
Chapter 1

Towards DVM Friendly
First-Class Functions
Marco T. Moraźan1

Abstract: One of the most attractive features of functional languages is that
functions are first-class. To support first-class functions many functional lan-
guages created heap-allocated closures to store the bindings of free variables.
This makes it difficult to predict how the heap is accessed and makes accesses
to free variables slower than accesses to bound variables at runtime. This article
presents how support for first-class functions is provided in the MT Evaluator Vir-
tual Machine without creating heap-allocated closures by using partial evaluation
at runtime.

1.1 INTRODUCTION

One of the most attractive features of functional languages is that functions are
first-class. That is, functions can be passed in as arguments to functions and
functions can be returned as values from functions. First-class functions provide
programmers with powerful means of abstraction to capture computation patterns
that help reduce development time and that result in elegant and easy to maintain
code.

In order to support first-class functions, functional languages can not rely
solely on runtime stack allocation of activation records to store variable bindings
and flow control information. Consider the Scheme definition forf :

(define (f x) (lambda (y) (+ x y)))

that returns a function that addsx to its input. In the scope of the returned
functionx is a free variable. If the binding forx when f is evaluated were solely

1Department of Mathematics and Computer Science, Seton Hall University, South
Orange, NJ, 07079; Phone: +1 973-761-9466; Fax: +1 973-275-2366; Email:
morazanm@shu.edu ; This work was partially funded by the University Research
Council of Seton Hall University.

1

stored on the stack, it may be overwritten before the the function returned byf is
ever applied to an argument. To guarantee that the bindings of free variables are
not lost, many functional languages create closures. A closure is a data structure
that contains a pointer to a function and the bindings of the free variables in the
function.

To implement closures, activation records can be heap-allocated allowing clo-
sures to point to those that hold the bindings of free variables[Chr90, AM91]. In
this manner, even if an activation record is popped of the stack the bindings of
free variable are not overwritten. Another approach is to have closures only store
the bindings of free variables and use the stack to access bound variables[Luc83,
Car84]. In both cases, closures are allocated in the heap creating the potential for
poor locality of reference, for the reduction of intra-list locality2, and for slow
access to free variables by forcing accesses to the heap. The use of a generational
garbage collector[Moo84, Wil92] can improve locality of reference in languages
with closures[AS96], but does not address having to access the heap to resolve
the value of free variables. Garbage collectors, including the generational flavor,
interfere with program evaluation which is to some extent undesirable. To re-
duce the live data size and make accesses to free variables faster, safely linked
closures[SA94] can be used which still, nonetheless, employ lists to implement
closures and depend on garbage collection to guarantee locality of reference.

In this article, we present an implementation strategy for first-class functions
that does not require the creation of heap-allocated closures. The technique is
based on partial evaluation and on the generation of new functions at runtime for
a pure functional language. Implementation support is described by adding primi-
tive operations to the MT Evaluator Virtual Machine (MTEVM), whose semantics
is given operationally by state transitions. First, relevant literature is reviewed to
provide a common context to all readers. This is followed by a brief description
of the MT system and results obtained from previous studies. The MTEVM itself
is first described informally and then its operational semantics without support for
first-class functions is given. This is followed by the introduction of new primi-
tives needed to support first-class functions along with their operational semantics
and hints on how an MT-Scheme compiler (for a pure subset of Scheme) can ex-
ploit these new primitives. Finally, conclusions, expectations, and new avenues of
research created by this technique are presented.

1.2 RELATED WORK

1.2.1 Virtual Machines

Virtual machines (or abstract machines) permit the evaluation of programs, but
omit details of real machines implemented in hardware. They are used to bridge
the gap between high-level languages and hardware machines by tailoring their set

2Intra-list locality refers to the property that the elements of a list are allocated close to
each other in the heap.

2

of primitive operations to specific operations needed by a class of languages[Ste00].
In addition, virtual machines are used to implement compilers, to increase main-
tainability and portability, and to facilitate the correctness of code generators.
Some virtual machines have been implemented and are commercially used like
the Java Virtual Machine[LY96].

The use of virtual machines has been popular in the implementation of func-
tional languages. One of the earliest virtual machines is the SECD machine,
first conceived by Landin[P. 64], which Henderson used for an implementation of
Lisp[Hen80]. The SECD machine consists of only four registers. Henderson used
transition rules to describe the semantics of the machine operationally. A similar
approach was taken in Cardelli’s definition of the Functional Abstract Machine
(FAM) created to support functional languages, fast function application, and the
use of real stacks[Luc83, Car84]. FAM is more complex than SECD consisting
of six pointers, three stacks, and a data heap. Both machines define computation
primitives that yield new values and flow control primitives that determine what
part of the program is to be executed.

Most virtual machines for functional languages, in general, have a set of regis-
ters, one or more stacks, a data heap, a control, and support for environments and
closures as the SECD and FAM machines. They may also include support for such
things as interrupts like in the Scheme48 virtual machine[Joh02] or novel lan-
guage features like, for example, regions for ML[Mad98] and parallel/distributed
computing with lazy languages[S. 98, BF00, Loi01]. A survey of virtual machines
for functional and other languages has been done by Diehl et. al.[Ste00].

1.2.2 Closure Representation

There have been several techniques used to represent closures in functional lan-
guages. In Henderson’s SECD, a closure is a pair containing a list representing
the control structure and a list of frames representing the environment. This is
called alinked closure. To access the value of a variable its frame number and
its displacement within the frame must be known and a traversal of the environ-
ment must ensue. In FAM, a closure is represented by aclosure cellthat contains
(a pointer to) the text to be evaluated and the bindings of the free variables in
the text. This is called aflat closure. In flat closures, free variables can be ac-
cessed by some fixed displacement within a closure cell, but many values may
have be copied repeatedly from closure to closure as pointed out by Shao and
Appel[SA94]. To avoid this copying, they developedsafely linked closuresthat
allow the sharing of bindings with the same lifetime. Safely linked closures, like
flat closures and unlike linked closures, guarantee that a binding is unreachable
after it is no longer relevant to the computation.

The closure representations described above require some type of memory al-
location beyond allocation on a stack and make the access to free variables slower
than the access to bound variables residing on the stack. The latter is unfortu-
nate, because the values of free variables are known values (just as the values of
bound variables) when the function represented by the closure is applied. Pushing

3

the values onto the stack before function application is not an efficient solution,
because the closure must be traversed and each value accessed. Improving the
access time to free variables has been a motivating factor in the work presented
here.

1.2.3 Partial Evaluation

The roots of modern partial evaluation techniques can probably be traced back to
lambda-conversion defined by Church[Chu41]. The value of partial evaluation in
program evaluation (also known as program specialization) was realized by Dijk-
stra when he defined substitution processes that returned expressions to be evalu-
ated at a future time[Dij62]. A partial evaluator is given a program,P(x1 . . .xn),
along with some ofP’s input, x1 . . .xi , and builds a new program,Pnew, which
when it receives the rest of the input,xi+1 . . .xn, will return the same result asP
when given all of its input.Pnew can be the result of simply replacing the known
values,x1 . . .xi , in the body ofP or can be specialized to the point of executing
operations inP (including partial evaluation of function calls) based on the known
valuesx1 . . .xi . A partial evaluator, therefore, performs a mixture of code genera-
tion and execution[Jon96]. Special care, however, must be taken in the presence
of side-effects, because referential transparency is not guranteed[Ken97].

Partial evaluation in functional languages has been used, for example, to im-
plement runtime code generation for a pure subset of ML that does not include
higher-order funtions[Pet96, Mar94]. The technique used goes beyond simply
substituting values in a sequence of instructions forP. Instead, specialized code
generators are created that do not need to process the original sequence of in-
structions when code is generated dynamically. The results reported lead to the
conclusion that the technology is usable, but needs to be improved.

1.3 THE MT SYSTEM

An MT node is a parallel machine with one processing element dedicated to the
evaluation of programs and the rest of the processing elements dedicated to mem-
ory management. The MT system divides memory into 5 distinct spaces that are
managed independently and are implemented as 5 different address spaces in a
distributed virtual memory (DVM) system implemented in software. These mem-
ory spaces are: the MT heap, the MT stack, the MT code space, the evaluator
space, and the garbage collector space. Of these, the garbage collector space has
not yet been designed or implemented. It would not be prudent to design a garbage
collecting system for an MT node before having a thorough understanding of how
MT spaces are accessed. Any garbage collector must enhance the performance of
the evaluator and have knowledge of how live-data in the different memory spaces
should be stored.

The virtual address spaces for the heap, the stack, and the code are each dis-
tributed and divided into pages. The evaluator allocates to each of these spaces
exclusive use of a set of frames. A demand paging algorithm is implemented for

4

each space to swap pages between the evaluator’s frames and each of the dis-
tributed MT memory spaces. In the current implementation of MT, the number of
frames assigned to each memory space is fixed at runtime. This implementation
choice, however, can be changed, as experienced is gained, to adjust dynamically
the number of frames allocated for use to each MT space.

The heap and the stack operate on units of data called MT S-expressions.
Each S-expression has a tag and a value. Tags distinguish the type of value that is
held by the MT S-expression. Primitive types are represented by an integer. For
example, an INT tag means that the value is an integer, a SYMB tag means that
the value is an index into the symbol table, a FUNCT tag means that the value is
an index into the function table, a PRIM tag means that the value is a primitive
function (e.g. +, *, and cons) and a BOOL tag means that the value is a boolean.
Compound types are represented by two integers that are indexes (i.e. addresses)
into heap space. The only compound type is a list that is represented with a LIST
tag and two addresses for thecar and thecdr of the list.

The symbol table,T, the label table,L, and the function table,F , are content
addressable memory. There is a hashing function,hash(str, table), that takes as
input a string representing a symbol, a label, or a function name, and a table and
that addsstr to table (if necessary) and returns the location in the table where
the string is stored.T stores the printable versions of symbols. Symbols can be
added to the table usingaddSymb(symb) which useshash(symb,T) and can be
accessed usingf etchSymb(i) which returns,T[i], the symbol in theith position in
T. F storesknown functionsincluding primitives.F [i], wherei = hash(f ,F) for
some function namedf , stores a function record containing the string representing
the name of the known function,f (F [i].name), the address in code space forf
(F [i].addr) , the number of parametersf has (F [i].params), and the length off
(F [i].len= the number of primitive instructions in the compiled code forf). L[i],
wherei = hash(l ,L), for some label namedl , stores a record containing the string
representing a label (L[i].name) and the address in code space forl (L[i].addr)

Each MT space can be thought of as a machine that provides services to and
that hides the details of paging and the distributed virtual memory system from the
evaluator. The evaluator requests a service from a given MT space and the given
MT space provides the service. This is not suggesting that these are concurrent
processes on the processor running the evaluator. It is simply an abstraction that
will aid us with the discussion presented below. In the remainder of this section,
we briefly describe the services provided by each MT space and results obtained
from previous studies.

1.3.1 The MT Heap

The MT heap only stores dynamically allocated list-based structures. It provides
two basic services to the evaluator:heap allocationandheap access. Heap cells
are allocated linearly from beginning to end. The address of next heap cell avail-
able for allocation is kept in registerh. The S-expression stored at addressi is
denoted byH[i]. The state of the heap can be described by a tuple(H, h), where

5

H = H[0],H[1], . . . ,H[h−1]. A heap access,hacc(i), does not change the state of
the heap and returnsH[i]. A heap allocation,halloc(Sexp), changes the state of
the heap. This behavior can be described by the transition rule:

(H, h) → (H : H[h] = Sexp, h+1)

whereH : H[h] = Sexprepresents the same heap as on the left of the arrow
except that nowH[h] = Sexp.

The MT heap allocation algorithm only allocates heap memory during the ex-
ecution ofconsand this allocation is delayed until both arguments toconshave
been evaluated. Previous empirical studies have suggested that the MT allocation
algorithm fosters locality of reference[MT00] and thatFIFO is as competitive as
LRU as a page replacement policy[MTN02a, MT03]. This property of being able
to perform paging usingFIFO is very desirable, becauseFIFO is easily imple-
mented in software and does not incur a per access overhead likeLRU. Keeping
this property for the MT heap while supporting first-class functions is one of the
motivating factors of the work presented in this article.

1.3.2 The MT Stack

Unlike the abstract machines described by Landin[P. 64], Henderson[Hen80], and
Cardelli[Luc83, Car84], MT has only one stack. It used for parameter passing and
flow control. For primitive functions, arguments are pushed onto the stack and
the result is returned on top of the stack. For non-primitive known functions, an
activation record, that consists of saved register values and the arguments to the
function, is pushed onto the stack one element at a time. The first empty cell on
the top of the stack is pointed to by registers. The S-expression stored at address
i is denoted byS[i]. The state of the heap can be described by a tuple(S, s), where
S= S[0],S[1], . . . ,S[s−1].

The MT stack,S, provides four services to the evaluator:accessing the ith

element on the stack(stackAcc(i)),pushing a value onto the stack(push(Sexp)),
popping and returning the top element off the stack(pop()), andpopping the n top
elements off the stack(npop(n)). These four services change the state of the stack
and are described by the following transition rules:

stackAcc(i): (S, s) → (S: S[s] = S[i], s+1)
push(Sexp): (S, s) → (S: S[s] = Sexp, s+1)
pop(): (S, s) → (S, s−1)3

npop(n): (S, s) → (S, s−n).

whereS: S[s] = V represents the same stack at the left of the arrows except that
nowS[s] = V.

In previous studies on the MT stack, we have empirically validated that LRU
is superior to FIFO as a page replacement policy and, in fact, have mathematically

3The value returned by pop() can be assigned to a register or temporary variable.

6

demonstrated that LRU is optimal for paging the MT stack[MTN02b]. The proof
is based on the reasonable assumptions thatstackAcc(i) is only used to access
values in the top activation record on the stack and that the size of every activation
record is smaller than the size of a stack page. Based on this proof, theMT stack
page replacement algorithm(MTSRA) was developed which implements LRU
without the costly per access overhead associated with LRU. This property is very
desirable for a software-based DVM like in MT, because there is no hardware
support for paging. Maintaining a stack discipline that keeps LRU optimal for the
MT stack is another motivating factor for the work presented here.

1.3.3 The MT Code Space

The MT code space,C, is used to store sequences of MTEVM primitives in se-
quential memory addreses. The cells ofC are allocated linearly from beginning
to end with PRIM tags. The next cell available for allocation is pointed to by the
registercp. The services provided by the MT code space access and mutateC,
F , L, andcp. C[0..cp−1] is the complete set of primitive instruction sequences
loaded intoC and we denote the instruction at addressi asC[i]. Services that do
not alter the state ofC include f etchInstr(i) that returnsC[i], f etchLabel[i] that
returns the label recordL[i], and f etchFunction[i] that returns the function record
F [i].

The services that change the state of code space areadd instruction(addIn-
str(i)), add label(addLabel(l)), andadd function(addFunct(fr)). The transitions
describing their behavior are:

addInstr(i): (C,F,L,cp) → (C : C[cp] = i,F,L,cp+1)
addFunct(f r): (C,F,L,cp) → (C,F : F [hash(f r.name,F)] = f r,L,cp)
addLabel(lr): (C,F,L,cp) → (C,F,L : L[hash(lr.name,L)] = lr,cp)

where C:C[cp]=i, L:L[b]=lr, and F:F[a]=fr represent the sameC, L, andF to the
left of the arrows withC[cp] changed toi, L[b] changed tolr , andF [a] changed
to f r respectively.C also provides the ability to load a file containing MT
compiled code intoC by looping through the file and applyingaddInstr(i),
addFunct(f r), addSymb(s), andaddLabel(lr).

1.4 THE MT VIRTUAL MACHINE EVALUATOR

MTEVM is a register-based machine that has access to the memory spaces of
the MT System. These memory spaces and a set of registers define the state of
MTEVM. A set of computation, flow control, and register-machine primitives are
defined that operate on the MT spaces and the set of registers. In this section, we
first informally define MTEVM and then present its operational semantics.

1.4.1 The Abstract Machine

The MTEVM implements a fetch-execute cycle that loops through the instruc-
tion stream stored in code space until it halts (i.e. reaches the end of the current

7

computation). At each iteration of the loop, an MTEVM primitive instruction is
executed that changes the state of the machine. This set-up is a slight variation
of abstract machines defined in, for example, [AwJS90, Hen80, P. 64] which store
instruction sequences as lists. Nonetheless, the approaches are equivalent in that
they define a mechanism to store the necessary information to execute the next
instruction without necessarily defining this mechanism as a fetch-execute cycle.

The state of the MTEVM is determined by the heap (H), the stack (S), the code
space (C), the symbol table (T), the function table (F), and 9 registers: theprogram
counter register(p) that stores the virtual address of the next instruction inC to
be executed, thevalue register(v) that is used to temporarily store the results of
applications, theenvironment register(e) that stores the virtual address inSof the
activation record of the current non-primitive known function being evaluated, the
continue register(c) that stores the virtual address inC of the next instruction to be
executed upon returning from a function call, thenew environment(n) register that
is used to store the virtual stack address of an activation record under construction
for a non-primitive known function that is to be called, thetemporary register(t)
that is used as temporary storage for values of applications and to temporary store
virtual C addresses when returning from a known function, thestacktop regsiter
(s) that stores the virtual stack address of the next available cell at the top ofS,
thenext available heap address register(h) that stores the virtual heap address of
the next available cell for allocationH, and thenext available code space address
register (cp) that stores the virtual code space address of the next available cell
for allocation inC.

Each MTEVM primitive mutates one or more of the memory spaces and/or
registers. During the execution of a program stored inC, T is never changes. That
is, the execution of compiled MT code does not add in or remove symbols from
the symbol table. Changes toT can only occur when loading compiled code or
when parsing user input.

1.4.2 Operational Semantics

The semantics of the MTEVM is given operationally by state transitions. The state
of the machine can be denoted by a tuple representing each of the MT memory
spaces and each of the registers:(p,v,e,c,n,t,s,h,cp,H,S,C,T,F) . We represent
machine transitions by:

(p,v,e,c,n,t,s,h,cp,H,S,C,T,L,F) → (p’,v’ ,e’,cp’,n’,t’ ,s’,h’,c’,H’ ,S’,C’,T’ ,F’).

The tuple to the left of the arrow represents the state of the machine before
executing the primitive referred to byp and the tuple to the right of the arrow
represents the state of the machine after executing the primitive referred to byp.
We writex.S for the stack to mean that the top value of the stack isx. Likewise,
x.y.S, denotes that the top value of the stack isx andy is the next value on the
stack.C[p] denotes the next instruction to be executed. Finally, we denote the
value of applying a primitive,op, as(op arglist) wherearglist are the arguments
(stored on the top of the stack) toopseparated by blank spaces. For example, if

8

C[p] is the primitivenot then(C[p] a) denotes(not a) for some MT
S-expression on the top of the stack.

The MT primitives are divided into 4 categories: computation, flow control,
register-machine, and I/O. Of interest to us here are the first three categories.

Computation Primitives

Computation primitives are those that compute a new value based on input on the
top of the stack and push the resulting value onto the stack. We can further sub-
categorize computation primitives by the number of inputs they expect on the top
of the stack (1 or 2). For a one-input computation primitive, we have the follow-
ing transition rule:

(p,v,e,c,n,t,s,h,cp,H,x.S,C,T,L,F) →
(p+1,v,e,c,n,t,s,h,cp,H,(C[p] x).S,C,T,L,F)

For a two-input computation primitive,C[p] 6=cons, we have the following
transition rule:

(p,v,e,c,n,t,s,h,cp,H,y.x.S,C,T,L,F) →
(p+1,v,e,c,n,t,s-1,h,cp,H,(C[p] x y).S,C,T,L,F)

The above transition rule indicates that arguments to a primitive must be stored
in reversed order on the stack. That is, (from left to right) the first argument must
be pushed first and the second argument must be pushed second. This same
convention for pushing arguments is used for non-primitive known functions.

The only computation primitive that changesH is cons. Therefore, we must
define its transition rule differently. ForC[p] =cons, we have

(p,v,e,c,n,t,s,h,cp,H,y.x.S,C,T,L,F) →
(p+1,v,e,c,n,t,s-1,h+2,cp,H:H[h]=x:H[h+1]=y,LIST:h:h+1.S,C,T,L,F)

The above transition rules states that the arguments tocons, x andy, are allocated
in heap positionsh andh+1 respectively, that theh register is increased by 2
(for the two allocated values), the program counter is increased by 1, the stack
top is decreased by 1, and a list S-expression with itscar = h andcdr = h+1 is
pushed onto the stack.

Flow Control Primitives

Flow control primitives change the value ofp to continue execution at an in-
struction other than the next instruction atp+ 1 if the top of the stack contains
anything other than a false value4. These primitives include conditional branches

4False values are defined asnil andfalse(#f)

9

and an unconditional branch. A conditional branching primitive is used to trans-
fer control to a (compiler generated) label while unconditional branching is used
to transfer control to a non-primitive known function. The conditional branching
primitives have embedded within the instruction a label,l, that indicates the value
p is to be updated to if the branch is taken. The unconditional branch primitive
(GOTO) has embedded an index,f, into F where the value thatp is to be updated
to is stored.

The branch primitive, BRl, tests the value at the top of the stack. If that value
is not a false value then the branch is taken andp is updated tol . Otherwise,p is
incremented by 1. The state transitions for BRl are defined as follows:

For x 6= f alseandx 6= nil :
(p,v,e,c,n,t,s,h,cp,H,x.S,C,T,L,F) → (l,v,e,c,n,t,s-1,h,cp,H,S,C,T,L,F).
For x = f alseor x = nil ,
(p,v,e,c,n,t,s,h,cp,H,x.S,C,T,L,F) → (p+1,v,e,c,n,t,s-1,h,cp,H,S,C,T,L,F).

The transition for GOTOf is:
(p,v,e,c,n,t,s,h,cp,H,S,C,T,F) → (F [f].addr,v,e,c,n,t,s,h,cp,H,S,C,T,L,F).

For GOTO,p is updated to the address in code space of the first instruction
associated withf. This address is stored in F[f].

Conditional branching is optimized when the branching depends on the re-
sult of a computation primitive that returns a boolean. The transitions for these
primitives are not shown.

Register-Machine Primitives

The register-machine primitives pop and push values from and to the stack, trans-
fer values between registers, set the value of registers, perform parameter ac-
cesses, start building activation records, and return from non-primitive known
functions.

There are primitives to save the value of a register onto the stack. They are
represented by an opcode obtained from concatenatings to theregister name. For
example,svsaves the contents of thev register on the stack. The transitions for
thesave register Xprimitives, sX, are given by:

(p,v,e,c,n,t,s,h,cp,H,S,C,T,L,F) → (p+1,v,e,c,n,t,s+1,h,cp,H,X.S,C,T,L,F)

whereX.S is Swith the value of registerX pushed onto it.

Conversely, we can restore the value of registers from the top of the stack.
A restore primitive opcode is obtained in the same manner as a save primitive
opcode except that it starts withr instead ofs. The transition rule forC[p] = rv
(restore thev register) is:

(p,v,e,c,n,t,s,h,cp,H,v
′
.S,C,T,L,F) → (p+1,v

′
,e,c,n,t,s+1,h,cp,H,S,C,T,L,F)

10

The transition rules for restoring the other registers are analogous.

Constant values are pushed onto the stack by using the appropriatemkvaluetype
primitive. An integer,i, representing the constant being pushed is embedded with
the instruction. For example,MKSYM ipushes a symbol S-expression onto the
stack withi, the index into T of the symbol being pushed, as its value. The transi-
tion rule forMKSYM iis:

(p,v,e,c,n,t,s,h,cp,H,S,C,T,L,F) → (p,v,e,c,n,t,s+1,h,cp,H,SYMB:i.S,C,T,L,F)

where SYMB:i represents a symbol S-expression with valuei. The rest of the
mkvaluetypeprimitives are analogous except for MKLIST that has no embedded
input with the instruction and expects the index into the heap of the cdr to be the
topmost value on the stack and the index into the heap of the car to be the second
value from the top of the stack. The transition rule for MKLIST is:

(p,v,e,c,n,t,s,h,cp,H,j.i,S,C,T,L,F) → (p,v,e,c,n,t,s-1,h,cp,H,LIST:i:j.S,C,T,L,F)

ThePOPN nprimitive decrementss by n. The transition rule is:

(p,v,e,c,n,t,s,h,cp,H,S,C,T,L,F) → (p,v,e,c,n,t,s-n,h,cp,H,S,C,T,L,F)

A stack value can be accessed and pushed onto the stack by usingPACC d.
The embedded valued is a displacement from the stack address stored ine. This
primitive is used to access the parameters of a function using lexical addressing.
The transition forC[p] = PACC dis:

(p,v,e,c,n,t,s,h,cp,H,S,C,T,L,F) → (p+1,v,e,c,n,t,s,h,cp,H,S[e+d].S,C,T,L,F)

There are two set primitives,SETC iandSETE i, to set the contents of the
c ande registers. Both primitives have an embedded inputi which represents the
virtual code space address of a label forSETC iand the virtual stack address of an
activation record forSETE i. Their transition rules are analogous. The transition
rule forSETC iis:

(p,v,e,c,n,t,s,h,cp,H,S,C,T,L,F) → (p+1,v,e,i,n,t,s,h,cp,H,S,C,T,L,F)

Register to register transfer operations are represented by an opcode starting
with a register name followed by ’2’ and ending with a register name. For ex-
ample, the primitivec2p transfers the contents of registerc to registerp. The
transition rules for these primitives are all analogous. The transition rule forc2p
is:

(p,v,e,c,n,t,s,h,cp,H,S,C,T,L,F) → (c,v,e,c,n,t,s,h,cp,H,S,C,T,L,F)

Finally, there are primitives to call and return from known functions that are
not computation primitives.FCALLstarts building an activation record by saving

11

the theeandc registers on the stack.FRETURN nreturns from a call to a function
with n arguments by saving its result,(f x1 . . .xn), in v, popping the n arguments
off the stack, settingp to c, restoringc ande, and pushing(f x1 . . .xn) back onto
the stack. The transition rule forFCALL is:

(p,v,e,c,n,t,s,h,cp,H,S,C,T,L,F)→ (p+1,v,e,c,n,t,s+2,h,cp,H,c.e.S,C,T,L,F)

and forFRETURNthe transition rule is:

(p,v,e,c,n,t,s,h,cp,H,(f x1 . . .xn).x1 . . .xn.c
′
.e
′
.S,C,T,L,F) →

(c,(f x1 . . .xn),e
′
,c
′
,n,t,s-n-2,h,cp,H,(f x1 . . .xn).S,C,T,L,F)

1.5 FIRST-CLASS FUNCTIONS IN MT

The MTEVM as defined in the previous section can be used to implement a pure
list-based functional language that does not have first-class functions. In this sec-
tion, we outline the support provided for first-class functions. One of the goals is
to prevent the the mixing of data lists with closures in the heap, because it makes
it difficult to predict how heap pages will be accessed. For example, the same data
list, L, can be passed in as the argument to many different functions (that traverse
L) represented by heap-allocated closures. In MT, we expectFIFO to perform as
well asLRU for managing heap pages whenL is traversed. This, however,can not
be expected if closures are heap-allocated.

In functional languages with heap-alloacted closures, determining the value a
free variable,f v, requires that a closure be accessed[Hen80, Luc83, Car84]. This
is inefficient when compared to accessing a parameter in an activation record on
the stack or an embedded value within an instruction. When a closure is created,
the bindings of the free variables in the function,f , it represents are known. Given
that these bindings are known, it is desirable to optimize the accessing of these
variables to be as fast as possible whenf is applied.

In the context of a pure functional language, we can use partial evaluation to
prevent the mixing of closures and list data in the heap and to make accesses to
free variables faster. We can observe that when a closure is created in a pure func-
tional language, the bindings of the free variables remain unchanged throughout
the existence off . Therefore, instead of heap allocating a closure forf it is safe
to create a new function where there are no accesses to free variables. In the re-
mainder of this section, the operational semantics for MTEVM primitives used to
implement first-class functions is given.

1.5.1 Passing, Returning, and Calling Functions

To pass in a known function as an argument to a function or to return a known
function as the value of a function, we need a primitiveMKFUNCT f (analogous,
for example, toMKINT i) whose embedded argumentf is an index intoF . If f

12

is not the index of a primitive operation then an S-expression with aFUNCT tag
and a value off is pushed onto the stack. The transition rule is:

(p,v,e,c,n,t,s,h,cp,H,S,C,T,L,F) →
(p+1,v,e,c,n,t,s+1,h,cp,H,FUNCT:f.S,C,T,L,F).

If f indexes a computation primitive, represented byprim, then the transition
rule is:

(p,v,e,c,n,t,s,h,cp,H,S,C,T,L,F) →
(p+1,v,e,c,n,t,s+1,h,cp,H,PRIM:prim.S,C,T,L,F).

Consider the Scheme function: (define (h op x) (op 5 x)). We can not use the
GOTOprimitive to call a function that has been been passed in as an argument to
a function (or has been returned as a value from a function), becauseop may be
a primitive. Therefore, we define a newGOTOprimitive, GOTOVF, that looks
at the top of the stack, to determine the next state of the machine. The call toop
in the body ofh is implemented by executingPACC1 GOTOVFwhich pushes
onto the stack the S-expression representingop before executingGOTOVF. The
transition rules forGOTOVFare:

(p,v,e,c,n,t,s,h,cp,H,FUNCT:f.S,C,T,L,F) →
(F[f].addr,v,e,c,n,t,s-1,h,cp,H,S,C,T,L,F)

(p,v,e,c,n,t,s,h,cp,H,PRIM:prim.a.S,C,T,L,F) →
(p+1,v,e,c,n,t,s-1,h,cp,H,(prim a).S,C,T,L,F)

(p,v,e,c,n,t,s,h,cp,H,PRIM:prim.a.b.S,C,T,L,F) →
(p+1,v,e,c,n,t,s-2,h,cp,H,(prim a b).S,C,T,L,F) .

Two transition rules are needed for an S-expression with aPRIMTAG, because a
the primitive may take 1 or 2 arguments which can be determined by examining
its valueprim. We note that before pushing the arguments the function will be
applied to it is necessary to examine the function to determine if it is not a
primitive. If so,FCALL must be used to start building its activation record.

1.5.2 Anonymous Functions

Anonymous functions are functions that lack a name. In Scheme, the special form
lambda is used to create an anonymous function. For example, the lambda func-
tion (lambda (x) (* x x)) creates an anonymous function that that squares its input.
To support anonymous functions a heap-allocated closure could be created, but
partial evaluation can be used to treat anonymous functions as known functions at
runtime. To do so in Scheme, before compilation every lambda expression can be
lifted and defined as a known function that returns a function. We will distinguish

13

two cases for matters of efficiency at runtime: lambda expressions lacking free
variables and those containing free variables.

Consider the expression:

((lambda(x) (∗ x x)) 5)

The lambda expression without free variables and can be lifted to create:

(de f ine(UniqueFName x) (∗ x x)).

The lifting of a lambda expression with no free variables creates a function
whose parameters are the parameters of the original lambda expression. We can
now transform the original expression to:

(UniqueFName5)

UniqueFNameis a known function and the evaluation of the above expression is
described with the primitives from the previous section. Furthermore,
UniqueFNamecan be created at compile time forcing no overhead in the
evaluation of the lambda expression (that exists at the Scheme level) at runtime
and can be loaded intoC and added toF before any execution takes place.

Supporting anonymous functions that contain free variables is more complex,
because we are unable to create a known function for them at compile time. When
a lambda expression with free variables,alam, is evaluated, however, we can cre-
ate a known function for it, load it toC, and add it toF by using partial evaluation.
To support this, we define a new primitive to make a known function at runtime,
MKKFUNCT l, that expects on top of the stack the bindings of the free vari-
ables inalamand that returns on the top of the stack an S-expression for a new
known function,UAF, that contains no accesses to free variables. The embedded
argumentl is an index intoC where a compiler generated function to create spe-
cialized functions foralam, gac, is stored. That is,l points to a code generator
tailored-made foralam. This idea is similar to the approach used to optimize ML
with runtime code generation[Pet96, Mar94].MKKFUNCT l will temporarily
transfer control tol (which changesF andC, and may changeH andL), pop the
bindings of the free variables ofalam, and push the S-expression forUAF onto
the stack. The transition rule forMKKFUNCT l is:

(p,v,e,c,n,t,s,h,cp,H,xn . . .x1.S,C, T,F) →

(p+1,v,e,c,n,t,s-n+1,h,cp+len(UAF),H
′
,FUNCT:hash(UAF,F).S,C

′
,T,L

′
,F

′
)

wherexn. . .x1 are the bindings of the free variables ofalam, len(UAF) = the
length of the compiled code of functionUAF, C

′
= C : C[cp]..C[cp+ len(UAF)

-1] = UAF, F
′
= F : F [hash(UAF,F)] = the function record for UAF,L

′
= L

with the label records for UAF added, andH
′
is H with any allocations done by

gacfor UAF.

14

UAF is the code obtained from applying partial evaluation to toalamand its
free variables. The result of this application can be obtained by simply substitut-
ing accesses to free variables inC[a]..C[b] with the appropriate MTEVM primitive
to push a constant onto the stack, by reducing to normal form subexpressions in
alamthat depend only on its free variables (any lists computed would account for
changes inH

′
), and/or by recursively applying partial evaluation to subexpres-

sions inalam that do not solely depend on its free variables. Certainly, the value
of computation primitives that depend only on free variables should be computed
whenUAF is created. The extent to which further partial evaluation should be ap-
plied is to be determined empirically by testing different heuristics. For example,
it may not be worth the investment to evaluate or apply partial evaluation to both
thethenandelseclauses of anif statement.

To illustrate how support for anonymous functions works, consider the fol-
lowing Scheme definition:

(de f ine(my f x L) (map(lambda(y) (+ x y)) L))

and the call(my f 10 ′(1 2. . .1000000)). The specialized code for the lambda
expression looks like:

UAFmy fx=10:
MKINT 10
PACC 1
ADD
FRETURN

The specialized function,UAFmy fx=10, is a known function and may be applied
to each element of the list as if it had been defined by a programmer. To access
the value of the free variablex, there is no searching involved and it is achieved
by executing one primitive instruction (MKINT10) to push a constant onto the
stack. This is at least as fast as accessing the value of the bound variabley (PACC
1).

1.6 CONCLUDING REMARKS

The MT system is being developed to understand and improve the interaction be-
tween a pure list-based functional language and memory. To this end, MT divides
memory into different spaces in order to improve their management. One of the
goals is to develop a system of memory allocation from which we can derive rea-
sonable expectations on how memory space is accessed at runtime. In this article,
a brief description of the semantics of the MT Evaluator Virtual Machine and a
description of the support provided for first-class functions has been presented.
Support for first-class functions is provided without allocating MT-heap memory
and without changing the expected access patterns of the MT heap and MT stack.
This means thatFIFO can continue to be used for the MT heap andMTSRA(our
implementation of LRU) for the MT stack rendering first-class functions in MT

15

DVM friendly. First-class functions are supported by using partial evaluation and
allocating memory for them in the MT code space.

The work presented suggests several interesting lines of research that can be
pursued. It is important to determine how code space pages should be swapped
between the evaluator and the backing store DVM system. It is unclear, for ex-
ample, if branching or support for first-class functions will render eitherFIFO or
LRU ineffective. Now that code space is not static, questions on how and where
allocations should take place arise. Should known functions to a programmer be
kept separate from known functions created for anonymous functions? The dy-
namic nature of code space also raises the question of how should code space be
garbage collected and/or compacted. Finally, the effectiveness of partial evalua-
tion will depend on how much partial evaluation can be performed without making
program evaluation slower. We may discover, for example, that for an eager lan-
guage (like Scheme) a lazy partial evaluator works best. The avenues for research
are, indeed, exciting.

1.7 ACKNOWLEDGEMENTS

The author would like to thank Barbara Mucha, Victor Encarnacion, and Kristine
Apon for their past and continued efforts in making MT an implemented reality.
Thanks are also in order for Greg Michaelson who provided insightful comments
on some of the preliminary ideas presented in this article. Finally, the support of
my department and the Seton Hall University Research Council have made this
work possible.

REFERENCES

[AM91] Andrew W. Appel and David B. MacQueen. Standard ML of New Jersey. InPro-
ceedings of The Third International Symposium on Programming Language Im-
plementation and Logic Programming, pages 1–13. Springer-Verlag, Aug 1991.

[AS96] Andrew W. Appel and Zhong Shao. An Empirical and Analytical Study of Stack
vs. Heap Cost for Languages with Closures.Journal of Functional Program-
ming, 6(1):47–74, 1996.

[AwJS90] H. Abelson and J. Sussman with Julie Sussman.Structure and Interpretation of
Computer Programs. McGraw-Hill, 1990.

[BF00] Clem Baker-Finch. An Abstract Machine for Parallel Lazy Evaluation. In
Michaelson et al. [MTL00], pages 153–161.

[Car84] Luca Cardelli. Compiling a Functional Language. InProceedings of the 1984
ACM Conference on LISP and Functional Programming, pages 208–217, New
York, 1984. ACM Press.

[Chr90] Chris Hanson. Efficient Stack Allocation for Tail-Recursive Languages. InACM
Conference on Lisp and Functional Programming, pages 106–118, New York,
June 1990. ACM Press.

[Chu41] Alonzo Church.The Calculi of Lambda-Conversion. Number 6 in Annals of
Mathematics Studies. Princeton University Press, Princeton, NJ, 1941.

16

[Dij62] Edsger W. Dijkstra. Substitution processes. Available from
http://www.cs.utexas.edu/users/EWD/ewd00xx/EWD28.PDF, January 1962.

[Hen80] Peter Henderson.Functional Programming: Application and Implementation.
Prentice-Hall International, Englewood, NJ, USA, 1980.

[Joh02] John Weber. Scheme48 Virtual Machine Developer’s Guide. Available from the
author, July 2002.

[Jon96] Neil D. Jones. An Introduction to Partial Evaluation.ACM Computing Surveys,
28(3):480–503, 1996.

[Ken97] Kenechi Asai, Hidehiko Masuhara and Akinori Yonezawa. Partial Evaluation of
Call-by-Valueλ−calculus with Side-effects. InProceedings of the ACM SIG-
PLAN Symposium on Partial Evaluation and Semantics-Based Program Manip-
ulation, volume 32 ofSigplan Notices, pages 12–21, New York, 1997. ACM
Press.

[Loi01] Hans-Wolfgang Loidl. Load Balancing in a Parallel Graph Reducer. In Kevin
Hammond and Sharon Curtis, editors,Trends in Functional Programming, vol-
ume 3, pages 63–74, Bristol, UK, 2001. Intellect. ISBN 1-8410-070-4.

[Luc83] Luca Cardelli. The Functional Abstract Machine. Technical Report No.107,
Bell Laboratories, April 1983.

[LY96] T. Lindholm and F. Yellin. The Java Virtual Machine Specification. Addison-
Wesley, Reading, MA, 1996.

[Mad98] Mads Tofte. A Brief Introduction to Regions. InProceedings of the 1998 ACM
International Symposium on Memory Management, pages 186–195, 1998.

[Mar94] Mark Leone and Peter Lee. Lightweight Run-Time Code Generation. InPro-
ceedings of the ACM SIGPLAN Workshop on Partial Evaluation and Semantics-
Based Program Manipulation, pages 97–106. Technical Report 94/9, Depart-
ment of Computer Science, University of Melbourne, June 1994.

[Moo84] David A. Moon. Garbage Collection in a Large Lisp System.Proc. of the 1984
ACM Symp. on Lisp and Functional Programming, pages 235–246, 1984.

[MT00] Marco T. Moraźan and Douglas R. Troeger. The MT Architecture and Allocation
Algorithm. In Michaelson et al. [MTL00], pages 97–104.

[MT03] Marco T. Moraźan and Douglas R. Troeger. List-Heap Paging in a Distributed
Virtual Memory System for Functional Languages. In Hamid Arabnia, editor,
Proceedings of the International Conference on Parallel and Distributed Pro-
cessing Techniques and Applications, pages 1689–1695. CSREA Press, 2003.

[MTL00] Greg Michaelson, Phil Trinder, and Hans-Wolfgang Loidl, editors.Trends in
Functional Programming, volume 1, Bristol, UK, 2000. Intellect.

[MTN02a] Marco T. Moraźan, Douglas R. Troeger, and Myles Nash. Paging in a Dis-
tributed Virtual Memory. In Kevin Hammond and Sharon Curtis, editors,Trends
in Functional Programming, volume 3, pages 75–86, Bristol, UK, 2002. Intel-
lect.

[MTN02b] Marco T. Moraźan, Douglas R. Troeger, and Myles Nash. The MT Stack:
Paging Algorithm and Performance in a Distributed Virtual Memory System.
CLEI Electronic Journal, 5(1), 2002.

17

[P. 64] P. J. Landin. The Mechanical Evaluation of Expressions.The Computer Journal,
6(4):308–320, 1964.

[Pet96] Peter Lee and Mark Leone. Optimizing ML with Run-Time Code Generation.
In Proceedings of the ACM SIGPLAN Conference on Programming Language
Design and Implementation, pages 137–148. ACM Press, May 1996.

[S. 98] S. Breitinger and U. Klusik and R. Loogen and Y. Ortega-Mallón and R. Pẽna.
DREAM: the Distributed Eden Abstract Machine. In Chris Clack, Kevin Ham-
mond, and Antony J. T. Davie, editors,IFL, volume 1467 ofLecture Notes in
Computer Science, pages 250–269. Springer-Verlag, 1998.

[SA94] Zhong Shao and Adrew W. Appel. Space Efficient Closure Representations. In
Proceedings of the 1994 ACM Conference on LISP and Functional Program-
ming, pages 150–161, New York, 1994. ACM Press. ISBN 0-89791-643-3.

[Ste00] Stephan Diehl and Pieter Hartel and Peter Sestoft. Abstract Machines for Pro-
gramming Language Implementation.Future Generation Computer Systems,
16(7):739–751, May 2000.

[Wil92] Paul R. Wilson. Uniprocessor Garbage Collection Techniques. In Yves Bekkers
and Jacques Cohen, editors,Proceedings of the 1992 International Workshop
on Memory Management, number 637 in Lecture Notes in Computer Science,
pages 1–42, Saint-Malo, France, 1992. Springer-Verlag.

18

