress the repressorGAL80 and the expression ofGALgenes will increase again. All

the feedbacks do not act using single proteins of the proteins mentioned above rather

they act on dimers, likeG3D or G80D, with a specific rate of creation and destruction.

Details of this metabolic pathway are beyond the scope of this project, for more infor-

mation refer to the original ODE model presented in [27] . Overall this pathway was

particularly suitable for our analysis for two reasons: first of all it is a good example of

a native Dizzy model with a medium number of reactions, secondly the different time

scale of the feedbacks makes the probability of reactions change drastically during

the simulation and this was a perfect example to test possible prediction problems for

methods like the ODM that are based on prediction over an initial pre-simulation time.

Morover, increasing the presence of external galactose this model was also appropriate

for a hybrid deterministic and stochastic simulation, moredetails about this matter are

given in section 5.2.

The main reactions of this model, including the first two reactions that expresses

the time varying concentration of external galactose, are the following:

1. −→ galactose[10e−20 t
T] wheret is the current time andT the total time

52 Chapter 4. Biological models

2. galactose−→ [0.1]

3. G4D-DNA3+galactose−→ G3-RNA+ G4D-DNA3+galactose

4. G3-protein+ G3-protein−→ G3D-free

5. G3D-free−→ G3-protein+ G3-protein

6. G3-RNA−→ G3-protein

7. G3D-free+ G80D-free−→ G3D-G80D

8. G80D-free+ G4D-DNA3−→ G80D-G4D-DNA3

The expected dynamics of this system follows the graphs in figure. It can be seen

that when thegalactoseincreasesGAL4 proteins quickly promote the production of

GAL3 as expressed by the fast increase in concentration ofG4D−DNA3. When the

concentration ofgalactosestarts to decrease moreGAL80 proteins inhibit the creation

of GAL3 and this is represented by the competitive binding ofG80 withG4D−DNA3

as the complexG80D−G4D−DNA3. Successively theGAL3 proteins that were pro-

duced at the beginning inhibits theG80 proteins forming the complexG3D−G80D.

From the graph in figure 4.2 it can be seen that these three phases happen within a two

different time scale.

Figure 4.2: From left to right the dynamics of G4D-DNA3, G3D-G80D and G80D-G4D-
DNA3. The population of G4D-DNA3 reaches the maximum value approximately in two
seconds while the populations of G3D-G80D and G80D-G4D-DNA3 reach it at around
5000 seconds

This model was fistly simulated with an initial amount of one molecule ofgalactose

varying in time according to reaction 1 and reaction 2. Succesively in order to test the

hybrid method the same model was simulated with a constant coentration of 100000

molecules ofgalactose. This modification makes the reactions 3, 4, 5 and 6 fire very

4.3. EGF receptors signal pathways - Shoeberl 53

frequently. Therfore these reactions are more efficentely simulated with a deterministic

simulation.

4.3 EGF receptors signal pathways - Shoeberl

The third model is a very detailed computational model presented in [22] which is

based on the epidermal growth factor (EGF) receptor signal pathway model introduced

in [4]. This model involves218reactions and93 species that form the signaling path-

way that is activated when an extracellular signal is received by the cell. When the

signal is received the activation of the MAP kinase cascade through the kinases Raf,

MEK and ERK-1/2 follows. This example was used to evaluate the performance of

the novel developed algorithms when the number of reactionsis very large. For this

reasons we will not focus on the details of this model which complexity is prohibitive,

for more details refer to [22] [4].

Chapter 5

Results

In order to evaluate the usability and the correctness of both the new simulators and the

performance analysis tools, different simulations and analysis of the models presented

in the previous chapter were performed. This chapter is divided in two sections, the

first focuses on simulations made using SSAs formulations over the Michaelis Menten,

the GAL and the EGF Shoeberl model, while the second focuses on an initial analysis

of the Hybrid simulator using the GAL model with modified parameters. Each section

starts with a survey of the techniques that were used to evaluate the obtained results.

5.1 Exact simulations results

The LDM, the SDM and the ODM were run in comparison with the existing stochastic

simulation algorithms of Gillespie and Gibson Bruck. Simulation were performed

considering three model with different scale number of reactions:

• The Michaelis Menten model - 3 reactions

• The GAL model - 28 reactions

• The EGF Shoeberl model - 218 reactions

For each model two different analysis were performed:

• Comparison of the computational performance of the algorithms by using reac-

tions per second histograms.

• Critical evaluation of the performance comparing average search depth graphs.

55

56 Chapter 5. Results

Our simulations were parametrized with respect to the simulation time and the num-

ber of runs and when the ODM was used also with respect to the pre-simulation time

and the number of pre-simulations. For each example we provide a table that puts in

correspondence parameters with average times required to perform one run. We also

provide a predicted simulation time for a number of 15.000 runs, in this way we hope

to highlight how small performance differences within a single simulation become

statistically relevant when larger number of stochastic simulation are considered. Ex-

periments were run on an Intel Centrino with two 1.83Ghz cpu cores and 2GB of Ram.

This section proceeds presenting the results that were obtained from the three models.

5.1.1 Michaelis Menten

The Michaelis Menten enzymatic model was simulated for 100 seconds for a number

of 1000 run. All the existing exact simulators were used and the ODM was configured

in order to perform one pre-simulation of 10 seconds. The average simulation times

are given in table 5.1.1, while the average search depth beahviour for each SSA for-

mulation is shown in figure 5.1. The average search depth of the Gibson Bruck NRM

was ignored because it is always unitary.

Method Run time (ms) Time for 15000 run (seconds)
DM 5.035ms 75.52s

NRM 5.174ms 77.61s
LDM 4.781ms 71.71s
ODM 5.038ms 75.57s
SDM 4.773ms 71.59s

Table 5.1: Execution times of the SSAs on the Michaelis Menten model

The results in table show similar executions for all the methods. Indeed as expected

no big differences are measured when small examples like theMichaelis Menten model

are considered. However, within these small differences, execution times are in accord

with the expected results. In particular as we expected the NRM of Gibson Bruck is

the slowest method because the computational overhead thatit introduces to create and

maintain the heap structure is larger than the gain in performance coming from its uni-

tary search depth. Nonetheless this small differences could be influenced more from

the current computer state rather than from algorithms. A more reliable performance

measure is the average search depth presented in figure 5.1. This graph shows that all

5.1. Exact simulations results 57

the simulators give very similar results, but here we can also notice a general reduction

of the average search depth, and then an increasing of the performance, as the simula-

tion continues. This reduction can be traced to the fact thatas the simulation proceeds

the reaction that is used to create the productP, that is the first reaction in the search

order, becomes more and more probable. Thus in all the methods the average search

depth decrease almost to zero representing that no operations are required in order to

locate the next reaction to fire. Within this general positive trend the Direct Method

shows to have slightly lower average search depth values because the original reaction

order is the best order therefore, if no operations are performed in order to arrange the

reactions, the best performance are obtained.

Figure 5.1: Average search depths for the Michaelis Menten model

5.1.2 GAL

The GAL4 Yeast system model was simulated for 1000 seconds for a number of 1000

run. The ODM pre-simulation was run for the 10% of the whole time. The average

simulation run times are given in table 5.2 and the average search depth behaviour for

each SSA formulation is shown in figure 5.2.

In contrast with the Michealis Menten simulation, times reported in table 5.2 show a

big difference between the methods. In particular the difference between the run time

58 Chapter 5. Results

Method Run time (ms) Time for 15000 run (hours)
DM 2027.52ms 9h 12min

NRM 797.43ms 3h 19min
LDM 562.79ms 2h 21min
ODM 562.27ms 2h 20min
SDM 562.50ms 2h 21min

Table 5.2: Execution times of the SSAs on the GAL model

of the Direct Method and the run time of other methods is more significative. The

ODM, SDM, and LDM are more than 4 times faster than the DM because as the num-

ber of reactions increases the performance scalability of these methods becomes more

effective. Differences are also registered between the execution time of the NRM and

the other methods. In a medium size example like the GAL modelthe computational

overhead of the NRM becomes in fact more evident decreasing the whole performance

of this method. Performance of the LDM, the ODM and the SDM arevery similar but

if the attention is focused on the average search depth noticeable differences are regis-

tered. The reason for this discrepancy is trade off between the reduction of the average

search depth and the introduction of additional computational load for an optimized

next reaction location, that in a medium size example plays an important role. The

graph in figure 5.2 shows in fact that these three algorithms behave in a very different

way. In more detail the LDM exhibits a slow average search depth that remains al-

most constant aroundlog2(28) = 4.8 because of the binary search that is used to locate

the next reaction to fire. Therefore as expected, when biggermodels are considered

the LDM shows reliable performance that is independent on the number of reactions.

The SDM is, with this particular example, the method that hasthe smallest average

serach depth values. As discussed in section 4.2, GAL model rection probabilities

considerably vary during the simulation thus the progressive adjustment of the order

of reactions in SDM leads to a good degree of efficiency. For the same reason the

ODM, which was configured in order to sort the reactions with respect of the reaction

propensities of the first 10 seconds of simulation, shows an average serach depth that

drastically increases, even surpassing that of the DM, as the simulation proceeds. A

surprising result is that, even if the average search depth of the ODM is larger than

the average search depth of the DM for more than one half of thesimulation, the best

overall performance is reached by the ODM. The reason for this odd behaviour is the

trade-off between average search depth optimizations and the computational overhead

5.1. Exact simulations results 59

introduced that within this particular example advantagesmore a method like the ODM

that predicts a good reaction ordering for the first half of the simulation time without

introducing overhead during the simulation. Morover even when the average search

depth of the ODM is worse than that of the DM the optimized direct method has bet-

ter performance thanks to the optimal way that it uses to refresh reactants population

according to the dependency graph.

Figure 5.2: Average search depths for the GAL model

5.1.3 EGF Shoeberl

This huge model, because of its high computational load, wassimulated for 1 sec-

ond for a number of only 100 run. The ODM was firstly configured to perform one

pre-simulation on the 10% of the whole time and successivelyto perform two pre-

simulations of the whole simulation time. The average simulation run times are given

in table 5.1.3 and the average search depth behaviours for each SSA formulation is

shown in figure 5.5. A more detailed comparison between the average search depth of

the ODM, the LDM and the SDM is presented in figure 5.4.

First of all looking at the results in the table it can be seen that in contrast with

the results of the GAL model the NRM of Gibson Bruck has an execution run time

that is comparable with those of the LDM, the ODM, and the LDM.Indeed, with this

60 Chapter 5. Results

Method Run time (ms) Time for 15000 run (hours)
DM 13254.44ms 55h 13min

NRM 585.61ms 2h 43min
LDM 525.27ms 2h 18min
ODM 514.93ms 2h 9min
ODM* 511.26ms 2h 8min
SDM 521.28ms 2h 10min

Table 5.3: Execution times of the SSAs on the EGF Shoeberl model

huge model the overhead needed to maintain the heap like structure becomes negligible

with respect to the gain in performance reached with the unitary average search depth.

However as expected, without taking in consideration the Direct Method, this algo-

rithm is the slowest SSAs. The execution times in the table show also that the direct

method is twenty times slower than other algorithms, so as expected when the number

of reactions increases the gap between optimized SSAs and the DM becomes larger.

Performance of the LDM, the SDM and the ODM are slightly different but in general

remain of the same order. As usual a more detailed comparisoncan be done by looking

at the average search depths in figure 5.5. As in the executiontimes a big difference

is shown between the DM and the other methods. Similarly to the GAL example the

LDM has performance that is independent of the number of reactions and is almost

constant aroundlog2(218) = 7.8 because of the binary search. The SDM rapidly con-

verges to an optimal reaction order and has the smallest average search depth values.

The ODM, when run configured according to a pre-simulation of10% of the whole

time, has performance similar to that registered in the GAL example. The average

search depth increases as the simulation proceeds because the reaction order that was

predicted with the pre-simulation becomes less effective.However, with this model

the average search depth of the ODM remains always lower thanthe average search

depth of the DM and remains around values similar to those of the SDM and the LDM.

In this example, in contrast with the GAL example, the dynamics of the initial 10%

of the simulation are representative of the dynamics of the whole simulation. For this

reason on the EGF Shoeberl model the ODM is the method with thebest performance.

Thus from our analysis results that is better to do a pre-simulation and to pre-order the

reactions avoiding the introduction of computational overhead during the simulation,

used to order the reactions (SDM) or to find the reaction faster (LDM).

In the light of this result we run the ODM using two pre-simulations of the whole

5.1. Exact simulations results 61

Figure 5.3: Average search depths for the EGF Shoeberl model

simulation time in order to see how much would have been the performance gain. As

expected the average search depth is noticably reduced staying around values similar to

those of the SDM as shown in figure , however the number of reactions per second was

similar to the number registered using a pre-simulation of the 10% of the simulation

as shown in . This highlights that when a model has reaction probabilities that do not

vary too much in time a simple ODM configured with a pre-simulation of the 10% of

the whole simulation is the best choice.

Figure 5.4: On the left average search depths of the ODM, the LDM, the SDM, for the
EGF Shoeberl model, on the right the same graph with the ODM configured for a 100%
pre-simulation time.

62 Chapter 5. Results

Figure 5.5: Reactions per second of the ODM with pre-simulation of 100% of the simu-
lation time

5.1.4 General considerations

Results obtained by simulating the Michaelis Menten, the GAL and the Shoeberl model

show that the LDM, the SDM and the ODM are, in general, more efficient than the DM

and the NRM. Performance was studied considering two measures, the average number

of reactions that are fired per second and the average search depth. Analysis based on

the former highlights that within biological systems with asmall number of reactions,

like the Michaelis Menten model, all the algorithms exhibitsimilar performance. As

the number of reactions increases, the DM becomes quite slowwhile the other methods

show good performance scalability. The NRM is, in general, slower than the LDM, the

SDM and the ODM, in particular when middle sized examples areconsidered, where

the computational overhead introduced to maintain the heap-like structure affects the

performance more. Our analysis also confirmed the results presented in [34] that show

that the ODM is in general one of the best formulation of the SSA. Analysis based

on the average search depth showed that even when the averagesearch depth of the

ODM increases during the simulation, due to wrong predictions of the optimal order

of reactions, the number of reactions computed per second bythe ODM is greater than

that of other methods. This occurs because the ODM does not introduce computational

overhead to the SSA. Taking into account only the average search depth, the best results

are reached by the SDM and the LDM that have stable and reliable good performance

during the entire simulation time. Figure 5.6 summarises the number of reactions

per second that were obtained using the various simulation algorithms over the three

5.1. Exact simulations results 63

biological models.

Figure 5.6: From left to right: reactions per second in the Michaelis Menten model, the
GAL model and the Shoeberl model.

64 Chapter 5. Results

5.2 Approximate simulations results

In order to evaluate the performance and the accuracy of the hybrid simulator two

measures were considered in comparison with an exact simulator:

• the average run time

• the density area distance

The first was the only measure considered to compare the computational performance

of the hybrid method with other exact simulators. Measures like the number of firing

per second or the average search depth are in fact not representative in the context of

reactions modelled deterministically. The second measureallowed us to investigate

the approximation that is introduced by the hybrid method when some of the reactions

are modelled deterministically. The GAL example with a highconstant number of

galactose was used for the simulation. This example is suitable for our purpose because

it exhibits a clear partition of the reactions. As shown in figure 5.7 there are four

reactions that are fired more frequently.

Figure 5.7: Fast reactions in the GAL model

The hybrid method was parametrised by changing the number ofdeterministically

simulated reactions and by changing the integration step used as both the initial in-

tegration step and the step used for the constant step integration of the ODE-solver.

Simulations highlighted the trade-off between the gain in computational performance

and the loss of exactness. All the simulations were performed using the Logarithmic

Direct Method as a reference for exact simulations. This simulator was chosen among

all the other exact simulators for two reasons. First of all,it has stable computational

performance that allowed us to concentrate more on the performance of the hybrid

method. Secondly, since the hybrid method uses the Logarithmic Direct Method as

5.2. Approximate simulations results 65

internal stochastic simulator, this was a natural choice tocompare the execution time

of the two methods. This section proceeds presenting the results that were obtained.

5.2.1 Simulating four deterministic reactions

In our first experiment, we configured the hybrid method to simulate all the four re-

actions, introduced in figure 5.7, in a deterministic way. Because of the high com-

putational complexity, the modified GAL example was simulated for only five sec-

onds. The fifth second was selected as time point for the difference estimation. One

thousand realisations were used for distribution estimations and histograms were con-

structed considering ten intervals. According to equation2.26, a theoretical bound for

the average self-distance was calculated:

√
20
π

(
1

1000
+

1
1000

) = 0.11284 (5.1)

Several species were selected for the estimation of the density difference area between

the results obtained from a full stochastic simulation withthe LDM and those obtained

using the Hybrid Method. Figure 5.8 shows the histograms corresponding to the dis-

tribution estimations for the speciesG4-RNAand a plot highlighting the difference

between the average populations ofG4-RNA.

Figure 5.8: Differences between populations of G4-RNA measured at 5 seconds in the
GAL model (Hybrid Method configured with four deterministic reactions)

The estimated density distance area for the speciesG4-RNAand the execution times

are reported in the table 5.4. For all the species, we obtained a density distance area

similar to the one obtained forG4-RNA. Thus, considering that all the distances are

66 Chapter 5. Results

Method Run time (ms) 1000 runs time Density distance area
LDM 1253.155ms 20min

0.10606
Hybrid Method 11.342ms 11 sec

Table 5.4: Execution times and the estimated density distance area for G4-RNA in the
GAL model (Hybrid Method configured with two deterministic reactions)

smaller than the average self distance bound in equation (5.1) no approximations were

registered with this degree of accuracy. In conclusion, thehybrid method achieved

comparable with those obtained with an exact stochastic simulation but almost one

hundred times faster.

5.2.2 Simulating two deterministic reactions

In the previous experiment, because of the high computational load of the simula-

tions, only one thousand realisations were considered to estimate the distributions of

the species. However, using this number of realisations theself distance bound used to

evaluate the promising performance results of the hybrid method was very large. For

this reason, we repeated a similar experiment configuring the hybrid method to simu-

late only the two fastest reactionsA andB (presented in figure 5.7) in a deterministic

way. With this experiment we measured a smaller density distance area suggesting that

the real self distance may be smaller. Indeed, as the number of deterministic reaction

decreases, we expect the approximation introduced by the hybrid method to reduce

and the simulation time to increase. The time point of observation, the number of in-

tervals and the number of realisations were kept unchanged.Therefore, the estimated

self distance was still the one presented in equation (5.1).Graphical outputs relative to

theG4-RNAare reported in figure 5.9 while the density distance area andthe execution

times are presented in the table 5.5.

Method Run time (ms) 1000 runs time Density distance area
LDM 1271.608 21min

0.044998
Hybrid Method 174.09 3min

Table 5.5: Execution times and the estimated density distance area for G4-RNA in the
GAL model (Hybrid Method configured with two deterministic reactions)

For all the species, results were in line with the expected performance. Density

difference area values still lie inside the estimated self distance and are reduced by

5.2. Approximate simulations results 67

Figure 5.9: Differences between populations of G4-RNA measured at 5 seconds in the
GAL model (Hybrid Method configured with two deterministic reactions)

almost one order of magnitude. The execution time of the hybrid method increases

by a factor of ten but the method remains more than seven timesfaster than a full

stochastic exact simulation. In conclusion, the hybrid method has shown, in both the

experiments a very good performance conforming with precedent results [1, 32].

Chapter 6

Conclusions and future work

This project focused on the extension of Dizzy, an existing chemical stochastic sim-

ulator, with three new efficient formulations of the Gillespie stochastic simulation al-

gorithm and a hybrid deterministic and stochastic simulator. Features for the perfor-

mance analysis of simulators were developed in order to compare the computational

performance and the efficiency of the algorithms. The aim of the project was to de-

velop a software framework that would be useful to investigate and compare different

simulators over various biological models. To the best of our knowledge, none of

the existing simulation software includes a wide range of simulators and tools for the

computational performance analysis and error measurementof approximate and exact

stochastic simulators. The need for a tool to compare the performance of different

simulation algorithms is motivated by the high computational load of stochastic simu-

lations which made the simulation of many biological systems prohibitive without the

use of parallel computing. Stochastic simulation algorithms are currently the only way

to obtain exact simulations of biological models. For this reason one is usually con-

cerned about finding the best trade-off between performanceand simulation exactness

with a particular model.

In the first part of this project, we showed how the new features of Dizzy can help

in evaluating the scalability of different exact stochastic simulation algorithms as the

number of reactions increases. In particular, we compared the performance of the

different formulations of the Stochastic Simulation Algorithm over three biological

models with a different scale of reactions. The comparison was made by consider-

ing the average number of reactions fired per second and the average search depth to

find the next reaction. Our results highlight that the newly developed LDM, SDM and

69

70 Chapter 6. Conclusions and future work

ODM have generally a better performance than the NRM and the DM. Our analysis

shows that in most cases the ODM is the best formulation of theSSA while the NRM,

not considering the DM, is the simulator with the poorest performance. The average

search depth in comparison with number of reactions per second shows that the com-

putational overhead that is introduced to improve the next reaction location can play

an important role on the whole simulation performance. Indeed, even if the NRM of

Gibson Buck has the best data structure to find the next reaction to fire, the time that it

spends to maintain this data structure noticeably increases the execution time, in par-

ticular when middle sized examples, like the GAL model, are considered. For the same

reason the ODM which does not introduce any additional computational load during

the simulation often gives the best results. Using our analysis we also confirmed the

general good performance of the SDM, as presented in [34], and the reliability of the

LDM as introduced in [16].

However, we found that with big models, like the Shoeberl model, or with mod-

els of verystiff systems, where a small subset of reactions are fired very frequently,

even efficient formulations of the SSA were too slow to be run in a reasonable time

using a typical desktop computer. In this case, approximatemethods that sacrifice

the exactness of stochastic simulation algorithm in favor of performance should be

used. We developed an approximate hybrid deterministic andstochastic simulator that

accelerates the simulation by modelling some of the fast reactions in a deterministic

manner. In order to evaluate this newly developed algorithmwe implemented a tool

that can be used to estimate the error introduced by an approximate method with re-

spect to results obtained from an exact stochastic simulation. This new part of the

software, based on comparison between estimated probability density functions of the

species populations, offers both a graphical and a numerical way to compare perfor-

mance of approximate simulators with performance of exact simulators. These new

features were used to test the hybrid method on the GAL model with an high initial

concentration of galactose that makes four of the reactionsfire very frequently. The

hybrid method was firstly configured to model all the four reactions deterministically

and subsequently to model only the two fastest reactions in adeterministic way. In

both cases simulations gave very good results that follow the population distributions

computed by exact simulation algorithms and that can be obtained saving, in the best

case, more than the 90% of the execution time.

71

6.0.3 Hybrid Method numerical stability problems

Our implementation of the hybrid method relies on the use of existing stochastic and

deterministic simulators currently available in Dizzy. Weencountered a number of

difficulties during the development of the hybrid method dueto problems in imple-

menting the synchronisation between the stochastic and thedeterministic regime while

keeping the deterministic ODE-solver numerically stable.Indeed, when a large num-

ber of concentrations and large reaction rates are considered, as in very stiff systems,

ODE-solvers suffer from numerical stability problems in the phase of error estimation

used to adapt the integration step. Our first implemention ofthe hybrid method was

using an ODE-solver originally included in Dizzy with an adaptive step integration

algorithm based on the Runge Kutta method. A first evaluationof the hybrid simulator

showed numerous numerical accuracy problems and general poor performance, not in

line with the good results presented in [1, 32], that were depending on the not opti-

mal implementation of the integration algorithm included in Dizzy. For this reason,

we opted for the more reliable and powerful external ODEtoJava library that provides

several integration algorithms. The second version of the hybrid method used an adap-

tive step Runge Kutta integration algorithm offered by the external ODEtoJava library.

This modification allowed us to avoid most of the numerical stability problems affect-

ing the previous version but was not increasing the overall computational performance

because the adaptive step was set to be too small during simulation. We resolved this

problem by modifying the ODEtoJava integrator to integrateboth with an adaptive and

a constant integration step. More details about this modification are presented in ap-

pendix B.

6.0.4 Future work

The most difficult part in the hybrid method implementation was the synchronisation

between the deterministic simulator and the stochastic simulator. Accuracy and sim-

ulation performance strongly depend on this operation and to improve it means to

considerably improve the reliability of the hybrid simulator. A natural evolution of the

current project is to develop a hybrid method, as presented in [1], that synchronises the

two regimes considering the evolution of the propensities of the slow reactions during

the deterministic simulation. This method requires the useof an integration algorithm

able to stop upon a control event on the slow reaction propensities, a feature that is usu-

72 Chapter 6. Conclusions and future work

ally not supported in already existing ODE-solvers. So the development of this new

Hybrid Algorithm would require a further modification of theODEtoJava integration

algorithm.

Owing to time restriction, only a relatively small number ofperformance analyses

were made in this project. Using the newly developed framework for the performance

comparison of different simulators, several other analysis can be made in the future.

Within this context, however, a big limitation is the incompatibility of Dizzy with the

SBML level 2 standard [2] which is currently used by most models available on the

Internet. Therefore, performing analysis on a wide range ofbiological models will

require the extension of Dizzy in order to read SBML level 2 files. This will allow us

to investigate more about the performance of the newly developed algorithms.

6.0.5 Final observations

The extended version of Dizzy is a first example of software framework for the per-

formance comparison of different stochastic simulation algorithms. It allows the user

to test the appropriateness and the efficiency of the simulators over different biological

systems by using different performance metrics. In conclusion, we believe that this

software can give a valuable contribution to the ongoing analysis on computational

performance and optimisations of stochastic simulation algorithms.

Appendix A

Glossary

CME - Chemical Master Equation

DM - Direct Method

FRM - First Reaction Method

LDM - Logarithmic Direct Method

MSSA - Multiscale Stochastic Simulation Algorithm

NRM - Next Reaction Method

ODM - Optimized Direct Method

ODE - Ordinary differential equation

SDM - Sorting Direct Method

RRE - Reaction Rate equation

SSA- Stochastic Simulation Algorithm

73

Appendix B

ODEtoJava modifications

The Hybrid Method development required the modification of the classErkTriple

provided by the ODEtoJava library. This class implements a Runge Kutta integration

algorithm with a dynamic adaptation of the integration step. Our modification was

focused on two aspects:

• Conformation of the software to an iterative-based integration

• Implementation of a method for a constant step integration

The first modification was required in order to allow the hybrid algorithm to adaptively

perform an iteration with the deterministic simulator or with the stochastic simulator.

The second modification was motivated by an excessive reduction of the integration

step registered when the algorithm was used to integrate up to the next stochastic event

time. Since this operation is performed only when the time ofthe next stochastic event

is less than the next predicted optimal integration time, this problem was solved, intro-

ducing a tolerable error, by integrating with a constant step up to the next stochastic

event time. The constant step used corresponds to the initial integration step specified

by the user.

The modification resulted in a new class calledErkTripleMod. This class can

iterate both by using a constant integration step and by choosing an optimal integration

step according to an error estimation.

75

Bibliography

[1] Alfonsi A., Cances E., Turinici G., Di Ventura B., and W. Huisinga. Exact sim-

ulation of hybrid stochastic and deterministic models for biochemical systems.

INRIA Research report N 5435, 2004.

[2] Finney A. and Hucka M. Systems biology markup language: Level 2 and beyond.

Biochem. Soc. Trans. Volume 31: Pages 1472-1473, 2003.

[3] Ralston A. and Rabinowitz P.A First Course in Numerical Analysis 2d ed.New

York: McGraw-Hill, P. 1978.

[4] Schoeberl B., Eichler-Jonsson C., Gilles E.D., and Müller G. Computational

modeling of the dynamics of the MAP kinase cascade activatedby surface and

internalized EGF receptors.Nat Biotechnol, 20(4):370–375, April 2002.

[5] Adalsteinsson D., McMillen D., and Elston T.C. Biochemical Network Stochastic

Simulator (BioNetS): software for stochastic modeling of biochemical networks.

BMC Bioinformatics, 5:24, 2004.

[6] Endy D. and Brent R. Modelling cellular behavior.Nature Volume 409(1), pp

391-395, 2001.

[7] McQuarrie D. Stochastic approach to chemical kinetics.Appl. Probab. 4:413-78,

1967.

[8] Orrell D. and Bolouri H. Control of internal and externalnoise in genetic regula-

tory networks.Journal of Theoretical Biology, 230 No.3:301–312, 2004.

[9] Gillespie DT. A general method for numerical simulatingthe stochastic time

evolution of coupled chemical reactions.Comp. Phys., 22:403-434, 1976.

[10] Gillespie DT. Exact stochastic simulation of coupled chemical reactions.Phys.

Chem., 81:2340-2361, 1977.

77

78 Bibliography

[11] Gillespie DT. A rigorous derivation of the chemical master equation.Physica A

188:404-25, 1992.

[12] Gillespie DT. Approximate accelerated stochastic simulation of chemically re-

acting systems.Phys. Chem. Volume 115, Issue 4, pp. 1716-1733, 2001.

[13] Gillespie DT. Stochastic simulation of chemical kinetics.Annu. Rev. Phys. Chem.

A 58:35-55, 2007.

[14] Oxtoby D.W. and Nachtrieb N.H.Principles of Modern Chemistry 2nd Edition.

Saunders College Publishing, 1990.

[15] M. Tomita et al. E-cell: software environment for whole-cell simulation.Bioinf.

vol 15, pp 72-84, 1999.

[16] Li H. and Petzold L. Logarithmic direct method for discrete stochastic simulation

of chemically reacting systems.Journal of Chemical Physics, 2006.

[17] Salis H. and Kaznessis Y. Accurate hybrid stochastic simulation of a system of

coupled chemical or biochemical reactions.J. Chem. Phys. Volume 122, 054103,

2005.

[18] Segel I. H.Biochemical Calculations: How to Solve Mathematical Problems in

General Biochemistry, 2nd Edition. John Wiley and Sons, 1971.

[19] McCollum J.M., Peterson G.D., Cox C.D., Simpson M.L., and Samatova N.F.

The sorting direct method for stochastic simulation of biochemical systems with

varying reaction execution behavior.Computational Biology and Chem. Volume

30, Pages 39-49, 2001.

[20] Takahashi K., Kaizu K., Hu B., and Tomita M. A multi-algorithm, multi-

timescale method for cell simulation.Bioinformatics, 20(4):538–546, March

2004.

[21] Brenan K.E., Campbell S.L., and Petzold L.Numerical Solution of Initial-Value

Problems in Different-Algebra Equations second ed.SIAM, Philadelphia, PA,

1996.

[22] Calder M., Duguid A., Gilmore S., and J. Hillston. Stronger computational mod-

elling of signalling pathways using both continuous and discrete-state methods.

Bibliography 79

CMSB (Priami, C. Ed.), volume 4210 of Lecture Notes in Computer Science,

2006.

[23] Johnston M. A model fungal gene regulatory mechanism: the gal genes of sac-

charomyces cerevisiae.Microbiol. Rev. 51 458-476, 1987.

[24] Rathinam M., Petzold L., Cao Y., and Gillespie DT. Stiffness in stochastic chem-

ically reacting systems: the implicit tau-leaping method.Phys. Chem. Volume

119, pp. 12784-12794, 2003.

[25] Gilbson MA. and Bruck J. Exact stochastic simulation ofchemical systems with

many species and many channels.Phys. Chem. A 105:1876-89, 2000.

[26] Neogi N.A. Dynamic partitioning of large discrete event biological systems for

hybrid simulation and analysis.LNCS Volume 2993, pp 463-476, 2004.

[27] Atauri P, Orrell D., Ramsey S., and Bolouri H. Evolutionof design principles in

biochemical networks.IEE Journal of Systems Biology, 1:28–40, 2004.

[28] The JFreeChart project. http://www.jfree.org/jfreechart/index.html.

[29] Hoops S., Sahle S., Gauges R., Lee C., Pahle J., Simus N.,Singhal M., Xu L.,

Mendes P., and Kummer U. COPASI—a COmplex PAthway SImulator. Bioin-

formatics, 22(24):3067–3074, 2006.

[30] Ramsey S. Dizzy user manual.CompBio Group, Institute for SystemsBiology,

2006. http://magnet.systemsbiology.net/software/Dizzy/.

[31] Ramsey S., Orrell D., and Bolouri H. Dizzy: stochastic simulation of large-scale

genetic regulatory networks.Bioinform Comput Biol. Apr;3(2):415-36., 2005.

[32] Kiehl T.R., Mattheyses R.M., and Simmons M.K. Hybrid simulation of cellular

behavior.Bioinformatics, 20(3):316–322, 2004.

[33] Kummer U., Krajnc B., Pahle J., Green A.K., Dixon C.J., and M. Marhl. Transi-

tion from stochastic to deterministic behavior in calcium oscillations.Biophysical

Journal Volume 89 pp 1603-1611, 2005.

[34] Cao Y., Li H., and Petzold L. Efficient formulation of thestochastic simulation

algorithm for chemically reacting systems.Journal of Chemical Physics. 121 (9),

pp. 4059-4067, 2004.

80 Bibliography

[35] Cao Y., Li H. Hall A., Lampoudi S., and Petzold L. User’s guide for

stochkit. Department of Computer Science, University of California, 2007.

http://www.engineering.ucsb.edu/ cse/StochKit/.

[36] Cao Y. and Petzold L. Accuracy limitations and the measurement of errors

in the stochastic simulation of chemically reacting systems. J. Comput. Phys.,

212(1):6–24, 2006.

[37] Cao Y., Petzold L., and Gillespie DT. Multiscale simulation algorithm with

stochastic partial equilibrium assumption for chemicallyreacting systems.Phys.

Chem. Volume 206, pp. 395-411, 2005.

[38] Cao Y., Petzold L., and Gillespie DT. Efficient stepsizeselection for the tau-

leaping simulation method.Phys. Chem. Volume 124, 044109, 2006.

