Chapter 1

Rate Analysis and Deadlock
Detection for HUME

Robert Pointoh

Abstract: HUME is a domain-specific programming language targeting resource-
bounded computations, such as real-time embedded systems. Rate analysis is a
novel algorithm for HUME that determines the relative rates (i.e. how often events
occur, or components need to run) within the whole system, and as such the algo-
rithm possess the following useful properties:

e Deadlock Detection — acfomecases.

e Scheduling — suggesting priority of components and possible parallelism.
e Static — can be performed before running the program.

e Cheap — polynomial algorithm.

Finally for completeness, runtime deadlock detection within HUME also turns
out to be very cheap and the algorithm is given is well.

1.1 INTRODUCTION

HUME has been well described in other papers ([IMHSO03]) of this workshop, but
in brief summary it is based on a generalised concurrent automata comprising of
multiple concurrenboxesconnected by point-to-pointires

1.1.1 HUME Boxes and Wires

A wire is a single value buffer. If empty a value may be asserted into the wire thus
changing it’s state to full, while if full a value can be consumed leaving the wire
as empty. Each wire connects two boxes in a point-to-point manner.

1School of Mathematical and Computer Sciences, Heriot-Watt University, Riccarton,
Scotland, EH14 4ASRPointon@macs.hw.ac.uk

A box is comprised of a set of patterns and upon firing each pattern has some
functional transformation to perform. Each box loops through the following se-
guence of actions:

1. A box blocks until an input pattern matches.
2. It consumesalues from a subset of the input wires.

3. Some functional evaluation takes place to produce a result for a subset of the
output wires.

4. The box blocks until all the required output wires are empty.

5. The boxassertst’s output values into the wires.

1.1.2 Motivation

My personal interest in HUME is applying it to music or signal processing situ-
ations. For this it is important to know that data flows at a constant rate through
the system, that the output is being asserted at the same rate as input is consumed,
and that deadlock is avoided. It may sound obvious, but you don’t usually want
to record sound from a microphone and then hear it being played at twice the
original frequency (‘chipmunk’ music is hopefully a forgotten pop fashion).

1.2 RATE ANALYSIS

Many analysis’s attempt to find absolute values, for example; by slightly restrict-
ing the functional code and types within HUME leads to resource-bounded com-
putations ([HamO03]), that is, time and space behavior can be predicted. In contrast
the rate analysis is abordlative values — do some boxes need to run at the same
rate, or should some boxes run faster than others?

The algorithm has been derived by intuition and subtle interpretation of the
coordination of HUME box/wire interactions, as a result the algorithm currently
exist with an informal description.

1.2.1 Rules

By considering a single box, the following situations result in a set of it's wires
transferring values at the same rate:

1. Values from several input wires are always consumed simultaneously as a re-
sult of all pattern matches.

2. Values directed to some outputs are always asserted simultaneously whenever
evaluation is complete.

3. An output is always asserted as a result of a particular input being consumed.

Considering these situations it becomes clear that there is no distinction be-
tween input and output and that it is only necessary to determine if the state of
a wire is altered by a consume or an assert. By identifying for each input/output
wire if it is altered or not (or is non-determinable) simultaneously or as a conse-
guence of another wire of that box changing, then wires can be grouped into sets
that run at the same rate (@e setseems an appropriate name). This can be seen
from the example of Figure 1al

Each input wire is either unchanged, altered, or is is non-determinable, and so
this changeability can be assigned tri-state values with: 0=unchanged; 1=altered;
the third state being unknown. It is the equivalence of columns in the table within
Figure 1.1 that defines equivalent rates, more formally: for two colunarsly,
thenx=yif x; = y;,Vi.

The rules can then be extended to giekationshipsbetween the rate sets of a
box:

1. If a wire is altered for a subset of the cases that another wire is altered, then it
must be acting at a less-than or equal rate (see Figubg. Mbre formally, a
subset of is defined as: for two colunandy, thenx C y if xi<=;, Vi.

2. If groups of the above subsets of wire are mutually exclusive and can union to
make up another set of wires then the rates must sum (see Figaje 1.2

Now considering the box rather than the wire, then if a wire is altered in all of
a patterns of a box then that box must be running at the same rate as that wire (see
Figure 1.D). Alternatively the rate of a box must be greater-than or equal-to the
rate of each and every of it's wires (see Figurecl.1

Finally, as wires are connected in a point-to-point manner and can hold only
one value, the output of a wire must be consumed at the same rate as input is
asserted into it. This final rule allows the combining of the rate sets from the
connected boxes.

1.2.2 Deadlock Detection

Deadlock is defined as a state of the system which does not have any successor
states, in HUME deadlock either occurs when a box is waiting for input to arrive,

or waiting for an output to become empty. At the input of a box, deadlock occurs
when it is no longer able to match any input pattern, that is; the box stops con-
suming from the input wires either because it’s input patterns are incomplete (1),
or a wire is no longer being asserted into (2). At the box output, deadlock occurs
when an output can no longer become empty, that is; a box cannot assert on it's
output wires because a wire is no longer being consumed from (3).

Case 1 requires some runtime detection whereas cases 2 & 3 are the result of
the consume/assert to a wire acting at different rates. Therefore by assuming that
both ends of a wire act at the same rate, then once the wiring between boxes has
been taken into account, it is the contradictions in the rates of wires that indicate
possible deadlock. This is illustrated in Figure 1.3 where a box that produces two
outputs for every input is connected back upon itself.

box operator
in (s:integer, meth::STATE, carbmon::STATE, airflow::STATE)
out (s’:integer, control::STATE, action::STATE)
match
(***,0ON) -> (*,OFF,OFF) |
(**,ON,*) -> (*,OFF,OFF) |
* ON,**) -> (*,OFF,OFF) |
s**%) > let s’ = rand s
in case s’ mod OPPROB of
0 -> (s"ON,ON) |
1-> Es',OFF,OFF) |
> 1k k).

Can be mapped to the following:

s meth carbmon airflow -> s’ control action

0 0 0 1 0 1 1

0 0 1 0 0 1 where ['1' -> assert/consume

0 1 0 0 0 1 1 ’0’ -> no assert/consume
1 0 0 0 1 ? ? '?" -> not determinable]

By comparing the columns it is clear that:

rateyire(s) = rateyie(s’) @

rateyire(cONtrol) >= rateyie(X), ¥x € {meth, carbomon , airflow ~ } ®

rateyie(action) >=rateyie(X), VX € {meth, carbmon , airflow }

ratepox(Operator) >= rateyire(X),¥x € {s, meth, carbmon , airflow ,s’, control ,action } ©

FIGURE 1.1. Operator Box Example

The final lines of Figure 1.3 show that the wiring insists that the output cannot
run at greater rate than the input as is required by the box rate sets. If one rate
set cannot be a superset of another, then a possibility is that certain patterns can
never fire, for example; if théx, Just x) - > (X, Nothing) pattern of
the double box can be removed then rate analysis will find no contradictions. The
deadlock detection problem then becomes one of determining if these removed
patterns were reachable from the initial system state, but in reality that fact that the
rate analysis finds a contradiction should be sufficent warning to the programmer
to check their code.

1.3 IMPLEMENTATION

Currently the algorithm is very naive and partially incomplete in that it doesn’t
handle recursion, nor does it deal with the case where rates sum together. The
reason that the algorithm still works stems from the fact that, as was noted in
Section 1.2.1, tri-state logic is necessary to describe if a wire it altered, unchanged,
or is non-determinable. So when in doub (or through algorithmic incompleteness)
the algorithm is free to return non-determinable.

The algorithm proceeds as follows:

-- determine the box rate sets and relationships
for each box
-- extract the input/output changed matrix (as shown in the examples)
for each pattern
scan the pattern to determine if each input is consumed or not
scan the function static call graph to see if each output is asserted or not

-- extract the box rate sets

box merge

in Ei::integer, j:integer)
out (o:integer)
fair

e 33!

*Y) >V,

Leads to:

i j->o0

1 0

0 1 1
Thus:

rateyre(0) = rateye(i) + rateyie(j) @
ratepox(Merge) = rateyire(0) ®

FIGURE 1.2. Merge Box Example

box double .
in El::lnteger, s::Maybe integer)
out (o:integer, s::Maybe integer)
match

*, Just x) -> (x, Nothing) |
X, Nothing) -> (x, Just X);

wire double
Edouble.o initially 0, double.s’)
double.i, double.s);

Leads to:

i s->0 ¢
0 1 1 1
1 1 1 1

Thus considering the box only:

rateyire(S) = ratewire (s’) = rateyire(0) = rateyox(double)
rateuire(0) >= ratewire(i)

Yet the wiring then states that the following MUST hold:
rateire (0) = ratewire(i)

FIGURE 1.3. Deadlocked Example

for each matrix column
combine with other equal columns

-- extract the relationships between the rate sets
for each rate set
check if its column was a subset of the others

-- determine the system rate sets and relationships
for each wire
combine the rate sets that the wire connects

From this algorithm pseudo-code it should be clear that the algorithm is poly-
nomial in the number of boxes.

1.4 DETAILED EXAMPLE

The main drainage control system has been used as an exemplar in previous
HUME papers [MHO02], and so it is used again here to illustrate rate analysis.

In summary there are nine boxes: thempbox implements the pump of the
drainage systemsupervisorand operator simulate human interaction with the
system;environprovides the mine environment in termsaifflow, methaneand
carbonmonoxidsimulations;water simulates the water in the mine; finallyg-

gerrecords what happens.
On running the rate analysis program the following style of output fragment
is produced:

Wired rate sets: 24
24: ['environ.meth_op_alarm","operator.meth_op_alarm"]

7: ["pump.meth_request","environ.meth_request","environ.meth_reply",
"pump.meth_reply"]

. ["#BOX.supervisor","supervisor.s","supervisor.s™]

: ["water.highlow","pump.highlow"]

. ["#BOX.logger","#STREAM.output","logger.log"]

(PN

"logger.log_highlow","water.log_highlow"]
.. etc

Rate relations:

16 >= [9,24,19,7]

14 >= [10,23]

8 >= [11,22]

4 >= [3,13,12,11,10,9,8,14,16,20]
.. etc

The first group of data enumerates the 24 distinct rate sets. The members of
each set are listed as either #B@¥%oxname-, #STREAM<streamname, or
<box/streamname.<portname-. Within each set all members will run at ex-
actly the same rate. The second group of data identifies the relationships between
the rate sets, for example; the first line states that rate set 16 runs at greater or
equal rate to each of sets 9, 24, 19 and 7.

To simplify illustration the example is continued by focusing only on the rate
sets of more than two members, or those involving the boxes. Then by plotting
the rate sets only as in Figure 1.4 it can be seen that most of the components run
quite independently at their own rate. Notice that the rate analaysis can group
wires and boxes together, or any combination of. Also of note is the detection
of the request-acknowledge handshaking for methane information between pump
and environ boxes, and that the output stream and logger box run at the same rate.

In Figure 1.5 the rate relationship information is displayed where the upper
components run at a greater or equal rate to the lower components that connect
to them, for example; it is clear that the output/logger runs at a greater or equal
rate than methane, carbonmonoxide, airflow, and water — an unsurprising result
as logger needs to keep up with most of the other boxes so that it is ready to read
their status.

The fact that there are so many rate sets (24 in this example) and that there are
so few useful relationships is a consequence of the incompleteness of the current
algorithm. A more complete implementation (using ‘pen & paper’) that takes into
account the user function calls, gives 17 rate sets. In summary the consequences
of this to the rate relationships are: operator is at greater than or equal rates to
carbonmonoxide and to water; that pump is at greater than or equal rate to environ-
pump; and finally that supervisor continues to be independent.

output &—— Jogger

carbonmonoxide ’

FIGURE 1.4. Mine Drainage Rate Sets

environ output/logger pump supervisor operator

methane carbonmonoxide airflow water

i

environ-pump

FIGURE 1.5. Mine Drainage Rate Relationships

1.5 DYNAMIC DEADLOCK DETECTION

In Section 1.2.2 it was mention that dynamic deadlock detection was necessary
for some cases. The exact cases are straightforward to enumerate:

1. When a box has all its inputs full, yet no patterns match, then it must deadlock.
At this point the box igerminatedand all connecting wires aosed

2. A box that attempts to assert (or is asserting and thus its output is lost) to a
closed wire must also deadlock.

3. For a box to attempt to consume from a closed wire results in the input being
treated as if it was full for the deadlock detection purposes.

4. When an input stream closes then its output wire is closed.

Detecting deadlock of the entire system would require some central monitor,
an alternative is to allow deadlock information to propogate through the system
via the normal communication mechanisms (the wires). In some desirable cases
the decentralised approach leads to the notion of controlled program termination,
for example; when an input stream closes then there is often a cascaded termi-
nation of boxes until there are no boxes left running and so the system stops
gracefully. Note that a box does not automatically terminate because its neighbor
deadlocks, instead the box will continue until it too has deadlocked — from expe-
rience this typically results in values in buffers being flushed through the system
rather than being lost.

Implementation proves to be relatively trivial and the additional code neces-
sary for the runtime system is minor as follows:

¢ When no patterns match in a box then it needs to do the additional trivial check
to see if all inputs are full (taking into account any wires that are closed).

o Before (or while) asserting into a wire, there need to be the additional check
to test if the wire closed.

e Additional code is needed to terminate the box and mark wires as closed.

e Depending on the execution model, extra events may be needed to wake-up
the connected neighbors of a terminated box so that they can check if they too
will deadlock.

Initial results using these customisations seem promising, and allow the con-
struction of HUME applications that can do one-off processing of data rather than
the more usual non-terminating server applicatidessamples to follow at work-
shop and in final paper.

1.6 DISCUSSION

This paper has outlined and explained along with example programs and initial
results, a novel algorithm for HUME that is a static analysis to assist in the ver-
ification of program behavior. This rate analysis algorithm is very cheap and as
a consequence is much more scaleable in contrast to many related algorithms in-
volving deadlock detection which require simulation or exhaustive state search.

1.6.1 Deadlock Detection

Partial static deadlock detection comes from the rate analysis, though perhaps
more important is that the insight from developing the rate analysis has given

birth to cheap runtime deadlock detection. Furthermore this runtime deadlock

detection can lead to graceful program termination in desirable circumstances.

1.6.2 Runtime Optimisation

Once the relative rates between all the wires and boxes have established, then the
relationship between the boxes can be used to determine which boxes are more
active thus aiding in the generation of priorities for a schedular. Boxes which are
at the same rate (and thus with interconnected wires at the same rate), could be
either composed into a single monolithic box, or maybe they can be executed in
parallel lock-step style.

1.6.3 Programmer Aid

By presenting this information graphically in the HUME box/wiring editor then
the programmer gains vital feedback about how busy various parts of the system
are. In terms of application development the algorithm derives the obvious in
many cases, so the programmer can quickly understand if the ‘obvious’ conflicts
with their mental model.

1.6.4 Future Work

Currently the rate analysis algorithm exists in a very naive state and its use has
not been fully explored.

¢ Can the notion of ‘rate’ be applied to other computing problems?
¢ A formal description of the algorithm is desirable.

e The direction of flow through wires is ignored — an intriguing property of the
algorithm.

e Whether a box is fair or unfair is ignored.

e Exceptions are not handled — the set of exceptions that each output can raise
would need to be determined, and then the outputs of the exceptions combined
with the function output.

e Timeouts on input/outputs have not considered for this algorithm.

REFERENCES

[HamO03] K. Hammond. An abstract machine for resource-bounded computations in
HUME. In Draft Proceedings of Implementation of Functional Languages
Edinburgh, Scotland, 2003.

[MHO2] G. Michaelson and K. Hammond. The pump. domebook/techrepgrsome-
where, 2002.

[MHS03] G. Michaelson, K. Hammond, and J Serot. The finite state-ness of FSM-
HUME. In Draft Proceedings of Trends in Functional Programmirigin-
burgh, Scotland, 2003.

