

Modelling role-playing games using PEPA nets

Leïla Kloul

Join work with S. Gilmore and D. Piazza

Outline

- The Role-playing game (MMPORG)
- PEPA nets formalism
- Applying PEPA nets to the MMPORG
- The Model analysis
 - Flow-equivalent replacement technique
 - Model solution
 - Performance criteria
- Model results

The Role-playing game

PEPA nets

Combination of *coloured stochastic Petri nets* and *process algebras PEPA* to form a single, *structured* performance modelling formalism.

• The colours used as the tokens of the net are PEPA components.

• Net transitions labelled by PEPA activities

$$\mathbf{P_1} \stackrel{(\alpha, r)}{\longrightarrow} \mathbf{P_2}$$

PEPA nets

- Transition
 - models *small-scale changes* of state as components undertake activities (individually or in cooperation).
 - has *local* effect as it causes a change *only* in the place hosting the PEPA component.
- Firing
 - models *macro-step changes* of state as one token (PEPA component) is transferred from one place to another.
 - causes a change in *both* the *input place* (existing co-operations can now no longer take place) and the *output place* (previously disabled cooperations are now enabled).

PEPA nets (syntax)

S	::=		(sequential components)				
		$(\alpha, r).S$	(prefix)				
		S + T	(choice)				
		Ι	(<i>identifier</i>)	C	::=		(cell terms)
P	::=		(model components)			"	(empty)
		$P \bowtie_{I} Q$	(cooperation)			P	(component)
		P/L	(hiding)				
		Ι	(identifier)				
		P[C]	(<i>cell</i>)				

Applying PEPA nets to MMPORG

Component Player

 $Player_{31} \stackrel{\text{def}}{=} (PlossP, \top).Player_{32} + (PwinP, \top).Player_{33}$ $Player_{32} \stackrel{\text{def}}{=} (less_{pts}, \gamma_1).Player_1 + (zero_{pts}, \gamma_2).Player_6$ $Player_{33} \stackrel{\text{def}}{=} (get_{pts}, \gamma_4).Player_1$ $Player_4 \stackrel{\text{def}}{=} (less_{pts}, \gamma_1).Player_1 + (get_{pts}, \gamma_4).Player_1 + (zero_{pts}, \gamma_2).Player_6$ $Player_5 \stackrel{\text{def}}{=} (accept_{obj}, \top).Player_1 + (refuse_{obj}, \top).Player_1$ def ____ (failure, f). $Player_{0}$ $Player_6$ $\stackrel{\text{\tiny def}}{=} (RImage, \top).(test, \beta_3).Player_7$ $Player_{70}$ $Player_7 \stackrel{\text{def}}{=} (win, \top).Player_8 + (lose, \top).Player_6$ $Player_8 \stackrel{\text{def}}{=} (get_{pts}, \gamma_4).(\mathbf{success}, c).Player_0$

• Component NPlayer

• Component Room

$$Room \stackrel{\text{def}}{=} (generateNP, \sigma_1).Room + (RImage, \sigma).Room + (fightP, \top).Room_2 + (fightNP, \top).Room_3 + (take_{obj}, \top).Room_1 + (use_{obj}, \top).Room_1$$

$$Room_1 \stackrel{\text{def}}{=} (accept_{obj}, \rho_1).Room + (refuse_{obj}, \rho_2).Room$$

$$Room_2 \stackrel{\text{def}}{=} (PlossP, \phi_1).(PwinP, \phi_2).Room$$

$$Room_3 \stackrel{\text{def}}{=} (PlossNP, \phi_3).Room + (PwinNP, \phi_4).Room_4$$

$$Room_4 \stackrel{\text{\tiny def}}{=} (destroyNP, \sigma_2).Room$$

Component SRoom

$$SRoom \stackrel{\text{def}}{=} (RImage, \sigma).(test, \top).SRoom_1$$

$$SRoom_1 \stackrel{\text{def}}{=} (lose, \phi_3).SRoom + (win, \phi_4).SRoom$$

• The places

- i: the room number $(1 \dots N)$
- j: the game level number $(1 \dots L)$

$$ROOM_{ji} [-, ..., -] \stackrel{\text{def}}{=} \left(Room \bigotimes_{\mathcal{K}_{1}} \left(Player [-] \bigotimes_{\mathcal{K}_{2}} ... \bigotimes_{\mathcal{K}_{2}} Player [-] \right) \right)$$
$$\bigotimes_{\mathcal{K}_{3}} \left(NPlayer [-] \parallel ... \parallel NPlayer [-] \right)$$
$$SECRET_{Rj} [-, ..., -] \stackrel{\text{def}}{=} SRoom \bigotimes_{\mathcal{K}_{4}} Player [-]$$
$$INIT_{Rj} [-, ..., -] \stackrel{\text{def}}{=} Player [-] \parallel ... \parallel Player [-]$$

$$OUT [_, ..., _] \qquad \stackrel{def}{=} Player [Player] \parallel ... \parallel Player [Player]$$

The Model analysis

- Flow-equivalent replacement technique
- λ_j : arrival rate of the players to level j
- μ_j : departure rate of the players from the game

The Model analysis

Model solution

- Performance criteria: difficulty of completion
- quick progress in the game: *unchallenging* game
- very arduous to make progress: too challenging game

Model results

Model results

