Probing the sources of suboptimality in human Bayesian inference
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Introduction

Human performance in sensorimotor estimation
tasks typically shows that:

ounder Gaussian distributions of stimuli, learning
is quick and biases are generally ‘close-to-optimal’
according to Bayesian Decision Theory (BDT) [1];

ounder complex (e.g. skewed, bimodal) distri-
butions, learning is slow and biases are often
suboptimal [1, 2].

These studies do not separate whether these
limitations in probabilistic inference arise from the
inability to learn or inability to compute with the
experimental distribution (“prior’).

Here we probe people’s ability at performing
Bayesian inference in a target estimation task with
explicit probabilistic information, under a variety
of priors.

We test several hypotheses about the sources of sub-
optimality with a factorial model comparison [3].

Methods

Target estimation task:
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Gaussian training session followed by test session
with Gaussian, unimodal or bimodal priors.

Results
Subjects’ responses:

Exemplar Gaussian prior Exemplar unimodal prior Exemplar bimodal prior
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Gaussian training session:
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Subjects” performance:
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Performance is suboptimal but no statistically

Models

Factorial model comparison:

1. Decision making:
o BDT: Bayesian Decision Theory;
o PPM: posterior-probability matching; or
o SPK: stochastic posterior, k-th power.

2. Prior noise: Absent or present (D).

3. Cue-estimation noise: Absent or present (S).

4. Lapse: Absent or present (L).

Stochastic posterior (SPK):

Decision noise implemented as a stochastic repre-
sentation of the posterior (e.g. noisy posterior or
sample-based approximation).

The target choise distribution pig4e(z) is well-
approximated by a k-th power of the posterior.

Standard BDT posterior b Noisy posterior Sample—based posterior
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Results of model comparison:

Models
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Best models stochastic posterior with lapse
(SPK-L) and noisy prior with lapse (BDT-P-L).

Alternatives to stochastic posterior (SPK):
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Subjects” performance:

— Stochastic posterior (SPK-L) —- Standard BDT (BDT-L)
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Summary

o Performance is suboptimal but similar across
different conditions and priors.

¢ Decision noise distribution well-approximated by
a power of the posterior.

o Major sources of suboptimality: mismatching reli-
ability of the cues, stochastic decision making,
noisy estimation of the priors.

o Other common models of variability (probability
matching, sampling-average) are rejected.
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