
Chapter 1

Developing High-Level
Irregularly-Parallel Programs
for Multiple Architectures
M. KH. Aswad, H.-W. Loidl and P.W. Trinder1

Abstract: The variety of parallel architectures nowadays available implies that
models for parallel software development should deliver acceptable performance
on a range of architectures with minimal development effort. One approach is
to use languages with very high level, and substantially architecture-independent,
specification of parallel coordination.
This paper presents anovel profiling-based methodologyfor developing irregularly-
parallel applications for multiple architectures in languages with high-level coor-
dination. The methodology has two main phases: an architecture-independent
phase of idealised parallelisation, and an architecture-dependent phase of accu-
rate performance prediction.
The methodology has been distilled from the development of a dozen applications
on various parallel machines. We have previously achieved good speedups with
only minimal code changes: a speedup of 12.0 on a 16-processor workstation
cluster and 2.8 on a 4-processor Sun SMP for a data-intensive program, and 11.9
on a 16-processor cluster for a symbolic computation application.
The methodology is illustrated by developing a substantial application for two
very different architectures: a Beowulf cluster and a Sun SMP. Seven alternative
parallel versions of the program are developed and evaluated using a simulated
idealised architecture. Realistic simulation of the two target architectures accu-
rately predicts the version that delivers the best performance. While the speedups
achieved for this program are modest, 7.5 on a 30-processor Beowulf and 1.8 on

1School of Mathematics and Computer Science, Heriot-Watt University, Edinburgh,
UK; Phone: +44 (0)131-451-3435; Fax: +44 (0)131-451-3732; Email:
{ceemka,hwloidl,trinder }@macs.hw.ac.uk

1

a 4-processor Sun SMP, they require only minimal changes to the optimised se-
quential code and do not require any source code changes in porting the program
between architectures.

1.1 INTRODUCTION

The performance of many parallel programs is very sensitive to the target paral-
lel architecture, hence the development of parallel programs is typically highly
architecture-dependent [ST98]. The goal of architecture-independent parallelism
is to develop programs that can be migrated from architecture to architecture with-
out sacrificing the efficiency or requiring redevelopment [CC00].

High level languages are one means of achieving architecture independence
as parallel coordination is specified at a higher level of abstraction, i.e. with
less reference to a specific underlying machine. Some languages encourage the
specification of very fine-grained parallelism with largely implicit communica-
tion and rely on dynamic management of the available parallelism to achieve
efficient parallel execution on a wide range of machines. Examples for this ap-
proach are Filaments [LFA96], Cilk [BJK+95], and Cid [Nik94] as extensions
of imperative languages and Charm [KRSG94] as an extension of an object-
oriented language. Skeleton-based languages use a set of higher-order func-
tions with efficient implementations to achieve architecture-independent paral-
lelism, e.g. PMLS [MSBK01] or P3L [BDO+95]. Data parallel languages like
HPF [KLSS94], or NESL [Ble93] restrict their scope to one paradigm and use the
additional information on the dynamic structure of the computation to tune the
execution for a particular parallel architecture.

Programs in high-level parallel languages are typically tuned to a new archi-
tecture using a combination of dynamically-adapting implementation and static/
dynamic analyses, i.e. cost models or profiling. Modifying the program using cost
models or profiling may be automatic, but is in most cases left to the programmer.
Static cost models are not appropriate for programs with irregular parallelism,
i.e. where important coordination characteristics like the number and granularity
of tasks are determined dynamically. A systematic profiling-based methodology,
however, can be used to develop effective irregularly-parallel programs for multi-
ple architectures.

This paper presents and illustrates such a methodology for GpH, a semi-
explicit parallel functional language. GpH is a language with both high-level com-
putation, it is an extension of Haskell98, and high-level control, it automatically
manages and distributes tasks, data and garbage, and to some extent dynamically
adapts to the underlying architecture. Due to the complexity of implementing
such a dynamic system, few robust effective multi-architecture implementations
of languages with both high-level computation and control exist. We believe our
multi-architecture development methodology to be the first for this class of lan-
guages.

We start by outlining the methodology together with the language and tools
used (Section 2). The methodology is illustrated by the development of a substan-

2

tial application (Section 3) for two very different architectures: a Beowulf cluster
and a Sun SMP. It has the following phases: sequential implementation/optimisation
(Section 4); idealised and realistic parallel simulation (Sections 5 and 6); tuning
on the parallel architectures (Section 7). Finally, Section 8 concludes.

1.2 MULTI-ARCHITECTURE PROGRAMMING IN GPH

1.2.1 Parallel Programming in GpH

GpH [THLP98] provides parallel (par) and sequential (seq) composition as
coordination primitives, and both simply return their second argument. Opera-
tionally seq causes the first argument to be evaluated before the second andpar
indicates that the first argument may be executed in parallel. The sophisticated
language implementation dynamically manages many details of the parallel exe-
cution that are usually architecture-dependent, including task creation, communi-
cation etc.

Evaluation strategies [THLP98] abstract overpar andseq to enable high-
level specification of parallel coordination. A strategy is a function that may be
higher-order, polymorphic or composed from other strategies.

1.2.2 GpH Compilers and Tools

Sequential Execution Tools: TheGHCi Interpreterprovides an interactive en-
vironment for fast program development, allowing the programmer to experiment
and debug the sequential program. TheGlasgow Haskell Compiler (GHC)[Pey96]
is an optimising compiler for Haskell with numerous optimisation phases for
reducing runtime and analyses that supply information about the program be-
haviour. TheTime and Space Profilers[SP95] attribute execution time and mem-
ory allocation to expressions in the program, enabling the programmer to identify
compute and memory-intensive components.

Parallel Execution Tools: TheGranSim Parallel Simulator[HLP95] is a highly-
parameterised simulator for GpH that allows the programmer to emulate different
architectures, including an idealised parallel machine. It also provides a set of
visualisation tools to help the programmer in understanding the dynamic nature
of the execution. TheGUM Implementation of GpH[THM+96] is a portable,
parallel implementation of GpH, a parallel extension of the Haskell functional
language. The implementation is message-based, and portability is facilitated by
using the PVM communications harness available on many multi-processors. As
a result, GUM is available for both shared-memory (e.g. Sun SPARCserver multi-
processors) and distributed-memory (cluster) architectures.

3

1.2.3 GpH Multi-Architecture Programming Methodology

The new methodology is based on experiences developing a dozen substantial
GpH programs, e.g. [LTH+99, THLP98], and is summarised in Figure 1.1, where
each node is a program, virtual machine pair. The methodology has two phases:
an architecture-independent phase (upper half), that develops parallelism on a
simulated idealised machine; and an architecture-dependent phase (lower half),
that tunes the parallelism for a specific architecture.

FIGURE 1.1. A Multi-Architecture Program Development Model

The first stage develops an inherently-parallel program and optimises its se-
quential performance of the program using standard compilers and interpreters
(Hugs, GHC), and their associated time and space profiling tools. This stage is
particularly important in a high-level language like GpH where time and space
costs are less apparent than in lower-level languages. In the second stage strate-
gies are added to the program to produce an initial parallel program. The par-
allelism in the initial parallel program is refined using the GranSim simulator,
parameterised to simulate an idealised machine. The idealised machine has, for
example, zero communication costs, and an unbounded number of processors.
The primary advantage of using an idealised machine is that we know that poor
parallelism is inherent, and not an artifact of some specific architecture. If good
parallelism cannot be achieved on the idealised machine it cannot be obtained on

4

Input sequences
AUGCGAGUCUAUGGCUUCGGCCAUGGCGGACGGCUCAUU
AUGCGAGUCUAUGGUUUCGGCCAUGGCGGACGGCUCAUU
AUGCGAGUCUAUGGACUUCGGCCAUGGCGGACGGCUCAGU
AUGCGAGUCAAGGGGCUCCCUUGGGGGCACCGGCGCACGGCUCAGU

Aligned output sequences
AUGCGAGUCUA-----------UGG-CUU-----CGGCCAUGGCGGACGGCUCAUU--
AUGCGAGUCUA-----------UGGACUU-----CGGCCAUGGCGGACGGCUCAUU--
AUGCGAGUCUA-----------UGG-UUU-----CGGCCAUGGCGGACGGCUCA--GU
AUGCGAGUC-AAGGGGCUCCCUUGG---GGGCACCGGC----GC--ACGGCUCA--GU

ˆˆˆ
|||

First Best Pin

FIGURE 1.2. Input Sequences and the Aligned Output Sequences.

any machine. The problem of obtaining good parallel behaviour is split into two
parts: obtaining a good parallel algorithm, and adapting that algorithm to the per-
formance characteristics of a specific architecture. We find in practice that most of
the development work is done in the first phase and can be reused when targeting
a new machine.

The architecture-dependent phase tunes the parallelism for a target architec-
ture using the GranSim simulator, parameterised to emulate the target architec-
ture. Key parameters include details such as the number of processors, commu-
nication latency, task creation overhead, and all are specified in terms of machine
cycles, an abstract time measure. Typical changes during this stage are to adapt
the parallelism to the characteristics of the target architecture, for example task
granularity might need to be increased to offset creation overhead and message
latency. The final stage is to measure and tune the program on the target architec-
ture using the GUM implementation and profiling tools. Our experiences with the
parallelisation of several programs indicate that this stage typically requires few
changes [LTH+99]. Normally the simulated results are a good approximation to
the parallel behaviour under GUM. Typical changes during this stage are to adapt
the I/O, or to utilise specific system calls on the target architecture. Of course,
it is sometimes necessary to iterate through the development process. For exam-
ple, the most efficient sequential version of an algorithm is not always the most
efficient parallel version.

1.3 A GENETIC ALIGNMENT PROGRAM

The program studied aligns sequences of genetic material (RNA) from related
organisms and has been described in [Bla00, FT89]. The alignment of a set of
RNA sequences entails lining up the sequences with corresponding sections di-

5

rectly above one another. Special “indel” characters (-) are inserted to line up the
sequences [San83] as shown in Figure 1.2.

Alignment algorithm. The input is a set of amino-acid{A,C,G,U}Sequences .
The alignment algorithm is based on the notion ofcritical subsequences: a sub-
sequence of a single sequence that occurs only once within the sequence. When
a critical subsequence occurs in two or more sequences, the set of occurrences
is called apin. To compute the best pin, all critical subsequences from each
sequence are generated, and the their occurrences in the input sequences are
counted. The critical subsequences with the highest number of occurrences is
selected.Unpinned sequences, which are not aligned, arise if a sequence does not
contain the best pin.

To align a set of sequences we compute the best pin and use it to partition all
sequences into left, right and unpinned sequences. Then we recursively align the
left, right and unpinned sequences. Finally we connect all pinned sequences with
the best pin and append the unpinned sequences. Figure 1.2 shows an example.

1.4 SEQUENTIAL IMPLEMENTATION AND TUNING

The potential parallelism in a functional program is only constrained by the data
dependencies between expressions. The first stage in the methodology develops a
program that is sequential in the sense that it does not specify which of the many
possible parallelisations to exploit.

Sequential implementation. The program has three major functions:align chunk ,
divide , andbestpin . Thealign chunk function is the top-level function
and aligns a set of sequences (chunks) as described above. It callsbestpin to
extract the best pin anddivide to split the input into the left, right and unpinned
chunks.
Thebestpin function takes the input sequences and determines the best pin. Its
logic comprises anouter loopfunction (substring sequences) that gener-
ates all substrings from each sequence, and aninner loopfunction (form pin)
to compute the number of occurrences of each substring. The functionex-
tract max pin selects the pins which have the maximum number of occur-
rences in all sequences.

Thedivide function takes the input sequences and best pin, and uses the lat-
ter to split the input sequences into three chunks (left, right and unpinned) before
recursively callingalign chunk . If no best pin can be found from any of the
three chunks these chunks are merged.

Sequential Tuning. The sequential measurements show that storage manage-
ment is a primary cost with garbage collection accounting for 120s of the 224s
total execution time. The total allocated memory is 1034 MB with maximum
residency is 12.25 MB. To improve the program a series of five optimisation are

6

TABLE 1.1. Summary of Sequential Tuning

time memory
Prog. Mut GC Total Max. Total

time Res. Alloc
I 120.1s 104.0s 224.1s 12520Kb 141.8Mb
II 121.3s 100.8s 222.1s 12520Kb 141.8Mb
III 119.1s 100.8s 219.9s 12520Kb 141.7Mb
IV 37.3s 6.5s 43.8s 123Kb 1,349.0Mb
V 16.9s 1.9s 18.9s 123Kb 369.5Mb
VI 12.9s 72.9s 85.9s 13400Kb 128.0Mb

made, that are not all detailed here. Most of the changes aim to eliminate interme-
diate data structures. To eliminate the unpinned substrings at an earlier stage, the
program computes the pin substrings in a sequence before it goes to generate the
substrings from another sequences. This reduces the number of substrings that
are carried to the next stage at the expense of introducing a tighter sequential de-
pendency into the program. As a result of these modifications, the total memory
allocated dropped to 707.55 Kb with maximum residency 122.70 Kb. The to-
tal execution time reduced to 18.92s comprising 17s of reduction (real execution
time Mut) and 2s of garbage collection (GC). Table 1.1 summarises the results of
sequential tuning, for all versions discussed in Section 5 and Figure 1.3 shows the
space profile for the tuned sequential program.

FIGURE 1.3. Space Profile of Final Sequential Version.

7

1.5 IDEALISED PARALLELISATION

The next stage of the methodology is to develop parallel versions on an idealised
machine. There are several sources of parallelism in the genetic alignment pro-
gram and seven parallel versions are developed. Each version is measured on
the GranSim simulator parameterised to emulate an idealised machine with zero
communication costs and an infinite number of processors. The input data in each
case is a set of 6 sequences containing 20 genomes. For the last three versions a
“chunk size” of size 30 is used.

Version I: Divide and conquer parallelisation. Parallelism is introduced using
a divide-and-conquer paradigm: the alignment of the left, right and unpinned
chunks is independent so they can be computed in parallel. Only limited par-
allelism is generated, an average of 1.1 tasks. This is due to a large sequential
component: thebestpin function on the initial input consumes about 78% of
the runtime, which by Amdahl’s Law limits the maximum speedup to 100%/78%
= 1.28.

Version IIa: Parallelising substring sequences.This version parallelises the
outer loop of the bestpin function described in Section 4. More specifically
the par substring sequences function uses parMap to map thesub-
string sequences function over the input sequences in parallel.

Version IIb: Parallelising form pin. This version parallelises the inner loop
described in Section 4. A newpar form pin function is inserted and the
form pin function was modified to be executed in parallel over the supplied
list.

Version IIc: Parallelise both substring sequences and form pin functions.This
version combines inner and outer loop parallelism, i.e. parallelism from both Ver-
sions IIa and IIb.

Version III: Clustering in the parallel form pin function. This version includes
all previous sources of parallelisation, (i.e. Versions I, IIa, IIb, IIc): also, data
clustering was applied to the input list supplied to theform pin function. The
implementation of theparMap function on a collection of data such as a big
lists often yields very fine task granularity. Clustering is one way to improve the
task granularity and data locality by introducing fewer tasks, each operating on a
closely-related subset of the collection.

Version IV: Parallel maps. This version extends Version III by replacing all
map functions withparMap . In other words in this version we parallelise all
intermediate functions calledbestpin anddivide .

8

TABLE 1.2. Idealised Simulation (Input: 20 6 30).

Prog. Avg Spd Run- Work Tasks Avg Task
Par. up time Mcyc Leng.

Mcyc Mcyc
Seq 1.0 1.0 139.6 139.6
I 1.1 1.1 126.1 138.7 19 7.30
IIa 4.2 4.2 32.9 138.1 94 1.40
IIb 8.8 8.3 16.8 147.8 3542 0.04
IIc 13.6 9.5 14.7 199.9 3583 0.05
III 16.7 16.8 8.3 138.6 275 0.50
IV 21.1 21.5 6.5 137.1 381 0.35
V 21.9 21.8 6.4 140.1 785 0.17

Version V: Parallel folds. This version extends Version IV by adding a paral-
lelised fold function inextract max pin function. We defined a new strategic
function calledparfoldList to execute thefoldr function in parallel.

Results. The results obtained from the idealised stage are summarised in Ta-
ble 1.2. The maximum speedup was obtained from Versions V (21.8) and IV
(21.5), while other versions give more modest speedups. Versions IIa and IIb
introduce a very large number of small tasks, with corresponding high task man-
agement overheads, reflected in the increase in total work.

FIGURE 1.4. Activity Profile of an Idealised Simulation of Version V.

Figure 1.4 shows the overall activity profile for version V on an simulated ide-

9

TABLE 1.3. Realistic 32-PE Beowulf Simulation (Input: 20 6 30).

Prog. Avg. Spd Run Work Tasks Avg. Task
Par. up time Length

Mcyc Mcyc Mcyc
Seq 1.0 1.0 139.6 139.6 – –
I 1.1 1.1 127.2 139.9 19 7.40
IIa 1.9 1.7 80.8 153.5 94 1.47
IIb 1.2 0.2 708.9 850.7 3183 0.04
IIc 2.2 0.9 143.7 316.1 3201 0.04
III 2.0 0.9 150.8 301.6 275 0.50
IV 1.9 0.8 168.2 319.6 381 0.36
V 2.1 0.8 162.0 340.2 785 0.17

alised machine, with execution time on the X-axis and the number of tasks on the
Y-axis. The tasks are separated into four classes, depending on their state:running
if they are currently executing,runnableif they could be executed if a processor
became available,blockedif they await data under evaluation, andfetchingif they
are retrieving data from another processor [Loi98, LTH+99]. From the graph we
see that for this input data the idealised machine could utilise approximately 40
PEs.

1.6 TUNING ON TWO SIMULATED ARCHITECTURES

The next stage of the methodology is to tune the program for a specific architec-
ture, using realistic simulations. The following sections describe the tuning for
both a shared-memory architecture and a distributed-memory cluster architecture.
The architectures are simulated by parameterising GranSim with key architectural
properties, most importantly the number of processors, the time to pack a message
for transmission, and communication latency. Each property is measured in clock
cycles of a target architecture processor.

Beowulf simulation. We use a 32-node 533MHz Pentium III Beowulf cluster
connected by a fast ethernet switch. The PE-to-PE communication latency was
measured as 142µs under PVM 3.4.2, so the Gransim latency is 142*533 = 75,300
clock cycles (75.3Kcyc). Likewise the packing time was measured as 21µs or
11Kcyc. Table 1.3 summarises the performance of the genetic alignment program
versions on a simulated Beowulf, aligning 6 sequences of length 20 with chunk-
size 30.

Sun SMP architecture. We use a 4-processor Sun SMP with clock speed of 250
MHz connected by a shared memory bus. The PE-to-PE latency under PVM is
109µs or 27.5Kcyc, and packing cost is 22µs or 5Kcyc. Table 1.4 summarises the

10

[h]

TABLE 1.4. Realistic 32-PE Sun SMP Simulation (Input: 20 6 30).

Prog. Avg Spd Run Work Tasks Avg. Task
Par. up time Length

Mcyc Mcyc Mcyc
seq 1.0 1.0 139.6 139.6 – –
I 1.1 1.1 126.6 139.2 19 7.400
IIa 2.1 1.9 70.6 148.2 94 1.470
IIb 1.3 0.3 413.3 537.2 3542 0.042
IIc 2.9 1.4 97.6 282.0 3201 0.046
III 3.5 1.8 77.2 270.2 275 0.510
IV 3.3 1.7 81.4 268.6 381 0.360
V 3.4 1.7 81.6 277.4 785 0.170

FIGURE 1.5. Realistic simulation of Version IIa on Beowulf & SMP (Input: 20 6).

performance of the genetic alignment program versions on a simulated Sun SMP.

Idealised simulation vs realistic simulation. Comparing the idealised (Table 1.2)
and realistic simulations (Tables 1.3 and 1.4) we make the following observations.
For these small input sizes the speedup attained and utilisation of each architecture
is extremely poor. The number of generated tasks is similar in all three simulations
because most parallelism is flat data parallelism rather than the hierarchical par-
allelism produced by a divide-and-conquer paradigm. Both simulated machines
give worse speedups than the idealised machines, with the simulated Beowulf be-
ing slightly worse than the simulated Sun SMP. This is caused by the increased
communications latency, task management overheads and limited number of PEs
in the realistic simulated machines. Important for the parallel program develop-
ment, increasing the number of generated tasks always improves speedup in an

11

[ht]

TABLE 1.5. Real 30-PE Beowulf (Input: 20 60 30).

Prog Speedup Runtime Generated Avg Task
(s) Tasks Len (ms)

seq 1 99.9 - -
I 0.8 99.7 171 0.119
IIa 7.5 13.2 941 0.011
IIb 0.7 371.3 17011 0.003
IIc 1.0 94.0 36236 0.021
III 0.9 110.5 5096 0.057
IV 0.6 174.8 1289 0.013
V 1.0 116.2 1308 0.020

ideal machine, but this not the case on the simulated realistic machines because
of the communication and tasks management overheads introduced.

Beowulf simulation vs Sun SMP simulation. Comparing the Beowulf and Sun
SMP simulations in Tables 1.3 and 1.4 we make the following observations. Ver-
sions I and IIa have similar behaviour on both architectures as they generate a
small number of large tasks compared with other versions. Figure 1.5 shows the
activity profile of both architectures, Beowulf on the left and Sun SMP on the
right. Both graphs are similar in shape except that the Beowulf shows more fetch-
ing tasks because of its higher latency.

In separate experiments we have obtained better speedups for both simulated
architectures with larger input sizes, but time and disk space limitations of the sim-
ulation platform preclude larger systematic experiments. Comparing the speedups
obtained from executing the different versions of the program on both architec-
tures we find that even with a small input size the maximum speedup is 1.9 on the
simulated Sun SMP and 1.73 on the simulated Beowulf, both for Version IIa.

1.7 TUNING ON TWO REAL ARCHITECTURES

The final stage of the methodology is to tune the program on the actual archi-
tecture, in our case a Beowulf and a Sun SMP. From Table 1.3, summarising the
realistic simulation results on the Beowulf, it is clear that Version IIa delivers the
best speedup. However, to validate the predictive ability of the realistic simula-
tion, and to explore the differences between the simulated and real machines all
versions are measured on both architectures. On both machines the input sizes are
much bigger than for the simulations, therefore we cannot directly compare results
from simulation and real measurement, i.e. Tables 1.3,1.4 with Tables 1.5,1.6.

12

TABLE 1.6. Real 4-PE Sun SMP & Beowulf (Input: 20 40 30).

Prog. Sun SMP Beowulf
Speedup Runtime No. Avg Task Speedup Runtime No. Avg Task

(s) Tasks Len (ms) (s) Tasks Len (ms)
seq 1 70.8 – – 1 27.7 –
I 0.9 73.8 55 1.340 1.1 27.2 3 0.0250
IIa 1.8 37.9 616 0.061 1.9 15.0 21 0.003
IIb 0.2 332.0 23940 0.013 0.8 36.4 861 0.001
IIc 0.4 146.8 12036 0.012 1.5 18.6 16157 0.005
III 0.7 94.8 2585 0.036 1.3 20.9 601 0.007
IV 0.6 105.8 2850 0.037 1.5 18.4 601 0.004
V 0.8 87.6 3047 0.029 1.8 15.5 4226 0.001

FIGURE 1.6. Activity Profiles of Version IIa on a Beowulf & SMP (Input: 20 60).

Beowulf and Sun Measurements.The measurements of the programs on the 30
node Beowulf cluster described in Section 6 are given in Table 1.5, and configured
with 4 PEs in Table 1.6. Table 1.6 also summarises the measurements of the
programs on the 4-PE Sun SMP described in the same section.

Considering the different versions of the program reported in Tables 1.5 and
1.6, the best version is IIa on both architectures, with speedup 7.5 on the Be-
owulf and 1.8 on the Sun SMP. This is because Version IIa generates big tasks
compared with Versions IIb to V. The worst version is IIb for both simulation
measurements and real measurements, because of the large number of small tasks
which increases the amount of communication in the program.

The maximum speedup obtained from input (20 60) was 7.5 when the program
was executed on 30 processors of the Beowulf cluster. This speedup exceeds the
speedups from the realistic simulation because we can run the program on larger
inputs in the real execution, which increases the number of coarse grained tasks
generated by this version, underlining the importance of task granularity.

13

FIGURE 1.7. Speedup vs Number of PEs (Beowulf & SMP real)

The difference in the number of generated tasks is a result of GUM’s dynamic
task distribution mechanism. The Beowulf has higher communications latency
than the Sun SMP, so a PE needs more time to obtain work from other PEs. This
difference shows how the GUM implementation of GpH dynamically adjusts the
granularity of the parallelism to the specific parallel architecture.

Table 1.6 shows that both 4-PE architectures deliver similar speedups, i.e. 1.8
on the Sun SMP and 1.9 on the Beowulf for version IIa. Figure 1.7 shows the
speedup graphs obtained from Beowulf and SMP.

1.8 SUMMARY AND CRITIQUE OF THE METHODOLOGY

A profiling-based methodology for developing irregularly-parallel applications
for multiple architectures in a semi-explicit parallel functional language has been
presented. The methodology is the first for languages with both high-level com-
putation and coordination, and has been illustrated using a genetic alignment pro-
gram. The key points learnt from investigating the methodology are as follows.

Sequential profiling is crucial for good overall performance and independent
of parallelisation. Sequential execution time dropped from 224s to 18.91s. The
idealised parallel version can be reused when targeting new architectures, reduc-
ing programming effort. The GranSim simulator provides considerable flexibility
to emulate different architectures including the idealised machine.

The idealised simulation results (Table 1.2) show that improved speedup cor-
responds to increased task generation. However many of the new tasks are small,
and while they may improve performance on a low-latency architecture, they de-
grade performance on a high-latency architecture (Table 1.5). While GUM can
dynamically adjust the number of tasks (Table 1.6 exhibits fewer tasks on the
high-latency Beowulf), its mechanism is more effective in divide-and-conquer
programs compared to programs with a flat parallel structure. Thus with a high-
latency machine and flat parallelism, versions with fine grain tasks (i.e. IIc and
onwards) should be avoided.

Realistic GranSim simulation correctly predicts the program versions that will
deliver a good speedup on different architectures. However, there are differences

14

between the activity profiles produced from GranSim and GUM, as shown in Fig-
ures 1.5 and 1.6. While the simulator is a good tool for guiding the parallel pro-
gram development process, it is too simplified to provide performance prediction
data that could be used for automatic parallelisation of sequential programs.

While the performance of the alignment program developed here is only just
acceptable (7.5 on a 30-processor Beowulf and 1.8 on a 4-processor Sun SMP),
far better speedups have been achieved for other programs using the emerging
methodology: e.g. 12.0 on a 16-processor workstation cluster and 2.8 on a 4-
processor Sun SMP for a data-intensive accident analysis program; 11.9 on a 16-
processor Beowulf for a linear equation solver [LTH+99]. Hence, we attribute the
modest raw performance for the genetic alignment program to limitations in the
parallelism of the application, rather than to shortcomings of our methodology.

In assessing our methodology we conclude that most of the parallel program
development can be done in an architecture independent fashion, using familiar
sequential tools and simulators for parallel execution. Due to GpH’s high-level
coordination and GUM’s automatic adaption to the underlying architecture, no
changes to the genetic alignment program are required to move it from a Be-
owulf cluster to a Sun SMP architecture. Moreover the best performance on both
architectures is obtained from the same parallel version of the program. The over-
all performance achieved is acceptable, considering that the parallelisation of the
program required only minimal code changes in the first place. Using the method-
ology has also suggested concrete improvements, namely that on high-latency ar-
chitectures program versions with flat parallelism and fine task granularity are not
developed in the idealised parallelisation phase.

1.9 REFERENCES

REFERENCES

[BDO+95] B. Bacci, M. Danelutto, S. Orlando, S. Pelagatti, and M. Vanneschi. P3L:
A Structured High Level Programming Language and its Structured Support.
Concurrency — Practice and Experience, 7(3):225–255, May 1995.

[BJK+95] R.D. Blumofe, C.F. Joerg, B.C. Kuszmaul, C.E. Leiserson, K.H. Randall, and
Y. Zhou. Cilk: An Efficient Multithreaded Runtime System. InPPoPP’95
— Symposium on Principles and Practice of Parallel Programming, pages
207–216, Santa Barbara, California, July 19–21, 1995.

[Bla00] J. Blazewicz.Handbook of Parallel and Distributed Processing. Springer,
2000.

[Ble93] G. Blelloch. NESL: A Nested Data-Parallel Language. Technical Report
CMU-CS-93-129, School of Computer Science, Carnegie Mellon University,
April 1993.

[CC00] L. Chamberlain and E. Christopher. ZPL: A Machine Independent Program-
ming Language.IEEE Transactions on Software Engineering, 26:197–212,
March 2000.

15

[FT89] I. Foster and S. Taylor.Strand: New Concepts in Parallel Programming.
Prentice-Hall, 1989.

[HLP95] K. Hammond, H-W. Loidl, and A. Partridge. Visualising Granularity in Par-
allel Programs: A Graphical Winnowing System for Haskell. InHPFC’95
— Conference on High Performance Functional Computing, pages 208–221,
Denver, CO, April 1995.

[KLSS94] C. Koelbel, D. Loveman, R. Schreiber, and JR. Steele.The High Performance
Fortran Handbook. The MIT Press, March 1994.

[KRSG94] L.V. Kale, B. Ramkumar, A.B. Sinha, and A. Gursoy. The Charm Parallel
Programming Language and System.IEEE Trans. on Par. and Distr. Sys.,
1994.

[LFA96] D.K. Lowenthal, V.W. Freeh, and G.R. Andrews. Using Fine-Grain Threads
and Run-Time Decision-Making in Parallel Computing. 37(1):41–54, 1996.

[Loi98] H-W. Loidl. Granularity in Large-Scale Parallel Functional Programming.
PhD thesis, Dept. of Computing Science, Univ. of Glasgow, March 1998.

[LTH+99] H-W. Loidl, P.W. Trinder, K. Hammond, S.B. Junaidu, R.G. Morgan, and S.L.
Peyton Jones. Engineering Parallel Symbolic Programs in GPH.Concurrency
— Practice and Experience, 11(12):701–752, October 1999.

[MSBK01] G. Michaelson, N. Scaife, P. Bristow, and P. King. Nested Algorithmic Skele-
tons from Higher Order Functions.Parallel Algorithms and Applications,
16:181–206, 2001. Special Issue on High Level Models and Languages for
Parallel Processing.

[Nik94] R.S. Nikhil. Cid: A Parallel “Shared-memory” C for Distributed Memory
Machines. InWorkshop on Languages and Compilers for Parallel Comput-
ing, volume 892, pages 376–390, Ithaca, NY, August 1994.

[Pey96] S.L. Peyton Jones. Compiling Haskell by Program Transformation: A Report
from the Trenches. InESOP’96 — European Symp. on Programming, pages
18–44, 1996.

[San83] D. Sankoff.Time Warps, Spring Edits and Macromolecules: The Theory and
Practice of Sequence Comparison. Addison-Wesley, 1983.

[SP95] P.M. Sansom and S.L. Peyton Jones. Time and Space Profiling for Non-strict
Higher Order Functional Languages. InPOPL 95 — Symp. on Principles of
Programming Languages, 1995.

[ST98] D. Skillicorn and D. Talia. Models and Languages for Parallel Computation.
ACM Computing Surveys, 30(2):123–169, 1998.

[THLP98] P.W. Trinder, K. Hammond, H-W. Loidl, and S.L. Peyton Jones. Algorithm
+ Strategy = Parallelism.Journal of Functional Programming, 8(1):23–60,
January 1998.

[THM+96] P.W. Trinder, K. Hammond, J.S. Mattson Jr., A.S. Partridge, and S.L. Peyton
Jones. GUM: a Portable Parallel Implementation of Haskell. InPLDI’96
— Programming Language Design and Implementation, Philadephia, USA,
May 1996.

16

