
Chapter 1

The Finite State-ness of
FSM-Hume
Greg Michaelson1, Kevin Hammond2 and Jocelyn Serot3

Abstract Hume is a domain-specific programming language targeting resource-
bounded computations, such as real-time embedded systems. It is novel in be-
ing based on generalised concurrent bounded automata, controlled by transitions
characterised by pattern matching on inputs and recursive function generation of
outputs. FSM-Hume is a strict finite state subset of Hume, where symbols are
constrained to fixed size types and transition functions are non-recursive. Here
we discuss the design of FSM-Hume and show that it is indeed classically finite
state.

1.1 INTRODUCTION

There is a tension in programming language design between expressibility and de-
cidability. Ideally, we would like to be able to prove automatically the correctness,
equivalence, termination, space use and complexity of arbitrary programs. How-
ever, these properties are all undecidable for Turing-complete (TC) languages.

Decidability may be achieved by restricting the types and constructs in a lan-
guage. However, many attempts to do so have resulted in unwieldy languages
where the programmer constantly fights such restrictions in search of greater ex-
pressibility.

Hume[HM03] is a novel language based on the concept of language layers.
Full Hume is TC but has been designed to facilitate analyses that identify where
program constructs break designated decidable properties.

1School of Mathematical and Computer Sciences, Heriot-Watt University, Riccarton,
Scotland, EH14 4AS, greg@macs.hw.ac.uk

2School of Computer Science, University of St Andrews, North Haugh, St Andrews,
Scotland, KY16 9AJ, kh@dcs.st-and.ac.uk

3LASMEA, Blaise Pascal University, Les Cezeaux, F-63177 Aubiere cedex, France,
Jocelyn.Serot@lasmea.univ-bpclermont.fr

1



1/ERROR

ZEROONE

0/ERROR

0/OK

1/OK

FIGURE 1.1. Mealy machine for alternating 1s and 0s.

As well as a research vehicle for programming language research, Hume is
also a practical programming tool. Hume is defined by a structural operational
semantics[Ham01], and a reference interpreter for the full language, written in
Haskell, is near completion.

The following sections discuss Hume’s design, the finite state subset of Hume,
and its use in simulating an autonomous line following vehicle.

1.2 HUME DESIGN

At the opposite end of the decidability spectrum from TC-ness lie the finite state
automata (FSA), for which all of the above properties are decidable. Several pro-
gramming languages have been based on FSA, for example Esterel[Ber00] and
Promela[Hol04] which are used to specify protocols and reactive systems. De-
cidable properties of programs may then be explored using automatic techniques
such as model checking, for example through the Spin tool for Promela. However,
because of the use of weak type systems and abstraction mechanisms, programs
quickly become large and unwieldy, with vast state spaces when compiled to the
low level FSA notations used for automatic analysis.

We have taken FSA as our starting point for Hume’s design but with a number
of fundamental differences to previous approaches. First of all, Hume is based on
a generalisation of standard FSA transition notation, to encompass, at the limit, a
full TC language. Secondly, we introduce concurrent processing through explicit
multiple communicating FSA, which we call boxes. Thirdly, we make an explicit
distinction between the coordination language, which describes external proper-
ties and configurations of boxes, and the expression language, which describes
input/output transitions within boxes. Finally, in full Hume, both coordination
and expression languages share a rich, polymorphic type system. These design
decisions enable us to identify layers of language in Hume, with different decid-
able properties, as we discuss below.

To foreground the design, consider the Mealy machine shown in Figure 1.1,
which checks that a binary sequence has alternating 1s and 0s: A Mealy machine
may be characterised by transitions quadruplets of the form:

2



1/ERROR

0/OK

1/OK

ZEROONE

output

input

0/ERROR

new state

old state

FIGURE 1.2. Mealy machine with explicit I/O and state

(oldstate,input) � (newstate,out put)

where old state, input, new state and output are finite sets. Thus, the above Mealy
machine has transitions:

(ZERO,0) -> (ZERO,ERROR)
(ZERO,1) -> (ONE,OK)
(ONE,0) -> (ZERO,OK)
(ONE,1) -> (ONE,ERROR)

Note that both the diagrammatic and state transition characterisations are mislead-
ing. First of all, it is implicit that a FSA cycles indefinitely, communicating with
an external environment to consume single input symbols and generating single
output symbols. Secondly, it is implicit that a FSA retains its state in between
cycles.

The external input/output links and state retention are made explicit in Figure
1.2. In general, for one FSA it need not be specified where the input comes from
or where the output goes to: both could be linked to arbitrary sources and sinks,
including to other FSA. Similarly, in principle, the old and new state need not
be a direct feedback link but could again come via arbitrary sources and sinks,
including other FSA.

We noted above that the state and I/O symbol sets for a FSA must be finite.
However, these sets may also be very big. Given a large enough set that maps to
integers, then complex data structures may be encoded using either Gödel num-
bers within the set, or, more familiarly, structured ASCII sequences whose con-
catenated bits values are integers within the set

In Hume, we allow values of the form shown in Figure 1.2.

3



value � integer – finite integer�
f loat – finite float�
character – character�
boolean – boolean value�
(value,value...value) – tuple�
<value,value...value> – vector�
[value,value...value] – list�
ident value value ... value – discriminated union

FIGURE 1.3. Abstract syntax for Hume values.

patt � var – variable�
integer – finite integer�
f loat – finite float�
character – character�
boolean – boolean value�
(patt,patt...patt) – tuple�
<patt,patt...patt> – vector�
[patt,patt...patt] – list�
ident patt patt ... patt – discriminated union�
* – ignore wildcards

FIGURE 1.4. Abstract syntax for Hume patterns.

Here, integer, f loat, character and boolean are finite base types. A tuple is
a fixed width sequence of values of possibly different types. A vector is a fixed
width sequence of values of the same type. A list is a an arbitrary length sequence
of values of the same type. A discriminated union is an arbitrary length sequence
of values of possibly different types. We also employ the standard string notation
for vectors of characters.

The left and right hand sides of traditional transitions are like two-element
tuples so we generalise them to:

pattern � expression

Here the left hand side pattern is composed of variables, constants and struc-
tures, as shown in Figure 1.2. Note the wildcard pattern * which ignores the
corresponding input’s without consuming it.

Similarly, the right hand side expression may involves the components of the
pattern, in particular the variables it introduces, as shown in Figure 1.2.

Thus, we generalise a FSA to a box with input and output wires. Note that we
allow multiple input and output wires, and that the state is no longer necessarily
distinguishable from the input or output. We shall return to this below.

Operationally, a box cycles repeatedly, trying to match transition patterns
against the current values on the input wires, treated as a single top-level tuple

4



exp � value – value�
var – variable�
if exp then exp else exp – conditional exp�
case exp of transitions – case exp�
let de f s in exp – local definition�
var exp exp ... exp – function application�
exp op exp – infix operator�
* – no output

FIGURE 1.5. Abstract syntax for Hume expressions.

value. For a match to succeed, constants and constructors must appear in the
same positions in the pattern and input value. Variables in the pattern are then
instantiated to corresponding components of the input value. After a successful
match, the output wires are instantiated from the tuple of values generated by the
transition’s right hand side.

For example, we can write the above Mealy machine in Hume as:

1 type BIT = int 1;

2 data STATE = ZERO | ONE;

3 stream Input from "std_in";
4 stream Output to "std_out";

5 box Bits
6 in (oldstate::STATE,input::BIT)
7 out (newstate::STATE,output::string)
8 match
9 (ZERO,0) -> (ZERO,"ERROR\n") |

10 (ZERO,1) -> (ONE,"OK\n") |
11 (ONE,0) -> (ZERO,"OK\n") |
12 (ONE,1) -> (ONE,"ERROR\n");

13 wire Bits (Bits.newstate initially ZERO,Input)
14 (Bits.oldstate,Output);

Line 1 defines a new type bit to be a one-bit-precision integer.
Line 2 defines a new type STATE with values ZERO and ONE.
Lines 3 and 4 associate the streams Input and Output with standard input and

standard output respectively.
Line 5 introduces the box Bits with input wires oldstate and input, and output

wires newstate and output.
Lines 9 to 12 are the transitions. Note that the output is generated by an

explicit string. Transitions are associated with wires by position. For example, for

5



Type Control Properties
finite operations decidable E & T; precise Sp & Ti
finite conditions decidable E & T; bounded Sp & Ti
stack + * operations decidable E & T; precise Ti
finite + * operations decidable T; precise Sp & Ti
finite prim. rec. decidable T; bounded Sp & Ti
infinite gen. rec. -

FIGURE 1.6. Type, control and decidability. E = equivalence, T = termination, Sp
= Space, Ti = Time

the first transition: wire oldstate matches ZERO; wire input matches 0; ZERO
sets wire newstate; "ERROR\n" sets wire output.

Lines 13 and 14 wire the box to itself and to standard input and output. Wiring
is by position, with input wiring followed by output wiring, so: in wire oldstate
is wired to Bits out wire newstate; in wire input is wired to stream Input;
out wire newstate is wired to Bits in wire Bits.newstate; in wire input
is wired to stream Input.

We will not discuss in further detail the type system or de f inition language
shared by the expression and coordination languages. Some flavour of both may
be gained from the above example.

1.3 HUME AS A LAYERED LANGUAGE

We noted above that interesting properties of TC languages are undecidable [HU69,
BL74] and that languages with decidable properties tend to be hard to program
in. An important motivation for Hume’s design was to enable analyses to identify
whether or not arbitrary Hume programs met particular criteria corresponding to
required decidable properties. Hume’s generalised FSA transitions provide the
locus for such analyses: constraining the types of inputs that may be matched by
left hand patterns and the control structures used in right hand expressions to gen-
erate outputs, directly constrains decidable program properties, as summarised in
Figure 1.3.

With finite types on wires and corresponding operations in transitions, equiva-
lence, termination, space use and time are decidable. Adding conditions to opera-
tions for a finite input FSA loses precise time and space bounds because condition
branch choice is unpredictable for arbitrary input. However, it may be possible to
establish accurate upper bounds.

With an infinite stack on wires, and the ability to ignore wires (denoted by the
pattern *), a FSA is equivalent to a Push Down Automata, for which decidable
equivalence has just been established. A PDA must terminate or repeat a state on
a finite input but space use for an arbitrary input is undecidable.

With a finite type on wires and the ability to ignore wires, a FSA is equivalent
to a Linear Bounded Automata (LBA). A LBA must terminate or repeat a state on

6



finite input but equivalence is undecidable for arbitrary input.
Replacing conditions with primitive recursion loses decidable equivalence. Fi-

nally, allowing infinite data or unbounded general recursion makes all properties
indeterminate in the general case.

Standard type and control flow analyses may be used to determine whether or
not an arbitrary box is a FSA, PDA or LBA, or if it is recursive or constructs po-
tentially infinite values. However, in general it is undecidable whether an arbitrary
recursive function is primitive or general recursive: deciding primitive recursion
with implied termination would solve the halting problem.

1.4 FSM-HUME

Finite State Machine Hume (FSM-Hume), is the Hume layer with finite types on
wires and only simple operations, such as boolean and arithmetic, in transition
expressions.

FSM-Hume has been implemented through a compiler to HAM abstract ma-
chine code, with an associated interpreter which runs under RT-Linux, as well
as other Unix flavours. A static cost modeler[HM02] has been constructed for
FSM-Hume, which gives very accurate predictions of HAM space use.

A number of substantial FSM-Hume programs have been constructed. In
particular, a rational reconstruction of Burns and Wellings’ mine pump control
system[BW01] easily meets their real-time constraints on the HAM interpreter. It
consists of 250 lines of Hume, including the simulation environment, compared
with 750 lines of Ada, without the simulation environment.

It might be thought that allowing operations whose state space is larger than
the input space, such as multiplication, would transcend finite state-ness. How-
ever for fixed precision numbers, it is possible to build a FSA that will carry out
multiplication for values whose multiples do not exceed the largest allowed value,
for example by encoding the appropriate look up table.

A more serious concern is to clarify in what sense a multi-box Hume program
is actually still a FSA, given the presence of multiple inputs and outputs, and the
withering away of the state. We first discuss the status of a single box program
and then explore multi-box programs.

1.4.1 Single box FSMH programs are finite state

Consider a Hume box with multiple inputs and outputs, and no distinguished state.
As noted above, multiple values from finite domains, represented as a fixed width
tuple, can be encoded as a single symbol, given a large enough space of symbols.
Furthermore, the sources and sinks of individual wires are irrelevant from the
perspective of the box: what is important is the presence of appropriate values
on all wires at the appropriate stage in the box execution cycle. Thus a box with
multiple inputs or outputs may be treated as if it had just one input and output,
each bearing a tuple value.

A multi-state FSA may be converted to a single state FSA as follows The state

7



ONESTATE
(ZERO,0)/(ZERO,ERROR)

(ONE,0)/(ZERO,OK)

(ZERO,1)/(ONE,OK)

(ONE,1)/(ONE,ERROR)

FIGURE 1.7. Single state Mealy machine for alternating 1s and 0s.

symbol in each transition is combined with the input/output symbols in tuples.
Each transition is then extended with a new single state value, in the state position
on the left and right hand sides. In general:

(old state,input) � (new state,out put) � �
(single state, (old state,input)) � (single state, (new state,out put))

For example, the Mealy machine above might be changed to:

(ONESTATE,(ZERO,0)) -> (ONESTATE,(ZERO,ERROR))
(ONESTATE,(ZERO,1)) -> (ONESTATE,(ONE,OK))
(ONESTATE,(ONE,0)) -> (ONESTATE,(ZERO,OK))
(ONESTATE,(ONE,1)) -> (ONESTATE,(ONE,ERROR))

as shown in Figure 1.7. Thus, the former state
�
ZERO,ONE � is now part of the

tupled input/output symbol.
Using this technique, a Hume box with multiple inputs and outputs, and no

distinguished state, may be converted directly to a single state FSA with sin-
gle composite input and output tuples, provided it has no variables in transition
patterns.

A variable in a pattern corresponds to successfully matching any value in the
domain for the variable’s type. Thus, to fully convert a Hume transition with
variables to pure FSA form, it must be replaced by multiple copies, with one copy
for each combination of variable type domain values. For example, the transition
in the Hume box:

box add
in (x,y::int 64)
out (s::int 64)
match
(a,b) -> a+b;

is equivalent to:

8



...
(0,-1) -> -1 |
(0,0) -> 0 |
(0,1) -> 1
...

for all 264 � 264 � 264 unique combinations of values of x and y.

1.4.2 Multi-box FSMH programs are finite state

We also need to convince ourselves that a multi-box FSM-Hume program is still
finite state. If such a program may be converted into a single box FSM-Hume
program then that program is finite state by the preceding argument.

Hume box scheduling is well defined as sequential, round robin where each
box takes in it turns to execute once, in fixed sequence. This explicit sequential
scheduling greatly eases reasoning about Hume programs. However, though not
discussed here, it is straightforward to introduce more elaborate scheduling by
passing explicit schedule information from box to box.

Our approach to converting a multi-box program to a single box program is
to combine the box transitions, and to introduce an explicit state value to ensure
sequentiality. Essentially, each transition for the combined box will correspond
to a transition of one of the separate boxes, augmented with additional left hand
side patterns and right hand side expressions to circulate the wire values for all
the other boxes without changing them.

In general, a successful transition for any one box must be able to transmit
all possible wire values for the other boxes. It is not enough to accept only valid
input values for other boxes; any one box must be able to succeed if its inputs are
matched successfully, regardless of the values on the wires for the other boxes.
In principle, given that inputs are fixed size, we could generate all possible com-
binations of input values for all boxes. However, as the simple example above
suggested, the overall state space is somewhat large. Instead, we employ Hume
variables to generalise arbitrary values, noting that they may in turn be replaced
by specific values for pure FSAness as discussed above.

Suppose there are N boxes and box i has I i inputs (ini1...inIi) and Oi outputs
(outi1...outOi).

For each box, we construct a top level pattern template:

Pi: vari1,vari2...variIi

with a unique variable for each input. We also construct a top level expression
template:

E i: var
�

i1,var
�

i2...var
�

iOi

where var
�

i j is the new variable corresponding to the box input to which output
outi j is connected.

We then form a top level template for the transitions of the composite box
by concatenating together the box pattern templates on the left and expression
templates on the right:

9



(P1,P2...PN) � (E1,E2...EN)

This template accepts arbitrary inputs and sends them to the appropriate outputs
unchanged.

Suppose box i has Ti transitions, where the kth is:

tik: pattik
� expik

Then for each transition of box i, t ik, we make a copy of the composite box’s top
level template, replace the pattern template Pi with the pattern pattik and replace
the expression template Ei with the expression expik:

(P1...pattik...PN) � (E1...expik...EN)

Where the expression is a condition, the right hand side of the template must
be pushed through to the condition options. Similarly, where the expression is a
definition, the right hand side of the template must be pushed through to the result
expression. Examples of these cases are shown below.

After this stage, where any remaining pattern template has a variable which
has been replaced by an expression on the right hand side, then that variable
should be replaced by the “ignore” pattern : there should not be a input value
present for that variable because a new value has been output for it. Similarly,
where any expression template has a variable that was replaced in a pattern tem-
plate, then that variable must be replaced by the “no output” operator *: the input
has been consumed and cannot be recirculated.

We are then left with common variables between left and right hand sides
which consume inputs and reproduce them as outputs, to act as the inputs again
on the next cycle. The effect is as if the corresponding wires had been ignored.
Thus, all variables on the left/right of a transition which are not in that transition’s
replacement pattern may be replaced by the “ignore” pattern/“no output” value *.

Next, we introduce an explicit state which changes on each transition. We
precede each composite pattern with the number of the corresponding box and
each composite expression with the number of the next box:

(i,*,...,*,pattik,*,...,*) � (i
�

1,*,...*,exp ik*,...,*)

or, for the last box, with the number of the first box.
Finally, we combine the wiring for each box, again adding a new feedback

wire for the new explicit state.
The effect is two-fold. From a Hume perspective, we have constructed a single

box which emulates multi-box scheduling. That single box starts with the input
state wire initialised to the number of the first box. Thus, only the transitions for
the first box can succeed and inputs for any other box are transmitted unchanged
as outputs. Furthermore, the output state wire is set so that only the transitions for
the next box in sequence will be considered on the next execution cycle. Thus,
boxes are executed in sequential lock step.

From a FSA perspective, we can easily convert the composite box into a FSA,
with an explicit state, and composite input and output, using the technique de-
scribed above.

10



environment

vehicle

control

location

location

orientation

image

output

monitor

image bump

FIGURE 1.8. Vehicle simulation overview.

1.5 EXAMPLE: VEHICLE SIMULATION

We now illustrate this transformation with reference to the simulation of a simple
autonomous vehicle. which tries to follow a white line by repeatedly analysing
a camera image consisting of one row of bits from a two dimensional bit-map
scene, effectively a map of the terrain the vehicle is traversing.

Figure 1.8 gives an overview of the simulation. The vehicle has a location
consisting of its Cartesian coordinates in terrain space and its angle of orientation
relative to the horizontal. The vehicle sends its current location to the environ-
ment. If the vehicle has not “bumped” into the edge of the terrain then the en-
vironment returns an image corresponding to the vehicle’s position. The vehicle
then sends the image to the control which calculates a new orientation to try to
bring the white line back into the centre of the image. Finally, the vehicle changes
its position and requests the next image from the environment. The vehicle also
sends monitoring information to standard output.

We now consider the simulation in more detail. We have omitted type and
constant definitions where there values are not significant. A scene is represented
as a vector of vector of bits, and an image as a vector of bits.

Note that FSM-Hume constructs for vector manipulation demonstrate what
would normally be considered poor programming style. Where an iteration or
recursion over a sequence would be employed in a TC language, in FSM-Hume
such operations must be nominated explicitly, element by element.

First of all, consider the environment:

11



within_scene (y,x,radians) = ...

look (y0,x0,radians) x = ...

lookat loc =
<<look loc -7,look loc -6,look loc -5,
...
look loc 5,look loc 6,look loc 7>>;

box env in (loc::location) out (v::image,b::bool)
match loc -> if within_scene loc

then (lookat loc, false)
else (null_image, true) ;

wire env (vehicle.loc initially init_loc)
(vehicle.v, vehicle.b);

The environment accepts a location from the vehicle. If it is within the scene
then the image at that position is calculated (lookat) and returned with a “no
bump” flag. Otherwise, the empty scene and a “bump” flag are returned. Note
that lookat calculates each element of the image explicitly where it would be
“better style” to iterate over the scene.

Next, consider the vehicle:

move (y,x,a) da = ...

box vehicle
in (v::image,b::bool,ploc::location,c::real )
out (loc::location,m::monitor,

loc’::location,v’::image)
match
(v, false, pl, c) ->
let nl = move pl c
in (nl, (v,pl,false,c,’\n’), nl, v)

| (v, true, pl, c) ->
(init_loc, (v,pl,true,c,’\n’),
init_loc, lookat init_loc) ;

stream output1 to "std_out";

wire vehicle
(env.v,env.b,vehicle.loc’ initially init_loc,
control.da initially 0.0)

(env.loc,output1,vehicle.ploc,control.v);

The vehicle accepts an image and bump flag from the environment, its current
location from its previous cycle, and a new orientation from the control. If it hasn’t

12



“bumped” then it calculates a new location move. It then sends that new location
to the environment, monitoring information to the output, the new location to
itself and the image to the control. If the vehicle has bumped then the simulation
is reset to the start state.

Finally, consider the control:

box control in (v::image) out (da::real)
match
<<_,_,_,_,_,_,_,1,_,_,_,_,_,_,_>> -> 0.0

| <<_,_,_,_,_,_,1,_,_,_,_,_,_,_,_>> ->
-1.0*delta_a |

| <<_,_,_,_,_,_,_,_,1,_,_,_,_,_,_>> ->
1.0*delta_a |

| <<_,_,_,_,_,1,_,_,_,_,_,_,_,_,_>> ->
-2.0*delta_a |

...
| _ -> 0.0 ;

wire control (vehicle.v’) (vehicle.c);

The control accepts an image from the vehicle and returns a new orientation
to the vehicle. Note the use of explicit pattern matching on all possible positions
of a 1, indicating the line, within the image, where it would be “better style” to
iterate over the image. The wildcard consumes and ignores the matching value.

Note that the control and environment are one step out of sequence so that the
new orientation is computed from the old image at the new location.

The simulation runs in real time, and the vehicle never deviates more than a
few bits to either side of the line.

1.5.1 Single-box FSM-Hume

First we construct the pattern templates using the convention of constructing the
template variables by preceding each input wire’s name with a letter to denote its
box name:

control pattern: c v
env pattern: e loc
vehicle pattern: v v,v b,v ploc,v c

Next we construct the expression templates using the variable names from the
pattern templates:

control expression: v c
env expression: v v,v b
vehicle expression: e loc,o,v ploc,c v

i.e. the control output is wired to the vehicle input c; the env output is
wired to the vehicle inputs v and b; etc.

13



The overall transition template is:

c_v,e_loc,v_v,v_b,v_ploc,v_c ->
v_c,v_v,v_b,e_loc,o,v_ploc,c_v

Consider the first transition for the control. In the template, we replace c v on
the left with the transition pattern, v c on the right with the transition expression
and all other variables with *:

(<<_,_,_,_,_,_,_,1,_,_,_,_,_,_,_>>,*,*,*,*,*) ->
(0.0,*,*,*,*,*,*) |

Consider the transition for the env. In the template, we replace e loc on the
left with the pattern. The transition expression is a conditional expression so we
leave the condition in place, replace the option expressions with the template right
hand side, and insert the components expressions in place of the corresponding
template variables v v and v b. Again, all other variables are replaced by *:

(*,loc,*,*,*,*) -> if within_scene loc
then (*,lookat loc, false,*,*,*,*)
else (*,null_image, true,*,*,*,*)

Consider the first transition for the vehicle. In the template, we replace v v,
v b, v ploc and v c with the pattern components. There is a local definition
on the right so we leave the declaration part in place, replace the expression with
the template right hand side, and insert the components of the expression in place
of the corresponding template variables e loc, o, v ploc and c v. Again, all
other variables are replaced by *:

(*,*,v, false, pl, c) ->
let nl = move pl c
in (*,*,*,nl, (v,pl,false,c,’\n’), nl, v)

Numbering the boxes control/1, env/2 and vehicle/3, we add state pat-
terns and expressions to each transition:

box vehicle
in (s::integer,c_v::image,e_loc::location,

v_v::image,v_b::bool,v_ploc::location,v_c::command)
out (s’::integer,c_da::real,e_v::image,e_b::bool,

v_loc::location, v_m::monitor,v_loc’::location,
v_v’::image)

match
(1,<<_,_,_,_,_,_,_,1,_,_,_,_,_,_,_>>,*,*,*,*,*) ->
(2,0.0,*,*,*,*,*,*) |
...
(2,*,loc,*,*,*,*) -> if within_scene loc

then (3,*,lookat loc, false,*,*,*,*)
else (3,*,null_image, true,*,*,*,*) |

14



(3,*,*,v, false, pl, c) ->
let nl = move pl c
in (1,*,*,*,nl, (v,pl,false,c,’\n’), nl, v) |
...

Finally, we amalgamate the box wires and add appropriate wiring for the state,
top start with the env box in state 2:

wire vehicle
(vehicle.s’ initially 2,vehicle.v_v’,
vehicle.v_loc initially init_loc,
vehicle.e_v, vehicle.e_b,
vehicle.v_loc’ initially init_loc,
vehicle.c_da initially 0.0)
(vehicle.s,vehicle.v_c,vehicle.v_v,vehicle.v_b,
vehicle.e_loc, output,vehicle.v_ploc,vehicle.c_v);

The single box version of the vehicle simulation gives the same behaviour as
the multi box version, on the full Hume interpreter and on the HAM. It is also
substantially faster and requires substantially less space.

1.6 CONCLUSION

We have introduced the Hume programming language, surveyed its general prop-
erties as a layered language, explored the specific properties of the finite state
subset FSM-Hume to demonstrate informally that it is indeed finite state. In so
doing, we derived a transformation to convert multi-box FSM-Hume programs to
a single box, and applied it to the simulation of a simple line following vehicle.

The application of the transformation to the vehicle simulation was performed
by hand. In the short term, we plan to automate the transformation. We also intend
to perform further experimentation to determine whether this transformation is a
useful optimisation for FSM-Hume programs in general.

Longer term, we are investigating properties and analyses for FSM-Hume aug-
mented with higher order functions over vectors and for the primitive recursive
layer of Hume. We are also developing the vehicle simulation and plan to suc-
cessively introduce a single 2-D camera, a pair of 2-D cameras enabling stereo
vision in a 3-D scene, and proximity sensors. In the longer term, we hope to
mount FSM-Hume under RT-Linux to control a small electric vehicle.

ACKNOWLEDGMENTS

This work has been partly supported by UK EPSRC grant GR/R 70545/01 and by
a French CNRS grant.

15



REFERENCES

[Ber00] G. Berry. The Foundations of Esterel. In Colin Stirling Gordon Plotkin and
Mads Tofte, editors, Proof, Language, and Interaction. MIT, 2000.

[BL74] W. S. Brainerd and L. H. Landweber. Theory of Computation. Wiley, 1974.

[BW01] A. Burns and A. Wellings. Real-Time Systems and Programming Languages
(Third Edition). Addison Wesley Longman, 2001.

[Ham01] K. Hammond. The Dynamic Properties of Hume: a Functionally-Based Con-
current Language with Bounded Time and Space Behaviour. In Proc. Impl. of
Funct. Langs. (IFL 2000), Aachen, Germany, Sept. 2000, number 2011, pages
pp. 122–139. Springer-Verlag Lecture Notes in Computer Science, 2001.

[HM02] K. Hammond and G. Michaelson. Predictable Space Behaviour in FSM-Hume.
In Proc. 2002 Intl. Workshop on Implementation of Functional Languages
(IFL ’02), Madrid, Spain, number 2670. Springer-Verlag Lecture Notes in Com-
puter Science, September 2002.

[HM03] K. Hammond and G. Michaelson. Hume: a Domain-Specific Language for
Real-Time Embedded Systems. In Proc. 2003 Intl. Conf. on Generative Pro-
gramming and Component Engineering, – GPCE 2003, Erfurt, Germany.
Springer-Verlag Lecture Notes in Computer Sciences, September 2003.

[Hol04] G. J. Holzmann. The Spin Model Checker: Primer and Reference Manual.
Addison-Wesley, 2004.

[HU69] J. E. Hopcroft and J. D. Ullman. Formal Languages and their Relation to Au-
tomata. Addison-Wesley, 1969.

16


