
Chapter 5

Static Single Information
from a Functional Perspective
Jeremy Singer1

Abstract Static single information form is a natural extension of the well-known
static single assignment form. It is a program intermediate representation used in
optimising compilers for imperative programming languages. In this paper we
show how a program expressed in static single information form can be trans-
formed into an equivalent program in functional notation. We also examine the
implications of this transformation.

5.1 INTRODUCTION

Static single information form (SSI) [2] is a natural extension of the well-known
static single assignment form (SSA) [11]. SSA is a compiler intermediate repre-
sentation for imperative programs that enables precise and efficient analyses and
optimisations.

In SSA, each program variable has a unique definition point. To achieve this, it
is necessary to rename variables and insert extra pseudo-definitions (φ-functions)
at control flow merge points. Control flow merge points occur at the start of
basic blocks. A basic block is a (not necessarily maximal) sequence of primi-
tive instructions with the property that if control reaches the first instruction, then
all instructions in the basic block will be executed. SSA programs have the de-
sirable property of referential transparency—that is, the value of an expression
depends only on the value of its subexpressions and not on the order of evaluation
or side-effects of other expressions. Referentially transparent programs are easier
to analyse and reason about.

We take the following simple program as an example:

1University of Cambridge Computer Laboratory,
William Gates Building, 15 JJ Thomson Avenue, Cambridge, CB3 0FD, UK
Email: jeremy.singer@cl.cam.ac.uk

63



1: z← input()
2: if (z= 0)
3: then y← 42
4: elsey← z+1
5: output(y)

To convert this program into SSA form, we have to rename instances of vari-
abley so that each new variable has only a single definition point in the program.

The SSA version of the program is shown below:

1: z← input()
2: if (z= 0)
3: then y0← 42
4: elsey1← z+1
5: y2← φ(y0,y1)
6: output(y2)

Theφ-function merges (or multiplexes) the two incoming definitions ofy0 and
y1 at line 5. If the path of execution comes from thethen branch, then theφ-
function takes the value ofy0, whereas if the path of execution comes from the
else branch, then theφ-function takes the value ofy1.

SSI is an extension of SSA. It introduces another pseudo-definition, theσ-
function. When converting to SSI, in addition to renaming variables, and insert-
ing φ-functions at control flow merge points, it is necessary to insertσ-functions
at control flow split points. We have contrasted SSA and SSI at length elsewhere
[25], in terms of their computation and data flow analysis properties. It is suffi-
cient to say that SSI can be computed almost as efficiently as SSA and that SSI
permits a wider range of data flow analysis techniques than SSA.

The σ-function is the exact opposite of theφ-function. The differences are
tabulated in Fig. 5.1.

We now convert the above program into SSI:

1: z0← input()
2: if (z0 = 0)
3: z1,z2← σ(z0)
4: then y0← 42
5: elsey1← z2 +1
6: y2← φ(y0,y1)
7: output(y2)

Theσ-function splits (or demultiplexes) the outgoing definition ofz0 at line 3.
If the path of execution proceeds to thethen branch, then theσ-function assigns
the value ofz0 to z1. However, if the path of execution proceeds to theelse
branch, then theσ-function assigns the value ofz0 to z2.

Since SSI is such a straightforward extension of SSA, it follows that algo-
rithms for SSA can be quickly and naturally modified to handle SSI. For example,

64



φ-function σ-function
inserted at control flow merge
points

inserted at control flow split points

placed at start of basic block placed at end of basic block
single destination operand n destination operands, wheren is

the number of successors to the
basic block that contains thisσ-
function

n source operands, wheren is the
number of predecessors to the basic
block that contains thisφ-function.

single source operand

takes the value of one of its source
operands (dependent on control
flow) and assigns this value to the
destination operand

takes the value of its source operand
and assigns this value to one of the
destination operands (dependent on
control flow)

FIGURE 5.1 Differences betweenφ- and σ-functions

the standard SSA computation algorithm [11] can be simply extended to compute
SSI instead [23]. Similarly, the SSA conditional constant propagation algorithm
[29] has a natural analogue in SSI [2], which produces even better results.

It is a well-known fact that SSA can be seen as a form of functional program-
ming [6]. Inside every SSA program, there is a functional program waiting to be
released. Therefore, we should not be surprised to discover that SSI can also be
seen as a form of functional programming.

Consider the following program, which calculates the factorial of 5.

1: r ← 1
2: x← 5
3: while (x > 0) do
4: r ← r ∗x
5: x← x−1
6: done
7: return r

First we convert this program into a standard control flow graph (CFG) [1],
as shown in Fig. 5.2. Then we translate this program into SSI form, as shown in
Fig. 5.3. This SSI program can be simply transformed into the functional program
shown in Fig. 5.4.

In the conversion from SSA to functional notation, a basic block#n that be-
gins with one or moreφ-functions is transformed into a functionfn. Jumps to
such basic blocks become tail calls to the corresponding functions. The actual
parameters of the tail calls are the source operands of theφ-functions. The for-
mal parameters of the corresponding functions are the destination operands of the

65



r ← 1

x← 5

if (x > 0)

r ← r ∗x

x← x−1

returnr

?

�
�

�
�	

@
@

@
@R

R

#1

#2

#3 #4

true false

FIGURE 5.2 Control flow graph for factorial program

φ-functions.
In the conversion from SSI to functional notation, in addition to the above

transformation, whenever a basic block ends with one or moreσ-functions, then
successor blocks#p and#q are transformed into functionsfp and fq. Jumps to
such successor blocks become tail calls to the corresponding functions. The actual
parameters of the tail calls are the source operands of theσ-functions. The formal
parameters of the corresponding functions are the relevant destination operands
of theσ-functions. (We notice again thatσ-functions have analogous properties
to φ-functions.)

The main technical contribution of this paper is the detailed presentation of an
algorithm to convert SSI programs into a functional intermediate representation.
The remainder of the paper is laid out as follows: in section 5.2 we review the
previous work in this area, in section 5.3 we formally define SSI, in section 5.4 we
present the algorithm to transform SSI code into a functional program, in section
5.5 we show how there are both an optimistic and a pessimistic version of this
transformation, in section 5.6 we contemplate the possibility of recovering SSI
from a functional program (the reverse transformation), in section 5.7 we discuss
why the transformation from SSI to functional notation may be useful, then finally
in section 5.8 we draw some conclusions.

66



r0← 1

x0← 5

r1← φ(r4, r0)
x1← φ(x4,x0)
if (x1 > 0)
r2, r3← σ(r1)
x2,x3← σ(x1)

r4← r2∗x2

x4← x2−1

returnr3

?

�
�

�
�	

@
@

@
@R

R

#1

#2

#3 #4

true false

FIGURE 5.3 Static single information form for factorial program

5.2 RELATED WORK

To the best of our knowledge no-one has attempted to transform SSI into a func-
tional notation. Ananian [2] gives an executable representation for SSI, but this is
defined in terms of demand-driven operational semantics and seems rather com-
plicated.

Several people have noted a correspondence between programs in SSA and
λ-calculus. Kelsey [16] shows how to convert continuation passing style [4] into
SSA and vice versa. Appel [6] informally shows the correspondence between
SSA and functional programming. He gives an algorithm [5] for translating SSA
to functional intermediate representation. (We extend Appel’s algorithm in sec-
tion 5.4 of this paper.)

Chakravarty et al. [10] formalise a mapping from programs in SSA form to
administrative normal form (ANF) [12]. ANF is a restricted form ofλ-calculus.
They also show how the standard SSA conditional constant propagation algorithm
[29] can be rephrased in terms of ANF programs.

67



let r0 = 1, x0 = 5
in

let function f2(r1,x1) =
let function f3(r2,x2) =

let r4 = r2∗x2, x4 = x2−1
in

f2(r4,x4)
and function f4(r3,x3) =

return r3

in
if (x1 > 0)

then f3(r1,x1)
else f4(r1,x1)

in
f2(r0,x0)

FIGURE 5.4 Functional representation for SSI factorial program

5.3 STATIC SINGLE INFORMATION

Static single information form (SSI) was originally described by Ananian [2]. He
states that “the principal benefits of using SSI form are the ability to do predicated
and backwards data flow analyses efficiently”. He gives several examples includ-
ing very busy expressions analysis and sparse predicated typed constant propaga-
tion. Indeed, SSI has been applied to a wide range of problems [22, 28, 14, 3].

The MIT Flex compiler [13] uses SSI as its intermediate representation. Flex
is a compiler for Java, written in Java. As far as we are aware, Flex is the only
publicly available SSI-based compiler. However, we are adding support for SSI
to Machine SUIF [27], an extensible compiler infrastructure for imperative lan-
guages like C and Fortran. We have implemented an efficient algorithm for SSI
computation [23] and several new SSI analysis passes.

Below, we give the complete formal definition of a transformation from CFG
to SSI notation. This definition is taken from Ananian [2]. A few auxiliary def-
initions may be required before we quote Ananian’s SSI definition. The original
program is the classical CFG representation of the program [1]. Program state-
ments are contained within nodes (also known as basic blocks). Directed edges
between nodes represent the possible flow of control. A path is a sequence of
consecutive edges.→+ represents a path consisting of at least one edge (a non-
null path). There is a path from the START node to every node in the CFG and
there is a path from every node in the CFG to the END node. The new program
is in SSI. It is also a CFG, but it contains additional pseudo-definition functions
and the variables have been renamed. The variables in the original program are
referred to as the original variables. The SSI variables in the new program are

68



referred to as the new variables.
So, here is Ananian’s definition:

1. If two nonnull pathsX→+Z andY→+Z exist having only the nodeZ where
they converge in common, and nodesX andY contain either assignments to
a variableV in the original program or aφ- or σ-function forV in the new
program, then aφ-function forV has been inserted atZ in the new program.
(Placement ofφ-functions)

2. If two nonnull pathsZ→+X andZ→+Y exist having only the nodeZ where
they diverge in common, and nodesX andY contain either uses of a variable
V in the original program or aφ- or σ-function forV in the new program, then
a σ-function forV has been inserted atZ in the new program. (Placement of
σ-functions)

3. For every nodeX containing a definition of a variableV in the new program
and nodeY containing a use of that variable, there exists at least one path
X→+Y and no such path contains a definition ofV other than atX. (Naming
afterφ-functions)

4. For every pair of nodesX andY containing uses of a variable defined at node
Z in the new program, either every pathZ→+X must containY or every path
Z→+Y must containX. (Naming afterσ-functions)

5. For the purposes of this definition, the START node is assumed to contain a
definition and the END node a use for every variable in the original program.
(Boundary conditions)

6. Along any possible control flow path in a program being executed consider
any use of a variableV in the original program and the corresponding useVi

in the new program. Then, at every occurrence of the use on the path,V and
Vi have the same value. The path need not be cycle-free. (Correctness)

Ananian’s original SSI computation algorithm can be performed inO(EV)
time, whereE is a measure of the number of edges in the control flow graph and
V is a measure of the number of variables in the original program. This is worst
case complexity, but typical time complexity is linear in the program size.

5.4 TRANSFORMATION

In this section we present the algorithm that transforms SSI into a functional no-
tation.

We adopt a cut-down version of Appel’s functional intermediate representa-
tion (FIR) [5]. The abstract syntax of our FIR is given in Fig. 5.5. FIR has the
same expressive power as ANF [12]. Expressions are broken down into primitive
operations whose order of evaluation is specified. Every intermediate result is
an explicitly named temporary. Every argument of an operator or function is an

69



atom → c constant integer
atom → v variable

exp → let fundefsin exp function declaration
exp → let v = atomin exp copy
exp → let v = binop(atom,atom) in exp arithmetic operator
exp → if atom relop atomthen expelseexp conditional branch
exp → atom(args) tail call
exp → let v = atom(args) in exp non-tail call
exp → return atom return

args →
args → atom args
fundefs →
fundefs → fundefsfunction v(formals) = exp
formals →
formals → v formals

binop → plus |minus |mul | . . .
relop → eq | ne | lt | . . .

FIGURE 5.5 Functional intermediate representation

atom (variable or constant). As in SSA, SSI andλ-calculus, every variable has
a single assignment (binding), and every use of that variable is within the scope
of the binding. (In Fig. 5.5, binding occurrences of variables are underlined.) No
variable name can be used in more than one binding. Every binding of a variable
has a scope within which all the uses of that variable must occur.

• For a variable bound bylet v = . . . in exp, the scope ofv is justexp.

• The scope of a function variablefi bound in

let function f1(. . .) = exp1 . . .
function fk(. . .) = expk

in exp

includes all theexpj (to allow for mutually recursive functions) as well asexp.

• For a variable bound as the formal parameter of a function, the scope is the
body of that function.

Any SSI program can be translated into FIR. Each basic block with more than
one predecessor is transformed into a function. The formal parameters of that

70



function are the destination operands of theφ-functions in that basic block. (If
the block has noφ-functions then it is transformed into a parameterless function.)
Similarly, each basic block that is the target of a conditional branch instruction
is transformed into a function. The formal parameters of that function are the
appropriate destination operands of theσ-functions in the preceding basic block
(that is to say, theσ-functions that are associated with the conditional branch). We
assume that the SSI program is in edge-split form—no basic block with multiple
successors has an edge to a basic block with multiple predecessors. In particu-
lar this means that basic blocks that are the targets of a conditional branch can
only have a single predecessor. (It should always be possible to transform an SSI
program into edge-split form.)

If block f dominates blockg, then the function forg will be nested inside
the body of the function forf . Instead of jumping to a block which has been
transformed into a function, a tail call replaces the jump. The actual parameters
of the tail call will be the appropriate source operands of correspondingσ- or
φ-functions. (Every conditional branch will dominate both itsthen andelse
blocks, in edge-split SSI.)

The algorithm for transforming SSI into FIR is given in Fig. 5.6. It is based
on algorithm 19.20 from Appel’s book [5].Translate() ensures function def-
initions are correctly nested.Statements() outputs FIR code for each basic
block. Appel’s algorithm handles SSA, so we extend it to deal with SSI instead.
In our algorithm lines of code that have been altered from Appel’s original SSA-
based algorithm are marked with a! and entirely new lines of code (to handle
SSI-specific cases) are marked with a+. In the code for theStatements()
function,⊕ represents the general case for binary arithmetic operators and< rep-
resents the general case for binary relational operators.

5.5 OPTIMISTIC VERSUS PESSIMISTIC

There are two different approaches to computing SSI. Ananian’s approach [2] is
pessimistic, in that it assumes thatφ- andσ-functions are needed everywhere, then
it removes such functions when it can show that they are not actually required.
This is a kind of greatest fixed point calculation. (Aycock and Horspool adopt the
same pessimistic approach in their generation of SSA [8].) The alternative ap-
proach to computing SSI [23] is optimistic. It assumes that noφ- or σ-functions
are needed, then it inserts such functions when it can show that they are actually
required. This is a kind of least fixed point calculation. (The classical SSA com-
putation algorithm [11] employs the same optimistic approach.) Ananian claims
that this optimistic approach ought to take longer, but in practice it seems to be
faster than the pessimistic approach.

Just as there is an optimistic and a pessimistic approach to the computation
of SSI, there appear to be an optimistic and a pessimistic approach to the trans-
formation into functional notation. The pessimistic approach takes the original
program CFG and converts each basic block into a top-level function, with tail
calls to appropriate successor functions. Each generated top-level function has a

71



formal parameter for every program variable, and each function call site has an
actual parameter for every program variable. Appel [6] refers to this as the “re-
ally crude approach.” Useless parameters may be identified and eliminated with
the help of liveness and other data flow information. The necessary parameters
for each functional block should be those variables which are live at each cor-
responding basic block boundary in the original program. (A variable is live at
a particular program point if there is a control flow path from that point along
which the variable’s value may be used before that variable is redefined.) This
makes sense since SSI is an encoding of liveness information, as Ananian states
[2].

The optimistic approach is exactly as given in section 5.4. It can be explained
in the following manner. It uses the dominance relations of the control flow graph
to determine how the functional blocks should be nested. (Nesting is required
in order for functional blocks to use variables declared in outer scope.) Then it
applies standard lambda lifting techniques [15] to generate the appropriate param-
eters for each functional block.

A formal clarification of the relationship between optimistic and pessimistic
computation of SSI is the subject of ongoing research.

5.6 CONVERTING FUNCTIONAL PROGRAMS BACK TO SSI

It is possible to transform an arbitrary programp expressed in FIR into SSI, sim-
ply by treatingp as an imperative program. (Let-bound atomic variables become
mutable virtual registers and function applications become procedure calls.) Stan-
dard SSI computation techniques [2, 23] can then be applied to the imperative
program.

However, suppose that a programpSSI in SSI has been transformed into a
programpfunc in FIR. In this section we address the concept of recoveringpSSI

from pfunc.
pfunc is in SSA, since each let-bound variable is only assigned a value at one

program point. Howeverpfunc is not in SSI, since the same parameters are sup-
plied to the tail calls on either side of anif statement. (Recall that these pa-
rameters correspond to the source parameters of theσ-functions associated with
this conditional branch inpSSI.) The simplest way to transformpfunc into a valid
SSI program, sayp′SSI, is to addσ-functions at eachif statement, and rename
the parameters of the tail calls accordingly. There is a drawback with this ap-
proach however. Now imagine convertingp′SSI into FIR using our algorithm.
There would be an additional layer of function calls at theif statements, because
of the extraσ-functions. Admittedly these extra function calls could be removed
by limited β-contraction, but it is embarrassing to admit that converting from SSI
to FIR and back to SSI (ad infinitum) does not reach a fixed point. In fact this is a
diverging computation.

The problem is that theσ-functions are already encoded as function calls in
pfunc but we do not recover this information. We insert extraσ-functions instead.
One way to avoid this would be to inline (β-contract) all functions inpfunc that

72



are only called from one call site (this includes all functions that originated from
σ-functions). If this transformation is done prior to the insertion ofσ-functions,
then the problem of an extra layer of function call indirection does not arise.

Kelsey [16] gives a method for recoveringφ-functions from functional pro-
grams. We should be able to apply similar techniques topfunc. Thus it should be
possible to recover (something resembling)pSSI from pfunc.

5.7 MOTIVATION

In this section we briefly consider why the transformation from SSI into functional
notation may be of value.

Typed functional languages may be useful as compiler intermediate represen-
tations for imperative languages. There has recently been a great deal of research
effort in this area, with systems such as typed assembly language [18], proof car-
rying code [20, 7] and the value dependence graph [30]. SSA and SSI fit neatly
into this category, since they can be seen from a functional perspective, and they
are most amenable to high-level type inference techniques [19, 26]. The imple-
mentors of similar typed functional representations for Java bytecode, such as
λJVM [17] and GRAIL [9], comment that a functional representation makes both
verification and analysis straightforward. It is useful for reasoning about program
properties, such as security and resource consumption guarantees. Functional
notations are also well-suited for translation into lower-level program representa-
tions.

It is certainly true that algorithms on such functional representations can often
be more rigorously defined [10] and proved correct. It would be interesting to
compare existing SSA or SSI data flow analyses with the equivalent analyses in
the functional paradigm, perhaps to discover similarities and differences. Such
cross-community experience is often instructive to one of the parties, if not both.

We have effectively made SSI interprocedural in scope, by abstracting all con-
trol flow into function calls. Until now, SSI has only been envisaged as an in-
traprocedural representation, and it has not been clear how to extend SSI to whole
program scope. Now there is no longer any distinction between intraprocedural
and interprocedural control flow.

Finally we note that the functional representation of SSI programs is exe-
cutable. Standard SSI is not an executable representation; it is restricted in the
same manner as original SSA. (φ- andσ-functions require some kind of runtime
support to determine which value to assign to which variable.) Ananian has con-
cocted an operational semantics for an extended version of SSI [2], however this
is quite complex and unwieldy to use. On the other hand, functional programs
are natural, understandable and easily executable with a well-known semantics.
We have successfully translated some simple SSI programs into Haskell and ML
code, using the transformation algorithm of section 5.4.

For instance, Fig. 5.7 shows the dynamic data flow graph [21] of three Haskell
factorial functions that each compute 5! (the answer is 120). The three values are
then added together (the sum total is 360). The left portion of the graph represents

73



a standard Haskell iterative definition of the factorial function:

faci 0 acc = acc
faci n acc = fac1 (n-1) (acc*n)

The middle portion of the graph represents a standard Haskell recursive definition
of the factorial function:

facr 0 = 1
facr n = n * facr (n-1)

The right portion of the graph represents the Haskell version of the functional pro-
gram from figure 5.4 which is the transformation of the SSI program from figure
5.3. We notice that the right portion of the dynamic data flow graph has exactly
the same shape as the left portion, which reveals that both are computing facto-
rials iteratively, so we see that the transformation from imperative to functional
style does not alter the data flow behaviour of the program at all.

5.8 CONCLUSIONS

In this paper we have shown how SSI (generally regarded as an imperative pro-
gram representation) can be converted into a simple functional notation. We have
specified a transformation algorithm and we have briefly discussed the possible
applications of this transformation process.

Compilers for functional programming languages (such as the Glasgow Haskell
compiler) often translate their intermediate form into an imperative language (such
as C), which is then compiled to machine code. This seems rather wasteful, since
the C compiler (if it uses a functional representation as its intermediate form) will
attempt to reconstruct the functional program which has been carelessly thrown
away by the functional compiler backend.

Finally we comment on future work. The transformation algorithm presented
in section 5.4 could possibly be formalised, in the same manner as Appel’s orig-
inal work on SSA [6, 5] has been formalised [10]. Next we need to translate
existing SSI analysis algorithms to this new functional framework. We must also
consider how to take advantage of this functional notation in order to devise new
analyses and optimisations.

On a different note, SSA and SSI are just two members of a large family of
renaming schemes [24]. It would be interesting to see if every scheme in the fam-
ily could be converted to a functional notation, using the same general techniques
outlined in this paper.

REFERENCES

[1] A. V. Aho, R. Sethi, and J. D. Ullman.Compilers: Principles, Techniques and Tools.
Addison Wesley, 1986.

[2] C. S. Ananian. The static single information form. Master’s thesis, Massachusetts
Institute of Technology, Sep 1999.

74



[3] C. S. Ananian and M. Rinard. Data size optimizations for Java programs. InProceed-
ings of the 2003 ACM SIGPLAN conference on Languages, Compilers, and Tools for
Embedded Systems, pages 59–68, 2003.

[4] A. W. Appel. Compiling with Continuations. Cambridge University Press, 1992.

[5] A. W. Appel. Modern Compiler Implementation in Java. Cambridge University
Press, first edition, 1998.

[6] A. W. Appel. SSA is functional programming.ACM SIGPLAN Notices, 33(4):17–20,
Apr 1998.

[7] A. W. Appel. Foundational proof-carrying code. InProceedings of the 16th Annual
Symposium on Logic in Computer Science, pages 247–256, 2001.

[8] J. Aycock and N. Horspool. Simple generation of static single assignment form. In
Proceedings of the 9th International Conference in Compiler Construction, volume
1781 ofLecture Notes in Computer Science, pages 110–125. Springer-Verlag, 2000.

[9] L. Beringer, K. MacKenzie, and I. Stark. Grail: a functional form for imperative
mobile code.Electronic Notes in Theoretical Computer Science, 85(1), 2003.

[10] M. M. Chatravarty, G. Keller, and P. Zadarnowski. A functional perspec-
tive on SSA optimisation algorithms. InProceedings of the 2nd Interna-
tional Workshop on Compiler Optimization Meets Compiler Verification, 2003.
http://www.cse.unsw.edu.au/˜patrykz/papers/ssa-lambda/.

[11] R. Cytron, J. Ferrante, B. K. Rosen, M. N. Wegman, and F. K. Zadeck. Efficiently
computing static single assignment form and the control dependence graph.ACM
Transactions on Programming Languages and Systems, 13(4):451–490, Oct 1991.

[12] C. Flanagan, A. Sabry, B. F. Duba, and M. Felleisen. The essence of compiling with
continuations. InProceedings of the ACM SIGPLAN 1993 Conference on Program-
ming Language Design and Implementation, pages 237–247, 1993.

[13] The Flex compiler infrastructure, 1998. http://www.flex-
compiler.lcs.mit.edu/Harpoon/.

[14] O. Gheorghioiu, A. Salcianu, and M. Rinard. Interprocedural compatibility analysis
for static object preallocation. InProceedings of the 30th ACM SIGPLAN-SIGACT
Symposium on Principles of Programming Languages, pages 273–284, 2003.

[15] T. Johnsson. Lambda lifting: transforming programs to recursive equations. InPro-
ceedings of the Conference on Functional Programming Languages and Computer
Architecture, volume 201 ofLecture Notes in Computer Science. Springer-Verlag,
1985.

[16] R. A. Kelsey. A correspondence between continuation passing style and static single
assignment form.ACM SIGPLAN Notices, 30(3):13–22, Mar 1995.

[17] C. League, V. Trifonov, and Z. Shao. Functional Java bytecode. InProceedings of
the 5th World Conference on Systemics, Cybernetics, and Informatics—Workshop
on Intermediate Representation Engineering for the Java Virtual Machine, 2001.
http://flint.cs.yale.edu/flint/publications/lamjvm.html.

[18] G. Morrisett, D. Walker, K. Crary, and N. Glew. From system F to typed assembly
language.ACM Transactions on Programming Languages and Systems, 21(3):527–
568, May 1999.

75



[19] A. Mycroft. Type-based decompilation. InProceedings of the European Symposium
on Programming, volume 1576 ofLecture Notes in Computer Science, pages 208–
223. Springer-Verlag, 1999.

[20] G. C. Necula. Proof-carrying code. InProceedings of the 24th ACM SIGPLAN-
SIGACT Symposium on Principles of Programming Languages, pages 106–119,
1997.

[21] N. Nethercote and A. Mycroft. Redux: A dynamic dataflow tracer.Electronic Notes
in Theoretical Computer Science, 89(2), 2003.

[22] R. Rugina and M. Rinard. Symbolic bounds analysis of pointers, array indices and
accessed memory regions. InProceedings of the ACM SIGPLAN 2000 Conference
on Programming Language Design and Implementation, pages 182–195, 2000.

[23] J. Singer. Efficiently computing the static single information form, 2002.
http://www.cl.cam.ac.uk/˜jds31/research/computing.pdf.

[24] J. Singer. A framework for virtual register renaming schemes, 2003.
http://www.cl.cam.ac.uk/˜jds31/research/renaming.pdf.

[25] J. Singer. SSI extends SSA. InWork in Progress Session Proceedings of the Twelth In-
ternational Conference on Parallel Architectures and Compilation Techniques, 2003.
http://www.cl.cam.ac.uk/˜jds31/research/ssavssi.pdf.

[26] J. Singer. Static single information improves type-based decompilation, 2003.
http://www.cl.cam.ac.uk/˜jds31/research/ssidecomp.pdf.

[27] M. D. Smith. Extending SUIF for machine-dependent optimizations. In
Proceedings of the First SUIF Compiler Workshop, pages 14–25, 1996.
http://www.eecs.harvard.edu/machsuif/.

[28] M. Stephenson, J. Babb, and S. Amarasinghe. Bitwidth analysis with application
to silicon compilation. InProceedings of the ACM SIGPLAN 2000 Conference on
Programming Language Design and Implementation, pages 108–120, 2000.

[29] M. N. Wegman and F. K. Zadeck. Constant propagation with conditional branches.
ACM Transactions on Programming Languages and Systems, 13(2):181–210, Apr
1991.

[30] D. Weise, R. F. Crew, M. Ernst, and B. Steensgaard. Value dependence graphs: rep-
resentation without taxation. InProceedings of the 21st ACM SIGPLAN-SIGACT
Symposium on Principles of Programming Languages, pages 297–310, 1994.

76



1: Translate(node) =
2: let C be the children ofnodein the dominator tree
3: let p1, . . . , pn be the nodes ofC that have more than one predecessor
4: for i← 1 ton
5: let a1, . . . ,ak be the targets ofφ-functions inpi (possiblyk = 0)
6: let Si = Translate(pi)
7: let Fi = “ function fpi (a1, . . . ,ak) = Si”

+ 8: let s1, . . . ,sm be the nodes ofC that are the target of a conditional branch
+ 9: for i← 1 tom
+ 10: let qi be the (unique) predecessor ofsi
+ 11: let a1, . . . ,ak be the targets (associated withsi) of σ-functions inqi
+ 12: let Ti = Translate(si)
+ 13: let Gi = “ function fsi (a1, . . . ,ak) = Ti”
! 14: let F = F1F2 . . .FnG1G2 . . .Gm

15: return Statements(node,1,F)

16: Statements(node, j,F) =
17: if there are< j statements innode
18: then let s be the successor ofnode
19: if s has only one predecessor
20: then return Statements(s,1,F)
21: elses hasm predecessors
22: supposenodeis theith predecessor ofs
23: suppose theφ-functions ins are

a1← φ(a11, . . . ,a1m), . . .
ak← φ(ak1, . . . ,akm)

24: return “ let F in fs(a1i, . . . ,aki)”
25: else ifthe jth statement ofnodeis aφ-function
26: then return Statements(node, j +1,F)

+ 27: else ifthe jth statement ofnodeis aσ-function
+ 28: then return Statements(node, j +1,F)

29: else ifthe jth statement ofnodeis “returna”
30: then return “ let F in return a”
31: else ifthe jth statement ofnodeis a← b⊕c
32: then let S= Statements(node, j +1,F)
33: return “ let a = b⊕c in S”
34: else ifthe jth statement ofnodeis a← b
35: then let S= Statements(node, j +1,F)
36: return “ let a = b in S”
37: else ifthe jth statement ofnodeis “if a < b then gotos1 else gotos2”
38: then since this is edge-split SSI form
39: assumes1 ands2 each has only one predecessor

! 40: let a1, . . . ,ak be
! the source operands ofσ-functions innode(possiblyk = 0)
! 41: return “ let F in if a < b then fs1(a1, . . . ,ak) else fs2(a1, . . . ,ak)”

FIGURE 5.6 Algorithm that transforms SSI to functional intermediate represen-
tation

77



startupHaskell(%e[sb]p)

ioctl(c.1L, c.21505L, _)
0L f-out : 0x411BD000L

write(s.1L, _, _, _)
4L

l+(%e[sb]p, c.0xFFFFFFB8L)
0xBFFFD120L

shutdownHaskellAndExit

lea2(c.0L, _, c.1L, c.8L)
0x411BD008L -(_, c.0L) : 4L

inc : 4L

+(_, c.0L) : 3L

inc : 3L

inc(c.0L) : 1L

[1]

(0x411BD008)
chunk

B0 : ’3’

l+(_, c.48L)
51L

- : 3L

sar(_, c.0x02)
3L

*h(_, c.0x66666667L)
14L

- : 36L

sar(_, c.0x1F)
0L

mod(_, c.10L)
6L

sar(_, c.0x02)
36L

*h(_, c.0x66666667L)
144L

+ : 360L

sar(_, c.0x1F)
0L

mod(_, c.10L)
0L

* : 120L

-(_, c.1L) : 1L

-(_, c.1L) : 2L

* : 120L

-(_, c.1L) : 3L

* : 60L

-(s.5L, c.1L)
4L

* : 20L

*(s.5L, s.1L)
5L

+ : 240L

*(s.5L, _) : 120L

* : 24L

-(s.5L, s.1L)
4L

-(_, s.1L) : 3L

* : 6L

-(_, s.1L) : 2L

* : 2L

-(_, s.1L) : 1L

*(_, s.1L) : 1L

* : 120L

-(_, c.1L) : 1L

-(_, c.1L) : 2L

* : 120L

-(_, c.1L) : 3L

* : 60L

-(s.5L, c.1L)
4L

* : 20L

*(s.5L, s.1L)
5L

B0 : ’6’

+(_, c.48L)
54L

B0 : 0

+(_, c.48L)
48L

(0x411BD00B)
c."\n"

FIGURE 5.7 Dynamic data flow graph for three factorial(5) functions

78


