
Chapter 1

Static Single Information
from a Functional Perspective
Jeremy Singer1

Abstract: Static single information form is a natural extension of the well-known
static single assignment form. It is a program intermediate representation used in
optimising compilers for imperative programming languages. In this paper we
show how a program expressed in static single information can be transformed
into an equivalent program in functional notation. We also examine the implica-
tions of this transformation.

1.1 INTRODUCTION

Static Single Information form (SSI) is a natural extension of the well-known
Static Single Assignment form (SSA). SSA is a compiler intermediate represen-
tation that enables precise and efficient analyses and optimisations.

In SSA, each variable in the program has a unique definition point. In or-
der to achieve this, it is necessary to rename variables, and insert extra pseudo-
definitions (φ-functions) at control flow merge points.

We take the following simple program as an example:

1: z← input()
2: if (z= 0)
3: then y← 42
4: elsey← z+1
5: output(y)
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φ-function σ-function
inserted at control flow merge
points

inserted at control flow split points

placed at start of basic block placed at end of basic block
single destination operand n destination operands, wheren is

the number of successors to the
basic block that contains thisσ-
function

n source operands, wheren is the
number of predecessors to the basic
block that contains thisφ-function.

single source operand

takes the value of one of its source
operands (dependent on control
flow) and assigns this value to the
destination operand

takes the value of its source operand
and assigns this value to one of the
destination operands (dependent on
control flow)

FIGURE 1.1. Differences betweenφ- and σ-functions

To convert this program into SSA form, we have to rename instances of vari-
abley so that each new variable has only a single definition point in the program.

The SSA version of the program is shown below:

1: z← input()
2: if (z= 0)
3: then y0← 42
4: elsey1← z+1
5: y2← φ(y0,y1)
6: output(y2)

So we see that theφ-function merges (or multiplexes) the two incoming defi-
nitions ofy0 andy1 at line 5. If the path of execution comes from the then branch,
then theφ-function takes the value ofy0. Whereas if the path of execution comes
from the else branch, then theφ-function takes the value ofy1.

SSI is a natural extension of SSA. It introduces another pseudo-definition,
theσ-function. When converting to SSI form, in addition to renaming variables,
and insertingφ-functions at control flow merge points, it is necessary to insert
σ-functions at control flow split points.

The σ-function is the exact opposite of theφ-function. The differences are
tabulated in figure 1.1.

We now convert the above program into SSI form:

1: z0← input()
2: if (z0 = 0)
3: z1,z2← σ(z0)
4: then y0← 42
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5: elsey1← z2 +1
6: y2← φ(y0,y1)
7: output(y2)

So we see that theσ-function splits (or demultiplexes) the outgoing definition
of z0 at line 3. If the path of execution proceeds to the then branch, then theσ-
function assigns the value ofz0 to z1. However if the path of execution proceeds
to the else branch, then theσ-function assigns the value ofz0 to z2.

Since SSI is such a natural extension of SSA, it follows that algorithms for
SSA can be quickly and naturally modified to handle SSI. For example the stan-
dard SSA construction algorithm [CFR+91] can be simply extended to construct
SSI instead [Sin02]. Similarly, the SSA conditional constant propagation algo-
rithm [WZ91] has a natural analogue in SSI [Ana99], which produces even better
results.

It is well known that SSA can be considered as a form of functional program-
ming [App98b]. Inside every SSA program, there is a functional program waiting
to be released. Therefore, we should not be surprised to discover that SSI can also
be considered as a form of functional programming.

For example, consider the following program, which calculates the factorial
of 5.

1: r ← 1
2: x← 5
3: while (x > 0) do
4: r ← r ∗x
5: x← x−1
6: done
7: return r

First we convert this program into a standard control flow graph (CFG) [ASU86],
as shown in figure 1.2.

Now we translate this program into SSI form, as shown in figure 1.3.
This SSI program can be simply transformed into the functional program

shown in figure 1.4.
In the conversion from SSA to functional notation, a basic block that begins

with a φ-function is transformed into a function. Jumps to such basic blocks
become tail calls to the corresponding functions. The actual parameters of the tail
calls are the source operands of theφ-functions. The formal parameters of the
corresponding functions are the destination operands of theφ-functions.

In the conversion from SSI to functional notation, in addition to the above
transformation, whenever a basic block ends with one or moreσ-functions, then
successor blocks are transformed into functions. Jumps to such successor blocks
become tail calls to the corresponding functions. The actual parameters of the tail
calls are the source operands of theσ-functions. The formal parameters of the
corresponding functions are the relevant destination operands of theσ-functions.
(We notice again thatσ-functions have analogous properties toφ-functions.)
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r ← 1

x← 5

if (x > 0)

r ← r ∗x

x← x−1

returnr
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FIGURE 1.2. Control flow graph for factorial program

The remainder of this paper is laid out as follows: in section 1.2 we review the
work already done in this area, in section 1.3 we formally define SSI, in section
1.4 we present the algorithm to transform SSI code into a functional program,
in section 1.5 we show how there is both an optimistic and a pessimistic version
of this transformation, in section 1.6 we discuss why this transformation may be
useful, then finally in section 1.7 we draw some conclusions.

1.2 RELATED WORK

To the best of our knowledge no-one has attempted to transform SSI into a func-
tional notation. Ananian [Ana99] gives an executable representation for SSI, but
this is defined in terms of demand-driven operational semantics, and seems rather
complicated.

Several people have noted a correspondence between programs in SSA and
λ-calculus. Kelsey [Kel95] shows how to convert continuation passing style into
SSA and vice versa.

Appel [App98b] informally shows the correspondence between SSA and func-
tional programming. He gives an algorithm [App98a] for translating SSA to a
functional intermediate form. (We extend Appel’s algorithm in section 1.4 of this
paper.)

Chakravarty et al [CKZ03] formalise a mapping from programs in SSA form
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r0← 1

x0← 5

r1← φ(r4, r0)
x1← φ(x4,x0)
if (x1 > 0)
r2, r3← σ(r1)
x2,x3← σ(x1)

r4← r2∗x2

x4← x2−1

returnr3
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FIGURE 1.3. Static single information form for factorial program

to administrative normal form (ANF). ANF is a restricted form ofλ-calculus.
They also show how the standard SSA conditional constant propagation algorithm
[WZ91] can be rephrased in terms of ANF programs.

1.3 STATIC SINGLE INFORMATION

Static Single Information form (SSI) was originally described by Ananian [Ana99].
He states that “the principal benefits of using SSI form are the ability to do pred-
icated and backwards data flow analyses efficiently.” He gives several exam-
ples including very busy expressions analysis and sparse predicated typed con-
stant propagation. Indeed, SSI has been applied to a wide range of problems
[RR00, SBA00, GSR03, AR03]

The MIT Flex compiler [Fle98] uses SSI as its intermediate representation.
Flex is a compiler for Java, written in Java. As far as we are aware, Flex is the
only publicly available SSI-based compiler. However, we are adding support for
SSI to the Machine SUIF compiler infrastructure [Smi96]. We have implemented
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let r0 = 1, x0 = 5
in

let function f2(r1,x1) =
let function f3(r2,x2) =

let r4 = r2∗x2, x4 = x2−1
in

f2(r4,x4)
and function f4(r3,x3) =

return r3

in
if (x1 > 0)

then f3(r1,x1)
else f4(r1,x1)

in
f2(r0,x0)

FIGURE 1.4. Functional representation for SSI factorial program

an efficient algorithm for SSI construction [Sin02] and several new SSI analysis
passes.

Below, we give the complete formal definition of a transformation from CFG
to SSI notation. This definition is taken from Ananian [Ana99].

A few auxiliary definitions may be required before we quote Ananian’s SSI
definition. The original program is the classical CFG representation of the pro-
gram [ASU86]. Program statements are contained within nodes. Directed edges
between nodes represent the possible flow of control. A path is a sequence of con-
secutive edges.→+ represents a path consisting of at least one edge (a nonnull
path). There is a path from the START node to every node in the control flow
graph, and there is a path from every node in the control flow graph to the END
node. The new program is in SSI. It is also a control flow graph, but it contains ad-
ditional pseudo-assignment functions and the variables have been renamed. The
variables in the original program are referred to as the original variables. The SSI
variables in the new program are referred to as the new variables.

So, here is Ananian’s definition:

1. If two nonnull pathsX→+Z andY→+Z exist having only the nodeZ where
they converge in common, and nodesX andY contain either assignments to
a variableV in the original program or aφ- or σ-function forV in the new
program, then aφ-function forV has been inserted atZ in the new program.
(Placement ofφ-functions)

2. If two nonnull pathsZ→+X andZ→+Y exist having only the nodeZ where
they diverge in common, and nodesX andY contain either uses of a variable
V in the original program or aφ- or σ-function forV in the new program, then
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a σ-function forV has been inserted atZ in the new program. (Placement of
σ-functions)

3. For every nodeX containing a definition of a variableV in the new program
and nodeY containing a use of that variable, there exists at least one path
X→+Y and no such path contains a definition ofV other than atX. (Naming
afterφ-functions)

4. For every pair of nodesX andY containing uses of a variable defined at node
Z in the new program, either every pathZ→+X must containY or every path
Z→+Y must containX. (Naming afterσ-functions)

5. For the purposes of this definition, the START node is assumed to contain a
definition and the END node a use for every variable in the original program.
(Boundary conditions)

6. Along any possible control flow path in a program being executed consider
any use of a variableV in the original program and the corresponding useVi

in the new program. Then, at every occurrence of the use on the path,V and
Vi have the same value. The path need not be cycle-free. (Correctness)

Construction of SSI can be performed inO(EV) time, whereE is a measure of
the number of edges in the control flow graph andV is a measure of the number
of variables in the original program. This is worst case complexity, but typical
time complexity is linear in the program size.

1.4 TRANSFORMATION

In this section we present the algorithm that transforms from SSI into a functional
notation.

We will adopt a cut-down version of Appel’s functional intermediate represen-
tation [App98a]. The abstract syntax of our functional notation is given in figure
1.5.

Expressions are broken down into primitive operations whose order of eval-
uation is specified. Every intermediate result is an explicitly named temporary.
Every argument of an operator or function is an atom (variable or constant). As
in SSA, SSI andλ-calculus, every variable has a single assignment (binding), and
every use of that variable is within the scope of the binding. (In figure 1.5, binding
occurrences of variables are underlined.) No variable name can be used in more
than one binding. Every binding of a variable has a scope within which all the
uses of that variable must occur.

• For a variable bound bylet v = . . . in exp, the scope ofv is justexp.

• The scope of a function variablefi bound in

let function f1(. . .) = exp1 . . .
function fk(. . .) = expk
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atom → c constant integer
atom → v variable

exp → let fundefsin exp function declaration
exp → let v = atomin exp copy
exp → let v = binop(atom,atom) in exp arithmetic operator
exp → if atom relop atomthen expelseexp conditional branch
exp → atom(args) tail call
exp → let v = atom(args) in exp non-tail call
exp → return atom return

args →
args → atom args
fundefs →
fundefs → fundefsfunction v(formals) = exp
formals →
formals → v formals

binop → plus |minus |mul | . . .
relop → eq | ne | lt | . . .

FIGURE 1.5. Functional intermediate representation

in exp

includes all theexpj (to allow for mutually recursive functions) as well asexp.

• For a variable bound as the formal parameter of a function, the scope is the
body of that function.

Any SSI program can be translated into this functional form. Each basic block
with more than one predecessor is transformed into a function. The formal param-
eters of that function are the destination operands of theφ-functions in that basic
block. Similarly, each basic block which is the target of a conditional branch in-
struction is transformed into a function. The formal parameters of that function
are the appropriate destination operands of theσ-functions in the preceding ba-
sic block (that is to say, theσ-functions that are associated with the conditional
branch). We assume that the SSI program is in edge-split form—no basic block
with multiple successors has an edge to a basic block with multiple predecessors.
In particular this means that blocks which are the targets of a conditional branch
can only have a single predecessor. (It should always be possible to transform an
SSI program into edge-split form.)
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If block f dominates blockg, then the function forg will be nested inside
the body of the function forf . Instead of jumping to a block which has been
transformed into a function, a tail call replaces the jump. The actual parameters
of the tail call will be the appropriate source operands of correspondingσ- or φ-
functions. (Notice that every conditional branch will dominate both its then and
else blocks, in edge-split SSI.)

The algorithm for transforming SSI into functional intermediate form is based
on algorithm 19.20 from Appel’s book [App98a]. Appel’s algorithm handles SSA,
so we extend it to deal with SSI instead.

In the algorithm (figure 1.6) lines of code that have been altered from Appel’s
original SSA-based algorithm are marked with a! and entirely new lines of code
(to handle SSI-specific cases) are marked with a+

1.5 COMPUTING SSI

There are two different approaches to constructing SSI form. Ananian’s approach
[Ana99] is pessimistic—it assumes thatφ- and σ-functions are needed every-
where, and then it removes such functions when it can show that they are not
actually required. This is a kind of greatest fixed point calculation. The alternative
approach [Sin02] is optimistic—it assumes that noφ- or σ-functions are needed,
then it inserts such functions when it can show that they are actually required.
This is a kind of least fixed point calculation. (Ananian claims that this optimistic
approach ought to take longer, but in practice it seems to be more efficient than
the pessimistic approach.)

Just as there is an optimistic and a pessimistic approach to the computation of
SSI, there appear to be an optimistic and a pessimistic approach to the transforma-
tion into functional notation. The pessimistic approach takes the original program
control flow graph (not in SSI form) and converts each basic block into a top-level
function, with tail calls to appropriate successor functions. It then applies stan-
dard lambda lifting techniques [Joh85] to generate the appropriate parameters for
each functional block.

The optimistic approach is exactly as given in section 1.4. It uses the domi-
nance relations of the control flow graph to determine how the functional blocks
should be nested. Then it (effectively) does a restricted amount of lambda lifting
to generate the appropriate parameters for each function.

A formal clarification of the relationship between optimistic and pessimistic
construction of SSI is the subject of ongoing research.

1.6 USES

In this section we briefly consider why the transformation from SSI into functional
notation may be of value.

Typed functional languages may be useful as intermediate representations in
compilers for imperative languages. It is certainly true that algorithms on such
functional representations can often be more rigorously defined [CKZ03]. It is

9



interesting to compare existing SSA or SSI data flow analyses with the equivalent
analyses in the functional paradigm, perhaps to discover similarities and differ-
ences. Such cross-community experience is often instructive to one of the parties,
if not both.

We have effectively made SSI interprocedural in scope, by abstracting all con-
trol flow into function calls. Until now, SSI has only been envisaged as an in-
traprocedural representation, and it has not been clear how to extend SSI to whole
program scope.

Finally we note that the functional representation of SSI programs is exe-
cutable. Standard SSI is not an executable representation, it is restricted in the
same manner as original SSA. Ananian has concocted an operational semantics
for an extended version of SSI [Ana99], however this is quite complex and un-
wieldy to use. On the other hand, functional programs are natural, understandable
and easily executable with a well-known semantics. We have successfully trans-
lated some simple SSI programs into Haskell and ML code, using the transforma-
tion algorithm of section 1.4.

1.7 CONCLUSIONS

In this paper we have shown how SSI (generally regarded as an imperative pro-
gram representation) can be converted into a simple functional notation. We have
specified a tranformation algorithm and we have briefly discussed the possible
applications of this transformation process.

Compilers for functional programming languages (such as the Glasgow Haskell
compiler) often translate their intermediate form into an imperative language (such
as C) which is then compiled to machine code. We are proposing to use a func-
tional notation as the intermediate form in an imperative language compiler, which
seems to be going against the current trend.

Finally we comment on future work. The transformation algorithm presented
in section 1.4 could possibly be formalised, in the same manner as Appel’s origi-
nal work on SSA [App98b, App98a] has been formalised [CKZ03]. Next we need
to translate existing SSI analysis algorithms to this new functional framework. We
must also consider how to take advantage of this functional notation in order to
devise new analyses and optimisations.
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1: Translate(node) =
2: let C be the children ofnodein the dominator tree
3: let p1, . . . , pn be the nodes ofC that have more than one predecessor
4: for i← 1 ton
5: let a1, . . . ,ak be the targets ofφ-functions inpi (possiblyk = 0)
6: let Si = Translate(pi)
7: let Fi = “ function fpi (a1, . . . ,ak) = Si”

+ 8: let s1, . . . ,sm be the nodes ofC that are the target of a conditional branch
+ 9: for i← 1 tom
+ 10: let qi be the (unique) predecessor ofsi

+ 11: let a1, . . . ,ak be the targets (associated withsi) of σ-functions inqi

+ 12: let Ti = Translate(si)
+ 13: let Gi = “ function fsi (a1, . . . ,ak) = Ti”
! 14: let F = F1F2 . . .FnG1G2 . . .Gm

15: return Statements(node,1,F)

16: Statements(node, j,F) =
17: if there are< j statements innode
18: then let s be the successor ofnode
19: if s has only one predecessor
20: then return Statements(s,1,F)
21: elses hasm predecessors
22: supposenodeis theith predecessor ofs
23: suppose theφ-functions ins are

a1← φ(a11, . . . ,a1m), . . .
ak← φ(ak1, . . . ,akm)

24: return “ let F in fs(a1i, . . . ,aki)”
25: else ifthe jth statement ofnodeis aφ-function
26: then return Statements(node, j +1,F)

+ 27: else ifthe jth statement ofnodeis aσ-function
+ 28: then return Statements(node, j +1,F)

29: else ifthe jth statement ofnodeis “returna”
30: then return “ let F in return a”
31: else ifthe jth statement ofnodeis a← b⊕c
32: then let S= Statements(node, j +1,F)
33: return “ let a = b⊕c in S”
34: else ifthe jth statement ofnodeis a← b
35: then let S= Statements(node, j +1,F)
36: return “ let a = b in S”
37: else ifthe jth statement ofnodeis “if a < b then gotos1 else gotos2”
38: then since this is edge-split SSI form
39: assumes1 ands2 each has only one predecessor

! 40: let a1, . . . ,ak be
! the source operands ofσ-functions innode(possiblyk = 0)
! 41: return “ let F in if a < b then fs1(a1, . . . ,ak) else fs2(a1, . . . ,ak)

FIGURE 1.6. Algorithm that transforms from SSI to functional representation12


